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A Separation-Based Methodology to Consensus
Tracking of Switched High-Order Nonlinear

Multiagent Systems
Maolong Lv , Wenwu Yu , Senior Member, IEEE, Jinde Cao , Fellow, IEEE,

and Simone Baldi , Senior Member, IEEE

Abstract— This work investigates a reduced-complexity adap-
tive methodology to consensus tracking for a team of uncertain
high-order nonlinear systems with switched (possibly asynchro-
nous) dynamics. It is well known that high-order nonlinear
systems are intrinsically challenging as feedback linearization
and backstepping methods successfully developed for low-order
systems fail to work. Even the adding-one-power-integrator
methodology, well explored for the single-agent high-order case,
presents some complexity issues and is unsuited for distributed
control. At the core of the proposed distributed methodology is a
newly proposed definition for separable functions: this definition
allows the formulation of a separation-based lemma to handle the
high-order terms with reduced complexity in the control design.
Complexity is reduced in a twofold sense: the control gain of each
virtual control law does not have to be incorporated in the next
virtual control law iteratively, thus leading to a simpler expression
of the control laws; the power of the virtual and actual control
laws increases only proportionally (rather than exponentially)
with the order of the systems, dramatically reducing high-gain
issues.

Index Terms— Consensus tracking, high-order nonlinear
systems, multiagent systems, switching dynamics.

I. INTRODUCTION

D ISTRIBUTED leaderless or leader-following consensus
control of nonlinear multiagent systems is more chal-

lenging but also potentially more applicable than its linear
counterpart. Similar to the linear case, the goal is to steer
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a team of agents to a not globally known trajectory using
only locally available information collected from neighboring
agents [1]–[4]. In recent years, leaderless or leader-following
consensus results have been obtained for two large fami-
lies of nonlinear multiagent systems: strict-feedback [5]–[21]
and pure-feedback multiagent systems [22]–[25]. For these
families, the commonly adopted approach is an extension
of the well-known backstepping technique [26] in a dis-
tributed sense. When the nonlinear functions are unknown,
approximators such as neural networks and fuzzy logic sys-
tems have been incorporated in such a design. Switching
dynamics can also be handled via the common Lyapunov
function method [9], [23], [25]. Although strict-feedback and
pure-feedback systems are popular dynamics in the nonlinear
control field, there exist extensions to these dynamics: most
notably, high-order nonlinear systems are a generalization of
strict-feedback or pure-feedback systems since integrators with
positive odd powers can appear in the dynamics (chain of
positive odd power integrators). Literature has shown that
high-order dynamics, appearing in aerospace and robotic appli-
cations [27]–[35], are extremely challenging to deal with,
as their linearized dynamics might possess uncontrollable
modes whose eigenvalues are on the right half-plane [36],
making all standard feedback linearization or standard back-
stepping methodologies [6]–[10], [13]–[25], [37]–[39] fail for
high-order systems [36]. Let us remark that the term “high-
order” used in [27]–[33] (and in this work) is different than
the term “high-order” used in [13], [14], [16], and [17]: the
former term is often used in the nonlinear control community
to indicate that the integrators in the chain may not only
have power equal to one (low-order dynamics), but higher or
equal to one (high-order dynamics); the latter term is often
used in the consensus community to indicate that the chain
is not composed by one linear integrator with power equal to
one (first-order agents), nor by two linear integrators (second-
order agents), but by more than two linear integrators (high-
order agents). Therefore, from the point of view of [27]–[33],
the dynamics of [13], [14], [16], [17] are strict-feedback and in
fact standard backstepping techniques have been successfully
adopted there. On the other hand, this work deals with “high-
order” dynamics in the sense of [27]–[33], for which no
standard backstepping technique can be adopted.

In place of the standard backstepping, the adding-one-
power-integrator technique was successfully proposed in [28]

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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to handle high-order dynamics. Progress made for the single
high-order system case include relaxing the growth condition
on the nonlinear functions [29], [30], [36] and employing
neural network or fuzzy logic approximators to handle com-
pletely unknown nonlinearities [31]–[33], [40]. However, it has
to be emphasized that a direct extension of the standard
adding-one-power-integrator technique in a distributed sense is
not meaningful due to some complex aspects of the procedure.
At least the following two complex aspects are worth mention-
ing: 1) the high-power terms are separated from the control
gain functions via separation lemmas that make the power of
the virtual control gains grow exponentially with the power
of the system; 2) the control gain of each virtual control is
incorporated into the next virtual control law iteratively, thus
increasing the control complexity at each step. Such issues
result in high-complexity and high-gain designs which might
be prohibitive for multiagent systems with low computational
power and limited actuation. Therefore, the crucial open ques-
tion motivating this research is: how can reduced-complexity
distributed methodologies be designed for high-order nonlin-
ear multiagent systems?

The main contribution of this work is to answer this question
for a large class of uncertain high-order nonlinear multia-
gent systems, which can exhibit heterogeneous nonlinearities
and switched dynamics with possibly asynchronous switches
among the agents. At the core of the proposed methodology
is a newly proposed definition for separable functions and
a new separation-based lemma to deal with the high-power
terms. The lemma decreases the aforementioned complex
aspects of the state of the art in a twofold direction: 1) it
avoids incorporating the control gain of each virtual control
in the next virtual control law, thus sensibly reducing the
complexity of the control action; 2) it allows the power of the
virtual and actual control laws to increase only proportionally
(rather than exponentially) with the order of the systems, thus
dramatically reducing any high-gain issue (cf. the discussions
in Remark 4 and 5 of this manuscript).

Notations: The notations adopted in this article are standard:
R and Rn denote the set of real numbers and the n-dimensional
Euclidean space, respectively. Qodd represents the set of pos-
itive odd integers. �·�2 refers to either the Euclidean vector
norm or the induced matrix 2-norm. For compactness and
whenever unambiguous, throughout this article, some variable
dependencies might be dropped, e.g., ξ , h j

i,k , �i,k , and υi,k

can be used to denote ξ(x1, x2), h j
i,k(xi,k), �i,k(si,k+1, vi,k), and

υi,k(si,k+1, vi,k), respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let us first give some preliminaries on graph theory. The
communication topology is described by a directed graph
G � (V , E ), with V � {0, 1, . . . , N} being the set of
nodes (agents) and with E ⊆ V ×V being the set of directed
edges between two distinct agents (self-edges are not allowed).
A directed edge ( j, i) ∈ E represents that agent i can obtain
information from agent j . The neighbor set of agent i is
denoted by Ni = { j |( j, i) ∈ E }: this is the set of agents from
which agent i can obtain information. We reserve index 0 to

the so-called leader agent: because agent 0 plays a special
role, let us consider the subgraph defined by G �

�
V ,E

�
with V � {1, 2, . . . , N} and E defined accordingly. For this
subgraph, let us define the connectivity matrix A = [ai j ] ∈
RN×N : if ( j, i)i �= j ∈ E , then ai j = 1, otherwise ai j = 0 (note
that aii = 0). The Laplacian matrix L associated with G is
defined as

L =
�

0 01×N

−μ L + B

�
with μ = [μ1, . . . , μN ]T, being μi = 1 if the leader 0 ∈ Ni ,
and μi = 0 otherwise. Also, B = diag[μ1, . . . , μN ]T and
L = D − A is the Laplacian matrix related to G with D =
diag[d1, . . . , dN ], where di =� j∈Ni

ai j .
Consider a team of N (N ≥ 2) switched high-order

nonlinear multiagent systems whose dynamics are given by⎧⎪⎨⎪⎩
ẋi,k = ϕ

σi (t)
i,k (xi,k)+ hσi (t)

i,k (xi,k)x
ri,k

i,k+1,

ẋi,ni = ϕσi (t)
i,ni

(xi,ni )+ hσi (t)
i,ni

(xi,ni )u
ri,ni
i

yi = xi,1

(1)

with 1 ≤ i ≤ N , 1 ≤ k ≤ ni − 1, xi,k = [xi,1, . . . , xi,k]T ∈
Rk . The subscript i stands for “follower”, to distinguish
them from the leader agent, as clarified later. In (1), σi (·):
[0,+∞) → Mi = {1, 2, . . . ,mi } is the switching signal for
the i th follower, with Mi denoting the switching mode set
and mi denoting the number of modes for the i th follower;
ri,k ∈ Qodd are the high powers (positive odd integers), and
u j

i ∈ R is the control input for the j th mode of the i th follower.
For each mode σi (t), the functions ϕσi (t)

i,k (·) and hσi (t)
i,k (·) are

unknown continuous functions (for simplicity, we do not
consider explicit time dependence in the nonlinear functions).
The following remarks highlight the difference between (1)
and other multiagent system models considered in literature.

Remark 1: (novelty and challenges of the class) The mul-
tiagent models in [6]–[10], [13]–[21] are strict-feedback low-
order, i.e., special cases of (1) when all the powers ri,k are
equal to one. Apart from this, (1) also possesses several
levels of heterogeneity because: each follower agent exhibits
its own switching σi (·), leading to possible asynchronous
switching among the N followers; the unknown switched
nonlinearities ϕσi (t)

i,k (·) and hσi (t)
i,k (·) are possibly different for

each follower. While similar levels of heterogeneity are con-
sidered in the pure-feedback multiagent models in [22]–[25],
those multiagent systems models are also homologous to the
strict-feedback low-order case, i.e. they can be equivalently
transformed into the strict-feedback low-order form using the
mean-value theorem.

Remark 2: (relevance of high-order nonlinear dynamics)
High-order nonlinear dynamics have both mathematical and
engineering relevance: from a mathematical point of view,
standard feedback linearization and backstepping methods do
not work for (1) due to the fact that the linearized dynamics
may have uncontrollable modes (cf. discussions in [28] and
[36]). From an engineering point of view, dynamics (1)
can describe a large class of underactuated, weakly coupled,
mechanical systems as shown in [36] and [41]. A practical
example in this sense is also given in Section V-B. It is worth
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noting that, in line with [29], [36], [41], ri,k are odd integers
since stabilization is not possible in general in the presence of
even powers. This is because no matter if the virtual or actual
control signals are positive or negative, they would become
positive as per effect of the even power.

To facilitate distributed control design for (1), the following
standard assumptions are made.

Assumption 1: [23] The leader agent 0 is represented by a
leader output signal yr , which is continuously differentiable,
bounded, and available only to a subset of the follower agents.
Furthermore, ẏr is bounded and not available to any follower
agent. The bounds for yr and ẏr are unknown.

Assumption 2: [19] The directed graph G = (V , E )
representing the multiagent communication contains at least
one directed spanning tree with the leader agent as the root.

Assumption 3: [33] For each follower agent i , we assume
the sign of h j

i,k is positive and there exist known real positive

constants h
j
i,k and h j

i,k , (1 ≤ k ≤ ni , j ∈ Mi ) such that

h j
i,k ≤ h j

i,k(·) ≤ h
j
i,k .

Remark 3: (meaning of assumptions) Assumption 1 implies
that the leader information is only available to a small fraction
of followers. Assumption 2 implies that L + B is a nonsin-
gular M -matrix1 and guarantees the feasibility of consensus
[42]. Assumption 3 is a general controllability condition for
many classes of nonlinear dynamics, including strict-feedback,
pure-feedback, and high-order nonlinear systems [31]–[33].

A. Technical Lemmas

The following lemmas are useful for deriving the main
results.

Lemma 1: [29] For any x1 ∈ R and x2 ∈ R, and
given positive integers b1, b2, and any real-valued function
ξ(x1, x2) > 0, it holds that

|x1|b1 |x2|b2 ≤ b1ξ |x1|b1+b2

b1 + b2
+ b2ξ

− b1
b2 |x2|b1+b2

b1 + b2
. (2)

Lemma 2: [33] Let x1 and x2 be real-valued functions.
There exist a positive odd integer h̄ and a constant λ̄ ≥ 1 such
that ���x h̄

1 − x h̄
2

��� ≤ h̄
��x1 − x2

�����x h̄−1
1 + x h̄−1

2

��� (3a)

|x1 + x2|λ̄ ≤ 2λ̄−1�|x1|λ̄ + |x2|λ̄
�
. (3b)

The following definition, lemma, and proposition are intro-
duced to the purpose of reduced-complexity control, as it will
be remarked later (cf. Remarks 4 and 5).

Definition 1: For any x1 ∈ R, x2 ∈ R, the continuous
function �(·): R → R is said to be a separable function
provided that the following is satisfied:

�(x1 + x2) = �(x1, x2)�(x1)+ υ(x1, x2)�(x2) (4)

where �(x1, x2) ∈ ��1, �1


with �1 = 1−d and �1 = 1+d , with
d an arbitrary constant taking value in (0, 1), |υ(x1, x2)| ≤
υ(d) with υ(d) denoting a positive continuous function that
is independent of x1 and x2. Moreover, for a given d , value
of υ(d) is independent of x1 and x2.

1An M -matrix is a square matrix with nonpositive off-diagonal entries and
nonnegative principal minors.

Proposition 1: For any x1 ∈ R, x2 ∈ R, the continuous
function �(·) is a separable function if the following hold:
1) �(x1x2) = �(x1)�(x2)
2) For p ∈ R and any constant d taking value in
(0, 1), a positive continuous function υ(d) exists satisfying
|�(p)− 1| ≤ υ(d)|�(p)| + d , where p = p + 1.

Proof: See Appendix.
Again, the linear function �(z) = z is a separable function

since (1), (2) hold with υ(d) = 1 and any 0 < d < 1. The
following lemma states that any positive odd power function
is a separable function.

Lemma 3: A function �(z) = zr with r being a positive
odd integer is a separable function. In particular, if we let
z = x1 + x2, then, it holds that (x1 + x2)

r = �(x1, x2)xr
1 +

υ(x1, x2)xr
2, where �(x1, x2) ∈ ��1, �1


with �1 = 1 − d

and �1 = 1 + d , where d = �r
k=1(r !/k!(r − k)!)(r −

k/r)l(r/r−k) is an arbitrary constant taking value in (0, 1) for
some appropriately small constant l, |υ(x1, x2)| ≤ υ(d) =�r

k=1(r !/k!(r − k)!)(k/r)l−(r/k) with υ(d) being a positive
constant.

Proof: See Appendix.

B. Consensus Problem

Define the tracking error for the i th follower as:
si,1 =

�
l∈Ni

ail(yi − yl)+ μi(yi − yr ) (5)

where i = 1, . . . , N . After defining s1 = [s1,1, . . . , sN,1]T ∈
RN , one has s1 = (L + B)δ where δ = ȳ − ȳr with
ȳ = [y1, . . . , yN ]T and ȳr = [yr , . . . , yr ]T . Due to the nonsin-
gularity of L +B, it holds that �δ�2 ≤ (�s1�/λmin

�
L +B

�
)

[42], being λmin the minimum singular value of L + B.

III. PROPOSED DISTRIBUTED CONSENSUS DESIGN

Let us define the following variables for the i th follower:
si,k = xi,k − vi,k−1, k = 2, . . . , ni (6)

and let us propose the following design, whose rationale will
be given in Section III-A:

vi,1 = −si,1 R
1

ri,1

i,1

�
ci,1 + ζ

r i,1

i,1
�	i,1


r i,1

i,1 + bri,1

i,1

� 1
ri,1

� �� �
ςi,1

(7)

Ri,1 =
�
hi,1(di + μi )(1 − d)

�−1
(8)

vi,k = −si,k R
1

ri,k

i,k

�
ci,k + ζ

ri,k

i,k
�	i,k


ri,k

i,k + bri,k

i,k

� 1
ri,k

� �� �
ςi,k

(9)

Ri,k =
�
hi,k(1 − d)

�−1
, (k = 2, . . . , ni ) (10)

ui � u j
i = vi,ni , j ∈ Mi (11)

where ri = max
1≤k≤ni

�
ri,k
�
, r i,k = (ri + 1/ri − ri,k + 1), r i,k =

(ri + 1/ri,k), hi,k = min
�
h j

i,k, j ∈ Mi
�
, ζi,k > 0, bi,k > 0 and

ci,k > 0, (k = 1, . . . , ni ) are design constants.
Further, the parameters �	i,k , k = 1, . . . , ni , are adapted via

the laws �̇	i,k = βi,kζ
r i,k

i,k sri +1
i,k 


r i,k

i,k − βi,kσi,k�	i,k (12)
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where βi,k > 0 denotes a tuning rate, σi,k > 0 stems
from the leakage or σ -modification, well studied in robust
adaptive control [43], and 
i,k > 0 is a constant satisfying

i,k ≥ ||φi,k || according to [32, Lemma 3] with φi,k being
the activation functions coming from the use of radial basis
function neural network (RBF NN) approximators [31]–[33].
The leakage or σ -modification is required to counteract the
effect of disturbances or RBF NN approximation errors.

In the following, we describe the design steps leading to
(7)–(12).

A. Design Steps

Step i, 1 (i = 1, . . . , N): The time derivative of si,1

along (1) and (5) is

ṡi,1 = (di + μi )h
j
i,1(xi,1)x

ri,1

i,2 + H j
i,1 (13)

where H j
i,1 is a function defined as

H j
i,1 = (di + μi)ϕ

j
i,1(xi,1)−

�
l∈Ni

ail

�
ϕ

j
l,1(xl,1)

+ h j
l,1(xl,1)x

rl,1

l,2

�
− μi ẏr (t). (14)

From Assumptions 1 and 3, and along similar ideas to [23],
[33], [44], one can conclude that there exist a continuous func-
tion Fi,1(Zi,1) and a RBF NN approximator �Fi,1

�
Zi,1

��W∗
i,1

�
such that, for any j ∈ Mi

sri −ri,1+1
i,1 H j

i,1 ≤
���sri −ri,1+1

i,1

���Fi,1(Zi,1)+ i,1

=
���sri −ri,1+1

i,1

�����Fi,1
�
Zi,1

��W∗
i,1

�+ εi,1(Zi,1)
�

+ i,1

=
���sri −ri,1+1

i,1

����W∗
i,1φ i,1(Zi,1)+ εi,1(Zi,1)

�
+ i,1

(15)

where Zi,1 = [xi,1, xl,1,l∈Ni , xl,2,l∈Ni ]T , Fi,1 = max{|H j
i,1|, j ∈

Mi}, i,1 > 0 is a constant and εi,1(Zi,1) is the approximation
error satisfying |εi,1(Zi,1)| ≤ εi,1 on a compact set �i,1,
with Zi,1 ∈ �i,1 and εi,1 > 0 being a constant. The
weight W∗

i,1 is the optimal weight vector such that W∗
i,1 =

arg min�W∗
i,1

g{sup
�Zi,1

|�Fi,1(Zi,1|�W∗
i,1)− Fi,1(Zi,1)|g}, with �W∗

i,1 being

an estimate of W ∗
i,1. For subsequent analysis, let us define

	i,1 = �W∗
i,1�r i,1 .

Consider the common Lyapunov function candidate

Vi,1 = sri −ri,1+2
i,1

ri − ri,1 + 2
+ 1

2βi,1

�	2
i,1 (16)

where �	i,1 = 	i,1 − �	i,1. Using Lemma 1 yields���sri −ri,1+1
i,1

���Fi,1 ≤
���sri −ri,1+1

i,1

������W∗
i,1

����φi,1

��+ εi,1

�
≤ 1

r i,1
ζ

−r i,1

i,1 + 1

r i,1
ζ

r i,1

i,1 sri +1
i,1

���W∗
i,1

����φi,1

���r i,1

+ 1

r i,1
bri,1

i,1 sri +1
i,1 + 1

r i,1
b

−r i,1

i,1 ε
r i,1

i,1

≤ sri +1
i,1

�
b

ri,1

i,1 + ζ
r i,1

i,1 	i,1

ri,1

i,1

�
+ κi,1 (17)

where the last inequality used the fact that (1/r i,1) ≤ 1 and

||φi,1|| ≤ 
i,1, κi,1 = ζ
−r i,1

i,1 + b
−r i,1

i,1 ε
r i,1

i,1 with ζi,1 > 0 and
bi,1 > 0 being design constants.

In light of (13), (14), and (16), the derivative of Vi,1 satisfies

V̇i,1 ≤ (di + μi )s
ri −ri,1+1
i,1 hi,1xri,1

i,2 − �	i,1�̇	i,1

βi,1

+ sri +1
i,1

�
bri,1

i,1 + ζ
r i,1

i,1 	i,1

ri,1

i,1

�
+ h̄i,1 (18)

where h̄i,1 = κi,1 + i,1. We are now in the position to handle
the term xri,1

i,2 in (18) through the proposed Lemma 3 as

sri −ri,1+1
i,1 xri,1

i,2 = sri −ri,1+1
i,1

�
si,2 + vi,1

�ri,1

≤ υ i,1

���sri −ri,1+1
i,1 sri,1

i,2

���+ sri −ri,1+1
i,1 �i,1v

ri,1

i,1 . (19)

Then, (18) can be rewritten as

V̇i,1 ≤ (di + μi)h
j
i,1υ i,1

���sri −ri,1+1
i,1 sri,1

i,2

���+ (di + μi)

×
�

h j
i,1�i,1s

ri −ri,1+1
i,1 v

ri,1

i,1

�
− 1

βi,1

�	i,1�̇	i,1

+sri +1
i,1

�
bri,1

i,1 + ζ
ri,1

i,1 	i,1

r i,1

i,1

�
+ h̄i,1. (20)

Substituting the virtual controller vi,1 (7) and the adaptation
law �̇	i,1 (12) into (20), and using the fact that

h
j
i,1υ i,1

���sri −ri,1+1
i,1 sri,1

i,2

��� ≤ τ i,1

�
1

r i,1
ρ

r i,1

i,1 sri +1
i,1 + 1

r i,1
�

−r i,1

i,1 sri +1
i,2

�
< τ i,1

�
ρ

r i,1

i,1 sri +1
i,1 + �

−r i,1

i,1 sri +1
i,2

�
(21)

we can rewrite (20) as

V̇i,1 ≤ −ci,1sri +1
i,1 + �di + μi

�
τ i,1ρ

r i,1

i,1 sri +1
i,1 + h̄i,1

+�di + μi
�
τ i,1�

−r i,1

i,1 sri +1
i,2 + 1

2
σi,1�	i,1�	i,1

≤ −�ci,1 − θi,1
�
sri +1

i,1 + ϑi,1sri +1
i,2 + h̄i,1

+1

2
σi,1	

2
i,1 − 1

2
σi,1�	2

i,1 (22)

where τ i,1 = h
j
i,1υ i,1, θi,1 = (di + μi)τ i,1ρ

r i,1

i,1 and ϑi,1 =
(di + μi)τ i,1�

−r i,1

i,1 with ρi,1 > 0 and �i,1 > 0 being design
constants.

Step i, 2 (i = 1, . . . , N): Taking the derivative of si,2 yields

ṡi,2 = h j
i,2(xi,2)x

ri,2

i,3 + H j
i,2 (23)

where H j
i,2 is a function defined as

H j
i,2 = ϕ

j
i,2(xi,2)− ∂vi,1

∂xi,1

�
ϕ

j
i,1(xi,1)+ h j

i,1xri,1

i,2

�
−
�
l∈Ni

ail
∂vi,1

∂xl,1

�
ϕ

j
l,1(xl,1)+ h j

l,1xrl,1

l,2

�
−∂vi,1

∂yr
ẏr − ∂vi,1

∂�	i,1

�̇	i,1. (24)

Proceeding similar to Step i, 1, there exist a continuous func-
tion Fi,2

�
Zi,2
�

and a RBF NN approximator �Fi,2
�
Zi,2

��W ∗
i,2

�
Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:09:32 UTC from IEEE Xplore.  Restrictions apply. 



LV et al.: SEPARATION-BASED METHODOLOGY TO CONSENSUS TRACKING 5471

such that, for any j ∈ Mi

sri −ri,2+1
i,2 H j

i,2 ≤
���sri −ri,2+1

i,2

���Fi,2(Zi,2)+ i,2

=
���sri −ri,2+1

i,2

�����Fi,2
�
Zi,2

��W∗
i,2

�+ εi,2(Zi,2)
�

+ i,2

=
���sri −ri,2+1

i,2

����W∗
i,2φi,2(Zi,2)+ εi,2(Zi,2)

�
+ i,2

(25)

where Zi,2 = [xi,2, xl,2,l∈Ni , (∂vi,1/∂xl,1), (∂vi,1/∂xi,1),

(∂vi,1/∂yr ), (∂vi,1/∂�	i,1),�	i,1, yr ]T , Fi,2 = max{|H j
i,2|, j ∈

Mi}, i,2 > 0 is a constant and |εi,2(Zi,2)| ≤ εi,2 with εi,2 > 0
being a constant. The optimal weight W∗

i,2 and its estimate�W∗
i,2 are defined in a similar way as the previous step. Then,

let us define 	i,2 = �W∗
i,2�r i,2 .

Consider the common Lyapunov function candidate

Vi,2 = Vi,1 + sri −ri,2+2
i,2

ri − ri,2 + 2
+ 1

2βi,2

�	2
i,2 (26)

where �	i,2 = 	i,2−�	i,2. Along similar lines as (17), we obtain
the following inequality:���sri −ri,2+1

i,2

���Fi,2 ≤ sri +1
i,2

�
b

ri,2

i,2 + ζ
r i,2

i,2 	i,2

r i,2

i,2

�
+ κi,2 (27)

where 
i,2 ≥ ||φi,2|| > 0 is a constant, κi,2 = ζ
−r i,2

i,2 +
b

−r i,2

i,2 ε
r i,2

i,2 with ζi,2 > 0 and bi,2 > 0 being design constants.
Hence, the derivative of Vi,2 along (22) and (23) is

V̇i,2 ≤ −�ci,1 − θi,1
�
sri +1

i,1 + h j
i,2(x i,2)s

ri −ri,2+1
i,2 xri,2

i,3

− 1

βi,2

�	i,2�̇	i,2 + sri +1
i,2

�
bri,2

i,2 + ζ
r i,2

i,2 	i,2

r i,2

i,2

�
+σi,1

2

�
	2

i,1 − �	2
i,1

�
+ ϑi,1sri +1

i,2 + h̄i,1 + h̄i,2

where h̄i,2 = κi,2+i,2. Similar to (19), the use of the proposed
Lemma 3 gives

sri −ri,2+1
i,2 xri,2

i,3 = sri −ri,2+1
i,2

�
si,3 + vi,2

�ri,2

≤ υ f,2

���sri −ri,2+1
i,2 sri,2

i,3

���+ sri −ri,2+1
i,2 �i,2v

ri,2

i,2 . (28)

Remark 4: (departure from state-of-the-art designs) To
highlight the distinguishing feature of the proposed design,
let us recall the standard designs in [29], [31]–[33], [36], [40].
There, instead of (28), xri,2

i,3 is tackled by subtracting and adding
v

ri,2

i,2 , namely

s
ri −ri,2+1
i,2 x

ri,2

i,3 = s
ri −ri,2+1
i,2

��
x

ri,2

i,3 − v
ri,2

i,2

�
+ v

ri,2

i,2

�
.

Then, the use of Lemmas 1 and 2 yields

sri −ri,2+1
i,2

�
xri,2

i,3 − v
ri,2

i,2

�
≤ ri,2

����sri −ri,2+1
i,2

������si,3

���
2ri,2−2

�
s

ri,2−1
i,3 + v

ri,2−1
i,2

�
+ �si,2ςi,2

�ri,2−1
�

≤ sri +1
i,2 + ς i,2sri +1

i,3

(29)

where ς i,2 =
�

2ri,2−2ri,2

�r i,2 +
�

2ri,2−2ri,2ς
ri,2−1
i,2

�ri +1
. However,

for the methods in [29], [31]–[33], [36], [40] to work, ς i,2

is incorporated into the virtual control law vi,3 to eliminate
the extra term ς i,2sri +1

i,3

�
e.g., [31, eq.(5)], [32, eq.(12)], [33,

eq.(4)], [36, the equation after (3.11)]
�
, [40, eq. (23)]: this

inevitably increases the complexity of the controller structure.
It is also worth remarking that the power of the control gain
ς i,k in (29) grows dramatically (exponentially) as the order of
the subsystems grows, leading to possibly high control gains.
This is in contrast with the power of the control gain in (28)
which is proportional to the power of the subsystems.

Remark 5: (effects of the separation lemma) The benefits
brought by the proposed Lemma 3 can be summarized as:
(i) in the first line of (28), the virtual control vi,2 can be
extracted from

�
si,3 + vi,2

�ri,2−1
directly without involving

any inequalities scaling as in
�

[31, eq.(17)], [32, eq.(29)],
[33, eq.(20)], [36, eq.(3.8)]

�
, [40, eq. (20)] implying that

the term ς i,2 will not appear; (ii) the term υi,2 in (28) is
eventually upper bounded by a constant υ i,2, which is inde-
pendent of si,3 and vi,2, and can be easily handled as shown
hereafter.

At this point, similar to (21), we can bound one of the terms
in (28) as

h
j
i,2υ i,2

���sri −ri,2+1
i,2

������sri,2

i,3

��� = τ i,2

���sri −ri,2+1
i,2

������sri,2

i,3

���
≤ τ i,2

�
ρ

r i,2

i,2 sri +1
i,2 + �

−r i,2

i,2 sri +1
i,3

�
(30)

where τ i,2 = h
j
i,2υ i,2, ρi,2 > 0 and �i,2 > 0 are design

constants.
Substituting the virtual controller vi,2 in (9) and the adap-

tation law �̇	i,2 in (12) into the Lyapunov derivative after (27)
results in

V̇i,2 ≤ −�ci,1 − θi,1
�
sri +1

i,1 − �ci,2 − ϑi,1 − θi,2
�
sri +1

i,2

+ϑi,2sri +1
i,3 +

2�
k=1

�
σi,k

2
	2

i,k − σi,k

2
�	2

i,k + h̄i,k

�

where θi,2 = τ i,2ρ
r i,2

i,2 and ϑi,2 = τ i,2�
−r i,2

i,2 .
Step i, k (i = 1, . . . , N, k = 3, . . . , ni −1): It follows from

(1) and (6) that the derivative of si,k is:

ṡi,k = h j
i,k(xi,k)x

ri,k

i,k+1 + H j
i,k (31)

where H j
i,k is a function defined as

H j
i,k = ϕ

j
i,k(xi,k)−

�
l∈Ni

∂vi,k−1

∂xl,1

�
ϕ

j
l,1(xl,1)+ h j

l,1x
rl,1

l,2

�

−
k−1�
q=1

∂vi,k−1

∂xi,q

�
ϕ

j
i,q(xi,q)+ h j

i,q x
ri,q

i,q+1

�

−
k−1�
q=1

∂vi,k−1

∂�	i,q

�̇	i,q − ∂vi,k−1

∂yr
ẏr . (32)

Likewise, there exist a continuous function Fi,k
�
Zi,k
�

and a
RBF NN approximator �Fi,k

�
Zi,k

��W∗
i,k

�
such that, for any j ∈
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Mi

sri −ri,k +1
i,k H j

i,k ≤
���sri −ri,k +1

i,k

���Fi,k(Zi,k)+ i,k

=
���sri −ri,k +1

i,k

�����Fi,k
�
Zi,k

��W∗
i,k

�+ εi,k(Zi,k)
�

+ i,k

=
���sri −ri,k +1

i,k

����W∗
i,kφi,k(Zi,k)+ εi,k(Zi,k)

�
+ i,k

(33)

where Zi,k = [xi,k, xl,2,l∈Ni , (∂vi,k−1/∂xl,1), (∂vi,k−1/∂xi,1),
. . . , (∂vi,k−1/∂xi,k−1), (∂vi,k−1/∂�	i,1), . . . , (∂vi,k−1/∂�	i,k−1),�	i,1, . . . ,�	i,k−1, (∂vi,k−1/∂yr ), yr ]T , Fi,k = max{ |H j

i,k|, j ∈
Mi}, i,k > 0 is a constant and |εi,k(Zi,k)| ≤ εi,k with εi,k > 0
being a constant. The optimal weight W∗

i,k and its estimate�W∗
i,k are defined in a similar way as the previous steps. Let

us further define 	i,k = �W∗
i,k�r i,k .

Consider the common Lyapunov function candidate

Vi,k = Vi,k−1 + sri −ri,k +2
i,k

ri − ri,k + 2
+ 1

2βi,k

�	2
i,k (34)

where �	i,k = 	i,k − �	i,k . Following similar lines as Step i, 1
and Step i, 2, it is possible to obtain the derivative of Vi,k as:

V̇i,k ≤ −
k�

m=1

�
ci,m − θi,m − ϑi,m−1

�
sri +1

i,m + ϑi,ksri +1
i,k+1

+
k�

m=1

�
σi,m

2
	2

i,m − σi,m

2
�	2

i,m + h̄i,m

�
(35)

where ϑi,0 = 0, θi,1 = (di + μi)τ i,1ρ
r i,1

i,1 , ϑi,1 = (di +
μi)τ i,1�

−r i,1

i,1 , θi,m = τ i,mρ
r i,m

i,m and ϑi,m = τ i,m�
−r i,m

i,m (m =
2, . . . , k), τ i,m = h

j
i,mυ i,m with υ i,m being the upper bound of

υi,m(si,m+1, vi,m), h̄i,m = κi,m +i,m , κi,m = ζ
−r i,m

i,m +b
−r i,m

i,m ε
r i,m

i,m ,
ζi,m > 0, bi,m > 0, ci,m > 0, ρi,m > 0 and �i,m > 0 are design
parameters.

Step i, ni (i = 1, . . . , N): For the final step, the derivative
of si,ni along (1) and (6) is

ṡi,ni = h j
i,ni
(xi,ni )u

ri,ni
i + H j

i,ni
(36)

where H j
i,ni

is a function defined as

H j
i,ni

= ϕ
j
i,ni
(xi,ni )−

�
l∈N f

∂vi,ni −1

∂xl,1

�
ϕ

j
l,1(xl,1)+ h j

l,1xrl,1

l,2

�

−
ni −1�
q=1

∂vi,ni −1

∂xi,q

�
ϕ

j
i,q(xi,q)+ h j

i,q x
ri,q

i,q+1

�

−
ni −1�
q=1

∂vi,ni −1

∂�	i,q

�̇	i,q − ∂vi,ni −1

∂yr
ẏr . (37)

Similar to steps (15), (25), and (33), there exist a con-
tinuous function Fi,ni

�
Zi,ni

�
and a RBF NN approximator�Fi,ni

�
Zi,ni

��W∗
i,ni

�
such that, for any j ∈ Mi

s
ri −ri,ni +1
i,ni

H j
i,ni

≤
���sri −ri,ni +1

i,ni

���Fi,ni (Zi,ni )+ i,ni =
���sri −ri,ni +1

i,ni

���
×
��Fi,ni

�
Zi,ni

��W∗
i,ni

�+ εi,ni (Zi,ni )
�

+ i,ni

=
���sri −ri,ni +1

i,ni

����W∗
i,ni

φ i,ni
(Zi,ni )+ εi,ni (Zi,ni )

�
+i,ni (38)

where Zi,ni = [xi,ni , xl,2,l∈Ni , (∂vi,ni −1/∂xl,1), (∂vi,ni −1/∂xi,1),
. . . , (∂vi,ni −1/∂xi,ni −1), (∂vi,ni −1/∂�	i,1), . . . , (∂vi,ni −1/∂�	i,ni −1),�	i,1, . . . ,�	i,ni −1, (∂vi,ni −1/∂yr ), yr ]T , Fi,ni = max{
|H j

i,ni
|, j ∈ Mi}, i,ni > 0 is a constant and |εi,ni (Zi,ni )| ≤ εi,ni

with εi,ni > 0 being a constant. The optimal weight W∗
i,ni

and
its estimate �W∗

i,ni
are defined in a similar way as the previous

steps. Let us further define 	i,ni = �W∗
i,ni

�r i,ni .
Consider the common Lyapunov function candidate

Vi,ni = Vi,ni −1 + s
ri −ri,ni +2
i,ni

ri − ri,ni + 2
+ 1

2βi,ni

�	2
i,ni

(39)

where �	i,ni = 	i,ni − �	i,ni .
Choosing the common actual controller ui � u j

i for the i th
follower as (11), one immediately gets from (35) that:

V̇i,ni ≤ −
ni�

k=1

�
ci,k − θi,k − ϑi,k−1

�
γ

ri,k −1

ri +1

i sri −ri,k +2
i,k

+
ni�

k=1

�
1

2
σi,k	

2
i,k − 1

2
σi,k�	2

i,k + h̄i,k

�

+
ni�

k=1

�
γi
�
ci,k − θi,k − ϑi,k−1

��
(40)

where above inequality holds due to ϑi,0 = 0, si,ni +1 = 0 and
the fact that

γ
(ri,ni −1)/(ri +1)
i s

ri −ri,ni +2
i,ni

≤ γi + sri +1
i,ni

(41)

with γi > 0 a constant, according to Lemma 1.

IV. STABILITY ANALYSIS

To analyze the stability of the entire closed-loop system,
consider the combined common Lyapunov function

V =
N�

i=1

Vi,ni . (42)

The use of the common Lyapunov function (42) is possible
because in (15), (25), (33), and (38), the maximum value of the
switching weights is estimated by the RBF NN approximators.
A multiple Lyapunov function approach is in principle possi-
ble, but in this case the stability analysis requires to impose
conditions on the switching signal [43]. With the common
Lyapunov function (42), the following stability result holds
for arbitrary switching σi (·).

Theorem 1: Under Assumptions 1–3, consider the
closed-loop system composed by the high-order switched
nonlinear multiagent system (1), the distributed adaptive
consensus controllers (7)–(11) and the parameter adaptation
laws (12). For any � > 0, and the initial conditions
xi,k(0) and �	i,k(0) for (i = 1, . . . , N, k = 1, . . . , ni )
satisfying V (xi,k(0),�	i,k(0)) < � , there exist positive design
parameters ci,k , βi,k , σi,k , ζi,k , bi,k , γi , ρi,k , �i,k , and 
i,k ,
i = 1, . . . , N, k = 1, . . . , ni , such that

1) The compact set �0 =
��

xi,k,�	i,k
�|V (xi,k,�	i,k) ≤

�, i = 1, . . . , N, k = 1, . . . , ni

�
is an invariant set,

namely, V (xi,k,�	i,k) ≤ � holds for ∀t ≥ 0, and hence
all the closed-loop signals are bounded all the time;
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2) The consensus tracking error δ converges to the
following compact set:

�3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ lim
t→+∞ �δ�2 ≤

 !!!"�N
i=1

�
χ
α
ψ i

� 2
ψ i

λ2
min

�
L + B

� � �

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (43)

where ψ i = max{ri − ri,1 + 2, i ∈ Mi}, ψ i
= min{ri − ri,1 +

2, i ∈ Mi}, α, and χ are given in the proof.
Proof: See Appendix.

In case the knowledge of λmin(L + B) is not available,
it was proposed to replace this terms in (43) with the more con-
servative bound (N/N2+N−1) with N = ((N−1/N))(N−1/2)

[45].
A design procedure for the proposed algorithm can be

sketched as follows:
Step 1: Specify a constant � > 0 and choose appropriate

initial conditions xi,k(0) and �	i,k(0) ≥ 0 for i =
1, . . . , N , k = 1, . . . , ni to satisfy V (0) < � ;

Step 2: Choose RBF NN approximators �W i,kφi,k(Zi,k) by
appropriately selecting the number of network nodes,
where i = 1, . . . , N , k = 1, . . . , ni . Accordingly,
calculate 
i,k .

Step 3: Assign specific values to the design parameters ci,k >
0, σi,k > 0, βi,k > 0, ζi,k > 0, γi > 0, bi,k > 0,
ρi,k > 0, and �i,k > 0.

Step 4: Determine the intermediate variables according to the
following order: si,1 → �	i,1 → vi,1 → si,2 → �	i,2 →
vi,2 → · · · si,k → �	i,k → vi,k → · · · → si,ni →�	i,ni → ui for i = 1, . . . , N , k = 3, . . . , ni − 1;

Remark 6: In line with [31], [32], and [33], Theorem 1 pro-
vides a practical consensus tracking result (i.e., convergence
to a residual set). This is expected since [36] has proven that
even for a single high-order system, asymptotic tracking is in
general not possible (cf. Examples 2.1 and 2.2 of [36]).

Remark 7: The size of �3 can be made small by increasing
ci,k , βi,k , σi,k , ρi,k , and �i,k , and meanwhile decreasing ζi,k ,
bi,k , and γi for i = 1, . . . , N , k = 1, . . . , ni . Then, the design
parameters ci,k , σi,k , βi,k , ζi,k , γi , bi,k , and 
i,k can be adjusted
so as to satisfy χ/α ≤ � , namely, V (t) ≤ � holds for ∀t ≥ 0
due to the fact that V (0) < � and V̇ ≤ 0 when V = � .

Remark 8: Even though the exact bound of ||δ||2 cannot be
obtained due to the unknown constant 	i,k coming from the
optimal weight vector of approximator, one can follow similar
ideas as [46, Sec. 2.2] and [47, Sec. 4] and give an estimate
for the upper bound of ||δ||2 by assuming 	i,k to be bounded
by a known constant. A similar approach is adopted in the
simulations of Section V-B. Fig. 8.

Remark 9: It is noted that the continuous function Fi,1

in (15) also embeds the effect of graph connectivity, since
Fi,1 depends on the connectivity matrix ai, j . At the same
time, because the RBF NN activation functions depend on the
neighboring states, one can rely on standard results [48] to get
that any continuous function can be approximated by a RBF
NN with desired accuracy over a compact set as long as we
select enough neural network nodes. Similar idea is used in
[23, eq. (18)], [24, eq. (12)], and [32, eq. (20)] to approximate
unknown system nonlinearities over compact sets.

Fig. 1. Communication graph between leader 0 and follower agents 1, 2, and
3. Each agent can switch among three dynamics, represented as three squares
around each agent.

Remark 10: Because the universal approximation ability of
RBF NNs is valid only for a compact set, Theorem 1 has
used invariant set theory to prove that �0 is an invariant
set where all closed-loop signals are retained all the time.
The effectiveness of the adopted approximators has also been
validated in the simulation (cf. Section V-A. Fig. 5).

Remark 11: Despite the dimension of input variable Zi,k in
activation function φi,k(Zi,k) inevitably grows as subsystem
order k grows, there are two solutions to handle this issue:
one is to use the fact ||φi,k(Zi,k)|| ≤ ||φi,k(Z̄i,k)|| to reduce
the dimension of Zi,k during the control design and stability
analysis as done in [24, Lemma 1 and eq. (13)] and [49,
Lemma 4 and eq. (15)], where dim(Z̄i,k)<dim(Zi,k). Another
one is to bound ||φi,k(Zi,k)|| as ||φi,k(Zi,k)|| ≤ 
i,k as
done in [32, Lemma 3], [33, Lemma 2] and in our arti-
cle [cf. (17)], where 
i,k > 0 is an appropriately chosen
constant.

V. SIMULATION EXAMPLES

A. Numerical Example

To validate the effectiveness of the proposed scheme, one
leader (labeled by 0) with three follower agents are considered
with the directed graph in Fig. 1.

The odd powers are taken as r1,1 = 3, r1,2 = 5, r2,1 = 3,
r2,2 = 7, r3,1 = 5, r3,2 = 9, ni = 2, i = 1, 2, 3. For
each follower, the switching signal is σi(·): [0,∞) → Mi =
{1, 2, 3}, which is shown in Fig. 2. Note that each follower
has its own switching signal, and thus can switch asynchro-
nously with respect to the other followers. The unknown
switched nonlinearities ϕσi (t)

i,k (·) and hσi (t)
i,k (·) are taken to be

heterogeneous:
For follower agent 1, the three switching dynamics are:
ϕ1

1,1 = 1.3 − cos(x1,1), h1
1,1 = | tanh(x3

1,1)| + 1.6,

ϕ2
1,1 = 0.6 + exp(−x2

1,1), h2
1,1 = cos(x3

1,1)+ 2,

ϕ3
1,1 = 0.8 + 0.2 cos(x3

1,1), h3
1,1 = 2 cos(x2

1,1),

ϕ1
1,2 = x1,2x1,1 + 0.75, h1

1,2 = 2(| cos(x2
1,2)| + 1.3),

ϕ2
1,2 = 0.7 + 0.2x2

1,2, h2
1,2 = 3 sin(x2

1,2)+ 4,

ϕ3
1,2 = cos(x2

1,2)+ 0.3, h3
1,2 = 5| sin(0.1x1,2)| + 1.5.
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TABLE I

PERFORMANCE INDICES FOR TRACKING ERRORS s1,1, s2,1 , AND s3,1
UNDER THREE SCHEMES

TABLE II

PERFORMANCE INDICES FOR CONTROL INPUTS u1, u2, AND u3 UNDER

THREE SCHEMES

For follower agent 2, the three switching dynamics are:
ϕ1

2,1 = 1.1x2,1 + x2
2,1, h1

2,1 = 3cos(x2
2,1)+ 5,

ϕ2
2,1 = x2

2,1 + 0.5, h2
2,1 = sin(x3

2,1)+ 3,

ϕ3
2,1 = x3

2,1 + 1.25, h3
2,1 = cos(x2

2,1 + x3
2,1)+ 3,

ϕ1
2,2 = 0.5x2

2,2 + 0.75, h1
2,2 = 3 + 2 cos(χ3

2,1χ2,2),

ϕ2
2,2 = 1.3x3

2,1 + 0.8x2,2, h2
2,2 = 2 cos(χ2

2,1)+ 4,

ϕ3
2,2 = cos(x2,1)x2,2 + 0.25, h3

2,2 = 3cos(x3
2,2)+ 5.

For follower agent 3, the three switching dynamics are:
ϕ1

3,1 = 1.5 sin(x3,1)+ x3
3,1, h1

3,1 = | sin(x3,1)| + 6,

ϕ2
3,1 = 0.3x2

3,1 + sin(x3,1), h2
3,1 = | sin(x3

3,1)| + 3,

ϕ3
3,1 = x3,1 + 0.2 cos(x3,1), h3

3,1 = cos(x2
3,1 + x3

3,1)+ 4.5,

ϕ1
3,2 = 0.5x2

3,1 + 0.5x3,2, h1
3,2 = cos(x2

3,2)+ 2,

ϕ2
3,2 = x3,2 + 0.8 sin(x3,1), h2

3,2 = 4 cos(x3,1)+ 5.5,

ϕ3
3,2 = cos(x2

3,2)+ 0.7, h3
3,2 = cos(x2

3,2)+ 3.5.

The leader output is yr (t) = 2sin(t)+ 2sin(0.5t). For com-
parison purposes, three schemes are considered, the method
proposed here and the two state-of-the-art methods of [32]
and [33]. In our simulation, the centers and widths of RBF
NNs are chosen on a regular lattice in the respective compact
sets. In particular, the neural networks used to approximate
F1,1(Z1,1), F2,1(Z2,1), and F3,1(Z3,1), respectively, contain 27
(Case I) or 3 (Case II) nodes with centers evenly spaced
in the interval [−2.5, 2.5] × [−2.5, 2.5] × [−2.5, 2.5] and
widths equal to two. The neural networks used to approximate
F1,2(Z1,2), F2,2(Z2,2), and F3,2(Z3,2), respectively, contain 64
(Case I) or 6 (Case II) nodes with centers evenly spaced in
the interval [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] ×
[−4, 4]×[−4, 4]×[−4, 4]×[−4, 4] and widths equal to two.
The initial conditions for the follower agents are taken as:
x1,1(0) = 0.5, x2,1(0) = 0.55, x3,1(0) = 0.75, x1,2(0) = 0.25,

Fig. 2. Switching signals σi (t) for the three followers. Note that the followers
can switch asynchronously with each other.

Fig. 3. Tracking errors s1,1, s2,1, and s3,1 under three schemes.

x2,2(0) = 1.5, x3,2(0) = −0.75, �	1,1(0) = �	1,2(0) = 5,�	2,1(0) = �	2,2(0) = 7, and �	3,1(0) = �	3,2(0) = 10. The
design parameters are chosen to be: c1,1 = 1.5, c2,1 = 2.5,
c3,1 = 3, c1,2 = 1, c2,2 = 2, c3,2 = 1.5, β1,2 = β2,2 = β3,2 = 1,
β1,1 = 7.5, β2,1 = 5, β3,1 = 15, σ1,1 = 0.25, σ2,1 = 0.75,
σ3,1 = 0.5, σ1,2 = σ2,2 = σ3,2 = 1, ζ1,1 = ζ2,1 = ζ3,1 = 0.5,
ζ1,2 = ζ2,2 = ζ3,2 = 0.75, b1,1 = b2,1 = b3,1 = 0.5,
b1,2 = b2,2 = b3,2 = 1, 
1,1 = 
2,1 = 
3,1 = 5, and

1,2 = 
2,2 = 
3,2 = 5

√
5. The simulation results in Figs.

3 and 4 and in Tables I and II are carried out based on
Case I. Tables I and II report the integral time absolute error
(ITAE) = [& T

0 t|si,1(t)|dt], root mean square error (RMSE)
= [(1/T )

& T
0 s2

i,1(t)dt](1/2), mean absolute error (MAE) =
[(1/T )|si,1(t)|dt], and mean absolute control actions (MACA)
= [(1/T )

& T
0 |ui |] for i = 1, 2, 3, respectively. Fig. 2 reveals

that the switching signals σi (·), i = 1, 2, 3, for three followers
are asynchronous. It can be seen from Fig. 3 and Table I that
the proposed method achieves smaller tracking errors s1,1, s2,1,
and s3,1 than that of [32] and [33]. From Fig. 4 and Table II,
one can conclude that the proposed method exhibits smaller
control actions than that of [32] and [33]. Fig. 5 shows that
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Fig. 4. Control inputs u1, u2, and u3 under three schemes. The proposed scheme avoids high control gains, as the result of the reduced-complexity design
(cf. Remark 5).

TABLE III

VALUES OF m1, m2 , ks , AND kω OF 10 FOLLOWERS

Fig. 5. True (unknown) F1,1, F1,2, F2,1, F2,2, F3,1, F3,2, and their NN
approximations �F1,1, �F1,2, �F2,1, �F2,2, �F3,1, �F3,2.

the RBF NN approximators can achieve satisfactory approxi-
mation performances as long as we choose a sufficiently large
number of network nodes.

B. Practical Example
To further validate the developed method, a multiagent

version of the underactuated weakly coupled mechanical

benchmark in [36] is considered, also shown in Fig. 6. The
system includes a mass mσi

i,1 on a horizontal smooth surface
and an inverted pendulum mσi

i,2 supported by a massless rod.
The mass is connected to the wall surface by a linear spring
and to the inverted pendulum by a nonlinear spring with a
cubic force deformation relation. The dynamics of the i th
agent can be represented by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ̈i = g sin(θi)

l
+ kσi (t)

i,s

mσi (t)
i,2 l

�
xi − l sin(θi)

�3
cos(θi),

ẍi = − kσi (t)
i,ω

mσi (t)
i,1

xi − kσi (t)
i,s

mσi (t)
i,1

�
xi − l sin(θi)

�3 + ui

mσi (t)
i,1

(44)

for i = 1, . . . , 10, and σi (·) : [0,+∞) → Mi={1, 2, . . . , 10},
where θi ∈ (−(π/2), (π/2)), xi is the displacement of
mσi (t)

i,1 , ui is the control force acting on mσi (t)
i,1 . Moreover,

kσi (t)
i,s and kσi (t)

i,ω are spring coefficients, and l is the pendu-
lum length. The specific values of mσi (t)

i,1 , mσi (t)
i,2 , kσi (t)

i,s , and
kσi (t)

i,ω , i = 1, . . . , 10, are given in the Table III, and the
switching signal is given in Fig. 7. The following change of
coordinates:

xi,1 = θi , xi,2 = θ̇i , xi,3 = xi , xi,4 = ẋi (45)
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Fig. 6. Underactuated weakly coupled mechanical system.

Fig. 7. Asynchronous switching signal σi (t).

transform (44) into'
ẋi,1 = xi,2, ẋi,2 = ϕ

σi (t)
i,2 (x̄i,2)+ hσi (t)

i,2 (x̄i,2)x3
i,3,

ẋi,3 = xi,4, ẋi,4 = ϕσi (t)
i,4 (x̄i,4)+ hσi (t)

i,4 (x̄i,4)ui
(46)

where ϕσi (t)
i,2 (x̄i,2) = (g/ l) sin(xi,1) +

(kσi (t)
i,s /mσi (t)

i,2 l) cos(xi,1)[3xi,3l2 × sin2(xi,1) − 3x2
i,3l sin(xi,1) −

l3 × sin3(xi,1)], ϕi,4(x̄i,4) = −(kσi (t)
i,ω /mσi(t)

i,1 )xi,3 −
(kσi (t)

i,s /mσi (t)
i,1 )
�
x3

i,3 − l3 sin3(xi,1) − 3x2
i,3l sin(xi,1) +

3xi,3l2 sin2(xi,1)], hσi (t)
i,2 (x̄i,2) = (kσi (t)

i,s /mσi (t)
i,2 l) cos(xi,1),

and hσi (t)
i,4 (x̄i,4) = (1/mσi(t)

i,1 ).
The leader signal is the same as Example A. Due to space

limits, we do not repeat all the state-of-the-art comparisons
as in the previous example. The neural networks used to
approximate Fi,1(Zi,1) and Fi,2(Zi,2) for i = 1, . . . , 10 con-
tain 27 nodes with centers evenly spaced in the interval
[−2.5, 2.5] × [−2.5, 2.5] × [−2.5, 2.5] and widths equal to
two. The neural networks used to approximate Fi,3(Zi,3) and
Fi,4(Zi,4) for i = 1, . . . , 10 contain 81 nodes with centers
evenly spaced in the interval [−4, 4] × [−4, 4] × [−4, 4] ×
[−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] × [−4, 4] ×
[−4, 4] and widths equal to two. The initial conditions for
the follower agents are taken as: xi,1(0) = 0 for i = 1, . . . , 7,
xi,1(0) = 0.15 for i = 8, 9, 10, xi,2(0) = 0.25 for i = 1, . . . , 5,
xi,2(0) = −0.5 for i = 6, . . . , 10, xi,3(0) = 0 for i =
1, . . . , 10, xi,4(0) = −0.75 for i = 1, . . . , 6, xi,4(0) = 0.25
for i = 7, . . . , 10, �	i,1(0) = �	i,2(0) = 5 for i = 1, . . . , 5,
and �	i,3(0) = �	i,4(0) = 7.5 for i = 6, . . . , 10. The design
parameters are chosen to be: ci,1 = 1.5 for i = 1, . . . , 4,
ci,1 = 2.5 for i = 5, . . . , 10, ci,2 = ci,3 = 2 for i = 1, . . . , 10,
ci,4 = 3.5 for i = 1, . . . , 10, βi,1 = 5.5 for i = 1, . . . , 10,
βi,2 = 7 for i = 1, . . . , 10, βi,3 = βi,4 = 3.5 for i = 1, . . . , 10,
σi,1 = σi,2 = 0.5 for i = 1, . . . , 10, σi,3 = σi,4 = 0.75 for
i = 1, . . . , 10, ζi,1 = ζi,3 = 0.25 for i = 1, . . . , 10, ζi,2 =
ζi,4 = 0.5 for i = 1, . . . , 10, bi,1 = bi,2 = bi,3 = bi,4 = 1 for
i = 1, . . . , 10, 
i,1 = 5, and 
i,2 = 
i,3 = 
i,4 = 7

√
5 for

i = 1, . . . , 10. Fig. 8(a) shows that the 10 followers track the
leader signal with bounded tracking errors. Fig. 8(b) depicts
the evolution of control inputs. Fig. 8(c) draws the curves
of ||δ||2 as well as its theoretical bound which is calculated
assuming 	i,k to be bounded as 	i,k ≤ 7

√
5 for i = 1, . . . , 10

and k = 1, . . . , 4.

VI. CONCLUSION

This article proposed a result about distributed consensus
tracking for high-order nonlinear multiagent systems with
switched dynamics. The distinguishing feature of the proposed
design is a new separation-based lemma that can simplify the
control design in a twofold sense: the complexity of the virtual
and actual control laws is sensibly reduced; the power of the
control gains does not increase exponentially with the order
of the subsystems.

APPENDIX

Proof of Proposition 1: When x1 is not equal to zero, we let
x2 = px1, p ∈ R. Thus, using (ii) yields

|�(x1)(�(p)− 1)| ≤ υ(d)|�(p)| · |�(x1)| + |�(x1)|d (47)

where p = p + 1. Applying (i) on both sides of (47) gives

|�(x1 + x2)− �(x1)| ≤ M + |�(x1)|d (48)

where M = υ(d)|�(x2)|. At this point, two situations are
considered:
Situation 1: when �(x1) < 0, it follows from (48) that:

d�(x1)− M ≤ �(x1 + x2) ≤ d�(x1)+ M (49)
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Fig. 8. (a) Follower outputs yi (i=1,…,10) and leader output yr . (b) Control
inputs. (c) Norm of consensus tracking error ||δ||2 and its theoretic bound.

where d = d + 1 and d = 1 − d .
Situation 2: when �(x1) ≥ 0, one has

d�(x1)− M ≤ �(x1 + x2) ≤ d�(x1)+ M. (50)

When x1 is equal to zero, (4) becomes

�(x2) = �(x1, x2)�(0)+ υ(x1, x2)�(x2) (51)

which we have to prove. Using (1), we get �(0) = �(0)�(x2)
and (51) becomes �(x2) = ��(0, x2)�(0) + υ(0, x2)


�(x2)

which holds by taking �(0, x2) ≡ 0 and υ(0, x2) ≡ 1. This
completes the proof. �

Proof of Lemma 3: We will verify that condition (2) in
Lemma 3 holds (condition (1) is trivially satisfied). Using the
binomial theorem [50, Sec. 3.1, page. 10] leads to

pr = 1 + p · r !
(r − 1)! + · · · + pr−1 · r !

(r − 1)! + pr (52)

which further results in

|pr − 1| ≤
r�

k=1

r !
k!(r − k)! |p|k . (53)

At this point, it is noted that for any positive constant d taking
value in (0, 1), we select an appropriately small constant
l > 0 satisfying d = �r

k=1(r !/k!(r − k)!)(r − k/r)l(r/r−k) .
In the meantime, if we choose υ(d) = �r

k=1(r !/k!(r −
k)!)(k/r)l−(r/k) , then, it follows from Lemma 1 that d +
υ(d)|pr | = �r

k=1[(r !/k!(r − k)!)(k/r)l−(r/k)|p|r + (r !/k!

(r − k)!)(r − k/r)l(r/r−k)]≥�r
k=1(r !/k!(r − k)!) ×|p|k , which

combined with (53) gives |pr − 1| ≤ d +υ(d)|pr |. Therefore,
�(z) = zr is a separable function according to Proposition 1.
This completes the proof. �

Finally, the proof of Proposition 1 reveals that, if we let
z = x1 + x2, then, it holds that (x1 + x2)

r = �(x1, x2)xr
1 +

υ(x1, x2)xr
2, where �(x1, x2) ∈ ��1, �1


with �1 = 1 − d and

�1 = 1 + d , and |υ(x1, x2)| ≤ υ(d).
Proof of Theorem 1: It follows from (40) that:

V̇i,ni ≤ −αi Vi,ni +  i

where αi = min{(ri − ri,k + 2)ζi,k, βi,kσi,k : 1 ≤ k ≤ ni }
with ζi,k = γ

(ri,k −1)/(ri +1)
i (ci,k − θi,k − ϑi,k−1) and  i =�ni

k=1[(1/2)σi,k	
2
i,k + h̄i,k +γi(ci,k − θi,k −ϑi,k−1)]. Therefore,

the derivative of V can be obtained as

V̇ ≤ −αV + χ (54)

where α = min1≤i≤N {αi } and χ = �N
i=1  i . It can be

concluded from (54) that (χ/α) can be made arbitrarily small
by increasing ci,k , βi,k , σi,k , ρi,k , and �i,k , and meanwhile
decreasing ζi,k , bi,k , and γi for i = 1, . . . , N , k = 1, . . . , ni .
Namely, it is possible to make (χ/α) ≤ � by selecting
the design parameters appropriately. Then, in light of (54),
we have that V̇ ≤ 0 holds true for V = � : consequently,
the compact set �0 is an invariant set and all closed-loop
signals stay inside of the compact set �0 all the time since
V (0) < � .

A bound on the tracking error can be obtained as follows:
integrating V̇ (t) on [0, t] gives( t

0
d
�

exp(αt)V (t)
 ≤
( t

0
χ exp(αt) dt (55)

which suggests that

V (t) ≤
�

V (0)− χ

α

�
exp(−αt)+ χ

α
≤ V (0)+ χ

α
. (56)

Thus, invoking (16) yields that limt→+∞(s
ri −ri,1+2
i,1 /ri − ri,1 +

2) ≤ (χ/α), which further leads to

limt→+∞�s1� ≤
 !!" N�

i=1

��
χ

α
ψ i

�2� 1
ψ i

. (57)

Then, from the inequalities below (5), one gets that
limt→+∞�δ� ≤ ( /λmin(L + B)). This concludes the
proof. �
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