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Stiffness Compensation Through
Matching Buckling Loads in a
Compliant Four-Bar Mechanism
In this paper, a novel alternative method of stiffness compensation in buckled mechanisms is
investigated. This method involves the use of critical load matching, i.e., matching the first
two buckling loads of a mechanism. An analytical simply supported five-bar linkage model
consisting of three rigid links, a prismatic slider joint, and four torsion springs in the revo-
lute joints is proposed for the analysis of this method. It is found that the first two buckling
loads are exactly equal when the two grounded springs are three times stiffer than the two
ungrounded springs. The force–deflection characteristic of this linkage architecture showed
statically balanced behavior in both symmetric and asymmetric actuation. Using modal
analysis, it was shown that the sum of the decomposed strain energy per buckling mode
is constant throughout the motion range for this architecture. An equivalent lumped-com-
pliant mechanism is designed; finite element and experimental analysis showed near-zero
actuation forces, verifying that critical load matching may be used to achieve significant
stiffness compensation in buckled mechanisms. [DOI: 10.1115/1.4052333]

Keywords: compliant mechanisms, mechanism design, mechanism synthesis, static
balancing, buckling

1 Introduction
A statically balanced mechanism is in static equilibrium at every

point over a finite range of motion. In this case, the total potential
energy of the mechanism is constant [1]. Static balancing may for
instance be used to compensate for the gravity load of a mechanism.
Not only gravity loads but also elastic energy stored during defor-
mation such as in compliant mechanisms (CMs) can be balanced.
As a result, the force required for this deformation is zero [2].
A frequently used method to achieve static balancing in, for

example, linkages is an intricate synthesis of ideal springs and aux-
iliary rigid bodies [3–6]. The springs are responsible for counteract-
ing undesired forces occurring during deflection. In CMs, strain
energy accumulates in the elastic elements due to their inherent pos-
itive stiffness [7]. Static balancing in CMs is achieved through stiff-
ness compensation, i.e., cancelation of the positive stiffness using
equal but negative stiffness [8]. This negative stiffness is introduced
through pre-loading of elastic elements. Accumulated strain energy
is compensated by the energy stored in the pre-loaded elements
during the deformation [9]. As a result, the net change in energy
is small; hence, the required input force reduces [10–12].
Current methods of stiffness compensation require an itera-

tive process offinding the correct negative stiffness and force–deflec-
tion (FD) characteristics [13,14], or geometrical optimization
[2,15,16,17]. Kuppens et al. [18] introduced a novel notion on
using pre-loading in stiffness compensation of CMs. In this work,
the stiffness of a mechanism is minimized by matching the first two
critical buckling loads. Blad et al. [19] defined the ratio between
these buckling loads as the critical load ratio (CLR), which is used
to identify the variation of potential energy between the equilibria
of the buckled mechanism in question. The CLR was applied as a
strategy to balance several orthoplanar CMs, and the effect of geo-
metrical parameters on the mechanical behavior was investigated.
It was shown that by maximizing this ratio, i.e., matching the two
buckling loads, a minimal actuation force is obtained in transversal

deflection. Thismethodmaybe a simple alternative for stiffness com-
pensation in designing statically balanced CMs. However, the
working of this method has yet to be applied to lumped-compliant
mechanisms for, e.g., stiffness compensation in linkages.
In this research, the use of the CLR as a means of stiffness com-

pensation is investigated. The goal of this paper is to provide ana-
lytical substantiation for the use of the CLR to achieve stiffness
compensation. Additionally, this method is numerically and exper-
imentally verified using a new mechanism design.
In Sec. 2, the concept of stiffness compensation using the CLR is

presented. Subsequently, an analytical framework using a five-bar
linkage with torsion springs is formed. The buckling problem for
this analytical model is solved, the CLR is established, and modal
analysis of the deformation is discussed. Additionally, the mechan-
ical design of an equivalent lumped-compliant mechanism, finite
element modeling, and the experimental setup are covered. In
Sec. 3, the results obtained from the analytical, finite element, and
experimental analyses are presented. Section 4 discusses these
results and concluding remarks are given in Sec. 5.

2 Methods
2.1 Buckling of Five-Bar Linkage. Buckling is feared in

engineering due to the danger of catastrophic failure of structures
[20]. When several buckling loads are close together, a phenome-
non defined as buckling mode interaction, this danger grows sig-
nificantly larger [21]. In this research, however, exactly this
phenomenon is used for stiffness compensation in a five-bar
linkage. Figure 1 displays a schematic representation of this five-
bar linkage, consisting of three links, four revolute joints, and a
prismatic slider joint. Its flat configuration in Fig. 1(a) is a stable
equilibrium which is defined as the pre-buckling state [22]. The
slider joint allows for axial pre-loading through, e.g., an axial
load P. During pre-loading, the axial load P is gradually increased
while the linkage preserves its flat configuration, up to the point that
it holds P=Pcr,1. Eventually, the linkage deflects transversally in,
e.g., the gray buckled configuration. Its FD behavior may now be
evaluated by imposing an external load F in an arbitrary location
and deflecting the linkage in the y-direction.
Pcr,1 is the first critical buckling load, i.e., the lowest axial load at

which the pre-buckling state loses stability, and bifurcates into a
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new equilibrium that is called the post-buckling state [23].
Figure 1(b) displays the possible post-buckling equilibria of the
linkage, which are the two buckling modes. These are defined as
the B and S-modes, as the linkage forms a bridge and S-shape,
with their corresponding critical buckling loads PB and PS, respec-
tively. The CLR, i.e., the ratio of these two buckling loads,
describes the variation of potential energy between the equilibrium
states of a buckled mechanism [19]. During transversal deflection,
the linkage will transition between these equilibrium states. By
achieving a unity CLR, the two buckling loads, and thus the poten-
tial energies in the equilibria, are equal. As a result, constant poten-
tial energy between the equilibria, and hence static balancing, is
obtained. This effect is visualized with the strain energy contribu-
tions of the B and S-modes under transversal deflection using
modal analysis in Sec. 2.2.4. A more practical visualization is by
means of the FD characteristic of the linkage under transversal
deflection, as described in Sec. 2.2.

2.2 Analytical Framework. To use the CLR as a method for
stiffness compensation, the buckling loads and modes of the
linkage have to be obtained. Figure 2 displays the proposed
model of the torsion spring linkage (TSL) used in this analysis.
The TSL consists of three rigid links of length L; a prismatic
slider joint; and four torsion springs in the revolute joints with stiff-
ness ka, kb, kc, and kd, which capture the elastic properties of the
linkage. Additionally, a spring with stiffness k in the axial direction,
connected to the prismatic slider joint, functions as the pre-loading
mechanism: by displacing the frame connection a distance d in the
x-direction, the linkage is loaded axially and brought into post-
buckling. The five-bar linkage allows for two degrees of freedom
(DoFs) as a description of the kinematics, which are chosen as
u = [φ1, φ2]

T . The resulting stiffness compensation is evaluated
by means of the FD characteristic of the TSL under deflection in
the y-direction. To this end, two external loads, an asymmetric
load Fa and symmetric load Fs, are imposed in Oa and Os,
respectively.

2.2.1 Kinematics. Figure 3 presents the kinematics of a single
link. Its displacement in the horizontal and vertical directions is
described by the change in endpoint displacements and can be
found in Eqs. (1) and (2). These displacements are simplified by

assuming moderate rotations (φ2 ≪ 1).

Δv = v2 − v1 = L cosφ − 1
( )

≈ −
1
2
Lφ2 (1)

Δw = w2 − w1 = L sinφ ≈ Lφ (2)

The horizontal and vertical displacements of the prismatic slider
joint are found by summing Eqs. (1) and (2), respectively, for the
angles φ1 to φ3. As a result of the slider joint, it follows that w=
0, which allows for a description of the five-bar linkage kinematics
in terms of the DoFs u = [φ1, φ2]

T as found in Eqs. (3) and (4)

φ3 = −φ1 − φ2 (3)

v = −L φ2
1 + φ1φ2 + φ2

2

( )
(4)

2.2.2 Buckling Problem. The buckling problem is solved using
the energy approach [24], which will return the bifurcation buckling
loads and corresponding modes. To this end, the potential energyΦ
of the TSL is established as found in Eq. (5)

Φ φ1; φ2; φ3; d; v; Fa; Fs

[ ]
=
1
2
kaφ2

1 +
1
2
kb φ3 − φ1

( )2

+
1
2
kc φ2 − φ3

( )2+ 1
2
kdφ2

2

+
1
2
k d − v( )2+ 1

2
FaLφ1

+ L φ1 +
1
2
φ3

( )
Fs (5)

The potential energy is expressed in terms of the DoFs u using
Eqs. (3) and (4) and can be found in Eq. (6)

Φ u; d; Fa; Fs[ ] = 1
2
kaφ2

1 +
1
2
kb 2φ1 + φ2

( )2+ 1
2
kc φ1 + 2φ2

( )2

+
1
2
kdφ2

2 +
1
2
k d + L φ2

1 + φ1φ2 + φ2
2

( )[ ]2

+
1
2
FaL +

1
2
FsL

( )
φ1 −

1
2
FsLφ2 (6)

Equation (6) is subsequently factored with respect to the DoFs,
made dimensionless and can be found in Eq. (7)

�Φ u; λ; fa; fs[ ] = 1
2
φ2
1 α + 1( ) + 1

2
φ2
2 1 + β
( )

+ 2φ1φ2

+
1
2
ω λ + φ2

1 + φ1φ2 + φ2
2

( )[ ]2

+ φ1
1
2
faω +

1
2
fsω

( )
−
1
2
fsωφ2 (7)

�Φ denotes the dimensionless potential energy; parameters α= (ka+
3kb)/(kb+ kc) and β = kd + 3kc( )/ kb + kc( ) describe the stiffness
ratios between the torsion springs in the linkage; ω =
kL2/ kb + kc( ) governs the dimensionless axial stiffness; λ = d/L
denotes the dimensionless pre-loading that is imposed; and f=
F/(kL) denotes the dimensionless imposed external load with F
denoting Fa or Fs. The first step in solving the buckling problem
helps to obtain the equilibrium equations by finding a stationary

Fig. 2 Schematic representation of the torsion spring linkage.
The kinematics are described by the two degrees of freedom
u= [φ1, φ2]

T . By applying a pre-loading displacement d to the
rigid connection of spring k, the linkage is brought into a
buckled state in which an asymmetric load Fa and symmetric
load Fs are imposed in Oa and Os, respectively.

Fig. 1 Schematic representation of five-bar linkage in (a) flat
and buckled state and (b) its two buckling modes. As a result
of axial load P, the linkage buckles from the flat into the deformed
(gray) configuration from which it may be transversally deflected
using an external load F. The linkage has two buckling modes:
(—) the B-mode, and (—) the S-mode.

Fig. 3 Kinematics of a single link, consisting of horizontal dis-
placement v, vertical displacement w and rotation φ
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value of the potential energy with respect to a kinematically admis-
sible perturbation of the DoF δu using Eq. (8) [20,22]. The obtained
equilibrium equations can be found in Eq. (9)

δ�Φ = �Φ′δu =
∂�Φ
∂φ1

δφ1 +
∂�Φ
∂φ2

δφ2 = 0 (8)

∂�Φ
∂φ1

= φ1 1 + α( ) + 2φ2 + ω λ + φ2
1 + φ1φ2 + φ2

2

( )[ ]
2φ1 + φ2

( )

+
1
2
faω +

1
2
fsω = 0

∂�Φ
∂φ2

= 2φ1 + φ2 1 + β
( )

+ ω λ + φ2
1 + φ1φ2 + φ2

2

( )[ ]
φ1 + 2φ2

( )

−
1
2
fsω = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

By solving the equilibrium equations in Eq. (9), the pre-buckling
solution u0= [0, 0]T for λ ≠ 0 is obtained. This is a stable solution
describing the state of the system prior to buckling for a pre-load λ
increasing from zero, or the flat state from Fig. 1(a) in short. The crit-
ical buckling loads and corresponding modes are obtained by evalu-
ating the stability of u0 using the buckling condition in Eq. (10) [22].
�Φ′′
c denotes the second derivatives of the dimensionless potential

energy evaluated at the pre-buckling solution u0 and the critical
pre-load λ = λc, θ denotes the buckling modes of the system. The
buckling condition returns the generalized non-dimensional eigen-
value problem in Eq. (11). A trivial solution would be that θ = 0;
however, this means that no buckling is occurring. Therefore, a non-
trivial solution can only be found for a singular �Φ′′

c

�Φ′′ u0 λc( ); λc[ ] = �Φ′′
cθδu = 0 (10)

�Φ′′
cθ= A+ μB

{ }
θ= 0 where A=

α+ 1 2
2 β+ 1

[ ]
, B=

2 1
1 2

[ ]

(11)

2.2.3 Critical Load Matching. Solving Eq. (11) by setting C=
B−1A returns the eigenvalues μi = λiω and eigenvectors θi, which
represent the dimensionless critical buckling loads and correspond-
ing modes, respectively, for i= 1, 2. The lowest value of μi is the
first critical buckling load μ1 and the second lowest is the second
critical buckling load μ2. The CLR for the TSL is defined as the
ratio μ1/μ2 and can be found in Eq. (12). It is found that the CLR
becomes unity, i.e., the two buckling loads are exactly equal to
each other, for α = β = 3.

μ1
μ2

=
α + β −

�������������������������������
α2 − αβ + β2 − 3 α + β

( )
+ 9

√

α + β +
�������������������������������
α2 − αβ + β2 − 3 α + β

( )
+ 9

√ (12)

The CLR governs the values of the stiffness ratios α and β, and thus
physically the relative stiffness of the torsion springs in the TSL.
Hence, by varying the CLR, different linkage architectures are
obtained. According to a unity CLR, α and β are constrained
to α = β = κ. Assuming symmetry in the TSL as ka= kd= c* and
kb= kc= c, returns ka= kd= 3c for κ = 3. Therefore, a unity CLR

is obtained when the two grounded springs are three times stiffer
relative to the two ungrounded springs. This architecture will be
denoted as 3c-c-c-3c, in which c denotes the stiffness of
the torsion springs and the hyphens denote the links between the
springs. Four additional architectures κ = 2, 2.5, 3.5, 4{ } are
denoted as c-c-c-c, 2c-c-c-2c, 4c-c-c-4c, 5c-c-c-5c, respectively.
To analyze the effect of the CLR on the mechanical behavior, the
symmetric and asymmetric FD characteristics of these five architec-
tures are determined by solving Eq. (9) for fa and fs, respectively, for
a given displacement field.

2.2.4 Modal Analysis. The TSL has two DoFs describing the
deflection and its two buckling modes B and S. Expressed in
the DoFs, it holds that φ1 = −φ2 for the B-mode, and φ1 = φ2 for
the S-mode [25]. Inversely, it holds that any configuration of the
linkage may be decomposed in buckling modes B and S as found
in Eq. (13). Here, the DoFs u are projected on a modal basis θ,
obtained from Eq. (11), spanned by the buckling modes B and
S. For a given linkage configuration, the modes are scaled with
their modal amplitudes mB and mS. Modal amplitudes are linked
to the displacement using mode participation χ. As opposed to
the modal amplitude, which is solely the scaling of the mode, the
participation represents the measure of contribution, e.g., χi = 1
means that the linkage configuration is fully described by mode i,
and it holds that

∑N
i χi = 1 [26].

u =
φ1
φ2

[ ]
= θm =

1 1
−1 1

[ ]
mB

mS

[ ]
and χi =

|mi|
|mB + mS| (13)

The potential energy of the linkage under transversal deflection can
be decomposed in strain energy contributions of the B and S-modes
using this decomposition. The dimensionless strain energy �E
expressed in the modal basis can be found in Eq. (14). The strain
energy contribution of each mode can be evaluated by scaling the
modes separately and evaluating Eq. (14), which is schematically
represented in Fig. 4.

�E m; α; β
[ ]

=
1
2
m2

B α + β − 2
( )

+
1
2
m2

S α + β + 6
( )

+ mBmS α − β
( )

(14)

2.3 Mechanical Design and Manufacturing. The TSL in
Fig. 2 is converted into an equivalent lumped-compliant mechanism
by replacing the torsion springs with flexures. In Fig. 5(a), the
designed mechanism is depicted with the corresponding dimen-
sions. It comprises three rigid links (1) of length B, width W and
thickness H, and two clamping blocks. The left clamping block
(2) is equivalent to grounded revolute joint of the TSL. The right
clamping block (3) is equivalent to the slider joint, with two slots
(4) allowing for a variable pre-loading displacement d. Two flexures
(5), representing the grounded springs, of width w and thickness t
connect the two outermost links to the clamping blocks, while
two flexures (6), representing the ungrounded springs, of width wf

and thickness t interconnect the links. The flexures are clamped to
the links using a bolt connection and a cap (7), creating a fixed-fixed
boundary and a flexure length l. The assembly is mounted on a base
plate (8). The links and the clamping blocks are milled from alumi-
num. The flexures are manufactured from 0.20 mm thick AISI 301
spring steel using a Spectra Physics Talon 355-15 diode pumped

Fig. 4 Schematic representation of linkage deformation using the buckling
modes (a) B and (b) S. From the buckled configuration, the modal amplitude is
decreased until it reaches zero in the flat configuration.
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solid-state (DPSS) UV laser cutter with a wavelength of 355 nm and
a maximum power of 15 W at 50 kHz. The stiffness ratios κ from
the five linkage architectures (Sec. 2.2.3) are achieved by varying
the flexural rigidities of the ungrounded flexures relative to the
grounded flexures. The flexural rigidity is determined as the
product of torsion stiffness ka, kb, kc, kd and the flexure length
[27]. For a constant flexure length and grounded flexure width,
the rigidities for the ungrounded flexures (displayed in Fig. 5(a))
are governed by wf. The post-buckled state, e.g., the S-mode dis-
played in Fig. 5(b), is obtained by inducing a pre-loading displace-
ment d= 5 mm and fixing the slider joint (3), rendering the
mechanism a lumped-compliant four-bar mechanism (CFBM)
with one DoF. All parameters are summarized in Table 1.

2.4 Finite Element Modeling. To simulate the mechanical
behavior of the post-buckled CFBM architectures, a finite element
model was constructed in ANSYS Mechanical APDL. The
flexures are modeled as linear elastic (E= 190 GPa, ν= 0.34, ρ=

Fig. 5 Designed lumped-compliant four-bar mechanism: (a) schematic showing the design of the unloadedmechanism
and ungrounded flexures with the dimensions indicated. The design comprises (1) rigid links, (2) grounded revolute
joint, (3) slider joint, (4) with pre-loading slots, (5) grounded flexures, (6) ungrounded flexures with variable width, (7)
PMMA caps, and (8) mounting base plate. (b) By applying a pre-load the manufactured mechanism may buckle into
the S-mode.

Table 1 Relevant parameters of the manufactured
lumped-compliant four-bar mechanisms

Fixed parameter Symbol Value (mm)

Link length B 70
Link width W 10
Link thickness H 10
Grounded flexure width w 10
Flexure thickness t 0.20
Flexure length l 7
Pre-load displacement d 5

CFBM architecture Ungrounded flexure width wf : [mm]

c-c-c-c 10
2c-c-c-2c 5
3c-c-c-3c 3.33
4c-c-c-4c 2.50
5c-c-c-5c 2

Fig. 6 Experimental setup for measuring force–deflection behavior. The used components (a) comprise (1) a PI M-505
motion stage, (2) a FUTEK LRM200 force sensor, and (3) an NI USB-6008 data acquisition unit. A rolling contact
(b) ensures that contact between the sensor and the mechanism remains in the unstable motion region.
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7890 kg/m3) two-node Timoshenko beam elements (BEAM188).
Linear buckling analysis is performed to determine the first two buck-
ling loads and the corresponding modes of the CFBM. An initial
imperfection is added to prevent crashing in the pre-loading phase
due to singularities. The pre-loading displacement d is applied as
described in Sec. 2.3, and subsequently, an incremental displacement
is applied in eitherOa orOswhile recording the reaction force to obtain
the FD characteristics for asymmetric and symmetric actuation.

2.5 Experimental Setup. The FD characteristics of the mech-
anism architectures were evaluated experimentally with the setup
shown in Fig. 6(a). To apply the desired displacement to the mech-
anism, a PI M-505 motion stage with an internal encoder for the dis-
placement data is used. The force required for applying the
displacement to the mechanism is measured by a FUTEK
LRM200 force sensor. A rolling point contact between the mecha-
nism and force sensor is established using a probe with a bearing
ball attached to the sensor, and a spherical magnet attached to the
mechanism, as shown in Fig. 6(b). The magnet ensures that
contact remains in the unstable region. Data were recorded using
an NI USB-6008 in 100 steps with a resolution of 750 μm.

3 Results
The analytical buckling loads and the CLR values are tabulated in

Table 2 for the five TSL architectures.
The FD characteristics of the TSL and CFBM architectures are

depicted in Figs. 7 and 8 for the symmetric and asymmetric actuation,
respectively. The analytical results are compared to the finite element
analysis (FEA) and experimental results. The chronology of deflec-
tion is presented in Figs. 9 and 10 for the symmetric and asymmetric
actuation, respectively. The numerals are indicated in the c-c-c-c
Architecture FD characteristics at the corresponding locations.

Table 2 Buckling loads PB and PS and CLR values for analytical
analysis

Architecture PB:(N) PS:(N) CLR(–)

c-c-c-c 4.77 7.96 0.60
2c-c-c-2c 3.58 4.38 0.82
3c-c-c-3c 3.18 3.18 1.00
4c-c-c-4c 2.98 2.59 0.87
5c-c-c-5c 2.86 2.23 0.78

Fig. 7 Symmetric actuation: comparison of (‐ ‐) analytical, (—) FEA, and (o) and experimental
relation between actuation force Fs and displacement of actuation pointOs for pre-loading dis-
placement d=5 mm. Evaluated for five mechanism architectures: (a) c-c-c-c, (b) 2c-c-c-2c, (c)
3c-c-c-3c, (d) 4c-c-c-4c, and (e) 5c-c-c-5c. Numerals correspond to those in Fig. 9, indicating
the chronology of deflection.
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Figure 11(a) depicts the relation between the mode participation
of the B and S-modes and the vertical displacement of Os under
transversal deflection. In Figs. 11(b)– 11(d ), the dimensionless
strain energy of the two separate modes, obtained by evaluating
Eq. (14), is plotted together with their sum for the 3c-c-c-3c,
c-c-c-c, and 5c-c-c-5c Architectures for symmetric actuation. The
numerals correspond to the chronology of deflection in Fig. 9

4 Discussion
4.1 Force–Deflection Characteristics of Architectures. In

both actuation cases, the same effect is observed due to a change
in κ: there is a counter-clockwise rotation of the FD characteristic
parts between the ends as κ, i.e., the torsion stiffness ratios,
increases. As the κ increases from the c-c-c-c Architecture to the
3c-c-c-3c, the stiffness gradually diminishes to zero. Looking into
the CLR, it is observed that as the CLR approaches unity, the stiff-
ness reduces. Static balancing is achieved in the mechanism as a
result of matching the first two buckling loads, i.e., achieving a
unity CLR value, in the 3c-c-c-3c Architecture. This strong reduc-
tion in stiffness matches the results found in Refs. [18,19],

which provides further evidence that the CLR can be used as a
method for stiffness compensation in compliant mechanisms. The
simplicity of the TSL allowed for an insightful analysis of this
method. To draw more general conclusions however, research
regarding, e.g., designs with variable link lengths or more DoFs
in the large deformation regime are required.
The change in sign of the FD slope for the 4c-c-c-4c and

5c-c-c-5c Architectures is ascribed to the buckling modes changing
“order.”Whereas the first buckling mode in the c-c-c-c Architecture
is the B-mode, it becomes the S-mode for the 4c-c-c-4c and
5c-c-c-5c Architectures, which is observed in Table 2. Architectures
c-c-c-c to 3c-c-c-3c have the B-mode as two stable positions on
either side of the motion range. The S-mode has a single stable posi-
tion at the middle of the motion range. This results in the mecha-
nism acting as a spring with positive stiffness. The same
counter-clockwise rotation of the FD characteristics is found in
Ref. [28] for a Von Mises truss with a spring attached to the
middle joint. For an increase in spring stiffness, the slope of the
FD transitions from negative, to perfectly flat, to positive. Reference
[29] obtained the same behavior for a Von Mises truss and denoted
it as a zero-stiffness structure.

Fig. 8 Asymmetric actuation: comparison of (‐ ‐) analytical, (—) FEA, and (o) and experimen-
tal relation between actuation force Fa and displacement of actuation point Oa for pre-loading
displacement d=5 mm. Evaluated for five mechanism architectures: (a) c-c-c-c, (b) 2c-c-c-2c,
(c) 3c-c-c-3c, (d) 4c-c-c-4c, and (e) 5c-c-c-5c. Numerals correspond to those in Fig. 10, indicat-
ing the chronology of deflection.
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The stiffness of the asymmetric FD characteristics may be approx-
imated by taking the slope between the crossings of the loops, which
is observed to follow the same trend as in the symmetric FD charac-
teristics. It can also be observed that the area of the loops decreases as
the 3c-c-c-3c Architecture is approached, matching the results in
Ref. [19]. Reference [30] quantified the area under this loop as the
energy required for deformation; hence, the energy decreases as
we approach the 3c-c-c-3c Architecture.

4.2 Decomposition of the Strain Energy. From Fig. 11(a), it
can be observed that the configuration of the linkage in the equilib-
ria is fully defined by a single mode. The strain energy in the equi-
libria is thus equivalent to that of the corresponding buckling mode
and determined by the pre-loading displacement and critical load,
which corresponds to what was found in Ref. [19]. In the
3c-c-c-3c Architecture, the CLR is unity, and therefore the three
equilibria have equal strain energy. As a result, it is observed that

Fig. 9 Chronology of mechanism deflection for symmetric actuation (numerals refer to those
in Fig. 7)

Fig. 10 Chronology of mechanism deflection for asymmetric actuation (numerals refer to
those in Fig. 8)
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two strain energy contributions sum to a constant value throughout
the motion range. The obtained constant strain energy results in
zero actuation force during transversal deflection of the 3c-c-c-3c
Architecture. Hence, it can be said that by obtaining a unity CLR,
the mechanism is statically balanced between its equilibrium
positions.
The counter-clockwise rotation observed in the FD characteristics

due to change in the mode order is depicted by the strain energy as
well. Two equilibrium positions, both described by the B-mode,
which are separated by a barrier that is defined by the S-mode are
found for the c-c-c-c Architecture (Fig. 11(c)). The downward
opening parabola indicates that the c-c-c-c Architecture exhibits bis-
table behavior, as is observed in Fig. 7(a). A single minimum of
strain energy for χS = 1 is observed for the 5c-c-c-5c Architecture,
meaning that the stable equilibrium is fully described by S-mode
(Fig. 11(d )). The upward opening parabola indicates monostability,
which is observed as the positive stiffness in Fig. 7(e).

4.3 Model Accuracy. From Figs. 7 and 8, it is observed that
the analytical model and the experimental results comply well in
terms of stiffness. The moderate rotations assumption introduces
a slight error to the kinematics that remains within a 2% bound.
In symmetric actuation of the 3c-c-c-3c Architecture, a discrepancy
between the stiffness in the experimental and the analytical results is
observed, which is ascribed to imperfections in the assembly
process. These imperfections are included in the finite element
model. Nevertheless, a discrepancy between the FEA and experi-
mental results is still observed. This indicates the difficulty of
achieving static balancing in practice due to the sensitivity of the
buckling loads to manufacturing and assembly. From Fig. 10, it
can be observed that the asymmetric actuation results in two load
paths occurring. The shapes of the FD characteristics of the
c-c-c-c Architecture match those found for symmetric and asym-
metric actuation of a bistable buckled prismatic beam [31].

Therefore, it can be said that the proposed analytical model predicts
the behavior of such a beam well.

5 Conclusion
In this paper, we have investigated the effect of matching the first

two buckling loads on the force–deflection characteristics in a
five-bar linkage. An analytical simply supported five-bar linkage
model consisting of three rigid links; a prismatic slider joint with
a linear spring capturing the buckling behavior; and four torsion
springs in the revolute joints was proposed to achieve this. The
buckling problem was solved, and it was found that the ratio
between the buckling loads changes as a function of the torsion
stiffness ratios in the linkage. The first two buckling loads are
exactly equal when the two grounded springs are three times
stiffer than the two ungrounded springs. The force–deflection char-
acteristics of five linkage architectures with the torsion spring stiff-
ness ratio ranging from 1 to 5 were evaluated analytically,
numerically using finite element analysis, and experimentally. In
the finite element and experimental models, the torsion springs
were replaced by short flexures and the slider joint was fixed after
pre-loading, creating a lumped-compliant four-bar mechanism. It
was shown that by matching the first two buckling loads, the
force required for deformation entirely diminishes, and static bal-
ancing is achieved. Using modal analysis, it was shown that the
sum of the decomposed strain energy per buckling mode is constant
throughout the motion range due to the matching buckling loads.
This indicates that matching the first two buckling loads is a
useful method in stiffness compensation or static balancing of
buckled lumped-compliant four-bar mechanisms.
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Fig. 11 (a) Relation between mode participation χ and displacement of symmetric actuation
point Os for (—) mode B, and (—) mode S. The numerals correspond to the chronology of
deflection in Fig. 9, indicating the configuration of the linkage. (b–d) Dimensionless strain
energy �E for each mode is plotted separately together with the sum of both contributions
(—) at a pre-loading displacement d=5 mm for the (b) 3c-c-c-3c, (c) c-c-c-c, and (d)
5c-c-c-5c Architectures.
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