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An iterative method to evaluate one-dimensional pulsed
nonlinear elastic wavefields and mixing of elastic waves
in solids

Sundaraelangovan Selvam,1,a) Arno Volker,2 Paul van Neer,2 Nico de Jong,1,b) and Martin D. Verweij1,b)

1Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
2Acoustics and Sonar, TNO, The Hague, Netherlands

ABSTRACT:
Over the last 15 years, literature on nondestructive testing has shown that the generation of higher harmonics and

nonlinear mixing of waves could be used to obtain the nonlinearity parameters of an elastic medium and thereby

gather information about its state, e.g., aging and fatigue. To design ultrasound measurement setups based on these

phenomena, efficient numerical modeling tools are needed. In this paper, the iterative nonlinear contrast source

method for numerical modeling of nonlinear acoustic waves is extended to the one-dimensional elastic case. In par-

ticular, nonlinear mixing of two collinear bulk waves (one compressional, one shear) in a homogeneous, isotropic

medium is considered, taking into account its third-order elastic constants (A; B; and C). The obtained results for

nonlinear propagation are in good agreement with a benchmark solution based on the modified Burgers equation.

The results for the resonant waves that are caused by the one-way and two-way mixing of primary waves are in

quantitative agreement with the results in the literature [Chen, Tang, Zhao, Jacobs, and Qu, J. Acoust. Soc. Am.

136(5), 2389–2404 (2014)]. The contrast source approach allows the identification of the propagating and evanescent

components of the scattered wavefield in the wavenumber-frequency domain, which provides physical insight into

the mixing process and explains the propagation direction of the resonant wave.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0010448

(Received 21 July 2021; revised 22 April 2022; accepted 23 April 2022; published online 20 May 2022)

[Editor: Lixi Huang]] Pages: 3316–3327

I. INTRODUCTION

The behavior of materials under dynamic loading con-

ditions is an important field of study in many applications

such as aerospace, automotive, nondestructive testing

(NDT), medical imaging, etc. In NDT methods, the classical

(linear) ultrasound approaches are not sensitive enough to

the microstructural damage of the materials, which is con-

sidered useful to study material integrity in the emerging

field of quantitative nondestructive evaluation.1–5 Higher

harmonics generation and nonlinear wave-mixing techni-

ques are widely applied nonlinear ultrasound approaches to

evaluate the nonlinearity parameters described by three

independent third-order elastic (TOE) constants, which are

demonstrated to be closely related to the microstructural

changes inside materials such as fatigue damages, plastic

deformations,6 microcracks, etc. The nonlinear ultrasound

techniques make use of pulsed ultrasound waves that gener-

ate harmonic components with a higher frequency and

smaller wavelengths. To accurately interpret the experimen-

tal data, a reliable and accurate numerical tool to simulate

the finite-amplitude ultrasonic waves and understand the

different nonlinear wave interactions becomes crucial.

Moreover, an efficient numerical method in terms of mem-

ory requirements and computation time is essential to simu-

late the nonlinear elastic waves in a medium measuring

hundreds of wavelengths and periods while maintaining a

high degree of accuracy.

The most popular classes of methods for the numerical

solution of full-wave problems are finite difference methods

(FDM) and finite element methods (FEM), which commonly

need a discretization of at least 10–20 grid points per mini-

mum wavelength, i.e., of a maximum frequency of interest,

to yield a reasonable reconstruction of the wave shape. On

the other hand, integral equation methods can yield accurate

results at a discretization of two grid points per minimum

wavelength, i.e., at the Nyquist sampling limit.7,8 To achieve

this, an upper limit may be set on the desired spectrum of the

result, and all frequencies above this limit are numerically

filtered out during the intermediate steps of the computation.

This approach avoids an unnecessary dense grid by removing

harmonics outside of the spectrum of interest.

The iterative nonlinear contrast source (INCS) method is

an integral equation method that was originally developed by

Verweij et al.7–12 for the modeling of the nonlinear acoustic

wavefield in nonlinear, heterogeneous, and attenuating fluids.

In this paper, the method will be extended to model nonlinear

elastic waves and nonlinear mixing of compressional and

shear waves in homogeneous, lossless, and isotropic elastic

bulk media.

a)Electronic mail: s.selvam@tudelft.nl
b)Also at: Department of Biomedical Engineering, Erasmus University

Medical Center (EMC), Rotterdam, Netherlands.
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Among NDT techniques, the nonlinear wave-

mixing25–27 is the most effective method in accessing the

microstructural state of the material because of its flexibility

to select the frequencies to be monitored, avoid measure-

ment system nonlinearities, and choose the mixing zone

location, enabling localized plastic deformation measure-

ment. The nonlinear mixing of primary monochromatic

compressional and shear waves propagating at certain fre-

quencies, meeting the resonance conditions,13 will generate

a secondary shear wave scattered from the mixing. This sec-

ondary shear wave is also called a resonant wave14 as the

amplitude of the resonant wave grows with the increased

mixing zone size of the primary pulses. In the mixing zone,

an evanescent field may also be generated. This is an oscil-

lating low amplitude elastic field with a frequency that is the

sum of that of the primary waves. It does not propagate like

an elastic wave, but its energy is spatially concentrated

inside the mixing zone and decays over time. Jones and

Kobett13 first discussed the idea of generating a resonant

wave and also proposed the necessary resonance conditions.

Some literature on the application of wave-mixing in elastic

media is also available. Liu et al.15 developed collinear

wave-mixing of elastic waves to measure the acoustic non-

linearity parameters, Chen et al.14 derived a set of necessary

and sufficient conditions for generating resonant waves by

two propagating time-harmonic plane waves, and Tang

et al.6 developed a collinear wave-mixing based scanning

method where the distribution of localized plastic deforma-

tion is measured. Demčenko et al.16 provided the possible

interactions between one longitudinal wave and two shear

waves based on the analytical solution and verified by ultra-

sound measurements. Most of the current work6,14,17,18 is

based on one-dimensional (1D) and two-dimensional (2D)

simulations using FDM and FEM. Unfortunately, these sim-

ulations do not provide a deeper understanding regarding

the generation of scattered wave components and their

directions, non-propagating (evanescent) waves, and the

mode-converted component in the wave-mixing tests. The

method described in this paper also provides physical

insight into the aforementioned phenomena.

The INCS elastic method recasts a generalized form of

the nonlinear elastic vector wave equation (i.e., the result of

the linear momentum equation) into an integral form, which

can be solved using a Neumann iterative scheme.9 The

method considers the nonlinear term of the wave equation

as a distributed nonlinear contrast source in an otherwise lin-

ear background medium, and the corresponding integral

equation is solved iteratively. The nonlinear contribution to

the total wavefield is, thus, obtained from the nonlinear con-

trast source. Starting with the linear wavefield generated by

the primary source (i.e., the transducer) in the background

medium, the contrast source and total wavefield are itera-

tively updated. The result of the first iteration is the quasilin-

ear solution. Next, the solution is iteratively improved

toward the full nonlinear wavefield. As a rule of thumb, for

weak to moderate nonlinearity, jþ 1 iterations suffice for

accurate computation of the jth harmonic. The key step in

each iteration is a spatiotemporal convolution of the distrib-

uted contrast source with the Green’s function of the back-

ground medium. This is performed with the filtered

convolution method,7 which employs a priori filtering and

fast Fourier transform (FFT) techniques to allow for a spa-

tiotemporal grid with only two points per wavelength and

period. Due to the contrast source approach8,11 and the

applied convolution technique, the INCS elastic method

shows no directional dependence.

At first sight, our method seems to resemble several

approaches that have been described in the literature.

McCall19 uses the Green’s function to formulate an iterative

scheme for computing 1D nonlinear elastic waves and

derives analytical results for two very specific cases. Unlike

our method, the scheme follows from perturbation analysis

and contains terms with mixed orders of iteration. As a con-

sequence, all of these orders must be stored, and the physical

interpretation of the scheme is complex. Demčenko et al.20

provide a general Green’s function representation for the

nonlinear interaction of elastic waves and apply this to com-

pute the interaction of a propagating shear wave and an eva-

nescent compressional wave at a fluid–solid interface.

Mazilu et al.21 present a plane wave method to describe the

nonlinear interaction of beams with finite widths and pay

explicit attention to incident evanescent waves, for which

classical momentum conservation does not apply. However,

both papers describe the interaction of monochromatic

waves while our method can deal with the interaction of

pulsed (i.e., broadband) waves that have propagated in a

nonlinear fashion. To accommodate the generation and

interaction of higher harmonics, our method, similar to the

method of McCall, has an iterative character. In case of

interacting linear waves, the method only requires one step

and is in fact non-iterative.

This paper considers two numerical examples. In the

first example, the modeling of a forward propagating nonlin-

ear compressional wave in a homogeneous, isotropic, elastic

medium is presented. In the second example, the modeling

of nonlinear wave-mixing of compressional and shear waves

is demonstrated. Also, the results of evanescent waves gen-

erated in the mixing zone of elastic waves are introduced.

The literature15,17 shows that there are three types of nonlin-

earity parameters (b) in elastic solids: (1) bL is associated

with the higher harmonic generation of the compressional

wave, (2) bS is associated with the higher harmonic shear

waves induced by the mode conversion of the fundamental

longitudinal wave into a shear wave, and (3) bT is associated

with the mixing (or interaction) of the compressional and

shear waves in isotropic elastic solids with quadratic nonlin-

earity. These parameters are related to the Landau-Lifshitz

TOE constants (A; B; and C) that will be used in this

paper. Using the developed approach, the generation of up

to the fourth harmonic of a pulsed elastic field will be evalu-

ated. The numerical results also demonstrate that the reso-

nant wave can be captured efficiently. In addition, the

method provides more physical insight into the wave-

mixing process and explains the orientation of the scattered

J. Acoust. Soc. Am. 151 (5), May 2022 Selvam et al. 3317

https://doi.org/10.1121/10.0010448

https://doi.org/10.1121/10.0010448


fields and occurrence of non-propagating waves such as eva-

nescent waves. The numerical solution of the evanescent

waves demonstrates that the amplitudes of these waves are

too small to measure experimentally.

The primary focus of this paper is an extension of the

INCS method9 for elastic waves, which will be a memory-

efficient and computationally effective numerical tool for

three-dimensional (3D) wave modeling in the future. The

paper is structured as follows: Section II presents the theoreti-

cal background of nonlinear elastic waves in a homogeneous,

isotropic, and lossless elastic medium, including basic kine-

matic and constitutive relations and nonlinear elastic wave

equations for two different cases, as well as the modified

Burgers equation for elastic waves. Section III explains the

application of the INCS elastic scheme for simulating the pre-

sented cases. In Sec. IV, the numerical results obtained with

the INCS elastic method for the modeling of a pure compres-

sional wave and its comparison with the benchmark solution,

the modeling of mixing of compressional and shear waves,

and its comparison with the published literature results are

shown. Furthermore, the capability of the method to model an

evanescent wave generated by wave-mixing and its non-

propagating properties are explained. Section V discusses the

numerical challenges involved in the proposed method and

its ability to predict the evanescent components. The last sec-

tion, Sec. VI concludes by discussing the extension of the

INCS method to elastic waves and its key features.

II. THEORETICAL FRAMEWORK

Within the framework of continuum mechanics, the non-

linear kinematic and constitutive relations1,22 between the

field quantities are usually expressed in a Lagrangian

description of motion in which the initial configuration (Xi)

and deformed configuration (xi) of the medium are not same.

A. Basic kinematics and constitutive relation

Deformation of a continuum body results in a displace-

ment of the material particles, ui. The deformation results in

a strain, and the most useful measure of strain in finite defor-

mations is the Green-Lagrangian strain, Eij. The kinematic

relation between the strain and displacement of the particles

is expressed in index notation as1

Eij ¼
1

2

@ui

@Xj
þ @uj

@Xi
þ @uk

@Xi

@uk

@Xj

� �
; (1)

where Xi denotes the particle position in the reference (or

initial) configuration. In large deformations (e.g., in the case

of high field values in nonlinear elastics), the useful stress

measure is the second Piola-Kirchoff stress, Sik, that is

related to the Green-Lagrangian strain through the strain

energy function W as shown below.1 The second-Piola-

Kirchoff stress is defined as

Sik ¼
@W

@Eik
: (2)

Using the summation convention, the general form of the

strain energy function in a nonlinear elastic medium is

given by

W ¼ 1

2
CijklEijEkl þ

1

3!
CijklmnEijEklEmn þ � � � ; (3)

where Cijkl and Cijklmn are second-order and TOE moduli.

For an isotropic material, the strain energy function has the

form

W ¼ k
2
ðtr EÞ2 þ l trðE2Þ þ C

3
ðtr EÞ3 þB ðtr EÞtr E2 þA

3
tr E3;

(4)

where tr E ¼ Eii is the trace of Eij. Using the above energy

function and considering up to second-order terms in the dis-

placement, the general constitutive relation between the sec-

ond Piola-Kirchoff stress tensor and the Green-Lagrangian

strain tensor can be written as

Sik ¼ k tr Edik þ 2 lEik þ Cðtr EÞ2dik

þ B 2Eikðtr EÞ þ tr E2dik

� �
þAE2

ik: (5)

Here, k and l are the Lam�e constants and A; B; and C are

TOE constants.

B. Nonlinear elastic wave equation

To derive the nonlinear elastic wave equation, we start

with the balance of momentum,

@jPij þ f pr
i ¼ q0@

2
t ui; (6)

where Pij represents the first Piola-Kirchoff stress tensor,

which is related to Sij, and the term f pr
i represents the source

that excites the wave in the medium, and q0 is the density

of the undeformed medium. The spatial derivatives are with

respect to the Xi coordinate. The general form of the nonlin-

ear elastic vector wave equation can be obtained by expand-

ing Pij using Sij and writing everything in terms of ui,

yielding

q0 @
2
t ui � ðkþ lÞ @i@kuk � l @k@kui ¼ f pr

i þ f nl
i ; (7)

where f nl
i is the nonlinear force or contrast source term that

accounts for the material nonlinearity of the medium consid-

ered up to quadratic terms in the displacement. It can be

expressed as

f nl
i ¼ C1

�
ð@2

k umÞð@iumÞ þ ð@2
k umÞð@muiÞ

þ 2ð@m@kuiÞð@kumÞ
�
þ C2

�
ð@i@kumÞð@kumÞ

þð@m@kukÞð@muiÞ
�
þ C3 ð@2

k uiÞð@mumÞ
� �

þC4

�
ð@m@kukÞð@iumÞ þ ð@i@kumÞð@mukÞ

�
þ C5

�
ð@i@kukÞð@mumÞ

�
; (8)

where the coefficients are given as
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C1 ¼ lþA
4
; (9)

C2 ¼ kþ lþA
4
þ B; (10)

C3 ¼ kþ B; (11)

C4 ¼
A
4
þ B; (12)

C5 ¼ B þ 2C: (13)

1. Wave equation for purely compressional wave

As a first simplified case, we assume that the wave

propagates along the x-direction only, and the particle

motion is parallel to the direction of propagation, i.e., we

consider a plane compressional wave. The governing non-

linear elastic wave equation in a homogeneous, lossless, iso-

tropic elastic medium is, in this case, given as

q0

@2ux

@t2
� ðkþ 2lÞ @

2ux

@x2
¼ f pr

x þ f nl
x : (14)

Here, the summation convention has not been applied. The

expression for the nonlinear contrast source, f nl, now becomes

f nl
x ¼ c1 þ c2½ � @ux

@x

@2ux

@x2
; (15)

where c1 ¼ 3ðkþ 2lÞ and c2 ¼ 2Aþ 6B þ 2C. The nonlin-

ear force term, f nl, accounts for the higher harmonic genera-

tion through the multiplication of the field with itself and is

also called self-mixing or auto-convolution in some

literature.

2. Modified Burgers equation for purely
compressional wave

We employ a numerical solution of the modified

Burgers equation9,23 for purely compressional wave propa-

gation as a benchmark solution for the INCS results.

Starting from a source-free version of the nonlinear elastic

wave equation (14), the modified Burgers equation is

obtained in terms of particle velocity, v ¼ @u=@t, as

@v

@x
¼ b

c2
p

v
@v

@s
; (16)

where cp is the compressional wave speed, and

b ¼ 3

2
þ 2Aþ 6B þ 2C

2ðkþ 2lÞ

� �
(17)

is the coefficient of nonlinearity of the compressional wave.

The variable, s ¼ t� x=cp, represents the co-moving or

retarded time variabe that travels along with the wave.

Within the co-moving time frame, the variation of the wave-

field with respect to x is small. Using the implicit solution9

available for such a differential equation, the nonlinear par-

ticle displacement can be obtained.

3. Mixing of compressional and shear waves

As a second simplified case, we consider two primary

plane waves propagating collinearly in the same direction

(one-way mixing) and opposite directions (two-way mixing)

in a homogeneous, isotropic nonlinear elastic solid.14 We

assume that both waves are propagating in the x-direction.

Let ux and uy be the displacement components of the pri-

mary compressional and shear waves, respectively. The gov-

erning nonlinear partial differential equation of the

compressional wave is

qo

@2ux

@t2
� ðkþ 2lÞ @

2ux

@x2
¼ f pr

x þ f nl
x ; (18)

where the contrast source compressional component, f nl
x , is

f nl
x ¼ c1 þ c2½ � @ux

@x

@2ux

@x2
þ c3

@uy

@x

@2uy

@x2
; (19)

in which

c3 ¼ kþ 2lþA
2
þ B

� �
: (20)

In Eq. (19), the first term in f nl
x represents the higher har-

monic generation of the compressional wave, and the second

term represents the mode conversion of shear waves into

compressional waves. The corresponding nonlinear partial

differential equation of the shear wave is

q0

@2uy

@t2
� l

@2uy

@x2
¼ f pr

y þ f nl
y ; (21)

where the contrast source shear component, f nl
y , is

f nl
y ¼ c3

@ux

@x

@2uy

@x2
þ @uy

@x

@2ux

@x2

� �
: (22)

The terms in Eq. (22), represent the mixing of compres-

sional (ux) and shear (uy) waves. Several works in the litera-

ture show that when primary compressional and shear

waves mix at a certain frequency and satisfy the resonant

conditions13,16 inside an elastic medium, the secondary reso-

nant wave will be generated at a specific resonant frequency

and, indeed, propagate at the shear wave velocity. In gen-

eral, the amplitude of this resonant wave depends on the

size of the mixing zone and number of cycles of the primary

waves. The mixing zone location6 can be modified by set-

ting a time-delay in the primary source functions.

III. NEUMANN ITERATIVE SCHEME AND EFFICIENT
DISCRETIZATION

The nonlinear partial differential equations (14), (18),

and (21) can be expressed in the integral form16
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u ðx; tÞ ¼ 1

q0 c2
0

ðT

t0¼t0¼0

ð
x02D

Gðx� x0; t� t0Þ

� f prðx0; t0Þ þ f nlðx0; t0Þ
� �

dx0dt0 (23)

¼ 1

q0 c2
0

G�x;tðf pr þ f nlðuÞÞ; (24)

where c0 is the relevant wave speed at hand (compressional

wave speed, cp, or shear wave speed, cs), and T and D are the

temporal and spatial supports of the involved sources, respec-

tively. Function G is the Green’s function of the correspond-

ing linear “background” medium, which corresponds to the

left-hand side of the wave equation. Equation (24) gives an

implicit solution for the relevant particle displacement

because the contrast source term, f nlðx0; t0Þ ¼ f nlðuÞ, depends

on the particle displacement as well. Equations (23) and (24)

represent the convolution between the Green’s function of

the linear background medium and source terms over all of

the spatiotemporal dimensions. The 1D Green’s function9 of

the linear background medium is given by

Gðx; tÞ ¼ c0

2
H t� jxj

c0

� �
; (25)

where H is the Heaviside step function.

Increasingly accurate approximations to the explicit

solution of the convolution equation (24) can be obtained

using the Neumann iterative scheme,

uðjÞ ¼ G�x;t f pr þ f nlðuðj�1ÞÞ
h i

; (26)

in which the nonlinear displacement field, uj, is a summation

of the linear field solution, uð0Þ, and a nonlinear field correc-

tion, duðjÞ. The iterative scheme is explained graphically in

Fig. 1. The iterative scheme contains two major blocks of

operations: the updating source and updating field. In itera-

tion j¼ 0, only the given source, f 0 ¼ f pr, is involved, and

the linear displacement field, uð0Þ, is obtained by convolving

the Green’s function and primary source over the entire spa-

tiotemporal support of this source. Once the linear field is

obtained, j is incremented, and the linear field is substituted

in the equation of the relevant nonlinear contrast source

[Eqs. (15), (19), and (22)] to obtain the contrast source

f ð1Þ ¼ f nlðuð0ÞÞ. Now the iteration continues with calculating

the first nonlinear correction, duð1Þ ¼ G�x;tf
1, resulting in

the first nonlinear field estimate uð1Þ ¼ uð0Þ þ duð1Þ. The iter-

ation continues by setting j ¼ jþ 1 and proceeding in the

same manner to yield the next nonlinear displacement cor-

rection. The convolution is performed in the wavenumber-

frequency domain, in which the convolution operation

becomes the multiplication of their respective Fourier coef-

ficients. In this way, the convolution can be performed with

minimum computational effort and a coarse grid. To achieve

this, all of the relevant quantities are spatially and tempo-

rally filtered and windowed before the convolution step, as

explained in detail by Verweij and Huijssen.7

During the evaluation of the contrast source, the multi-

plication of the first-order and second-order derivatives of

the band limited displacement fields results in a spectrum

with an increased bandwidth. Before this step, the sampling

intervals must be reduced by a factor of 2 in each spatiotem-

poral dimension to avoid aliasing errors. This can be

achieved by, first, zero padding the samples in the Fourier

domain and then transforming back into the original

domain, giving interpolated samples in the original domain

without affecting its spectral content, after which the multi-

plication may take place. The spectrum of the obtained con-

trast source results may exceed the original Nyquist

frequency and has to be numerically filtered in the Fourier

domain to limit the spectrum and obtain the original sample

size. The entire numerical procedure for the interpolation

and filtering operations is outlined in Verweij and Huijssen.7

IV. NUMERICAL MODEL AND RESULTS

In this section, the 1D numerical results for the consid-

ered numerical examples, as obtained by the INCS elastic

method, are presented.

A. Harmonic generation of pure compressional wave

1. Primary source

In the first example, we consider the nonlinear propaga-

tion of a pure compressional plane wave excited by a plane

source, f pr ½Nm�3�, representing the density of the external

force acting at x¼ 0. The excited wave is propagating in the

positive x-direction up to a certain distance X ¼ 5 cm and a

maximum time T ¼ 10 ls in a 1D elastic medium. The pri-

mary source function acting as a pulsed excitation is repre-

sented as

f pr ¼ 2Q0sðtÞdðxÞ; (27)

FIG. 1. The Neumann iterative scheme.
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where Q0 ¼ 5 MPa is the source amplitude in terms of the

applied stress, dðxÞ denotes a delta pulse acting at x¼ 0, and

s(t) is the source signature representing a harmonic time sig-

nal with a Gaussian envelope,

sðtÞ ¼ exp � t� Td

Tw=2

� �2
" #

sin 2pf0ðt� TdÞ½ �; (28)

where Tw ¼ 6=f0 and Td ¼ 3=f0 are the width and delay of

the envelope (so it is still negligible for t¼ 0), respectively,

and f0 ¼ 5 MHz is the chosen fundamental frequency. We are

interested in the frequency content of the wavefield up to the

fourth harmonic and, therefore, the maximum frequency of

interest is taken as Fnyq ¼ 4:5f0. The considered medium is

aluminum, and the material properties are shown in Table I.14

In INCS, the temporal angular cut-off frequency,

X ¼ 2pFnyq, is the prime parameter determining the spatial

and temporal discretizations. The required sampling fre-

quency for the given Nyquist sampling limit is Fs ¼ 2Fnyq.9

The corresponding spatial cut-off frequency, K, can be

evaluated as K ¼ X=c0. As a result of the applied temporal

and spatial filtering, the time domain discretization steps are

taken as dt ¼ p=X and dx ¼ p=K.7

2. Simulation results

In the first numerical example, pulsed compressional

wave propagation in an infinite homogeneous, isotropic,

nonlinear elastic medium is considered. The material non-

linearity results in the distortion of the input field that accu-

mulates along the propagation path such that the contrast

source can be assumed to lie in the region between the pri-

mary source location and the observation point. The nonlin-

ear distortion that accounts for the second and higher

harmonic generations of the wavefield grows with an

increasing propagation distance. The grid point at the end of

the domain is taken as the observation point. The nonli-

nearly distorted signal can be seen clearly through the gener-

ation of harmonics in the frequency domain plots in Fig. 2.

Figure 2 shows the spectrum of the nonlinear displacement

TABLE I. The material properties of aluminum.

q cp cs k l A B C

2700 kg=m3 6198 m=s 3122 m=s 51.1 GPa 26.3 GPa �282 GPa �179 GPa 53 GPa

FIG. 2. (Color online) The spectra of the nonlinear displacement field (uðjÞÞ for iterations j¼ 0 to j¼ 3, yielding the fundamental up to the fourth harmonic.

The maximum of the spectrum is the Nyquist frequency, Fnyq ¼ 4:5f0 ¼ 22:5 MHz.

J. Acoust. Soc. Am. 151 (5), May 2022 Selvam et al. 3321

https://doi.org/10.1121/10.0010448

https://doi.org/10.1121/10.0010448


field up to three iterations. The plots clearly show the buildup

of the harmonics during the iteration process. In each itera-

tion, the source field is updated with the field of the new con-

trast source to yield increasingly higher harmonics.

In Fig. 2, we observe that each iteration shows a better

approximation with the reference solution (modified

Burgers solution) for increasingly higher iterations. The nor-

malized amplitude is obtained in decibels by normalizing

the spectrum with its maximum value. At the maximum fre-

quency, Fnyq ¼ 4:5f0 ¼ 22:5 MHz, the spectrum of the exci-

tation pulse is 100 dB below the level of the center

frequency. The time domain field at the maximum propa-

gated distance and iteration j¼ 3 is shown in the Fig. 3(a).

The solution obtained using the INCS elastic method is in

good agreement with modified Burgers solution with a max-

imum difference of below -0.04 dB for the first three

harmonics.

3. Convergence of the Neumann iterative scheme

The numerical convergence of the Neumann iterative

scheme toward a steady solution of the computed field is

demonstrated using the error function, ERR(j),11,12 defined

as

ErrðjÞ ¼ ku
ðj�1Þ � uðjÞk
kuð0Þk : (29)

The normalized error value of the obtained field solution

for 15 iterations is shown in Fig. 3(b). As can be seen in

Fig. 3(b), the error, ERR(j), steadily decreases for increasing

j, thus, the obtained solution converges toward a steady

solution. The convergence of the solution is achieved after

12 iterations, where ERR(j) � 10�16, which is related to the

numerical precision of the computer. For the medium con-

sidering stronger nonlinearities, a greater number of itera-

tions or a different iterative scheme could be required.

B. Mixing of compressional and shear waves

In the second numerical example, the collinear mixing

of two pulsed waves, one nonlinear compressional wave and

one nonlinear shear wave, is considered.14,15 Figure 4 illus-

trates the mixing process. When two sources are excited at

the same location, it is called one-way mixing; conversely,

when the sources are excited at opposite ends of the

medium, it is called two-way mixing. The area marked in

red denotes the mixing zone inside the medium. The ampli-

tude of the resultant resonant wave generated from the mix-

ing depends on the mixing zone size, which can be adjusted

by changing the number of load cycles in the input signals.

The obtained 1D results from the INCS elastic method

are compared with the published results14 using FEM. The

purpose of conducting this numerical test is to determine

the capability of the INCS elastic method to accurately

FIG. 4. (Color online) The (a) one-way wave-mixing and (b) two-way wave-mixing.

FIG. 3. (Color online) The (a) nonlinear displacement (uðjÞ) obtained using the INCS elastic method with j¼ 3 (solid) and the modified Burgers solution (red

dotted) at x ¼ 5 cm is shown as well as the (b) normalized error showing the convergence of the Neumann iterative scheme.
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simulate nonlinear wave-mixing of elastic waves and capture

the resonant wave and, also, to get more insight into the mixing

mechanisms.

1. Primary sources

We consider the pulsed propagation of compressional

and shear waves in a homogeneous, isotropic, nonlinear

elastic medium. The material properties are the same as

those listed in Table I. The maximum propagation distance

is taken as Xmax ¼ 7.2 cm and a maximum time is

T ¼ 32 ls. The labels p, s, and r will be used to denote the

primary compressional, primary shear, and mixed resonant

waves, respectively.

The primary source functions of the compressional and

shear waves are represented as

f pr
p ¼

rp sin ð2pfptÞ dðxÞ if 0 � t � Np=fp;

0 otherwise;

(
(30)

f pr
s ¼

rs sin ð2pfstÞ dðxÞ if 0 � t � Ns=fs;

0 otherwise;

(
(31)

respectively. The spatial length of the signals can be controlled

by the number of load cycles and determines the size of the

mixing zone. The INCS simulations are conducted using the

input source parameters chosen from the literature14 and listed

in the Table II. The ten cycles of compressional pulses and

five cycles of shear pulses are chosen to yield the same spatial

length of the primary sources. The source amplitudes are

implemented in terms of applied stresses (rp; rs), and the cor-

responding displacements are up ¼ 1� 10�8 m for the com-

pressional source and us ¼ 1� 10�7 m for the shear source.

2. One-way mixing

In this section, we will analyze the collinear mixing of

pulsed time-harmonic compressional and shear waves, both

propagating collinearly in the þx direction. In one-way mix-

ing, illustrated in Fig. 4(a), the two sources are excited at the

same location, x¼ 0, and propagate forward. Forward prop-

agation from x ¼ 0 to Xmax is denoted by “þ”; backward

propagation from x ¼ Xmax to 0 is denoted by “�” here. A

delay of 8 ls is applied to the compressional wave to enable

the mixing of primary waves at the center of the medium.

The wave-mixing is a nonlinear phenomenon, and the shear

term of the contrast source, f nl
y , represents this nonlinear

interaction process. Analyzing this contrast source in the

wavenumber-frequency (k;x) domain will offer a physical

understanding of the generation of the mixing products.

The mixing of two waves at different frequencies

(fp ¼ 10 MHz; fs ¼ 7:5 MHz) results in the generation of a

wavefield with two different frequency components, i.e., the

sum (f ¼ 17:5 MHz) and their difference (f ¼ 2:5 MHz).

Figure 5(a) shows the (k;x) domain plot of the contrast

source, f nl
y . The (k;x) domain representation of the shear

wave Green’s function, Ĝs, is also shown by the dashed yel-

low line. It can be clearly seen that the line of the shear

Green’s function crosses the low frequency part of the con-

trast source at f ¼ 2:5 MHz. This should be interpreted as

the mixing or resonant shear wave, ûr�
y , as shown in Fig.

5(b) computed with the j¼ 1 iteration. The frequency com-

ponent at fe ¼ 17:5 MHz is not crossed by the line of the

Green’s function and should be interpreted as an evanescent

wave that does not propagate out of the mixing zone and

attenuates over time. The presence of a resonant component

with a negative wavenumber indicates the backward propa-

gation of the resonant wave, ûr�
y . The combination of the

wavenumber and frequency shows that this component trav-

els at the shear wave speed, cs.

The resonant field is transformed back to the (x,t)
domain. The backward propagating resonant wave, ûr�

y , as

received at x¼ 0 is shown in Fig. 6, in which both the INCS

and reference solution from the literature14 are plotted

together. The frequency spectrum at this location is pre-

sented in Fig. 6 and shows a peak at the resonant frequency

(fr ¼ 2:5 MHz).

3. Two-way mixing

As illustrated in Fig. 4(b), in the two-way mixing test,

the primary sources are excited at the opposite ends of the

medium. A pulsed compressional wave is generated at x¼ 0

and propagates in the forward direction, and a pulsed shear

wave is generated at x ¼ Xmax and propagates in the back-

ward direction.

Similar to the one-way mixing case, the (k;x) domain

plot of the contrast source shear term, f nl
y , in the two-way

mixing process is computed, requiring j¼ 1 iteration, and

shown in Fig. 7(a). The mixing of the primary waves

(fp ¼ 10 MHz; fs ¼ 2:5 MHz) generates the resonant shear

component at frequency fr ¼ 7:5 MHz because it overlaps

with the shear Green’s function. The resulting resonant com-

ponent in Fig. 7(a) has a positive wavenumber, which indi-

cates the forward propagation of the resonant wave, ûrþ
y .

The combination of the wavenumber and frequency shows

that this component travels at shear wave speed (cs).

TABLE II. The primary source parameters as used in the wave-mixing simulations.

Source Type of mixing Amplitude (MPa) Frequency (MHz) Number of cycles Pulse length (mm)

Compressional One-way rp ¼ 10:85 fp ¼ 10 Np ¼ 10 Lp ¼ 6:2

Two-way

Shear One-way rs ¼ 42:3 fs ¼ 7:5 Ns ¼ 5 Ls ¼ 6:2

Two-way rs ¼ 13:2 fs ¼ 2:5
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Clearly, the analysis of the nonlinear shear contrast source

in the (k;x) domain explains the wave-mixing process in

terms of the generated frequency components, propagating

and non-propagating waves, and the orientations of the scat-

tered waves.

The forward propagating resonant wave, urþ
y , is

received at x ¼ Xmax and the corresponding time domain

waveform and normalized frequency spectra with a peak at

fr ¼ 7:5 MHz are shown in Fig. 8, in which the reference

solution from the literature14 is also shown.

The resonant wavefields obtained with the INCS elastic

method in the one-way and two-way mixing cases are quan-

titatively compared with the results published in the litera-

ture.14 We compared the time domain amplitude peaks of

the resonant wave displacement between the INCS results

(Figs. 6 and 8) and published results14 by calculating the

root mean square (RMS) error and scatter index (SI), which

are given by

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

p¼1

ðuI � uPÞ2

N

vuuuut
; (32)

SI ¼ RMS error

meanðuPÞ
� 100; (33)

respectively, where N is the number of time domain peaks,

uI and uP are the resonant wave displacement values of

the INCS and published results, respectively, and SI gives the

percentage of the RMS error difference with respect to the

reference solution. The RMS error for the one-way mixing is

calculated to be 1:63� 10�11, which gives the SI value of

7.38%, and for the two-way mixing, the RMS error is

1:46� 10�11, which gives the SI value of 6.8%. This shows a

good agreement of the INCS results with the published

results. Also, the obtained results show an excellent

FIG. 5. (Color online) One-way mixing in the ðk;xÞ domain depicted by the (a) nonlinear shear contrast source, f̂
nl

y ðk; xÞ. The 0 dB level corresponds to a

force of f nl
y ¼ 7:15� 108 N=m3. (b) The resonant wave, ûr

yðk; xÞ with the 0 dB level corresponding to a displacement of ur
y ¼ 3:23� 10�7 mm.

FIG. 6. (Color online) One-way mixing depicted by the (a) time domain plot of the resonant wave ur
y (blue solid line, INCS solution; red dash, reference

solution) and (b) corresponding frequency spectrum, ûr
y.
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agreement in terms of other physical characteristics of the res-

onant wavefield, such as the pulse shape, resonant frequency,

and number of cycles. The simulation results demonstrate the

capability of the INCS elastic method to accurately capture

the resonant wave at a coarse discretization of two grid points

per minimum wavelength and further provide more physical

insight into the nonlinear wave-mixing process.

V. DISCUSSION

In this section, numerical challenges involved in the

proposed method and its ability to predict the evanescent

components are discussed.

In the first numerical example, the presented compari-

son between the INCS elastic method and modified Burgers

solution confirms that the proposed method reproduces the

nonlinear displacement field accurately up to the fourth har-

monic. In agreement with the earlier investigations by the

authors of the original INCS,7–12 the example has confirmed

that for the accurate computation of the hth harmonic, the

maximum Nyquist frequency can be set at Fnyq ¼
ðhþ 0:5Þ f0 and taking the iteration j ¼ hþ 1 is already

sufficient.

Much attention is given to the evaluation of the contrast

source, f nl. The spatial derivatives of the wavefield intro-

duce numerical artifacts at the domain boundaries such that

the medium is extended with sufficient grid points at both

ends. The contrast source must be numerically interpolated

and filtered in spatiotemporal dimensions to avoid the alias-

ing error due to the increased bandwidth in the multiplica-

tion operation,7 but the spatial filtering step has been

skipped, just as in the original method.8

For the implementation of the primary sources, a finite

number of cycles of sine pulses are chosen. The Fourier

domain representation of such input pulses (i.e., a sinc func-

tion centered around the frequency of the sine) together with

FIG. 7. (Color online) Two-way mixing in the ðk;xÞ domain depicted by the (a) nonlinear shear contrast source, f̂
nl

y ðk;xÞ. The 0 dB level corresponds to a

force of f nl
y ¼ 2:82� 108 N=m3, (b) The resonant wave, ûr

yðk;xÞ with the 0 dB level corresponding to a displacement of ur
y ¼ 3:2� 10�7 mm.

FIG. 8. (Color online) Two-way mixing depicted by the (a) time domain plot of the resonant wave, ur
y (blue solid line, INCS solution; red dash, reference

solution) and (b) corresponding frequency spectrum, ûr
y.
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the singularity in the 1D Green’s function will produce a

strong DC offset (i.e. deviation of the mean amplitude from

zero) at zero wavenumber and yield an incorrect displace-

ment. The reason for this error is that a force should act in two

directions in view of Newton’s third law. To account for this,

equal and opposite forces are applied at the source locations,

where both forces cause waves propagating away from the

source in the opposite directions. This will balance the forces

spatially and, thus, results in a correct displacement solution.

As an additional advantage, the method provides con-

trol over the spectral content of the field quantities during

intermediate steps, providing the flexibility to numerically

evaluate the non-propagating components of the mixing,

i.e., evanescent wave, by applying high-pass filtering. From

Figs. 5(a) and 7(a), it is evident that the resonant frequency

component can be numerically filtered out in the (k; x)

domain, resulting in the nonlinear shear contrast source, f nl
y ,

with only the evanescent field contribution. The field of con-

trast source can then be computed by multiplication with the

shear Green’s function and transformed back to the (x; t)
domain. The numerical result of the evanescent wave in the

two-way mixing process is shown in Fig. 9. The same proce-

dure can be applied to the one-way mixing process.

In a same manner, another non-propagating component,

i.e., the mode-converted shear term that appears in the con-

trast source compressional term f nl
x in Eq. (19), can also be

evaluated. The maximum amplitude of the computed eva-

nescent wave is 1:25� 10�12 m, i.e., 98 dB smaller than the

shear source amplitude. The numerical results show that the

evanescent wave is difficult to measure when generated

inside a bulk medium at any substantial propagation dis-

tance in the setup of our interest.

In case of an anisotropic, inhomogeneous elastic

medium with attenuation, the additional effects can be mod-

eled by including them as extra contrast source terms on the

right-hand side of the wave equation (7). For such media, the

influence of the additional contrast sources may be large

compared to the quadratic nonlinearity source alone, there-

fore, the Neuman iterative scheme may converge slowly or

not at all. This will require the application of advanced itera-

tive schemes, such as over-relaxation methods or conjugate

gradient (CG) methods, to solve the integral equations.10,12,24

VI. CONCLUSIONS

The key purpose of this paper has been to extend the

INCS method to the elastic case and demonstrate the appli-

cability of this INCS elastic method to simulate the genera-

tion of higher harmonics and the nonlinear wave-mixing of

elastic waves. The numerical results presented for the 1D-

pulsed compressional wave show an excellent agreement

with the reference solution obtained using the modified

Burgers equation. The presented results for the resonant

wave generated in the collinear mixing (one-way and two-

way) of compressional and shear waves in a nonlinear elas-

tic medium show a good agreement with the published

results.14 Further, it has been explained that the resulting

components from the wave-mixing process, their orienta-

tions, and their propagating or evanescent behaviors directly

follow from the (k; x) domain representation of the nonlin-

ear contrast source, which plays a key role in this method.

The nonlinear force components represented by this contrast

source can be evaluated separately and enable one to inde-

pendently simulate and study the waves that are caused by

the various physical phenomena that arise.

The numerical results obtained with the INCS elastic

method may provide useful information to design an ultra-

sound measurement setup to conduct a wave-mixing experi-

ment and measure the resonant wave amplitude in a solid

material, which is further useful in accessing the nonlinear-

ity parameters and microscopic material properties. In addi-

tion, the numerical predictions show that the evanescent

waves generated inside an elastic material are difficult to

measure from the surface. The promising results motivate

FIG. 9. (Color online) The evanescent wave depicted by the (a) nonlinear shear contrast source, f̂
nl

y ðk; xÞ and (b) evanescent waveform generated by two-

way mixing.
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an extension of the presented approach toward a full 3D

nonlinear elastic wave problem in the future.
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