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Summary

The potential impact of a grand unified theory of the brain on the robotics community
might be immense, as it might hold the key to the general artificial intelligence. Such a
theory might make revolutionary leaps in robot intelligence by improving the quality of
our lives. The last two decades have witnessed the rise of one such brain theory - the
free energy principle (FEP) - that seems to be successful in explaining a large body of
cognitive functions. The tremendous amount of research centering FEP is a testament to
its popularity within the neuroscience community. This raises two important questions:
i) since biological systems are fundamentally different from robots, will FEP be useful in
solving real robotics problems? ii) if so, will it outperform classical robot algorithms? To
answer these questions, this thesis takes a step in the direction of applying FEP on three
class of robotics challenges, with a special focus on Unmanned Aerial Vehicle (UAV): i)
action, ii) perception and iii) active perception. This thesis demonstrates the usefulness of
FEP in solving these challenges, and shows that FEP is particularly beneficial in dealing with
colored (non-white [1]) noise during estimation (perception) when compared to classical
methods, marking the utility of FEP not only in neuroscience, but also in robotics. With
these results, this thesis aims to contribute to the rise of FEP as a unified theory of robot
intelligence.

Problem/challenge and the proposed solution: It is well known that the modern
robots are incapable of dealing with high uncertainties in the world, when compared to
the robustness of the human brain that seamlessly deals with uncertainties on a day-to-
day basis. This indicates a clear distinction between the status of robot intelligence and
brain’s intelligence, pointing to the need for a brain inspired robot algorithm that is robust
against uncertainties. One of the contributing factor to the brain’s capability to deal with
uncertainties is its attention (the capacity to only process the relevant signals and adapt
this modulation depending on the task). The recent advancements in neuroscience has
resulted in the use of precision (inverse covariance) modulation as a means to model the
brain’s attention for uncertainty resolution, motivating the use of such a scheme for the
development of a robot cognitive model. With an ambitious goal of stepping towards the
brain-inspired robot intelligence, this thesis proposes an FEP based robot cognitive model.
Drawing inspiration from the neuroscience literature, chapter 2 introduces a novel robot
cognitive model. The core idea behind the model is the use of precision (inverse covariance)
modulation as the means for robot attention. Four types of precision modulations are
proposed in this thesis: precision modelling, precision learning, precision optimization and
precision fluctuation. This thesis focuses on developing the mathematical framework for
each type of precision modulation, followed by an extensive evaluation in simulation and
on real robot data to demonstrate the advantages of the model. At the end, this thesis aims
to use FEP to create a robot cognitive model with uncertainty resolution capabilities, that
solves practical robotics challenges, such as learning and control, while outperforming
classical robot algorithms.



xiv Summary

Precisionmodelling: This category of precision modulation uses the prior knowledge
about the structure of uncertainty (or noise) in the measurements to improve the quality
of estimation and control. We solve two problems here: i) state and input estimation under
colored noise (perception) and ii) multi robot navigation in formation (action). State and
input estimation under colored noise is still an open problem in control systems. In chapter
3, a state and input observer design for Linear Time Invariant (LTI) systems under colored
noise is proposed using FEP. The observer uses precision modelling to attend to the most
informative measurement derivatives during inference which results in a better quality
estimation when compared to the state of the art observers. In chapter 4, an experimental
design with a quadrotor hovering under wind conditions is introduced to provide the
proof of concept for the observer design. The results show the superior performance of
the observer on real data, confirming the usefulness of the observer to solve real robot
problems. In chapter 9, precision modelling is used to generate different robot behaviors
during an obstacle avoidance task with multi robot navigation in formation. These results
show that precision modelling using FEP is advantageous to solve robotics problems. The
FEP based observer design in chapter 3 outperforms the state observer benchmarks under
colored noise, answering positively to the second question of this thesis.

Precision learning: This category of precision modulation uses an FEP based scheme
to learn different kinds of precision (inverse covariance) matrices from data, aiding a higher
quality estimation. We solve two perception problems here: i) system identification under
colored noise, which is an open challenge in control systems, and ii) noise smoothness
learning. In chapter 6, a system identification tool for LTI systems under colored noise is
proposed using FEP. The algorithm uses precision learning to attend towards learning the
most uncertain parameters of the system. The safe operation of the algorithm on robot
is motivated using the proof of convergence for the parameter estimator in chapter 7. In
chapter 8, the estimator is tested on quadrotor flight data to show its usefulness for real
robot problems. In chapter 5, a novel online noise smoothness estimator is proposed, based
on precision learning. Through rigorous testing in simulation and on quadrotor flight data,
the joint state and noise smoothness observer (DEMs) is shown to outperform classical
methods in estimation, highlighting the advantages of precision learning in robotics.

Precision optimization: This category of precision modulation uses precision opti-
mization (or uncertainty minimization) as a prime objective for active perception problems.
It directly contributes to the use of robot attention for uncertainty minimization of robots
during information gathering problems like mapping, data acquisition, target search etc.
In chapter 2, the information seeking robot behavior based on uncertainty minimization is
recognized as precision optimization. These planning algorithms are shown to give rise to
pure exploratory strategies. Informative Path Planning problem for target search using a
UAV is solved using precision optimization.

Precision fluctuations: This category of precision modulation uses fluctuations in
precision as a core driving mechanism for active perception problems. In chapter 2, a
rhythmic precision modulated attention model for active perception problems is proposed.
The advantages of temporal scheduling of action and perception, similar to that of eye
saccades and information gathering during a visual search is discussed. The advantages
of using precision fluctuations to trade-off between exploration and exploitation during a
system identification task is also discussed.
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In summary, this thesis proposes a precision modulation based robot attention model
using FEP. The advantages of such a model in the context of robotic challenges are explored
with a special focus on UAVs using three class of problems: action, perception and active
perception. Through extensive mathematical formulations, simulations and experimental
analysis, the robot attention model is shown to be advantageous for estimation, control
and planning. Despite the differences between a biological system and a robotic system,
a unified brain theory could provide competent tools to solve robotic problems, even
outperforming the classical methods for estimation under colored noise. This answers the
two main questions addressed by the thesis.





xvii

Samenvatting

Een allesomvattende theorie over de werking van de hersenen kan potentiëel een enorme
invloed hebben op de robotica, omdat het de sleutel zou kunnen zijn tot de zogenaamde
"sterke"(= echt menselijke) kunstmatige intelligentie. Een dergelijke theorie zou revolutio-
naire sprongen maken in robotintelligentie en zou de kwaliteit van ons leven verbeteren.
De laatste twee decennia zijn we getuige geweest van de opkomst van zo’n hersentheorie -
het Free Energy Principle (FEP) - die succesvol lijkt te zijn in het verklaren van een groot
aantal cognitieve functies. De enorme hoeveelheid onderzoek waarin FEP centraal staat,
is een bewijs van zijn populariteit binnen de neurowetenschappelijke gemeenschap. Dit
roept twee belangrijke vragen op: i) zal FEP, aangezien biologische systemen fundamenteel
verschillen van robots, nuttig zijn bij het oplossen van echte robotica-problemen? ii) zo ja,
zal het beter presteren dan klassieke robotalgoritmen? Om deze vragen te beantwoorden,
zet dit proefschrift een stap in de richting van het toepassen van FEP op drie klassen van
robotica-uitdagingen, met een speciale focus op Unmanned Aerial Vehicles (UAV): i) actie,
ii) perceptie en iii) actieve perceptie. Dit proefschrift demonstreert het nut van FEP bij het
oplossen van deze uitdagingen, en laat zien dat FEP bijzonder gunstig is bij het omgaan
met gekleurde (niet-wit [1]) ruis tijdens schatting (perceptie) in vergelijking met klassieke
methoden, wat het nut van FEP niet alleen in de neurowetenschappen, maar ook in robotica
aangeeft. Met deze resultaten wil dit proefschrift bijdragen aan de opkomst van FEP als
een algemene theorie voor robotintelligentie.

Probleem/ uitdaging en de voorgestelde oplossing: Het is algemeen bekend dat
de moderne robots niet in staat zijn om te gaan met grote onzekerheden in de wereld, in
vergelijking met de robuustheid van het menselijk brein dat probleemloos omgaat met
onzekerheden van dag tot dag. Dit geeft een duidelijk onderscheid aan tussen de status
van robotintelligentie en de intelligentie van de hersenen, wat wijst op de behoefte aan
een op de hersenen geïnspireerd robotalgoritme dat robuust is tegen onzekerheden. Het
vermogen van de hersenen om met onzekerheden om te gaan, verwijst rechtstreeks naar de
aandachtsmodellen. De recente vooruitgang in de neurowetenschappen heeft geresulteerd
in het gebruik van precisiemodulatie (inverse covariantie) als een middel om de aandacht
van de hersenen te modelleren voor het oplossen van onzekerheid, wat het gebruik van
een dergelijk schema voor de ontwikkeling van een robotaandachtsmodel motiveert. Met
een ambitieus doel om de stap naar de door de hersenen geïnspireerde robotintelligentie
te maken, stelt dit proefschrift een op FEP gebaseerd robotaandachtsmodel voor. Geïn-
spireerd door de neurowetenschappelijke literatuur, introduceert hoofdstuk 2 een nieuw
robotaandachtsmodel. Het kernidee achter het model is het gebruik van precisie (inverse co-
variantie) modulatie als middel voor robotaandacht. In dit proefschrift worden vier soorten
precisiemodulaties voorgesteld: precisiemodellering, precisieleren, precisie-optimalisatie
en precisiefluctuatie. Dit proefschrift richt zich op het ontwikkelen van het wiskundige
raamwerk voor elk type precisiemodulatie, gevolgd door een uitgebreide evaluatie in simu-
latie en op echte robotgegevens om de voordelen van het model aan te tonen. Het doel



xviii Samenvatting

van dit proefschrift is om FEP te gebruiken om een robotaandachtsmodel te creëren voor
het oplossen van onzekerheid, dat praktische robotica-uitdagingen oplost, terwijl het de
klassieke robotalgoritmen overtreft.

Precisiemodellering: Deze categorie precisiemodulatie gebruikt de voorkennis over
de structuur en grootte van precisie (of onzekerheden) in de gegevens om de kwaliteit van
schatting en controle te verbeteren. We lossen hier twee problemen op: i) schatting van
toestand en invoer onder gekleurde ruis (perceptie) en ii) navigatie met meerdere robots in
formatie (actie). Toestand- en ingangsschatting onder gekleurde ruis is nog steeds een open
probleem in besturingssystemen. In hoofdstuk 3 wordt een toestand- en input-observer
ontworpen voor lineaire tijdinvariante (LTI) systemen onder gekleurde ruis met behulp
van FEP. De observer maakt gebruik van precisiemodellering om aandacht te geven aan de
meest informatieve metingen tijdens inferentie, wat resulteert in een schatting van betere
kwaliteit in vergelijking met state-of-the-art observers. In hoofdstuk 4 wordt dit nieuwe
observer ontwerp getoetst op data van een quadrotor die in wind vliegt. De resultaten
tonen de superieure prestaties van de observer, wat het nut van het Free Energy Principle
bevestigt om echte robotproblemen op te lossen. In hoofdstuk 9 wordt precisiemodellering
gebruikt om verschillende robotgedragingen te genereren tijdens een taak om obstakels
te vermijden met multi-robotnavigatie in formatie. Ook deze resultaten laten zien dat
precisiemodellering met FEP voordelig is om robotica-problemen op te lossen. Het op FEP
gebaseerde observer ontwerp in hoofdstuk 3 presteert beter dan de benchmarks onder
gekleurde ruis, wat een positief antwoord geeft op de tweede vraag van dit proefschrift.

Precisieleren: Deze categorie precisiemodulatie gebruikt een op FEP gebaseerd schema
om verschillende soorten precisiematrices (inverse covariantie) uit gegevens te leren, wat
bijdraagt aan een schatting van hogere kwaliteit. We lossen hier twee perceptieproblemen
op: i) systeemidentificatie onder gekleurde ruis, wat een open uitdaging is in regelsystemen,
en ii) het leren van de hoeveelheid autocorrelatie (smoothness) van ruis. In hoofdstuk 6
wordt een systeemidentificatietool voor LTI-systemen onder gekleurde ruis voorgesteld met
behulp van FEP. Het algoritme gebruikt precisieleren om de meest onzekere parameters van
het systeem te leren. De veilige werking van het algoritme op de robot wordt gemotiveerd
met behulp van het bewijs van convergentie voor de parameterschatter in hoofdstuk 7. In
hoofdstuk 8 wordt de schatter getest op quadrotorvluchtgegevens om zijn bruikbaarheid
voor echte robotproblemen aan te tonen. In hoofdstuk 5 wordt een nieuwe online schatter
voor ruis autocorrelatie voorgesteld, gebaseerd op precisieleren. Door rigoreuze tests in
simulatie en op quadrotor-vluchtgegevens, is aangetoond dat de gecombineerde observer
voor zowel systeemtoestand als ruis eigenschappen (DEM’s) beter presteert dan klassieke
methoden bij het schatten.

Precisie-optimalisatie: Deze categorie van precisiemodulatie gebruikt precisie opti-
malisatie (of onzekerheidsminimalisatie) als een hoofddoel voor actieve waarnemingspro-
blemen. Het draagt direct bij aan het gebruik van robot-aandacht voor het minimaliseren
van onzekerheid van robots tijdens het verzamelen van informatie, zoals mapping, data-
acquisitie, het zoeken naar doelen enz. Hoofdstuk 2 gebruikt precisie-optimalisatie om
informatiezoekend robotgedrag op basis van onzekerheidsminimalisatie te creëren. Deze
planningsalgoritmen blijken aanleiding te geven tot pure verkenningsstrategieën. Het
informatieve padplanningsprobleem voor het zoeken naar doelen met behulp van een UAV
wordt opgelost met behulp van precisie-optimalisatie.
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Precisiefluctuaties: Deze categorie van precisiemodulatie gebruikt precisiefluctuaties
als een centraal aandrijfmechanisme voor actieve waarnemingsproblemen. In hoofdstuk
2 wordt een ritmisch precisie-gemoduleerd aandachtsmodel voor actieve waarnemings-
problemen voorgesteld. De voordelen van temporele planning van actie en waarneming,
vergelijkbaar met de oogsaccades en het verzamelen van informatie tijdens een visuele
zoekopdracht, worden besproken. De voordelen van het gebruik van precisiefluctuaties
voor de afweging tussen exploratie en exploitatie tijdens een systeemidentificatietaak
worden ook besproken.

Samenvattend stelt dit proefschrift een op precisiemodulatie gebaseerd robotaandachts-
model voor dat gebruik maakt van FEP. De voordelen van een dergelijk model in de context
van robotische uitdagingen worden onderzocht met een speciale focus op UAV’s met behulp
van drie klassen van problemen: actie, perceptie en actieve perceptie. Door middel van
uitgebreide wiskundige formuleringen, simulaties en experimentele analyse, is aangetoond
dat het robotattentiemodel voordelig is voor schatting, controle en planning. Ondanks
de verschillen tussen een biologisch systeem en een robotsysteem, zou een algemene
theorie over de werking van de hersenen kunnen leiden tot competente hulpmiddelen
om robotproblemen op te lossen (hoofdvraag 1), en zelfs beter presteren dan de klassieke
methoden voor schatting onder gekleurde ruis (hoofdvraag 2).
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2 1 Introduction

T his chapter provides the general introduction to the thesis by providing the necessary
neuroscience background information, motivating the method selections, defining

the clear scope of the thesis within the robotics context, and stating the core technical
contributions of the thesis chapters - all focused towards proposing a free energy principle
based attention model for robots.

1.1 Background & Motivation

The quest for a grand unified theory of the brain has been long standing in the neuroscience
domain. This section aims to provide the motivation and background behind using one
such theory to move towards robot intelligence.

1.1.1 From brain intelligence to robot intelligence

Robots have long been used in highly controlled factory environments. Decades of robotics
research has begun to move them to human friendly environments, to even sharing a living
or working space together. Service robots, floor cleaning robots, shared control in cars,
surveillance drones etc. are some of the examples of this sharing. However, the modern-day
robots are highly susceptible to uncertainties in the real world that they fail too often
than desirable. Drones randomly crashing into trees in wind, humanoids falling down
due to obstacles, perception algorithms misclassifying a dog with a cat on a cloudy day
are common examples of failure under uncertainties, making these robots seem senseless
when compared to the robustness of the human brain. This has long motivated the robotics
researchers into looking for a brain inspired robot algorithm (embodied intelligence) to
deal with uncertainties in the real world, including algorithms like reinforcement learning,
artificial neural networks, and swarm intelligence. However, none of these algorithms have
succeeded in providing a unified account for robot intelligence under uncertainties. Unless
the uncertainty handling capabilities of robots are significantly improved, the dream of a
world where robots and humans could coexist with trust and reliability will not be fulfilled.
Therefore, a brain inspired robot algorithm that can deal with uncertainties could make
significant impact to the quality of our lives, motivating the core theme of this thesis.

Although a unified brain theory could be a potential candidate for the unified robot
intelligence, the fact that the brain and a robot are two different entities - one a biological
system and the other a mechatronic system - poses a serious challenge. Therefore, it is
important to test the theory with regards to real robotics problems to show that it is indeed
useful in the robotics context. This wouldn’t be sufficient for the theory to be popularly
adopted within the community. The theory should enable robots to be smarter than they
currently are. In this thesis, we move a step closer by applying one of the most successful
brain theories called Free Energy Principle (FEP) on real robotics problems, and showing
that it outperforms classical robotics algorithms. The two research questions addressed
by the thesis are: i) Is FEP useful in solving real robotics problems in estimation
and control? ii) Does FEP outperform classical robot algorithms?
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Research questions

Is FEP useful in solving real robotics problems in estimation and control? If so,
does it outperform classical robot algorithms?

Within the context of uncertainty, the neuroscience literature points to two intercon-
nected terminologies: i) precision and ii) attention. Precision or the inverse covariance
matrix, denotes the level of noise or uncertainty in the world that directly enters the sensory
system through measurements. In other words, precision is the inverse of the covariance
matrix denoting the measurement noise. More the precision, less the noise. Precision can
also be seen as the level of confidence that the brain has about its estimates of the model
parameters of the world. More the parameter precision, less uncertain is the brain about its
parameter estimates. Therefore, precision is directly connected to uncertainty. Attention
is the brain’s mechanism that identifies which part of the sensory measurement to focus
on. The brain attends to the most noisy or uncertain measurements of the world. In other
words, uncertainty grabs the brain’s attention. This intertwining of precision and attention
is leveraged in this thesis for the development of an FEP based robot attention model using
precision. Therefore, building a robot attention model is directly linked to the uncertainty
resolution power of robot algorithms. The following sections will motivate the use of FEP
and attention models for this purpose.

1.1.2 Free energy principle
This section will briefly place FEP within the computational neuroscience literature. The
detailed explanation for the relevant aspects of FEP will appear in the subsequent chapters.
Very briefly, according to FEP, any self organising system that is in equilibrium with its
environment must minimize an information theoretic objective called free energy [2],
effectively minimizing its sensory surprisal. Since surprisal is a direct consequence of
uncertainty, FEP provides a seamless way to model the uncertainty handling capability of
the brain, which is highly relevant to the development of robot intelligence.

Recent advancements in neuroscience points to the dominant role of probabilistic
inference in the brain’s perception process [3]. According to the Bayesian brain hypothesis
[4], the human perceptual computations are Bayes optimal, in the sense that the brain
uses its sensory measurements to infer the causal dynamic model of the world in a Bayes
optimal way. These models are then used by the brain to constantly make predictions
about the world. This idea is fundamental to hierarchical predictive coding [5] where
the brain’s prediction errors propagate up the hierarchy, while its expectations propagate
down the hierarchy. FEP builds on the insights from Bayesian brain hypothesis [6, 7] and
predictive coding [8, 9] to naturally accommodate action and perception within a single
framework, thereby proposing a unified theory of the brain. The explanatory power of
FEP to describe the cognitive neuroscience functions like human visual exploration [10],
saccadic eye movements for visual search [11], embodied cognition [12], schizophrenia
[13], mirror neurons [14], illusory perception [15], dreaming consciousness [16], action
selection [17] etc bolsters the role of FEP as a grand unified theory of the brain. This
motivates the selection of FEP as the central pillar of inspiration from neuroscience to
develop a brain inspired robot attention model for this thesis.
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1.1.3 Attention
Attention is a central theme in the cognitive processing that determines which events from
the environment are preferentially processed [18]. It is the process of optimizing synaptic
gain to represent the precision (or uncertainty) of sensory information (prediction error)
during inference [19], and has been widely used to model the eye saccades for information
gathering [20, 21]. Moreover, the role of precision control within the context of attention
has been shown to be central towards body representations in the brain [22]. Empirical
evidence from neuroscience pointing to the role of neuromodulators that encode precision
in accordance with FEP [17, 23, 24] motivates the use of FEP for attention modelling in
this thesis. Since emulating the brain’s attention on robots lies at the core of uncertainty
resolution power of robot intelligence, the development of such a model is expected to be
highly influential within the robotics community.

1.1.4 FEP in robotics
The robotics community has already identified the potential of FEP. The large body of
research that uses FEP to solve crucial cognitive robotics problems [25, 26] is a testament
to the emergence of FEP as a potential candidate for the brain-inspired robot intelligence.
Robot manipulator arm control [27, 28], robot modulation and stacking [29], dyadic robot
imitative interactions [30], humanoid body perception and action [31, 32], human robot
interaction [33], SLAM [34], path planning [35], simulated robot arm learning to reproduce
handwritten letters [36], reinforcement learning [37], message passing for NARMAX
identification [38], factor graphs for optimal control [39] and signal processing [40], blind
image quality assessment [41] are some examples of these applications. The similarities of
FEP with reinforcement learning [42], neural networks [43, 44], Kalman Filtering [45, 46],
PID control [47], optimal control [48, 49] and active learning [50] further guides the quest
for a brain inspired robot algorithm towards FEP. This motivates the use of FEP to provide
a unified theory for robot cognition. The next section deals with clearly defining the scope
of this thesis within the robotics context.

1.2 Scope of the thesis
The robot attention model proposed in this thesis is wide and ambitious in its scope.
However, three main class of problems were selected to demonstrate the usefulness of
this model in real robotics problems: action, perception and active perception. Action
refers to the general robot control problems, whereas perception refers to the learning
and estimation problems. Active perception problem involves control and learning in
the loop. Within action, two demonstrative example problems were selected, owing to
its potential impact to the field: i) reactive path planning and ii) multi robot navigation
in formation. Within perception, three demonstrative example problems in state space
continuous formulations with colored noise were selected: i) state and input estimation,
ii) noise estimation and iii) system identification. The main motivation for this selection
is the seamless noise color handling capabilities of FEP for the estimation under colored
noise for state space systems, which is still an open challenge in the control domain. For
active perception, the IPP problem for target search was selected. The ideas proposed in
this section is applicable to a wide range of information gathering problems that involve an



1.3 Core contributions

1

5

information seeking or uncertainty reduction based robot behavior. Although the proposed
robot attention model can be applied to a large class of robots, this thesis uses UAVs as the
prime robot application for all algorithms. The core motivation for this selection is the
wide impact of UAVs for exploration and target search problems, and the growing demand
for delivery drone algorithms that are robust against windy flight conditions. Figure 1.1
shows the robot applications (or problems) considered within the scope of this thesis. The
next section will deal with delineating the core contributions of this thesis towards solving
these problems.

State and input 

estimation:

Chapter 3, 4

Multi robot 

collaboration:

Chapter 9

Informative Path planning:

Chapter 2

Path planning:

Chapter 2, 9

Noise smoothness 

estimation:

Chapter 5

System 

Identification:

Chapter 6, 7, 8

Fig 1.1: The scope of the thesis within the robotics context, all focused on UAVs as the prime robot
application. Three main classes of problems are considered: action, perception and active perception.

1.3 Core contributions
The core contributions of this thesis are focused towards addressing the two main research
questions posed in Section 1.1.1, both in light of developing an FEP based precision modu-
lated attention model for robots, that can deal with high uncertainties from the real world.
The overarching problem that is dealt here is the poor uncertainty handling capabilities
of the robot algorithms. The solution is to develop a brain inspired robot attention model
using FEP, to test it on real robotics problems to demonstrate its utility, and to show that it
can outperform the classical methods.

Core contributions

The central contribution of this thesis is the introduction of a precision modulation
based robot attention model using FEP for uncertainty resolution. Four types of
precision modulations are proposed: i) precision modelling, ii) precision learning,
iii) precision optimization and iii) precision fluctuation.

The central contribution of this thesis is the introduction of a precisionmodulation based
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attention model for robots using FEP, as outlined in Chapter 2. Four types of precision
modulations for robot attention are proposed in this thesis: i) precision modelling, ii)
precision learning, iii) precision optimization and iii) precision fluctuation. The advantage
of each model is examined in light of pertinent problems in robotics, with a special focus
towards applications to UAVs. The theoretical framework is first formulated and then
evaluated under rigorous simulation experiments, followed by experimental validation on
real drone data. Figure 1.2 gives a quick overview of the thesis structure and the general
storyline that holds all the chapters together under the hood of a precision based robot
attention using FEP.

Free energy principle based precision modulation for robot attention

Precision modelling

Precision learning

Precision optimization

Precision magnitude learning

Smoothness learning

Chapter 3 

Theoretical/simulation Experimental - drones

State and input estimation

Chapter 4

Multirobot navigation in formation
Chapter 9

Chapter 6

Chapter 7

Chapter 5

Chapter 8

Chapter 2

System Identification

Noise smoothness observer

Informative Path Planning

Chapter 5

Precision fluctuations
Informative Path Planning

Chapter 2

Fig 1.2: The chapter overview connecting all the chapters under the common hood of precision
modulation for robot attention using FEP. Each chapter solves a relevant robotics problem using
precision modulation.

1.3.1 Precision modelling
This relates to the user defined modelling of the structure of the precision matrix such
that the robot attention is manipulated or weighed within the free energy scheme. The
advantages of precision modelling for robotics is demonstrated by solving two practical
robot problems: i) state and input estimation of an LTI system with colored noise and ii)
multi robot navigation in formation. The core contributions of this thesis towards precision
modelling for robot attention are:

1. This subcategory uses precision modelling to handle uncertainties that appear
as colored noise in a linear state space system of the form:

�̇� = 𝐴𝑥 +𝐵𝑢 +𝑤, 𝑦 = 𝐶𝑥 + 𝑧, (1.1)



1.3 Core contributions

1

7

where 𝑢 is the input, 𝑦 is the output, 𝑤 and 𝑧 are the process and measurement noises,
and 𝐴, 𝐵 and 𝐶 are the system matrices. The chapter 3 contributes to the design
of a state and input observer for LTI systems with colored noise. This is done by
modelling the generalized noise precision matrix Π̃𝑧 = 𝐸[𝑧𝑧𝑇 ]−1, where 𝑧 = [𝑧 �̇� 𝑧, ...]𝑇 ,
using a smoothness matrix 𝑆 such that Π̃𝑧 = 𝑆 ⊗Π𝑧 , where Π𝑧 is the measurement
noise precision matrix (refer Chapter 3 for details). The modelling of the specific
structure of the precision matrix (using the 𝑆 matrix) to handle the colored noise aids
the observer to attend to the most informative noise derivative information. This
enables a better state and input estimation, as shown in Chapter 3. The chapter 4
introduces an experimental design to prove the validity of the observer design in
chapter 3. It involves a quadcopter hovering in wind, generating the colored noise.
The result shows that precision modelling to handle colored noise during the state
and input estimation improves the estimation.

2. This subcategory uses a precision based attention scheme to manipulate the
behavior of a group of agents navigating in formation. The chapter 9 introduces
an active inference framework for the multi robot navigation in formation and
demonstrates the use of precision modelling for changing the behavior of a group
of agents navigating in formation. By modelling the precision associated with the
prediction errors for goal directed behavior (Π𝑔 ), for obstacle avoidance (Π𝑜) and for
formation (Π𝑓 ), the agents can alternate between a splitting and merging strategy or
an obstacle avoidance strategy when facing an obstacle while navigating in formation.

1.3.2 Precision learning
The precision learning within the attention scheme is composed of two parts (Figure 1.2):
i) learning the noise precision magnitude and ii) learning the noise smoothness (color). Its
advantages are demonstrated within the context of two problems: i) system identification
of LTI systems with colored noise and ii) noise smoothness learning. The core contributions
of this thesis towards precision learning for robot attention are:

1. This subcategory uses precision learning to handle the uncertainties that
appear as colored noise in an LTI system of the form given in Equation 1.1.
The chapter 6 introduces a system identification tool for the estimation of an LTI
under colored noise. This is done by learning the parameters of the system (𝐴,𝐵
and 𝐶) while learning the noise precision (Π𝑧 and Π𝑤 ) and the posterior precision of
parameters. The estimator is supported for safe use on robots with the mathematical
proof of convergence in chapter 7. The chapter 8 provides the experimental validation
of the algorithm for the model learning of a quadrotor flying in wind. All three
chapters together demonstrates the advantages of using an FEP based precision
learning model for robot attention in the context of the estimation problem.

2. This subcategory uses precision learning to learn the structure of uncertainties
that appear as colored noise in an LTI system of the form given in Equation 1.1.
The chapter 5 introduces a novel online noise smoothness estimation algorithm for
LTI systems with colored noise. The generalized noise precision matrix Π̃𝑧 = 𝑆 ⊗Π𝑧

has the smoothness matrix 𝑆 that is parameterised using a smoothness parameter 𝑠
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as:
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(𝑝+1)×(𝑝+1)

, (1.2)

where 𝑝 is the number of derivatives of 𝑧 under consideration. The chapter 5 provides
the theoretical account for the online estimation of this parameter 𝑠, and applies it
on the quadrotor flight data to show its effectiveness on practical robotics problems.
The main advantage of the Gaussian convoluted white noise assumption for the
colored noise is the easy parameterization of 𝑆 matrix with just one parameter 𝑠.
This also helps the colored noise modelling in the Chapters 3-8. The mathematical
details of the derivation of Equation 1.2 can be found in [51].

1.3.3 Precision optimization
Precision optimization pertains to the use of precision as the objective function for un-
certainty resolution in robots. Since the brain is efficient at uncertainty minimization, it
is an obvious choice to use precision (inverse covariance) as the objective function for
robots. A large class of robotics problems that seek to minimize uncertainty like SLAM, IPP
etc falls under this category. The core contribution of this thesis towards using precision
optimization for robot attention is:

1. This section uses precision optimization to minimize the map uncertainty of
a robot performing path planning for an information gathering task. The
section 2.5.3.2 presents the use of the map precision (the trace of inverse covariance
matrix of an information map modelled using a Gaussian process) to develop a pure
exploration based target search algorithm. This idea extends to a large class of
information seeking robot behavior like mapping, exploration and search problems.

1.3.4 Precision fluctuation
Precision fluctuation pertains to the use of fluctuations in precision to change the robot
attention. The core contributions of this thesis towards using precision fluctuation for
robot attention are:

1. This subsection introduces a rhythmic precision modulated attention model
to solve the active perception problems like IPP for uncertainty resolution
and information gathering. The chapter 2 introduces a neurorobotic model of
attention that proposes a rhythmically modulated precision to switch between action
and perception, similar to how the eyes switch between saccades and information
gathering during a visual search.

2. This subsection uses precision fluctuation to trade-off between exploration-
exploitation during system identification. The section 2.5.2.4 proposes the
implications of precision fluctuation (prior precision on parameters 𝐴, 𝐵 and 𝐶) to
balance between learning from data and adhering to the prior parameters, in the
context of estimation for an LTI system.
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In summary, this thesis explores a detailed account of the advantages of a precision
modulation based robot attention model using FEP. With a hope that this research will
take us a step closer to the grand theory for robot intelligence, the detailed chapters follow.

1.4 Free energy and ELBO
The FEP literature [2] treats the Evidence Lower Bound (ELBO) from Variational Bayesian
methods [52] as the free energy objective. Here, the free energy is maximized the same
way the ELBO term is maximized during inference (explained in detail in Section 6.5). The
variational treatment of this objective results in the usage of the term "variational free
energy" in Chapters 3-8, where the variational free energy is maximized during inference.
However, the recent developments in literature uses the minimization of free energy
(negative of the ELBO term), which is also used in Chapter 9. The reader is advised not to
be confused with "free energy maximization" and "free energy minimization" throughout
the thesis, as both free energy objectives are the same (one being the negative of the other).

1.5 Statement of contributions
This thesis primarily includes the verbatim copy of published peer reviewed papers, some
of which were done in collaboration with other individuals and universities. This section
lists down the author contributions for each chapter in this thesis.

1. As a first author, Ajith contributed to the robotics section of Chapter 2. Filip proposed
the rhythmic precision model for the brain and Ajith translated it to robotics context.
The robotics section is a compilation of Ajith’s previous results from Chapter 3, 5, 6,
7, 8, and [53, 54], addressing the proposed neurorobotic attention model. Filip and
Noor contributed to the neuroscience section. Pablo is behind the reclaiming saliency
idea. Karl and Thomas contributed through manuscript editing and feedback. All
authors contributed to the manuscript writing.

2. Ajith contributed to the experimental design, conceptualization and writing of Chap-
ter 4. Under his supervision, Dennis conducted the experiment and Fred processed it
to provide experimental confirmation for the previous simulation results in Chapter
3. Ajith and Fred contributed to the writing.

3. As the first author, Ajith was the main contributor to the Chapters 3, 5, 6, 7, 8 and 9.
Martijn supervised the work and provided feedbacks to the draft.

4. Chapters 2, 3, 4, 5, 6 and 7 are a verbatim copy of peer reviewed papers published
during the PhD. The paper contained in Chapter 8 is still under review. Chapter 9
contains the preliminary results of an upcoming paper. Parts of Chapter 3 and 6
were used to contribute to the paper [25].
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Reclaiming Saliency:
Rhythmic precision

modulated active perception

Using inspirations from the neuroscience literature, this chapter proposes a neurorobot attention
model - the backbone of this thesis. The utility of the model is demonstrated using pertinent
problems in robotics like state and input estimation, system identification, noise estimation and
informative path planning. The detailed mathematical account of the state and input observer
used in Section 2.5.2.2 is provided in Chapter 3, and its robot implementation is provide in
Chapter 4. The DEM based system identification tool used in Section 2.5.2.3, 2.5.2.4 and 2.5.2.5
is provided in Chapter 6 and 7, and its robot implementation is provided in Chapter 8. The
Chapter 5 builds on the precision learning scheme proposed in this chapter for online noise
smoothness estimation. The Chapter 9 builds on the precision modulation proposed in this
chapter for the formation control of drones. The details of the simulation setup used for Section
2.5.3 are given in [53].

This chapter is a verbatim copy of the peer reviewed paper [55]  Ajith Anil Meera, Filip Novicky, Thomas
Parr, Karl Friston, Pablo Lanillos, and Noor Sajid. "Reclaiming saliency: rhythmic precision-modulated action and
perception." Frontiers in Neurorobotics 16 (2022). As a first author, Ajith contributed to the robotics section of this
chapter. Filip proposed the rhythmic precision model for the brain and Ajith translated it to robotics context.
The robotics section is a compilation of Ajith’s previous results from Chapter 3-8, and [53, 54], addressing the
proposed neurorobotic attention model. Filip and Noor contributed to the neuroscience section. Pablo is behind
the reclaiming saliency idea. Karl and Thomas contributed through manuscript editing and feedback. All authors
contributed to the manuscript writing.
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2.1 Abstract
Computational models of visual attention in artificial intelligence and robotics have been
inspired by the concept of a saliency map. These models account for the mutual information
between the (current) visual information and its estimated causes. However, they fail to
consider the circular causality between perception and action. In other words, they do
not consider where to sample next, given current beliefs. Here, we reclaim salience as
an active inference process that relies on two basic principles: uncertainty minimisation
and rhythmic scheduling. For this, we make a distinction between attention and salience.
Briefly, we associate attention with precision control, i.e., the confidence with which beliefs
can be updated given sampled sensory data, and salience with uncertainty minimisation
that underwrites the selection of future sensory data. Using this, we propose a new
account of attention based on rhythmic precision-modulation and discuss its potential in
robotics, providing numerical experiments that showcase its advantages for state and noise
estimation, system identification and action selection for informative path planning.

2.2 Introduction
Attention is a fundamental cognitive ability that determines which events from the environ-
ment, and the body, are preferentially processed [18]. For example, the motor system directs
the visual sensory stream by orienting the fovea centralis (i.e., the retinal region of highest
visual acuity) towards points of interest within the visual scene. Thus, the confidence with
which the causes of sampled visual information are inferred is constrained by the physical
structure of the eye – and eye movements are necessary to minimise uncertainty about
visual percepts [56]. In neuroscience, this can be attributed to two distinct, but highly
interdependent attentional processes: (𝑖) attentional gain mechanisms reliant on estimating
the sensory precision of current data [19, 57], and (𝑖𝑖) attentional salience that involves
actively engaging with the sensorium to sample appropriate future data [20, 58]. Here we
refer to perceptual-related salience, i.e., processing of low-level visual information [59].
Put simply, we formalise the fundamental difference between attention — as optimising
perceptual processing — and salience as optimising the sampling of what is processed. This
highlights the dynamic, circular nature with which biological agents acquire, and process,
sensory information.

Understanding the computational mechanisms that undergird these two attentional phe-
nomena is pertinent for deploying apt models of (visual) perception in artificial agents [60–
62] and robots [63–66]. Previous computational models of visual attention, used in artificial
intelligence and robotics, have been inspired (and limited) by the feature integration theory
proposed by [67] and the concept of a saliency map [18, 68, 69]. Briefly, a saliency map
is a static two-dimensional ‘image’ that encodes stimulus relevance, e.g., the importance
of particular region. These maps are then used to isolate relevant information for control
(e.g., to direct foveation of the maximum valued region). Accordingly, computational
models reliant on this formulation do not consider the circular-dependence between action
selection and cue relevance – and simply use these static saliency maps to guide action.

In this article, we adopt a first principles account to disambiguate the computational
mechanisms that underpin attention and salience [20] and provide a new account of
attention. Specifically, our formulation can be effectively implemented for robotic systems
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and facilitates both state-estimation and action selection. For this, we associate attention
with precision control, i.e., the confidence with which beliefs can be updated given (current)
sampled sensory data. Salience is associated with uncertainty minimisation that influences
the selection of future sensory data. This formulation speaks to a computational distinction
between action selection (i.e., where to look next) and visual sampling (i.e., what information
is being processed). Importantly, recent evidence demonstrates the rhythmic nature of these
processes via a theta-cycle coupling that fluctuates between high and low precision—as
unpacked in Sec 2.3. From a robotics perspective, resolving uncertainty about states of
affair speaks to a form of Bayesian optimality, in which decisions are made to maximise
expected information gain [70–72]. The duality between attention and salience is important
for resolving uncertainty and enabling active perception. Significantly, it addresses an
important challenge for defining autonomous robotics systems that can balance optimally
between data assimilation (i.e., confidently perceiving current observations) and exploratory
behaviour to maximise information gain [73].

In what follows, we review the neuroscience of attention and salience (Sec. 2.3) to
develop a novel (computational) account of attention based on precision-modulation that
underwrites perception and action (Sec. 2.4). Next, we face-validate our formulation within
a robotics context using numerical experiments (Sec. 2.5). The robotics implementation
instantiates a free energy principle (FEP) approach to information processing [2]. This
allows us to modulate the (appropriate) precision parameters to solve relevant robotics
challenges in perception and control; namely, state-estimation (Sec. 2.5.2.2), system identi-
fication (Sec. 2.5.2.3), planning (Sec. 2.5.3), and active perception (Sec. 2.5.3.3). We conclude
with a discussion of the requisite steps for instantiating a full-fledged computational model
of precision-modulated attention – and its implications in a robotics setting.

2.3 Attention and salience in neuroscience
Our interactions with the world are guided by efficient gathering and processing of sensory
information. The quality of these acquired sensory data is reflected in attentional resources
that select sensations which influence our beliefs about the (current and future) states of
affairs [58, 74]. This selection is often related to gain control, i.e., an increase of neural
spikes when an object is attended to. However, gain control only accounts for half the story
because we can only attend to those objects that are within our visual field. Accordingly, if
a salient object is outside the centre of our visual field, we orient the fovea to points of
interest. This involves two separate, but often conflated, processes: attention and salience
– where the former relates to processing current visual data, and the latter to ensuring
the agent samples salient data in the future [20]. That these two processes are strongly
coupled is exemplified by the pre-motor theory of attention [75], which highlights the close
relationship between overt saccadic sampling of the visual field and the covert deployment
of attention in the absence of eye movements. Specifically, it posits that covert attention1
is realised via processes that are generated by particular eye movements but inhibits the
action itself. In this sense, it does not distinguish between covert and overt2 types of
attention.

1Covert attention is where saccadic eye movements do not occur.
2Overt attention deals with how an agent tracks the object with eye movements
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From a first principles (Bayesian) account, it is necessary to separate between attention
and salience because they speak to different optimisation processes. Explicitly, attention
as a precision-dependent (neural) gain control mechanism that facilitates optimisation of
the current sampled sensory data [19, 76]. Conversely, salience is associated with selection
of future data that reduces uncertainty [20, 77, 78]. Put simply, it is possible to optimise
attention in the absence of eye movements and active vision, whereas salience is necessary
to optimise the deployment of eyemovements. In what follows, we formalise this distinction
with a particular focus on visual attention [79], and discuss recent findings that speak to a
rhythmic coupling that underwrites periodic deployment of gain control and saccades, via
modulation of distinct precision parameters.

2.3.1 Attention as neural gain control
Neural gain control can be regarded as an amplifier of neural communication during
attention tasks [80, 81]. Computationally, this is analogous to modulating a precision term,
or the inverse temperature parameter [19, 82]. For this reason, we refer to precision and
gain control interchangeably. An increase in gain amplifies the postsynaptic responses
of neurons to their pre-synaptic input. Thus, gain control rests on synaptic modulation
that can emphasise — or preferentially select — a particular type of sensory data. From
a Bayesian perspective [83–85], this speaks to the confidence with which beliefs can be
updated given sampled sensory data (i.e., optimal state estimation) – under a generative
model [85, 86]. For example, affording high precision to certain sensory inputs would
lead to confident Bayesian belief updating. However, low precision reduces the influence
of sensory input by attenuating the precision of the likelihood, relative to a prior belief,
and current observations would do little to resolve ensuing uncertainty. Thus, sampled
visual data (from different areas) can be predicted with varying levels of precision, where
attention accentuates sensory precision. The deployment of precision or attention is
influenced by competition between stimuli (i.e., which sensory data to sample) and prior
beliefs. Interestingly, casting attention as precision or, equivalently, synaptic gain offers
a coherency between biased competition [76], predictive coding [84] and generic active
inference schemes [19, 85, 87, 88].

Naturally, gain control is accompanied by neuronal variability, i.e., sharpened neural
responses for the same task over time. Consistent with gain control, these fluctuations in
neural responses across trials can be explained by precision engineered message passing
[89] via (𝑖) normalization models [90, 91], (𝑖𝑖) temperature parameter manipulation [19, 82,
85, 92, 93], or (𝑖𝑖𝑖) introduction of (conjugate hyper-)priors that are either pre-specified [94,
95] or optimised using uninformed priors [96, 97]. Recently, these approaches have been
used to simulate attention by accentuating predictions about a given visual stimulus [19, 90,
91]. For example, normalization models propose that every neuronal response is normalized
within its neuronal ensemble (i.e., the surrounding neuronal responses) [98, 99]. Thus, to
amplify the neuronal response of particular neuron, the neuronal pool has to be inhibited
such that that particular neuron has a sharper evoked response [100]. Importantly, these
(superficially distinct) formulations simulate similar functions using different procedures
to accentuate responses over a particular neuronal pool for a given neuron or a group of
neurons. This introduces shifts in precision to produce attentional gain and the precision
of neuronal encoding.
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2.3.2 Salience as uncertainty minimisation
In the neurosciences, (visual) salience refers to the ‘significance’ of particular objects in
the environment. Salience often implicates the superior colliculus, a region that encodes
eye movements [101]. This makes intuitive sense, as the superior colliculus plays a role
in generation of eye movements – being an integral part of the brainstem oculomotor
network [102] – and salient objects provide information that is best resolved in the centre
of the visual field, thus motivating eye movements to that location. For this reason, our
understanding of salience is a quintessentially action-driving phenomenon [20]. Mathemat-
ically, salience has been defined as Bayesian surprise [18, 103], intrinsic motivation [104],
and subsequently, epistemic value under active inference [85, 105]. Active inference – a
Bayesian account of perception and action [106, 107] – stipulates that action selection is
determined by uncertainty minimisation. Formally, uncertainty minimisation speaks to
minimisation of an expected free energy functional over future trajectories [72, 107]. This
action selection objective can be decomposed into epistemic and extrinsic value, where the
former pertains to exploratory drives that encourage resolution of uncertainty by sampling
salient observations, e.g., only checking one’s watch when one does not know the time.
However, after checking the watch there is little epistemic value in looking at it again.
Generally, the tendency to seek out new locations – once uncertainty has been resolved at
the current fixation point – is called inhibition of return [108].

From an active inference perspective, this phenomenon is prevalent because a recent
action has already resolved the uncertainty about the time and checking again would
offer nothing more in terms of information gain [20]. Accordingly, salience involves
seeking sensory data that have a predictable, uncertainty reducing, effect on current
beliefs about states of affairs in the world [85, 105]. Thus salience contends with beliefs
about data that must be acquired and the precision of beliefs about policies (i.e., action
trajectories) that dictate it. Formally, this emerges from the imperative to maximise the
amount of information gained regarding beliefs, from observing the environment. Happily,
prior studies have made the connection between eye movements, salience, and precision
manipulation [87, 109, 110]. This connection emerges from planning strategies that allow
the agent to minimise uncertainty by garnering the right kind of data.

Next, we consider recent findings on how the coupling of these two mechanisms,
attention and salience, may be realised in the brain.

2.3.3 Rhythmic coupling of attention and salience
To illustrate the coupling between attention and salience, we turn to a recent rhythmic
theory of attention. The theory proposes that coupling of saccades, during sampling of
visual information, happens at neuronal and behavioural theta oscillations; a frequency of
3-8Hz [111, 112]. This frequency simultaneously allows for: (𝑖) a systematic integration
of visual samples with action, and (𝑖𝑖) a temporal schedule to disengage and search the
environment for more relevant information.

Given that gain control is related to increased sensory precision, we can accordingly
relate saccadic eye movements to the decreased precision. This introduces saccadic sup-
pression, a phenomenon that decreases visual gain during eye movements [110]. This
phenomenon was described by Helmholtz who observed that externally initiated eye move-
ments (e.g., when oneself gently presses a side of an eye) eludes the saccadic suppression
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that accompanies normal eye movements – and we see the world shift, because optic flow is
not attenuated [113]. An interesting consequence of this is that, as eye movements happen
periodically [114, 115], there must be a periodic switch between high and low sensory
precision, with high precision (or enhanced gain) during fixations and low precision (or
suppressed gain) during saccades. Interestingly, it has been shown that rather than having
action resetting the neural periodicity, it is better understood as something that aligns
within an already existing rhythm [116, 117]. Additionally, the rhythmicity of higher and
lower fidelity of sensory sampling has been shown to fluctuate rhythmically around 3Hz
[118], suggesting that action emerges rhythmically when visual precision is low [117],
triggering salience.

Building upon this, we hypothesise that theta rhythms generated in the fronto-parietal
network [119–121] couples saccades with saccadic suppression causing the switches be-
tween visual sampling and saccadic shifting. This introduces a diachronic aspect to the
belief updating process [122–124]; i.e., sequential fluctuations between attending to current
data (perception) and seeking new data (action). This supports empirical findings that both
eye movements [125] and filtering irrelevant information [121, 126, 127] are initiated in this
cortical network. Interestingly, both eye movements and visual filtering then propagate to
sub-cortical regions, i.e., the superior colliculus—for saliency map composition [101]—and
the thalamus—for gain control [88, 128], respectively. Furthermore, this is consistent with
recent findings that the periodicity of neural responses are important for understanding
the relation of motor responses and sensory information – i.e., perception-action cou-
pling [115]. Importantly, theta rhythms also speak to the speed (i.e., the temporal schedule)
with which visual information is sampled from the environment [120, 129–131]. Meaning
visual information is not sampled continuously, as our visual experiences would suggest,
but rather it is made of successive discrete samples [132, 133].

The prefrontal theta rhythm has been associated with working memory (WM), a process
that holds compressed information about the previously observed stimuli, in the sense that
measured power in this frequency range using electroencephalography increases during
tasks that place demands on WM [134–140]. The implication is that the neural processes
that underwrite WM may depend upon temporal cycles with periods similar to that of
perceptual sampling. Importantly, this cognitive process is influenced by how salient a
particular stimulus was [141–143]. Moreover, WM has been implicated with attentional
mechanisms [139, 144–147]. This is alignedwith our account where we illustrate a rhythmic
coupling between salience and attention.

In summary, the computations that underwrite attention and active vision are coupled
and exhibit circular causality. Briefly, selective attention and sensory attenuation optimize
the processing of sensory samples and which particular visual percepts are inferred. In
turn, this determines appropriateness of future eye movements (or actions) and shapes
which prior stimuli are encoded into the agent’s working memory. Interestingly, the close
functional (and computational) link between the two mechanisms endorses the pre-motor
theory of attention.
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Fig 2.1: A graphical illustration of the precision-modulated account of perception and action. Salience
and attention are computed based upon beliefs (assumed to be) encoded in parts of the fronto-parietal
network and realised in distinct brain regions: superior colliculus (SC) for perception as inference and
thalamus for planning as inference, respectively. To deploy attentional processes efficiently, these
two mechanisms have to be aligned, which is done rhythmically, hypothetically in theta frequency.
This coupling enables the saccadic suppression phenomenon through fluctuations in precision (on
an arbitrary scale). When precision is low (i.e., the trough of the theta rhythm), the saccade emerges.
Note that there might be distinct processes inhibiting the action (e.g., covert attention), and (despite
a decline in precision) saccades might not emerge in every theta cycle. On the other hand, high
precision facilitates confident inferences about the causes of visual data. Under this account, thalamus
is used for initiating gain control (or visual sampling in general) by providing stronger sensory input,
while superior colliculus dictates next saccades, that lead to most informative fixation positions.

2.4 Proposed precision-modulated account of atten-
tion and salience

Here, we introduce our precision-modulated account of perception and action. A graphical
illustration is provided in Figure 2.1. For this, we turn to attention and salient action
selection which have their roots in biological processes relevant for acquiring task-relevant
information. Under an active inference account, this attention influences (posterior) state
estimation and can be associated with increased precision of belief updating and gain
control—described in Sec. 2.3.1. Furthermore, this is distinct from salience despite interde-
pendent neuronal composition and computations.

Further alignment between the two constructs can be revealed by considering the
temporal scheduling between movement (i.e., action) and perception for uncertainty res-
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olution [20]. We postulate that this perception-action coupling is best understood as a
periodic fluctuation between minimising uncertainty and precision control. Subsequently,
action is deployed to reduce uncertainty. Such an alignment specifies what stimulus is
selected and under what level of precision it is processed. . [20] hypothesise that action
alignment with precision is due to the eye structure that provides precise information in
the fovea and requires the agent to foveate the most informative stimulus. We extend this
by considering the periodic deployment of gain control with saccades [111, 116–118, 148].

Accordingly, our formulation defines attention as precision control and salience as
uncertainty minimisation supported by discrete sampling of visual information at a theta
rhythm. This synchronises perception and action together in an oscillatory fashion [117].
Importantly, a Bayesian formulation of this can be realised as precision manipulation over
particular model parameters. We reserve further details for Sec. 2.5.
Summary Based upon our review, we propose a precision-modulated account of attention
and salience, emphasising the diachronic realisation of action and perception. In the
following sections, we investigate a realisation of this model for a robotic system.

2.5 Precision-based attention for Robotics
The previous section introduced a conceptual account to explain the computational mecha-
nisms that undergird attention based on neuroscience findings. We focused on reclaiming
saliency as an active process that relies on neural gain control, uncertainty minimisation
and structured scheduling. Here, we describe how we can mathematically realise some of
these mechanisms in the context of well-known challenges in robotics. Enabling robots
with this type of attention may be crucial to filter the sensory signals and internal variables
that are relevant to estimate the robot/world state and complete any task. More importantly,
the active component of salience (i.e., behaviour) is essential to interact with the world—as
argued in active perception approaches [73].

We revisit the standard view of attention in robotics by introducing sensory precision
(inverse variance) as the driving mechanism for modulating both perception and action [89,
109]. Although saliency was originally described to underwrite behaviour, most models
used in robotics, strongly biased by computer vision approaches, focus on computing
the most relevant region of an image [69]—mainly computing human fixation maps—
relegating action to a secondary process. Illustratively, state-of-the-art deep learning
saliency models—as shown in the MIT saliency benchmark [149]—do not have the action
as an output. Conversely, the active perception approach properly defines the action as
an essential process of active sensing to gather the relevant information. Our proposed
model, based on precision modulated action and perception coupling (𝑖) place attention as
essential for state-estimation and system identification and (𝑖𝑖) and reclaims saliency as a
driver for information-seeking behaviour, as proposed in early works [68], but goes beyond
human fixation maps for both improving the model of the environment (exploration) and
solving the task (exploitation).

In what follows, we highlight the key role of precision by reviewing relevant brain-
inspired attention models deployed in robotics (Sec. 2.5.1). We propose precision-modulated
attentionalmechanisms for robots in three contexts - perception (Sec. 2.5.2), action (Sec. 2.5.3)
and active perception (Sec. 2.5.3.3). The precision-modulated perception is formalised for
a robotics setting; via (𝑖) state estimation (i.e., estimating the hidden states of a dynamic
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Table 2.1: Robotics applications and their precision realisations.

Task Application Precision manipulation Section

Perception State & input estimation Noise precision modelling Π̃ 2.5.2.2
System Identification Posterior parameter precision learning Π𝜃 2.5.2.3
Exploration-exploitation in learning Prior parameter precision modelling 𝑃𝜃 2.5.2.4
Noise estimation Noise precision learning Π̃ 2.5.2.5

Action Informative Path Planning (IPP) Precision optimisation (of map) 2.5.3.2
Active perception IPP with action-perception cycle Precision modulation 2.5.3.3

system from sensory signals – Sec. 2.5.2.2), and (𝑖𝑖) system identification (i.e., estimating
the parameters of the dynamic system from sensory signals – Sec. 2.5.2.3). Next, we show
that precision-modulated action can be realised through precision optimisation (plan-
ning future actions – Sec. 2.5.3.2) and discuss practical considerations for coupling with
precision-modulated perception (precision based active perception - Sec. 2.5.3.3). Table 2.1
summarises our proposed precision manipulations to solve relevant problems in robot
perception and action. Table 2.2 provides the definitions of precision within our mechanism.

Table 2.2: Precision parameters that are manipulated in Sec.2.5.2

Term Symbol Definition
Sensory precision Π𝑧 Inverse covariance of sensory noise z (Eqn. 2.1).
Prior parameter precision 𝑃𝜃 The robot’s confidence on its prior parameters 𝜂𝜃 .
Noise precision Π̃ The inverse covariance of all noises (Eqn. 2.5).
Posterior parameter precision Π𝜃 The robot’s confidence on its parameter estimates.

2.5.1 Previous brain-inspired attention models in robotics
Brain-inspired attention has been mainly addressed in robotics from a ‘passive’ visual
saliency perspective, e.g., which pixels of the image are the most relevant. This saliency
map is then generally used to foveate the most salient region. This approach was strongly
influenced by early computational models of visual attention [18, 68]. The first models
deployed in robots were bottom-up, where the sensory input was transformed into an
array of values that represents the importance (or salience) of each cue. Thus, the robot
was able to identify which region of the scene has to look at, independently of the task
performed—see [69] for a review on visual saliency. These models have also been useful for
acquiring meaningful visual features in applications, such as object recognition [150, 151],
localisation, mapping and navigation [63, 152, 153]. Saliency computation was usually
employed as a helper for the selection of the relevant characteristics of the environment to
be encoded. Thus, reducing the information needed to process.

More refined methods of visual attention employed top-down modulation, where the
context, task or goal bias the relevance of the visual input. These methods were used, for
instance, to identify humans using motion patterns [154, 155]. A few works also focused
on object/target search applications, where top-down and bottom-up saliency attention
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were used to find objects or people in a search and rescue scenario [156].
Attention has also been considered in human-robot interaction and social robotics appli-

cations [65], mainly for scene or task understanding [157–159], and gaze estimation [160]
and generation [66]. For instance, computing where the human is looking at and where
the robot should look at or which object should be grasped. Furthermore, multi-sensory
and 3D saliency computation has also been investigated [161]. Finally, more complex atten-
tion behaviours, particularly designed for social robotics and based on human non-verbal
communication, such as joint attention, have also been addressed. Here the robot and
the human share the attention of one object through meaningful saccades, i.e., head/eye
movements [66, 162, 163].

Although attention mechanisms have been widely investigated in robotics, specially to
model visual cognition [64, 158], the majority of the works have treated attention as an
extra feature that can help the visual processing, instead of a crucial component needed
for the proper functioning of the cognitive abilities of the robot [164]. Furthermore, these
methods had the tendency to leave the action generation out of the attention process.
One of the reasons for not including saliency computation, in robotic systems, is that the
majority of the models only output ‘human-fixation map’ predictions, given a static image.
Saliency computation introduces extra computational complexity, which can be finessed by
visual segmentation algorithms (e.g., line detectors in autonomous navigation). However, it
does not resolve uncertainty nor select actions that maximise information gain in the future.
In essence, the incomplete view of attention models that output human-fixation maps has
arguably obscured the huge potential of neuroscience-inspired attentional mechanisms for
robotics.

Our proposed model of attention, based on precision modulation, abandons the current
robotics narrow view of attention and saliency by explicitly modelling attention within
state estimation, learning and control. Thus, placing attentional processes at the core of
the robot computation and not as an extra add-on. In the following sections, we describe
the realisation of our precision-based attention formulation in robotics using common
practical applications as the backbone motif.

2.5.2 Precision-modulated perception
We formalise precision-modulated perception from a first principles Bayesian perspective –
explicitly the free energy principle approach proposed by [109]. Practically, this entails
optimising precision parameters over (particular) model parameters.

Through numerical examples show how our model is able to perform accurate state
estimation [165] and stable parameter learning [166, 167]. To illustrate the approach,
we first introduce a dynamic system modelled as a linear state space system in robotics
(Sec. 2.5.2.1)—we used this formulation in all our numerical experiments. We briefly review
the formal terminologies for a robotics context to appropriately situate our precision-based
mechanism for perception. Explicitly, we introduce: precision modelling (by adapting a
known form of the precision matrix), precision learning (by learning the full precision
matrix), and precision optimisation (use precision as an objective function during learning).
As a reminder, precision modelling is associated with (instantaneous) gain control and
precision learning (at slower time scales) is associated with optimising that control.
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2.5.2.1 Precision for state space models
A linear dynamic system can bemodelled using the following state space equations (boldface
notation denotes components of the real system and non-boldface notation its estimates):

ẋ = Ax+Bu+w, y = Cx+ z. (2.1)

where A, B and C are constant matrices defining the system parameters, x ∈ ℝ𝑛 is the
system state (usually an unobserved variable), u ∈ ℝ𝑟 is the input or control actions, y ∈ ℝ𝑚

is the output or the sensory measurements, w ∈ ℝ𝑛 is the process noise with precision 𝚷𝐰

(or inverse variance 𝚺𝐰−1), and z ∈ ℝ𝑚 is the measurement noise with precision 𝚷𝐳.
For instance, we can describe a mass-spring damper system (depicted in Fig. 2.2b)

using state space equations. A mass (𝑚 = 1.4𝑘𝑔) is attached to a spring with elasticity
constant (𝑘 = 0.8𝑁 /𝑚), and a damper with a damping coefficient (𝑏 = 0.4𝑁𝑠/𝑚). When a
force (𝑢(𝑡) = 𝑒−0.25(𝑡−12)2 ) is applied on the mass, it displaces 𝑥 from its equilibrium point.
The linear dynamics of this system is given by:

[
�̇�
𝑥] = [

0 1
− 𝑘
𝑚 − 𝑏

𝑚][
𝑥
�̇�]+ [

0
1
𝑚]

𝑢, 𝑦 = [1 0][
𝑥
�̇�] . (2.2)

Note that Eq. (2.2) is equivalent to Eq. (2.1) with parameters A = [
0 1
− 𝑘
𝑚 − 𝑏

𝑚]
, B =[0, 1𝑚]

𝑇

and C = [1 0] , and state x = [𝑥, �̇�]
𝑇 .

Now we introduce attention as precision modulation assuming that the robotic goal is
to minimise the prediction error [46, 109, 168], i.e., to refine its model of the environment
and perform accurate state estimation, given the information available. In other words,
the robot has to estimate x and u from input prior 𝜂𝑢 with a prior precision of 𝑃𝑢 , given
the measurements y, parameters A, B, C and noise precision 𝚷𝐰 and 𝚷𝐳. Formally, the
prediction error 𝜖 of the sensory measurements 𝜖𝑦 , control input reference 𝜖𝑢 and state 𝜖𝑥
are:

𝜖 =
⎡
⎢
⎢
⎣

𝜖𝑦
𝜖𝑢
𝜖𝑥

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

ỹ− C̃𝑥
�̃� − �̃�𝑢

𝐷𝑥𝑥 − Ã𝑥 − B̃�̃�

⎤
⎥
⎥
⎦

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

sensory prediction error
control input prediction error
state prediction error

(2.3)

Note that 𝜖𝑦 = ỹ−C̃𝑥 is the difference between the observed measurement and the predicted
sensory input given the state3. Here 𝐷𝑥 performs the (block) derivative operation, which
is equivalent to shifting up all the components in generalised coordinates by one block.

3The tilde over the variable refers to the generalised coordinates, i.e., the variable includes all temporal derivatives.
Thus, 𝜖 is the combined prediction error of outputs, inputs and states. For example, the generalised output �̃� is
given by ỹ = [𝑦,𝑦′, 𝑦′′...]𝑇 , where the prime operator denotes the derivatives. We use generalised coordinates [169]
for achieving accurate state and input estimation during the presence of (coloured) noise by modelling the time
dependent quantities (𝑥,𝑣,𝑦,𝑤,𝑧) in generalised coordinates. This involves keeping track of the evolution of the
trajectory of the probability distributions of states, instead of just their point estimates. Here the coloured noise
𝑤 and 𝑧 are modelled as a white noise convoluted with a Gaussian kernel. The use of generalised coordinates
has recently shown to outperform classical approaches under coloured noise on real quadrotor flight [165]
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We can estimate the state and input using the Dynamic Expectation Maximisation
(DEM) algorithm [46, 170] that optimises a free energy variational bound  to be tractable4.
This is:

𝑋 = [
𝑥
�̃�] = argmax

𝑋
 = argmax

𝑋
−
1
2
𝜖𝑇 Π̃𝜖 (2.4)

Crucially, Π̃ is the generalised noise precision that modulates the contribution of each
prediction error to the estimation of the state and the computation of the action. Thus, Π̃ is
equivalent to attentional gain. For instance, we can model the precision matrix to attend to
the most informative signal derivatives in ỹ. Concisely, the precision Π̃ has the following
form:

Π̃ =
⎡
⎢
⎢
⎣

𝑆 ⊗Π𝑧 0 0
0 𝑆 ⊗𝑃𝑢 0
0 0 𝑆 ⊗Π𝑤

⎤
⎥
⎥
⎦
, (2.5)

where 𝑆 is the smoothness matrix. In Sec. 2.5.2.2, we show that modelling the precision
matrix Π̃ using the 𝑆 matrix improves the estimation quality.

The full free energy functional (time integral of free energy ̄ = ∫ 𝑑𝑡 at optimal
precision) that the robot optimises to perform state-estimation and system identification is
described in Eq. (2.6)—for readability we omitted the details of the derivation of this cost
function, and we refer to [97] for further details.

̄ =−
1
2
∑
𝑡
[𝜖

𝑦𝑇 Π̃𝑧𝜖𝑦 + 𝜖𝑢𝑇𝑃 �̃�𝜖𝑢 + 𝜖𝑥𝑇 Π̃𝑤𝜖𝑥⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
precision weighed prediction error

]−
1
2[

𝜖𝜃𝑇𝑃𝜃𝜖𝜃 + 𝜖𝜆𝑇𝑃𝜆𝜖𝜆⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prior precision weighed prediction error of 𝜃 and 𝜆

]

+
1
2
𝑛𝑡 ln |Σ𝑋 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
state and input entropy

+
1
2
𝑛𝑡 [ ln |Π̃𝑧 |+ ln |𝑃 �̃� |+ ln |Π̃𝑤 |]
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noise entropy

+
1
2
ln |Σ𝜃𝑃𝜃 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
parameter entropy

+
1
2
ln |Σ𝜆𝑃𝜆 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
hyperparameter entropy

(2.6)

Here 𝜖𝜃 = 𝜃 −𝜂𝜃 , 𝜖𝜆 = 𝜆−𝜂𝜆 are the prediction errors of parameters and hyper-parameters5.
̄ consist of two main components: i) precision weighed prediction errors and ii) precision-
based entropy. The dominant role of precision — in the free energy objective -– is reflected
in how modulating these precision parameters can have a profound influence perception
and behaviour. The theoretical guarantees for stable estimation [167], and its application
on real robots [25] make this formulation very appealing to robotic systems.

Note that we can manipulate three kinds of precision within the state space formulation:
i) prior precision (𝑃 �̃� , 𝑃𝜃 , 𝑃𝜆), ii) conditional precision on estimates (Π𝑋 ,Π𝜃 ,Π𝜆) and iii)
noise precision (Π𝑧 ,Π𝑤 ). Therefore, to learn the correct parameter values 𝜃 , we i) learn the
parameter precision Π𝜃 , ii) model the prior parameter precision 𝑃𝜃 , and iii) learn the noise
precision Π𝑤 and Π𝑧 (parameterised using 𝜆).
4Note that this expression of the variational free energy is using the Laplace and mean-field approximations
commonly used in the FEP literature

5System identification involves the estimation of system parameters (denoted by 𝜃 , e.g., vectorised A), given
y,u, by starting from a parameter prior of 𝜂𝜃 with prior precision 𝑃𝜃 , and a prior on noise hyper-parameter 𝜂𝜆
with a prior precision of 𝑃𝜆 . Note that we parametrise noise precision (Π𝑤 and Π𝑧 ) using 𝜆 ∈ ℝ2×1 = [ 𝜆𝑧

𝜆𝑤 ] as an
exponential relation (e.g., Π𝑤 (𝜆𝑤 ) = exp(𝜆𝑤 )𝐼 𝑛×𝑛).
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2.5.2.2 State and input estimation
State estimation is the process of estimating the unobserved states of a real system from
(noisy) measurements. Here, we show how we can achieve accurate estimation through
precision modulation in a linear time invariant system under the influence of coloured noise
[46]. State estimation in the presence of coloured noise is inherently challenging, owing
to the non-white nature of the noise, which is often ignored in conventional approaches,
such as the Kalman Filter [171].

Figure 2.2 summarises a numerical example that shows how one can use precision
modulation to focus on the less noisy derivatives (lower derivatives) of measurements, rel-
ative to imprecise higher derivatives. Thus, enabling the robot to use the most informative
data for state and input estimation, while discarding imprecise input. Figure 2.2b depicts
the mass-spring damper system used. The numerical results show that the quality of the
estimation increases as the embedding ordering increases but the lack of information in
the higher order derivatives of the sensory input do not affect the final performance due
to the precision modulation. The higher order derivatives (Fig. 2.2a) are less precise than
the lower derivatives, thereby reflecting the loss of information in higher derivatives. The
state and input estimation was performed using the optimisation framework described
in the previous section. The quality of estimation is shown in Fig. 2.2c, where the input
estimation using six derivatives (blue curve) is closer to the real input (yellow curve) than
when compared to the estimation using only one derivative (red curve). The quality of the
estimation reports the sum of squared error (SSE) in the estimation of states and inputs
with respect to the embedding order (number of signal derivatives considered).

Fig 2.2: An illustration of an attention mechanism for state and input estimation of a system (shown
in B). The quality of the estimation improves (C) as the embedding order (number of derivatives) of
generalized coordinates are increased (A). However, the imprecise information in the higher order
derivatives of the sensory input y does not affect the final performance of the observer because of
attentional selection, which selectively weighs the importance afforded to each derivative, in the free
energy optimization scheme.
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To obtain accurate state estimation by optimising the precision parameters, we recall
that the precision weights the prediction errors. From Eq. (2.3), the structural form of
Π̃ is mainly dictated by the smoothness matrix 𝑆, which establishes the interdependence
between the components of the variable expressed in generalised coordinates (e.g., the
dependence between y, y′ and y′′ in ỹ). For instance, the 𝑆 matrix for a Gaussian kernel is
as follows [172]:

𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

35
16 0 35

8 𝑠
2 0 7

4 𝑠
4 0 1

6 𝑠
6

0 35
4 𝑠

2 0 7𝑠4 0 𝑠6 0
35
8 𝑠

2 0 77
4 𝑠

4 0 19
2 𝑠

6 0 𝑠8
0 7𝑠4 0 8𝑠6 0 4

3 𝑠
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7
4 𝑠
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2 𝑠
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3 𝑠
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1
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3 𝑠

10 0 4
45 𝑠

12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.7)

where 𝑠 is the kernel width of the Gaussian filter that is assumed to be responsible for serial
correlations in measurement or state noise. Here, the order of generalised coordinates
(number of derivatives under consideration) is taken as six (𝑆 ∈ ℝ7×7). For practical robotics
applications, the measurement frequency is high, resulting in 0 < 𝑠 < 1. It can be observed
that the diagonal elements of 𝑆 decreases because 𝑠 < 1, resulting in a higher attention
(or weighting) on the prediction errors from the lower derivatives when compared to the
higher derivatives. The higher the noise colour (i.e., 𝑠 increases), the higher the weight
given to the higher state derivatives (last diagonal elements of 𝑆 increases). This reflects
the fact that smooth fluctuations have more information content in their higher derivatives.
Having established the potential importance of precision weighting in state estimation, we
now turn to the estimation (i.e., learning) of precision in any given context.

2.5.2.3 System identification
This section shows how to optimise system identification bymeans of precision learning [97,
167]. Specifically, we show how to fuse prior knowledge about the dynamic model with
the data to recover unknown parameters of the system through an attention mechanism.
This involves the learning of the 1) parameters and 2) noise precisions. Our model ‘turns’
the attention to the least precise parameters and uses the data to update those parameters
to increase their precision. Hence, allowing faster parameter learning.

For the sake of clarity, we use again the mass-spring-damper system as the driving
example (Sec. 2.5.2.1). We formalise system identification as evaluating the unknown
parameters 𝑘, 𝑚 and 𝑏, given the input u, the output y, and the general form of the linear
system in Eq. (2.2).

Figure 2.3 depicts the process of learning unknown parameters (dotted boxes denote
the processes inside the robot brain). The robot measures its position 𝑥(𝑡) using its sensors
(e.g., vision or range sensor). We assume that the robot has observed the behaviour of a
mass-spring-damper system before or a model is provided by the expert designer. However,
some of the parameters are unknown. The robot can reuse the prior learned model of the
system to relearn the new system. This can be realised by setting a high prior precision on
the known parameters and a low prior precision on the unknown parameters. By means of
precision learning, the robot uses the sensory signals to learn the parameter precision Π𝜃 ,
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Fig 2.3: The schematic of the robot’s attention mechanism for learning the least precise parameters of
a given generative model of a mass-spring-damper system (shown in D). (A) Learning the conditional
precision on parameters and the noise precision. (B) The free energy optimization helping to identify
the unknown system parameters. (C) The parameter learning.

thereby improving the confidence in the parameter estimates 𝜃 . This directs the robot’s
attention towards the refinement of the parameters with least precision as they are the
most uncertain. The requisite parameter learning proceeds by the gradient ascent of the
free energy functional given in Eq. (2.6). The parameter precision learning proceeds by
tracking the negative curvature of ̄ as Π𝜃 = − 𝜕2̄

𝜕𝜃2 [97].
The learning process – by means of variational free energy optimisation (maximisation)

– is shown in Fig. 2.3b. The learning involves two parallel processes: precision learning
(Fig. 2.3a), and parameter learning (Fig. 2.3c). Precision learning comprises of parameter
precision learning (top graph) – i.e., identifying the precision of an approximate posterior
density for the parameters being estimated – and noise precision learning (bottom graph).
The high prior precision on the known system parameters (0 and 1), and low prior precision
on the unknown system parameters (− 𝑘

𝑚 ,−
𝑏
𝑚 and 1

𝑚 , highlighted in blue) directs attention
towards learning the unknown parameters and their precision. Note that in Fig. 2.3a, the
precision on the three unknown parameters start from a low prior precision of 𝑃𝜃 = 1 and
increase with each iteration, whereas the precision of known parameters (0 and 1) remains
a constant (3.3× 106). The noise precisions are learned simultaneously, which starts from a
low prior precision of 𝑃𝜆𝑤 = 𝑃𝜆𝑧 = 1 and finally converges to the true noise precision (dotted
black line). Both precisions are used to learn the three parameters of the system (Fig. 2.3b),
which starts from randomly selected values within the range [-2,2] and finally converges
to the true parameter values of the system (𝜃3 = − 𝑘

𝑚 = −0.5714, 𝜃4 = − 𝑏
𝑚 = −0.2857 and

𝜃6 = 1
𝑚 = 0.7143), denoted by black dotted lines. From an attentional perspective, the lower

plot in (Fig. 2.3a) is particularly significant here. This is because the robot discovers the data
are more informative than initially assumed, thereby leading to an increase in its estimate
of the precision of the data-generating process. This means that the robot is not only using
the data to optimise its beliefs about states and parameters (system identification), it is also
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using these data to optimise the way in which it assimilates these data.
In summary, precision-based attention, in the form of precision learning, helps the robot

to accurately learn unknown parameters by fusing prior knowledge with new incoming
data (sensory measurements), and attending to the least precise parameters.

2.5.2.4 Precision-modulated exploration and exploitation in system iden-
tification

Exploration and exploitation in the parameter space can be advantageous to robots during
system identification. Precision-based attention—here the prior precision—allows a graceful
balance between the two, mediated by the prior precision6. A very high prior precision
encourages exploitation and biases the robot towards believing its priors, while a low prior
precision encourages exploration and makes the robot sensitive to new information.

Fig 2.4: (A) Lower 𝑃𝜃 gives a high exploration strategy across the parameter space. (B) Precision-
based attention allows exploration and exploitation balanced model learning mediated by the prior
precisions on the parameters 𝑃𝜃 . (C) The higher the 𝑃𝜃 , the higher the attention on prior parameters
𝜂𝜃 and the lower the attention on the sensory signals while learning.

We use again the mass-spring-damper system example but with a different prior pa-
rameter precision 𝑃𝜃 . The prior parameters are initialised at random and learned using
optimisation. Figure 2.4b shows the increase in parameter estimation error (SSE) as the prior
parameter precision 𝑃𝜃 increases until it finally saturates. The bottom left region (circled
in red) indicates the region where the prior precision is low, encouraging exploration with
high attention on the sensory signals for learning the model. This region over-exposes the
robot to its sensory signals by neglecting the prior parameters. The top right region (circled
in red) indicates the biased robot where the prior precision is high, encouraging the robot to
exploit its prior beliefs by retaining high attention on prior parameters. This regime biases
the robot into being confident about its priors and disregarding new information from the
sensory signals. Between those extreme regimes (blue curve) the prior precision balances
the exploration-exploitation trade-off. Figure 2.4a describes how increased attention to
6Note that here we are using exploration and exploration not in terms of behaviour but for parameter learning.
Exploration means adapting the parameter to a different (unexplored) value and exploitation means keeping
that value
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sensory signals helped the robot to recover from poor initial estimates of parameter values
and converge towards the correct values (dotted black line). Conversely, in Fig. 2.4c, high
attention on prior parameters did not help the robot to learn the correct parameter values.

These results establish that prior precision modelling allows balanced exploration and
exploitation of parameter space during system identification. Although the results show
that an over-exposed robot provides better parameter learning, we show – in the next
section – that this is not always be the case.

2.5.2.5 Noise estimation

Fig 2.5: Simulations demonstrating how a biased robot could be advantageous, especially while
learning in a highly noisy environment (shown in b). (a i) As the sensor noise increases, the quality of
parameter estimation deteriorates to a point where an explorative robot generates higher parameter
estimation errors than when compared to the biased robot that relies on its prior parameters. (a ii)
However, the sensor noise estimation is accurate even for high noise environments, demonstrating
the success of the attention mechanism using the noise precision.

In real-world applications, sensory measurements are often highly noisy and unpre-
dictable. Furthermore, the robot does not have access to the noise levels. Thus, it needs to
learn the noise precision (𝚷𝐳) for accurate estimation and robust control. Precision-based
attention enables this learning. In what follows, we show how one can estimate 𝚷𝐳 using
noise precision learning and that biasing the robot to prior beliefs can be advantageous in
highly noisy environments.
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Consider again the mass-spring-damper system in Figure 2.5b, where heavy rainfall/s-
now corrupts visual sensory signals. We evaluate the parameter estimation error under
different noise conditions, using different levels of noise variances (inverse precision). For
an over-exposed robot (only attending to sensory measurements), left plot of Fig. 2.5a,
the estimation error increases as the noise strength increases, to a point where the error
surpasses the error from a prior-biased robot. This shows that a robot, confident in its prior
model, assigns low attention to sensory signals and outperforms an over-exposed robot
that assigns high attention to sensory signals, in a highly noisy environment. The right
plot of Fig. 2.5a shows the quality of noise precision learning for an over-exposed robot.
It can be seen that all the data points in red lie close to the blue line, indicating that the
estimated noise precision is close to the real noise precision. Therefore, the robot is capable
of recovering the correct sensory noise levels even when the environment is extremely
noisy, where accurate parameter estimation is difficult.

These numerical results show that attention mechanism — by means of noise precision
learning — allows the estimation of the noise levels in the environment and thereby protects
against over-fitting or overconfident parameter estimation.

Summary. We have shown how precision-based attention—through precision modelling
and learning— yields to accurate robot state estimation, parameter identification and
sensory noise estimation. In the next section, we discuss how action is generated in this
framework.

2.5.3 Precision-modulated action

Selecting the optimal sequence of actions to fulfil a task is essential for robotics [173].
One of the most prominent challenges is to ensure robust behaviour given the uncertainty
emerging from a highly complex and dynamic real world, where the robots have to operate
on. A proper attention system should provide action plans that resolve uncertainty and
maximise information gain. For instance, it may minimise the information entropy, thereby
encouraging repeated sensory measurements (observations) on high uncertainty sensory
information.

Salience, which in neuroscience is sometimes identified as Bayesian surprise (i.e.,
divergence between prior and posterior), describes which information is relevant to process.
We go one step further by defining the saliency map as the epistemic value of a particular
action [174]. Thus, the (expected) divergence now becomes the mutual information under
a particular action or plan. This makes the saliency map more sophisticated because it is
an explicit measure of the reduction in uncertainty or mutual information associated with
a particular action (i.e., active sampling), and more pragmatic because it tells you where to
sample data next, given current Bayesian beliefs.

We first describe a precision representation usually used in information gathering
problems and then how to directly generate action plans through precision optimisation.
Afterwards, we discuss the realisation of the full-fledged model presented in the neuro-
science section for active perception. We use the informative path planning (IPP) problem,
described in Fig. 2.6, as an illustrative example to drive intuitions.
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Fig 2.6: IPP problem for localizing human victims in an urban search and rescue scenario [53]. (a)
Action: a UAV, in a realistic simulation environment, plans a finite look-ahead path to minimize
the uncertainty of its human occupancy map (e.g., modeled as a Gaussian process) of the world.
The planned path is then executed, during which the UAV flies and captures images at a constant
measurement frequency. (b) Perception: after the data acquisition is complete, a human detection
algorithm is executed to detect all the humans on the images. These detections are then fused
into the UAV’s human location map. The cycle is repeated until the uncertainty of the map is
completely resolved (this usually implies enough area coverage and repeated measurements on
uncertain locations). The ground truth of the human occupancy map and the UAV belief is shown
in (b,c) respectively. The final map approaches the ground truth and all the seven humans on the
ground are correctly detected.

2.5.3.1 Precision maps as saliency
One of the popular approaches in information gathering problems is to model the infor-
mation map as a distribution (e.g., using Gaussian processes [175]). This is widely used
in applications, such as a target search, coverage and navigation. The robot keeps track
of an occupancy map and the associated uncertainty map (covariance matrix or inverse
precision). While the occupancy map records the presence of the target on the map, the
uncertainty map records the quality of those observations. The goal of the robot is to learn
the distribution using some learning algorithm [176]. A popular strategy is to plan the
robot path such that it minimises the uncertainty of the map in future [177]. In Sec. 2.5.3.2,
we will show how we can use the map precision to perform active perception, i.e., optimise
the robot path for maximal information gain. Optimising the map precision drives the
robot towards an exploratory behaviour.

2.5.3.2 Precision optimisation for action planning
To introduce precision-based saliency we use an exemplary application of search and rescue.
The goal is to find all humans using an unmanned air vehicle (UAV) [53, 156, 178, 179].
We use precision for two purposes: i) precision optimisation for action planning (plan
flight path) and ii) precision learning for map refinement. In contrast to previous models of
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Fig 2.7: Finding humans with unmanned air vehicles (UAVs): an informative path planning (IPP)
approach [54]. The simulation environment on the left consists of a tall building at the centre,
surrounded by seven humans lying on the floor. The goal of the UAV is to compute the action
sequence that allows maximum information gathering, i.e., the humans location uncertainty is
minimised. On the right is the final occupancy map coloured with the probability of finding a human
at that location. It can be observed that all humans on the simulation environment were correctly
detected by the robot.

Fig 2.8: Variance map of the probability distribution of people location (Fig. 2.7) – inverse precision
of human occupancy map. The plot sequence shows the reduction of map uncertainty (inverse
precision) after measurements [54].

action selection within active inference in robotics [25, 32] here precision explicitly drives
the agent behaviour. Figure 2.7 describes the scenario in simulation. The seven human
targets on the ground are correctly identified by the UAV. We can formalise the solution
as the UAV actions (next flight path) that minimise the future uncertainties of the human
occupancy map. In our precision-based attention scheme, this objective is equivalent to
maximising the posterior precision of the map. Figure 2.8 shows the reduction in map
uncertainty after subsequent assimilation of the measurements (camera images from the
UAV, processed by a human detector). The map (and precision) is learned using a recursive
Kalman Filter by fusing the human detector outcome onto the map (and precision). The
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algorithm drives the UAV towards the least explored regions in the environment, defined
by the precision map.

Fig 2.9: The human occupancy map (probability to find humans at every location of the environment)
at four time instances during the UAV flight showing ambiguity resolution. The ambiguity arising
from imprecise sensor measurements (false positive) is resolved through repeated measurements at
the same location. The plot sequence shows how the assimilation of the measurements updates the
probability of the people being in each location of the map [53].

Furthermore, Fig. 2.9 shows an example of uncertainty resolution under false positives.
In this case, human targets are moved to the bottom half of the map. The first measure-
ment provides a wrong human detection with high uncertainty. However, after repeated
measurements at the same location in the map the algorithm was capable of resolving this
ambiguity, to finally learn the correct ground truth map. Hence, the sought behaviour is to
take actions that encourage repeated measurements at uncertain locations for reducing
uncertainty.

Although the IPP example illustrates how to generate control actions through precision
optimisation, the task, by construction, is constrained to explicitly reduce uncertainty.
This is similar to the description of visual search described in [11], where the location
was chosen maximise information gain. Information gain (i.e., the Bayesian surprise
expected following an action) is a key part of the expected free energy functional that
underwrite action selection in active inference. In brief, expected free energy can be
decomposed into two parts the first corresponds to the information gain above (a.k.a.,
epistemic value or affordance). The second corresponds to the expected log evidence or
marginal likelihood of sensory samples (a.k.a., pragmatic value). When this likelihood
is read as a prior preference, it contextualises the imperative to reduce uncertainty by
including a goal-directed, imperative. For example, in the search paradigm above, we
could have formulated the problem in terms of reducing uncertainty about whether each
location was occupied by a human or not. We could have then equipped the agent with
prior preferences for observing humans.

In principle, this would have produced searching behaviour until uncertainty had been
resolved about the scene; after which, the robot would seek out humans; simply because,
these are its preferred outcomes. In thinking about how this kind of neuroscience inspired
or biomimetic approach could be implemented in robotics, one has to consider carefully,
the precision afforded sensory inputs (i.e., the likelihood of sensory data, given its latent
causes) – and how this changes during robotic flight and periods of data gathering. This
brings us back to the precision modulation and the temporal scheduling of searching and
securing data. In the final section, we conclude with a brief discussion of how this might
be implemented in future applications.



2

32 2 Reclaiming Saliency: Rhythmic precision modulated active perception

2.5.3.3 Precision-based active perception

Fig 2.10: Precision-modulated attention model adapted to the action-perception loop in robotics. Each
cycle consists of two steps: 1) action (planning and execution of a finite-time look ahead of the robot
path for data collection) and 2) perception (learning using the collected data). This scheduling, using
a finite time look-ahead plan, is quite common in real applications and of particular importance when
processing is computationally expensive, e.g., slow rate of classification, non-scalable data fusion
algorithms, Exponential planners, etc. However, the benefits of incorporating ’optimal’ scheduled
loop driven by precision should be further studied.

In this section, we discuss the realisation of a biomimetic brain-inspired model in
relation to existing solutions in robotics in the context of path-planning. Figure 2.10
compares our proposed precision-modulated attention model—from Fig. 2.1—with the
action-perception loop widely used in robotics. By analogy with eye saccades to the next
visual sample, the UAV flies (action) over the environment to assimilate sensory data for
an informed scene construction (perception). Once the flight time of the UAV is exhausted
(similar to saccade window of the eye), the action is complete, after which the map is
updated, and the next flight path is planned.

In standard applications of active inference, the information gain is supplemented
with expected log preferences to provide a complete expected free energy functional [72].
This accommodates the two kinds of uncertainty that actions and choices typically reduce.
The first kind of uncertainty is inherent in unknowns in the environment. This is the
information gain we have focused on above. The second kind of uncertainty corresponds
to expected surprise, where surprise rests upon a priori expected or preferred outcomes.
As noted above, equipping robots with both epistemic and pragmatic aspects to their
action selection or planning could produce realistic and useful behaviour that automatically
resolves the exploration-exploitation dilemma. This follows because the expected free
energy contains the optical mixture of epistemic (information-seeking) and pragmatic (i.e.,
preference seeking) components. Usually, after a period of exploration, the preference seek-
ing components predominate because uncertainty has been resolved. Although expected
free energy provides a fairly universal objective function for sentient behaviour, it does
not specify how to deploy behaviour and sensory processing optimally. This brings us to
the precision modulation model, inspired by neuroscientific considerations of attention
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and salience.
Hence, there are key differences between biological and robotic implementations of the

search behaviour. First, the use of oscillatory precision to modulate visual sampling and
movement cycles, as opposed to arbitrary discrete action and perception steps currently
used in robotics. Second, precision modulation influences both state estimation and action
following the same uncertainty reduction principle. Importantly, our salience formulation
speaks to selecting future data that reduces this uncertainty. For instance, we have shown—
in the information gathering IPP example described in the previous subsection—that by
optimising precision we also optimise behaviour.

We argue the potential need and the advantages of realising precision based temporal
scheduling, as described the our brain-inspired model, for two practically relevant test
cases: (𝑖) learning dynamic models and (𝑖𝑖) information seeking applications.

In Section 2.5.2.4, we have shown how the exploration-exploitation trade-off can be me-
diated by the prior parameter precision during learning. However, the accuracy-precision
curve (Fig. 2.4b) is often practically unavailable due to unknown true parameters values,
challenging the modelling of prior precision. An alternative would be to use a precision
based temporal scheduling mechanism to alternate between exploration and exploitation by
means of a varying 𝑃𝜃 (similar to Fig. 2.10) during learning, such that system identification
is neither biased nor over exposed to sensory measurements. In Fig. 2.5a, we showed how
noise levels influence estimation accuracy, and how biasing the robot by modelling 𝑃𝜃

can be beneficial for highly noisy environments. A precision based temporal scheduling
mechanism by means of a varying 𝑃𝜃 could provide a balanced solution between a biased
robot (that exploits its model) and an exploratory one.

Furthermore, temporal scheduling, in the same way that eye saccades are generated,
can be adapted for information gathering applications, such as target search, simultaneous
localization andmapping, environment monitoring, etc. For instance, introducing precision-
modulation scheduling for solving the IPP, and scheduling perception (map learning) and
action (UAV flight). Precision modulation will switch between action and perception: when
the precision is high, perception occurs (c.f., visual sampling), and when the precision
is low, action occurs (c.f., eye movements). This switch, which is often implemented in
the robotics literature using a budget for flight time, will be now dictated by precision
dynamics.

In short, we have sketched the basis for a future realisation of precision-based active
perception, where the robot computes the actions to minimise the expected uncertainty.
While most attentional mechanisms in robotics are limited to providing a ‘saliency’ map
highlighting the most relevant features, our attention mechanism proposes a general
scheduling mechanism with action in the loop with perception, both driven by precision.

2.6 Concluding remarks
We have considered attention and salience as two distinct processes that rest upon oscilla-
tory precision control processes. Accordingly, they require particular temporal considera-
tions: attention to reliably estimate latent states from current sensory data and salience for
uncertainty reduction regarding future data samples. This formulation addresses visual
search from a first principles (Bayesian) account of how these mechanisms might manifest
-– and the circular causality that undergirds them via a rhythmic theta-coupling. Crucially,
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we have revisited the definition of salience from the visual neurosciences; where it is read as
Bayesian surprise (i.e., the Kullback Leibler divergence between prior and posterior beliefs).
We took this one step further and defined salience as the expected Bayesian surprise (i.e.,
epistemic value) of a particular action (e.g., sampling this set of data) [72, 180]. Formulating
salience as the expected divergence renders it the mutual information under a particular
action (or action trajectory) [71], and highlights its role in encoding working memory [21].
For brevity, our narrative was centred around visual attention and its realisation via eye
movements. However, this model does not strictly need to be limited to visual information
processing, because it addresses sensorimotor and auditory processing in general. This
means it explains how action and perception can be coupled in other sensory modalities.
For instance, [116] showed that visual information is coupled with finger movements at a
theta rhythm.

The point of contact with the robotics use of salience emerges because the co-variation
between a particular parameterisation and the inputs is a measure of themutual information
between the data and its estimated causes. In this sense, both definitions of salience reflect
the mutual information – or information about a particular representation of a (latent)
cause – afforded by an observation or consequence. However, our formulation is more
sophisticated. Briefly, because it is an explicit measure of the reduction in uncertainty
(i.e., mutual information) associated with a particular action (i.e., active sampling) and
specifies where to sample data next, given current Bayesian beliefs. These processes
(attention and salience) are a consequence of precision of beliefs over distinct model
parameters. Explicitly, attention contends with precision over the causes of (current)
outcomes and salience contends with beliefs about the data that has to be acquired and
precision over beliefs about actions that dictate it. Since both processes can be linked via
precision manipulation, the crucial thing is the precision that differentiates whether the
agent acquires new information (under high precision) or resolves uncertainty by moving
(low precision).

The focus of this work has been to illustrate the importance of optimising precision at
various places in generative models used for data assimilation, system identification and
active sensing. A key point – implicit in these demonstrations – rests upon the mean field
approximation used in all applications. Crucially, this means that getting the precision
right matters, because updating posterior estimates of states, parameters and precisions all
depend upon each other. This may be particularly prescient for making the most sense of
samples that maximises information gain. In other words, although attention and salience
are separable optimisation processes, they depend upon each other during active sensing.
This was the focus of our final numerical studies of action planning.

To face-validate our formulation, we evaluated precision-modulated attentional pro-
cesses in the robotic domain. We presented numerical examples to show how precision
manipulation underwrites accurate state and noise estimation (e.g., selecting relevant
information), as well as allowing system identification (e.g., learning unknown parameters
of the dynamics). We also showed how one can use precision-based optimisation to solve
interesting problems; like the informative path planning in search and rescue scenarios.
Thus, in contrast to previous uses of attention in robotics, we placed attention and saliency
as integral processes for efficient gathering and processing of sensory information. Ac-
cordingly, ‘attention’ is not only about filtering the current flow of information from the



2.6 Concluding remarks

2

35

sensors but performing those actions that minimise expected uncertainty. Still, the full
potential of our proposal has yet to be realised, as the precision-based attention should be
able to account for prior preferences beyond the IPP problem (e.g., localising people using
UAVs). Finally, we briefly considered the realisation of temporal scheduling for information
gathering tasks, opening up interesting lines of research to provide robots with biologically
plausible attention.
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3
State and Input Observer

Design

This chapter uses precision modelling to develop a state and input observer that can handle
uncertainties entering an LTI system in the form of colored noise. This chapter develops the
mathematical foundation of the DEM based observer design used in Section 2.5.2.2. The robot
implementation of the observer is provided in Chapter 4. The observer is further extended to
perform joint state and noise smoothness estimation in Chapter 5.

This chapter is a verbatim copy of the peer reviewed paper [46]  Ajith Anil Meera, and Martijn Wisse. "Free
energy principle based state and input observer design for linear systems with colored noise." In 2020 American Control
Conference (ACC), pp. 5052-5058. IEEE, 2020.
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3.1 Abstract

T he free energy principle from neuroscience provides a biologically plausible solution
to the brain’s inference mechanism. This paper reformulates this theory to design

a brain-inspired state and input estimator for a linear time-invariant state space system
with colored noise. This reformulation for linear systems bridges the gap between the
neuroscientific theory and control theory, therefore opening up the possibility of evaluating
it under the hood of standard control approaches. Through rigorous simulations under
colored noises, the observer is shown to outperform Kalman Filter and Unknown Input
Observer with minimal error in state and input estimation. It is tested against a wide range
of scenarios and the proof of concept is demonstrated by applying it on a real system.

3.2 Introduction
The design of state and input observer is vital towards the development of advanced
industrial controllers, especially in the field of fault detection and correction [181]. Although
a wide range of observer designs have been proposed for linear time invariant (LTI) systems,
they assume the noises to be temporally uncorrelated (white) [182, 183]. This assumption is
often violated in practice [184], resulting in a sub-optimal estimation [185]. An interesting
approach called the Free Energy Principle (FEP) [2] is emerging from neuroscience, which
leverages the noise smoothness in brain signals for perception. FEP demonstrates a potential
to solve the problem of sub-optimal estimation. Therefore, it is imperative to reformulate
it into an observer design and rigorously test it on real control system problems.

According to FEP proposed by Karl Friston, the brain’s inference mechanism is a
gradient descent over its free energy, where free energy is the information-theoretic
measure that bounds the brain’s sensory surprisal [43]. FEP emerges as a unified brain
theory [186] by providing a mathematical description of brain functions [187], unifying
action and perception [50], connecting physiological constructs like memory, attention,
value, reinforcement and salience [187], and remaining consistent with Freudian ideas[188].
Similarities of FEP with reinforcement learning [42], neural networks [43, 44] and active
learning [50] open up possibilities for biologically plausible control system techniques.

Dynamic Expectation Maximization (DEM) [170] is an interesting variant of FEP, that
performs estimation on the brain’s states, parameters and hyperparameters. Unlike point
estimators like Kalman Filter (KF), DEM models the states in generalized coordinates and
tracks the evolution of its trajectory. This renders DEM with a capability to gracefully
handle coloured noise [170]. Considering that most noises in nature like wind are the
product of dynamic systems - and hence coloured - it is imperative for filters to incorporate
coloured noise. Moreover, the optimality of KF is affected as the noise turns coloured
[189]. Many approaches have been proposed to modify KF to handle these colored noises:
state augmentation and measurement differencing. State augmentation methods transform
the system equations with colored noise into an equivalent higher order system with
white noise before estimation [190]. However, the computations involved are sometimes
ill-conditioned, and hence, other approaches like measurement differencing [191] were
proposed. In this approach, the signal is whitened by subtracting the colored part from
it. A detailed summary of these methods is provided in [192] and [193]. However, these
methods model only causal noises and do not perform input estimation. Although few
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methods have been proposed for simultaneous state and input estimation, they do not
handle colored noise [183, 194]. This paper aims to bridge these research gaps.

Although, FEP based tools like active inference have found applications in robotics
[27, 168], there is a gap in literature for the applications of DEM [170] in control theory,
which can be attributed to the relatively formidable mathematics combined with a lack of
rigorous testing of DEM for LTI systems. This paper aims to bridge this gap by simplifying
DEM for an LTI system and introducing a state observer design. The core contributions of
the paper are:

1. the formulation of a brain inspired linear observer design for LTI system, based on
DEM.

2. the extensive evaluation of the observer in simulation and its validation using a real
LTI system.

3.3 Problem Statement
Consider the linear plant dynamics given in Equation 3.1 where 𝐴, 𝐵 and 𝐶 are constant
system matrices, x ∈ ℝ𝑛 is the hidden state, v ∈ ℝ𝑟 is the input and y ∈ ℝ𝑚 is the output.

ẋ = 𝐴x+𝐵v+w, y = 𝐶x+ z. (3.1)

Here w ∈ ℝ𝑛 and z ∈ ℝ𝑚 represent the process and measurement noise respectively. Vari-
ables of the plant are denoted in boldface, while its estimates are denoted in non-boldface.
The noises in this paper are generated through the convolution of white noise with a
Gaussian filter.

Two problems are considered in this paper. The first one is an observer design with
known inputs v, and the second one is with unknown inputs for which both 𝑥 and 𝑣 are
to be estimated. We show that DEM outperforms KF and Unknown Input Observer (UIO)
[183] for these problems respectively.

3.4 Preliminaries
To lay the foundation of our observer design, this section introduces the key concepts and
terminologies behind DEM.

3.4.1 Generative model
The key idea behind DEM to deal with coloured noise is to model the trajectory of the states
using generalized coordinates. The states are expressed in generalized coordinates using
its higher order derivatives as 𝑥 = [𝑥 𝑥 ′ 𝑥 ′′ ...]𝑇 . The variables in generalized coordinates
are denoted by a tilde, and its components (higher derivatives) are denoted by primes. The
evolution of states is written as:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
�̇� = 𝐶𝑥 ′ + 𝑧′

...
(3.2)
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The coloured noises are modelled to be analytic such that the covariance of noise deriva-
tives 𝑧 = [𝑧,𝑧′, 𝑧′′, ...]𝑇 and �̃� = [𝑤,𝑤′,𝑤′′, ...]𝑇 are well defined. The generative model
representing the system is compactly written as:

̇̃𝑥 = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (3.3)

where 𝐷𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 1

. .
0 1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦(𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛

performs derivative operation, equivalent to shifting up all components in generalized
coordinates by one block. Similar definition holds for 𝐷𝑣 (appears later) with size 𝑟(𝑑 +1) ×
𝑟(𝑑 +1), where 𝑝 and 𝑑 are the order of generalized motion of states and inputs respectively.
Here, �̃� = 𝐼𝑝+1 ⊗𝐴, �̃� = 𝐼𝑝+1 ⊗𝐵 and �̃� = 𝐼𝑝+1 ⊗𝐶 , where ⊗ is the Kronecker tensor product.

3.4.2 Colored noise
DEM uses generalized coordinates, which models a correlation between noise deriva-
tives through the temporal precision matrix 𝑆 (inverse of covariance matrix) [170]. The
correlation is assumed to be due to a Gaussian filter with 𝑆 given by:

𝑆(𝜎2) =
⎡
⎢
⎢
⎢
⎣

1 0 − 1
2𝜎2 ..

0 1
2𝜎2 0 ..

− 1
2𝜎2 0 3

4𝜎4 ..
.. .. .. ..

⎤
⎥
⎥
⎥
⎦

−1

(𝑝+1)×(𝑝+1)

(3.4)

where 𝜎2 is the variance of Gaussian filter, with 𝜎 denoting the noise smoothness. While
𝜎2 = 0 denotes white noise, non-zero 𝜎2 denotes coloured noise. The covariance between
noise derivatives increases exponentially with the order of noise derivatives. Simulations
show that derivatives above 6 can be neglected [170]. The generalized noise precision
matrices are given by Π̃𝑤 = 𝑆(𝜎2)⊗Π𝑤 , Π̃𝑧 = 𝑆(𝜎2)⊗Π𝑧 and Π̃𝑣 = 𝑆(𝜎2)⊗Π𝑣 , where Π𝑤 , Π𝑧
and Π𝑣 are the inverse noise covariances.

3.4.3 Generalized motion of output and noises
The generalized motion of output ỹ is practically not accessible for sensors. Moreover,
most of the sensors like encoders operate with discrete measurements, unlike biophysical
systems like the brain. Therefore, as a pre-processing step for estimation, ỹ should be
computed in discrete domain. Given the 𝑝 temporal derivatives ỹ at time 𝑡 , the 𝑝 output
sequence surrounding y can be approximated using Taylor series as [170]:

ŷ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

..
y(𝑡 −𝑑𝑡)
y(𝑡)

y(𝑡 +𝑑𝑡)
..

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (𝐸 ⊗ 𝐼𝑚)ỹ, 𝐸𝑖𝑗 =
[(𝑖 − 𝑝+1

2 )𝑑𝑡]𝑗−1

(𝑗 −1)!
, (3.5)
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where 𝑖, 𝑗 = 1,2, ...𝑝 + 1 and �̂� has the size 𝑚(𝑝 +1) × 1. Therefore, generalized motion of
output ỹ at time 𝑡 is:

ỹ = (𝐸−1 ⊗ 𝐼𝑚)ŷ. (3.6)
Using ỹ embeds more temporal information about the plant into the data in the form of
conditional trajectories, with the disadvantage of a time latency of 𝑝

2𝑑𝑡 in estimation. The
next section employs this generalized output along with the generative model for observer
designs.

3.5 State and input observer design
This section delineates the main contribution of the paper through two observer designs:
with (i) known inputs and (ii) unknown inputs, for a general LTI system, and formulates
the stability condition.

3.5.1 Observer design with unknown inputs
According to DEM, estimation is performed through a gradient ascent over the variational
energy 1 (variational component of free energy) with respect to hidden states and inputs
[170]. With the mean-field approximation and Laplace approximation in place [43], the
variational energy at time 𝑡 is given by:

𝑉 (𝑡) = −
1
2
𝜖𝑇 Π̃𝜖, (3.7)

where Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , Π̃𝑣 , Π̃𝑤 ) is the generalized noise precision matrix, 𝜖 is the prediction
error. The prediction error is formulated as:

𝜖(𝑡) =
⎡
⎢
⎢
⎣

𝜖𝑦
𝜖𝑣
𝜖𝑥

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

ỹ− �̃�𝑥
�̃� − �̃�

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦
, (3.8)

where �̃� is the prior belief of the inputs, which is crucial for observer design with unknown
input. During fault detection in industrial automation processes, the expected inputs under
normal conditions are known. This prior knowledge can be incorporated into the observer
using �̃� with higher precision Π̃𝑣 . For a completely unknown �̃�, precision Π̃𝑣 should be set
very low. Taking derivative of Equation 3.7 with respect to 𝑋 = [𝑥, �̃�]𝑇 yields:

𝑉 (𝑡)𝑋 = −𝜖𝑇𝑋 Π̃𝜖, (3.9)

where

𝜖𝑋 (𝑡) =
⎡
⎢
⎢
⎣

𝜖𝑦𝑥 𝜖𝑦�̃�
𝜖𝑣𝑥 𝜖𝑣�̃�
𝜖𝑥𝑥 𝜖𝑥�̃�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−�̃� 𝑂
𝑂 𝐼

𝐷𝑥 − �̃� −�̃�

⎤
⎥
⎥
⎦
. (3.10)

The update equation after free-form approximation [170] is expressed as a gradient ascent
over the variational energy:

�̇� = [
𝑘𝑥 𝐼𝑛(𝑝+1) 𝑂

𝑂 𝑘𝑣 𝐼𝑟(𝑑+1)]
𝑉 (𝑡)𝑋 + [

𝐷𝑥 𝑂
𝑂 𝐷𝑣]

𝑋, (3.11)

1maximization of the ELBO term (Section 1.4)
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where 𝑘𝑥 and 𝑘𝑣 are the learning rates for state and input update respectively. Substituting
Equations 3.8, 3.9 and 3.10 in 3.11 upon simplification yields a linear observer design
formulated as:

�̇� = [
̇̃𝑥
̇̃𝑣] = [

𝐴1
𝐴2][

𝑥
�̃�]+ [

𝐵1
𝐵2][

ỹ
−�̃�]𝑎𝑛𝑑 𝑌 = 𝑋, (3.12)

where 𝑌 is the output of the observer and,

𝐴1 = [𝐷𝑥 𝑂]+𝑘𝑥 [
�̃�𝑇

𝑂 ][
Π̃𝑧 𝑂
𝑂 Π̃𝑣][

−�̃� 𝑂
𝑂 𝐼 ]

−𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 [𝐷𝑥 − �̃� −�̃�] ,

𝐴2 = [𝑂 𝐷𝑣]+𝑘𝑣 [𝑂 −𝐼][
Π̃𝑧 𝑂
𝑂 Π̃𝑣][

−�̃� 𝑂
𝑂 𝐼 ]

+𝑘𝑣 �̃�𝑇 Π̃𝑤 [𝐷𝑥 − �̃� −�̃�] ,

𝐵1 = 𝑘𝑥 [�̃�𝑇 𝑂][
Π̃𝑧 𝑂
𝑂 Π̃𝑣]

, 𝐵2 = 𝑘𝑣 [𝑂 −𝐼][
Π̃𝑧 𝑂
𝑂 Π̃𝑣]

It can be observed from Equation 3.12 that the inputs and states can be recovered by
using the output of plant ỹ and prior for inputs �̃� as inputs to the observer. An exact
algebraic discretization is used to numerically integrate the observer for estimation with
time-sampled output y.

3.5.2 Observer design with known inputs
DEM can be reformulated for state estimation with known inputs. When the inputs are
known, the update rule for 𝑥 in Equation 3.12 can be rearranged as:

̇̃𝑥 =
[𝐷𝑥 −𝑘𝑥 �̃�𝑇 Π̃𝑧�̃� −𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�)]𝑥+

𝑘𝑥 [�̃�𝑇 Π̃𝑧 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�] [
ỹ
�̃�]

(3.14)

The input to the linear state observer with known system inputs is the combined vector of
generalized output and input of the system [ỹ, �̃�]𝑇 .

3.5.3 Stability condition for observer with unknown inputs
This section explicates the stability conditions for the observer design presented in Section
3.5.1. The error between observer’s estimates and the ideal values from the plant is given

𝐴3 = [
𝐷𝑥 −𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) −𝑘𝑥 �̃�𝑇 Π̃𝑧�̃� 𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�

𝑘𝑣 �̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) 𝐷𝑣 −𝑘𝑣 �̃�𝑇 Π̃𝑤 �̃�−𝑘𝑣Π̃𝑣]

𝐴4 = [
(−𝐼 +𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 )(𝐷𝑥 − �̃�) �̃�−𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�

−𝑘𝑣 �̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) 𝑘𝑣 �̃�𝑇 Π̃𝑤 �̃�+𝑘𝑣Π̃𝑣 ] , 𝐴5 = [
𝐼 −𝑘𝑥 �̃�𝑇 Π̃𝑧 𝑂
𝑂 𝑂 −𝑘𝑣Π̃𝑣]

(3.13)
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by 𝑒 = [
𝑒𝑥
𝑒𝑣] = [

x̃−𝑥
ṽ− �̃�] . Taking the derivative of 𝑒 and substituting Equations 3.3 and 3.12

into it after simplification yields the error dynamics of the observer as:

̇̃𝑒 = [
̇̃𝑒𝑥
̇̃𝑒𝑣] = 𝐴3 [

𝑒𝑥
𝑒𝑣]𝑒 +𝐴4 [

𝑥
�̃�] +𝐴5

⎡
⎢
⎢
⎣

�̃�
𝑧
�̃�

⎤
⎥
⎥
⎦
, (3.15)

where𝐴3,𝐴4 and𝐴5 are given by Equation 3.13. Assuming that the states, inputs and noises
for the system are bounded for a stable system under consideration, the error dynamics
stabilizes if all the eigen values of 𝐴3 have negative real part. Therefore, selecting the
learning rates 𝑘𝑥 and 𝑘𝑣 such that 𝐴3 represents a stable system matrix acts as the design
criteria for a stable observer. Section 3.7.3 deals with simulating the observer for a wide
range of stable systems. The next section delineates the components of the observer design
that contribute to its functioning.

0 5 10 15 20 25 30 35

time (s)
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Ideal states

DEM state: embedded y

DEM state: no embedded y

Fig 3.1: State estimation with and without embedding generalized motion to the output. The blue
curve uses higher derivatives of y for state estimation, while the green curve doesn’t. The blue is a
better approximation of red than the green.

3.6 Components of observer design
This section elucidates the relevance of main components of the observer by testing it on
an LTI system given by:

𝐴 = [
−0.25 1.00
−0.50 −0.25] ,𝐵 = [

1
0] ,𝐶 =

⎡
⎢
⎢
⎢
⎣

0.125 0.1633
0.125 0.0676
0.125 −0.0676
0.125 −0.1633

⎤
⎥
⎥
⎥
⎦

(3.16)

and quantifying the performance using sum of squared error (SSE) in state and input
estimation. Parameters from [170] are adopted for a convenient result comparison. Unless
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mentioned otherwise, the same system will be used throughout the paper with an input of
𝑣 = 𝑒−0.25(𝑡−12)2 , noise precisions Π𝑤 = 𝑒8𝐼𝑛×𝑛 and Π𝑧 = 𝑒8𝐼𝑚×𝑚 , noise smoothness parameters
(Equation 3.4) 𝜎 = 0.5, order of generalized motion 𝑝 = 6, 𝑑 = 2 and sampling time 𝑑𝑡 = 0.1𝑠.

3.6.1 Generalized motion of output
The advantage of using generalized motion of the output y as discussed in Section 3.4.3 is
illustrated in Figure 3.1 (for the system given above), which shows a better state estimation
when generalized motion for y is used. Quantitatively, it corresponds to a drop in SSE
for state estimation from 5.11 to 2.2 when generalized motion of output is used, thereby
demonstrating its relevance.

=0.1 =0.3 =0.5 =0.7 =0.9
0

5

10

15

20

S
S

E
 o

f 
s
ta

te
 e

s
ti
m

a
ti
o
n

p = 0 p = 1 p = 2 p = 3

p = 4 p = 5 p = 6

Fig 3.2: Embedding higher levels for the generalized motion of states decreases the state estimation
error. The behaviour is robust against noise smoothness 𝜎 .

3.6.2 Embedding order of states and input
The embedding order represents the number of derivatives used in the generalized coordi-
nates of the states and inputs. This section demonstrates the advantage of using generalized
motion of states. Figure 3.2 and 3.3 shows the increasing accuracy of state and input esti-
mation with increasing embedding order 𝑝 for the states for the system given in Section
3.6. The experiments were repeated for different noise smoothness 𝜎 to demonstrate the
robustness of the method. In summary, a higher order 𝑝 ensures better accuracy in state
estimation. Similar results can be achieved for higher order embedding 𝑑 of input on state
and input estimation.

3.6.3 Accuracy V/S Complexity
Free energy can be defined as complexity minus accuracy [50], where complexity is the
measure of closeness of the estimates to the prior information, while accuracy is the
measure of sensory surprisal or the sensory prediction error. A higher Π𝑣 favours a higher
weightage for priors during inference, while a lower Π𝑣 favours a higher weightage for
incoming data. Figure 3.4 demonstrates DEM’s input estimation for a constant inaccurate
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Fig 3.3: Higher order of generalized states increases the accuracy of input estimation for different
noise smoothness 𝜎 . Input estimation is found to be less accurate for lower 𝜎 .

prior of 0.5 and varying Π𝑣 . It shows that setting a low value for Π𝑣 results in accurate
input estimation, even with inaccurate prior 𝜂. Since accuracy is the focus of the paper,
low value of Π𝑣 will be used throughout.
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Fig 3.4: Setting low Π𝑣 results in accurate input estimation even with wrong priors. An inaccurate
constant prior of 0.5 was used with 𝜎 = 0.01,Π𝑤 = Π𝑧 = 𝑒12.

3.6.4 Learning rates
The inference process of brain is modelled as a gradient ascent over the variational energy.
Since DEM is a fixed-form approximation to the ensemble density that tracks the trajec-
tory of conditional mode, an increase in learning rate results in an exponentially faster
convergence of this trajectory to the conditional mode, thereby maximizing variational
energy 2 [170]. This results in a more accurate state and input estimation with increasing
2maximization of the ELBO term (Section 1.4)
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learning rate, which is demonstrated in Figure 3.5. It can be observed that a higher learning
rate results in lower error in state estimation. Similar conclusion can be drawn for input
estimation. Since discretization of the observer is exact, higher learning rates does not
entail numerical instability as long as the selection criteria given in Section 3.5.3 is met.

Fig 3.5: Higher learning rates result in better state estimation.

3.6.5 Eqivalence of DEM with Kalman Filter
In case of white noise, the state estimation of DEM given in Equation 3.14 (without gener-
alized motion) reduces to:

�̇� = 𝑘𝑥 (−𝐴𝑇Π𝑥𝐴−𝐶𝑇Π𝑦𝐶)𝑥 −𝑘𝑥 (𝐴𝑇Π𝑥 )𝐵𝑣 +𝑘𝑥𝐶𝑇Π𝑦𝑦. (3.17)

This is very similar in form with the KF state update equation (with respect to variables
𝑥,𝑣 and 𝑦):

�̇� = (𝐴−𝑃𝐶𝑇Π𝑦𝐶)𝑥 +𝐵𝑣 +𝑃 (𝐶𝑇Π𝑦 )𝑦, (3.18)

where 𝑃 is the error covariance that solves the Riccati equation �̇� = 𝐴𝑃 + 𝑃𝐴𝑇 +Π−1
𝑤 −

𝑃𝐶𝑇Π𝑇
𝑧 𝐶𝑃𝑇 . If inputs are not modelled (𝑣 = 0 and Π𝑥 << Π𝑦 ) and the learning rate 𝑘𝑥 is

tuned close to 𝑃 (𝑘𝑥 = 𝑃 ), both the update equations 3.17 and 3.18 simplifies such that they
behave exactly the same. Figure 3.6 shows the coinciding state estimation for DEM and KF
for the same system given in Section 3.6 with 𝜎 = 10−9, 𝑑𝑡 = 0.5𝑠 and Π𝑥 = 𝑒8𝐼2×2 (during
data generation). A small precision of Π𝑥 = 𝑒0𝐼2×2 is used while estimating with unmodelled
𝑣. Therefore, it can be concluded that DEM behaves like KF when noises are white and
inputs are unmodelled. The next section deals with proving rigorously through simulations
that when the noises are colored, DEM moves away from KF and outperforms KF and UIO.
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Fig 3.6: State estimation of KF and DEM coincides when noises are white and inputs are not modelled.
Here Π𝑥 is assumed to be 𝑒0𝐼2×2 during estimation. 𝜎 = 10−9 and 𝑑𝑡 = 0.5𝑠.

3.7 Benchmark the observer
This section aims to establish the superior performance of DEM against other benchmarks
through a series of rigorous simulations under varied conditions.

3.7.1 Benchmark state observer
This section benchmarks the observer against KF and Unknown Input Observer (UIO)
[183] for the system given in Equation 3.16. This version of UIO was selected owing to
its capability to simultaneously estimate state and input without delays for a discrete LTI
system. Correct noise smoothness value is key towards best inference. Figures 3.7a and 3.7b
demonstrate the performance of DEM with unknown inputs for different levels of noise
smoothness (with Π𝑤 = Π𝑧 = 𝑒10) and noise variances (with 𝜎 = 0.5) respectively, where
𝐷𝐸𝑀(𝜎 = 0) assumes an unknown infinitely rough noise during estimation while 𝐷𝐸𝑀(𝜎 =
𝜎 ) uses the known 𝜎 . DEM with known and unknown noise smoothness consistently
outperforms KF for state estimation for varied noise smoothness and variance.

Given the correct noise smoothness and the system in Equation 3.16, 10 simulations each
were used to generate Figure 3.7c with parameters from Section 3.6 and 𝑑𝑡 = 0.02𝑠. It shows
that DEM outperforms KF with lower SSE in state estimation, both for known and unknown
input. Moreover, the performance of KF worsens as the noise smoothness increases. This
can be attributed to the failed assumption of uncorrelated nature of the noise that KF
is based upon. Modelling the states and inputs in the generalized coordinates embeds
higher order motion during inference, motivating the use of DEM for state estimation
while dealing with coloured noises.

3.7.2 Benchmark input observer
This section benchmarks unknown input estimation given by Equation 3.12 against UIO.
Figure 3.8 shows the successful input estimation by DEM and UIO for the system given in
Equation 3.16 with 𝑑𝑡 = 0.02𝑠. Input estimate from DEM is more similar to the ideal input
when compared to the estimation from UIO. The mean SSE for 10 such simulations each for
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(a) Benchmark for noise smoothness.
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(b) Benchmark for noise variance.

=0.1 =0.3 =0.5 =0.7 =0.9
0

5

10

15

20

25

30

S
S

E
 o

f 
s
ta

te
 e

s
ti
m

a
ti
o
n

KF: unknown input

UIO: unknown input

DEM: unknown input

KF: known input

DEM: known input

(c) Benchmark against other observers.

Fig 3.7: Benchmarking observer for different noise smoothness and noise variance against KF and
UIO.
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Fig 3.8: Gaussian bump input estimated by DEM and UIO. DEM provides a better input estimate than
UIO.

different noise smoothness is plotted with one standard deviation as shown in Figure 3.9.
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It can be observed that DEM outperforms UIO for input estimation under highly coloured
noises. Better performance of DEM can be attributed to the tracking of trajectories of
inputs through generalized coordinates, unlike just the point estimates by UIO.
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Fig 3.9: DEM outperforming UIO for input estimation under high noise smoothness.

3.7.3 Fully randomized benchmarking
This section establishes the superior performance of DEM by generalizing it over a wide
range of systems with different input signals. System matrices 𝐴, 𝐵 and 𝐶 were randomized
for values in the range [-1,1] with 2 state variables and randomly selected number of outputs
ranging between 1 and 6. Noise variances Π𝑤 = 𝑒6𝐼𝑛×𝑛 and Π𝑧 = 𝑒6𝐼𝑚×𝑚 were used with a
noise smoothness of 0.5. To preclude high SSE in state estimation, only stable 𝐴 matrices
were chosen . 100 simulations each for three different input signals - Gaussian (𝑒−0.25(𝑡−12)2 ),
sinusoidal (sin0.25𝑡) and ramp (𝑡/32) - were used for a performance comparison. Figure 3.10
shows all the instances with known inputs. Most of the samples occupy the lower diagonal
half of Figure 3.10, indicating that DEM outperforms KF in most cases with coloured noise
by reducing the sum of squared error (SSE) in state estimation for a wide range of randomly
generated LTI systems for different known inputs. In summary, DEM outperforms other
benchmarks in state and input estimation for randomised noise smoothness, noise variance,
systems and input signals. The next section demonstrates the applicability of the observer
on real systems.
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Fig 3.10: DEM outperforms KF for state estimation with known inputs. Coloured noises and three
inputs were applied on 300 randomly generated systems to plot the estimation error.

3.8 Proof of concept on real system
This section aims to provide a proof of concept for the observer design with the help of
data acquired from a maxon DC motor. The linear state space equation of a DC motor is:

�̇� =
⎡
⎢
⎢
⎣

�̇�
𝜃
𝑖

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0 1 0
0 − 𝑏

𝐽
𝐾
𝐽

0 −𝐾
𝐿 −𝑅

𝐿

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜃
�̇�
𝑖

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

0
0
1
𝐿

⎤
⎥
⎥
⎦
𝑉

𝑦 = [1 0 0]
⎡
⎢
⎢
⎣

𝜃
�̇�
𝑖

⎤
⎥
⎥
⎦
,

(3.19)

where 𝜃 is the angular position of the rotating motor knob, 𝑖 the current, 𝑏 = 3.74 ×
10−5𝑁𝑚𝑠 the damping ratio, 𝐽 = 2.69 × 10−4𝑘𝑔𝑚2 the moment of inertia of the rotor, 𝐾 =
0.0472𝑉𝑟𝑎𝑑−1𝑠−1 the electromotive force constant, 𝐿 = 8.4 × 10−4𝐻 the inductance, and
𝑅 = 9.24Ω the resistance. The input to the system is voltage, while the output is the angular
position of the knob.

The output data acquired for varying input was used for inference by the proposed
observer. The results of the state and input estimation is shown in Figure 3.11 and 3.12
respectively. It can be observed that DEM estimates for current and voltage closely resemble
the measurements respectively. The SSE for state estimation is then computed. DEM, has a
lower SSE for state estimation of 8809, when compared to 14800 and 2.6×106 as that of UIO
and KF respectively (overlapping plots were omitted for visibility). Therefore, DEM can
effectively be used for state and input estimation on real systems with noises. MATLAB
codes are available at 𝑤𝑤𝑤.𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑎𝑗𝑖𝑡ℎ𝑎𝑚123/𝐷𝐸𝑀_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 .
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Fig 3.11: Current estimation using DEM in red is similar to the measured motor current in blue.
Slight deviation is due to the imperfect motor parameters.

0 1 2 3 4

Time(s)

-15

-10

-5

0

5

10

15

V
o
lt
a
g
e
 (

V
)

DEM Voltage estimate

Input Voltage

Fig 3.12: The input voltage estimation of DEM in blue is similar to the measured voltage in red,
demonstrating that the observer works on real systems.

3.9 Conclusions and future work
The paper introduced a brain inspired state and input observer based on DEM that can be
applied to general LTI systems. The observer leverages the information contained within
coloured noises through generalized coordinates. Extensive simulations with coloured
noises show that the observer outperform state-of-the-art observers through minimal state
and input estimation errors. The observer was generalized for a wide range of system
parameters, noise smoothness, noise variance and input signals. Finally, the proof of
concept was provided through state and input estimation on a real system, demonstrating
its real life performance. The main drawback of the observer is the poor input estimation
for low noise smoothness. Future work will concentrate on extending the observer for
complex hierarchical systems.
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4
State and Input Estimation

of aQuadrotor in Wind

This chapter uses precision modelling for the state and input estimation of a quadrotor
hovering in wind. This chapter provides the experimental confirmation on a quadrotor for the
state and input observer developed in Chapter 3, and used in 2.5.2.2. The observer is further
extended in Chapter 5 for the joint estimation of states and noise smoothness.

This chapter is a verbatim copy of the peer reviewed paper [165] Fred Bos, Ajith Anil Meera, Dennis Benders,
and Martijn Wisse. "Free energy principle for state and input estimation of a quadcopter flying in wind." In 2022
International Conference on Robotics and Automation (ICRA), pp. 5389-5395. IEEE, 2022. Ajith contributed to the
experimental design, conceptualization and writing of this chapter. Under his supervision, Dennis conducted the
experiment and Fred processed it to provide experimental confirmation for the previous simulation results in
Chapter 3. Ajith and Fred contributed to the writing.
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4.1 Abstract

T he free energy principle fromneuroscience provides a brain-inspired perception scheme
through a data-driven model learning algorithm called Dynamic Expectation Maxi-

mization (DEM). This paper aims at introducing an experimental design to provide the
first experimental confirmation of the usefulness of DEM as a state and input estimator for
real robots. Through a series of quadcopter flight experiments under unmodelled wind
dynamics, we prove that DEM can leverage the information from colored noise for accurate
state and input estimation through the use of generalized coordinates. We demonstrate
the superior performance of DEM for state estimation under colored noise with respect
to other benchmarks like State Augmentation, SMIKF and Kalman Filtering through its
minimal estimation error. We demonstrate the similarities in the performance of DEM and
Unknown Input Observer (UIO) for input estimation. The paper concludes by showing
the influence of prior beliefs in shaping the accuracy-complexity trade-off during DEM’s
estimation.

4.2 Introduction
The widespread use of unmanned aerial vehicles (UAV) as delivery drones has increased
the need for robust state and input estimators, mainly owing to its safety during uncertain
events such as strong wind. We take a step in this direction by evaluating the usefulness of
an approach from neuroscience to handle the wind during estimation.

In literature, a wide range of approaches have been used for the state estimation of
linear time invariant (LTI) systems. However, most of them assume the noise to be white
[195], which is often a wrong assumption in practice [196]. For example, Kalman filter
(KF) [197] ensures optimality when the noises are white [198], but it is suboptimal when
the noises are colored. An interesting approach from neuroscience called the Free Energy
Principle (FEP) uses the concept called generalized coordinates that can leverage the noise
derivative information in the brain signals for perception. The FEP based perception scheme
called Dynamic Expectation Maximization (DEM) [170] was recently reformulated into a
state and input observer for LTI systems with colored noise, and was shown to outperform
the KF in simulation [46]. In this paper, we aim to provide the experimental validation of
the DEM observer for a quadrotor under wind conditions using the setup given in Figure
4.1. The main contributions of the paper are:

1. Introduce an experimental design with real robots to provide the proof of concept
for DEM as a state and input observer.

2. Provide the first experimental confirmation for the advantage of generalized coordi-
nates in handling colored noise during state and input estimation on robots.

3. Demonstrate the influence of prior beliefs in shaping the accuracy-complexity trade-
off during estimation.
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Fig 4.1: The schematic representation of our experimental setup for the DEM’s state and input
estimation using a quadrotor.

4.3 Related work
This section introduces the interdisciplinary nature of FEP, connecting neuroscience and
robotics.

4.3.1 Neuroscience
FEP emerges from neuroscience as a unified theory of the brain which posits that all
biological systems resist their natural tendency to disorder by minimizing their free energy
[199], where free energy is an information theoretic measure that bounds sensory surprisal.
FEP provides a mathematical formalism for the brain related functions [187], unifies action
and perception [50], connects memory and attention [187] and explains Freudian ideas
[188]. The brain inspired nature of FEP has already attracted roboticists to apply it to build
intelligent agents [25]. A few of them includes the body perception of humanoid robots
[200], control of manipulator robot [27], system identification of a quadrotor [166, 167],
SLAM [34], PID controller [47] etc. With this work we aim to assess the performance of
DEM for state and input estimation of a quadrotor under wind conditions.

4.3.2 Robotics and control systems
In control systems literature, numerous approaches are used to deal with colored noise
during state estimation. State Augmentation (SA) assumes the colored process noise as an
auto-regressive (AR) noise and augments the state space equation to transform it into an
equivalent system influenced by white noise [196]. The Measurement Differencing [201]
approach deals with handling colored measurement noise. Second Moment Information
Kalman filter (SMIKF) [202] extends KF for coloured noise by incorporating the temporal
correlations of the AR noise into the prior covariance calculation of KF. In the fault detection
literature, many observers have been developed for input estimation, like the Unknown
Input Observer (UIO) [183]. However, none of these methods perform simultaneous state
and input estimation under colored noise other than DEM [46].

In robotics, different approaches are used for state estimation of quadrotors under
wind conditions. The most common approach (Dryden wind model) is to treat wind as a
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colored noise shaped by a filter acting on the white noise. Another approach is to model the
wind dynamics and estimate wind velocity using complex nonlinear models [203]. Using
additional cameras for accurate state estimation is another solution [204]. Our approach
differs from these methods as we treat the wind noises as colored and use the information
in the noise derivatives for accurate state and input estimation.

4.4 Problem statement
Consider the plant dynamics given in Equation 4.1, where 𝐴, 𝐵 and 𝐶 are constant system
matrices, x ∈ ℝ𝑛 is the hidden state, v ∈ ℝ𝑟 is the input and y ∈ ℝ𝑚 is the output.

ẋ = 𝐴x+𝐵v+w, y = 𝐶x+ z. (4.1)

Here w ∈ ℝ𝑛 and z ∈ ℝ𝑚 are temporally correlated (colored) and represent the process
and measurement noise respectively. The noises are assumed to be the result of the
convolution of a Gaussian kernel on a white noise signal. The goal of the DEM observer is
to simultaneously estimate x and v, when the noises are colored (or non-white). The goal
of this paper is to design an experimental setup for a real robot that can be used to validate
the DEM observer and its usefulness in the presence of colored noise.

4.5 Preliminaries
This section introduces the DEM observer fundamentals.

4.5.1 Free energy principle
Fundamentally based on Bayesian Inference, FEP estimates the posterior probability
𝑝(𝜗 /𝑦) = 𝑝(𝜗,𝑦)/∫ 𝑝(𝜗,𝑦)𝑑𝜗 , where 𝜗 is the component to be estimated and 𝑦 is the mea-
surement [43]. The presence of an intractable integral motivates the use of a variational
density 𝑞(𝜗 ), called the recognition density that approximates the posterior as 𝑞(𝜗 ) ≈ 𝑝(𝜗 /𝑦).
This approximation is achieved by minimizing the Kullback-Leibler (KL) divergence of
the distributions given by 𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)) = ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) − ⟨ln𝑝(𝜗 /𝑦)⟩𝑞(𝜗 ), where ⟨.⟩𝑞(𝜗 )
represents the expectation over 𝑞(𝜗 ). Upon simplification using 𝑝(𝜗 /𝑦) = 𝑝(𝜗,𝑦)/𝑝(𝑦), it
can be rewritten as [199]:

ln𝑝(𝑦) = 𝐹 +𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 |𝑦)), (4.2)

where 𝐹 = ⟨ln𝑝(𝜗,𝑦)⟩𝑞(𝜗 ) − ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) is the free energy. Since ln𝑝(𝑦) is independent of
𝜗 , minimization of the KL divergence involves the maximization of free energy 1. This is
the fundamental idea behind using free energy as the proxy for brain’s inference through
the minimization of its sensory surprisal [199]. DEM uses this mathematical framework, in
conjunction with the use of generalized coordinates to provide a hierarchical brain model
[44]. We will be using a reformulated version of DEM given in [46] for this work.

4.5.2 Generative model
The key concept that differentiates DEM from other methods is its use of generalized
coordinates for noise color handling. This is done by keeping track of the trajectory
1maximization of the ELBO term (Section 1.4)
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of all time-varying quantities (instead of only its point estimates) through a vector of
derivatives. The state vector in generalized coordinates are written using a tilde operator
as 𝑥 = [𝑥 𝑥 ′ 𝑥 ′′ ....]𝑇 where the dash operator represents the derivatives. Since the noises
are colored, the higher derivatives of the system model can be written as [170]:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
𝑦′ = 𝐶𝑥 ′ + 𝑧′

...
(4.3)

which can be compactly written as:

̇̃𝑥 = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (4.4)

where 𝐷𝑥 =
[

0 1
0 1
. .
0 1
0](𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛 .

Here, 𝐷𝑥 represents the shift matrix, which performs the derivative operation on the
generalized state vector. Similarly, 𝐷𝑣 performs the same operation on inputs and has size
𝑟(𝑑 + 1) × 𝑟(𝑑 + 1). 𝑝 and 𝑑 represent the embedding order for the hidden states and the
inputs respectively, indicating the number of derivatives used. The generalized system
matrices are given by �̃� = 𝐼𝑝+1⊗𝐴, �̃� = 𝐼𝑝+1⊗𝐵, �̃� = 𝐼𝑝+1⊗𝐶 , where 𝐼 denotes the identity
matrix and ⊗ the Kronecker tensor product. The generalized output �̃� is calculated from

the discrete measurements �̂� =
[

…
𝑦(𝑡−𝑑𝑡)
𝑦(𝑡)

𝑦(𝑡+𝑑𝑡)
…

]
𝑚(𝑝+1)

using the methodology in [170], resulting in

a latency of 𝑝
2𝑑𝑡 during online estimation, which is negligible for the large sampling rate

(120Hz) used in this paper.

4.5.3 Noise modeling
The use of generalized coordinates helps to model the noise color through the temporal
precision matrix of the noise derivatives. In DEM, the noise is assumed to be the result
of a white noise signal that has been convoluted using a Gaussian filter of the form:
𝐾 (𝑡) = 1√

2𝜋𝜎 𝑒𝑥𝑝(−
1
2 (

𝑡
𝜎 )

2). This provides an easy computation of the covariance of the noise
derivatives using the temporal precision matrix 𝑆 [170]:

𝑆(𝜎2) =
⎡
⎢
⎢
⎢
⎣

1 0 − 1
2𝜎2 ..

0 1
2𝜎2 0 ..

− 1
2𝜎2 0 3

4𝜎4 ..
.. .. .. ..

⎤
⎥
⎥
⎥
⎦

−1

(𝑝+1)×(𝑝+1)

(4.5)

𝜎 is close to zero for white noise, while 𝜎 > 0 for colored noise. The generalized noise
precision matrix can be written using 𝑆 as Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃 �̃� , Π̃𝑤 ), where Π̃𝑧 = 𝑆 ⊗Π𝑧 , Π̃𝑤 =
𝑆 ⊗Π𝑤 , and 𝑃 �̃� = 𝑆 ⊗𝑃𝑣 . Here Π𝑤 and Π𝑧 are the noise precisions (inverse covariance), and
𝑃𝑣 is the prior precision on inputs.
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4.5.4 State and Input Observer
The DEM observer in [46] simultaneously estimates the generalized state and input vector
𝑋 = [ 𝑥�̃� ] through the gradient ascend over its variational free energy 𝑉 (𝑡):

�̇� = 𝑘𝑉 (𝑡)𝑋 +𝐷𝑋𝑋, (4.6)

where 𝑘 is the learning rate, 𝑉 (𝑡)𝑋 is the gradient of 𝑉 (𝑡) with respect to 𝑋 and 𝐷𝑋 =

[
𝐷𝑥 𝑂
𝑂 𝐷𝑣]. Using the Laplace approximation [205], simplifies𝑉 (𝑡) as the precisionweighted

prediction error, 𝑉 (𝑡) = − 1
2𝜖

𝑇 Π̃𝜖, where 𝜖 is the prediction error given by:

𝜖 =
⎡
⎢
⎢
⎣

�̃� − �̃�𝑥
�̃� −𝜂�̃�

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦

(4.7)

Here 𝜂�̃� denotes the prior on the input. Therefore, 𝑉 (𝑡)𝑋 = −𝜖𝑇𝑋 Π̃𝜖, where 𝜖𝑋 is given by:

𝜖𝑋 =
⎡
⎢
⎢
⎣

−�̃� 𝑂
𝑂 𝐼

𝐷𝑥 − �̃� −�̃�

⎤
⎥
⎥
⎦
. (4.8)

Substituting these results to Equation 4.6 upon simplification yields the DEM state and
input observer of [46]:

�̇� = [
̇̃𝑥
̇̃𝑣] = 𝐴1 [

𝑥
�̃�]+𝐵1 [

ỹ
−�̃�]and 𝑌 = 𝑋, (4.9)

where 𝑌 is the output of the observer, 𝐴1 = 𝐷𝑋 −𝑘𝐴2,

𝐴2 = [
�̃�𝑇 Π̃𝑧�̃� + (𝐷𝐴)𝑇 Π̃𝑤𝐷𝐴 −(𝐷𝐴)𝑇 Π̃𝑤 �̃�

−�̃�𝑇 Π̃𝑤𝐷𝐴 𝑃𝑣 + �̃�𝑇 Π̃𝑤 �̃�] , (4.10)

𝐵1 = −[
−�̃�𝑇 Π̃𝑧 𝑂

𝑂 𝑃𝑣] and 𝐷𝐴 = 𝐷𝑥 − �̃�.

This observer was proved to outperform the KF for state estimation on LTI systems
with colored noise in simulation [46]. We will use an exact discretization of this observer
throughout the paper to provide the experimental validation on a real robot.

4.5.5 Uncertainty in state and input estimation
DEM provides a means to compute the uncertainty in estimation through the precision of
estimates given by the negative curvature of variational free energy [97]:

Π𝑋 = −𝑉 (𝑡)𝑋𝑋 = 𝜖𝑇𝑋 Π̃𝜖𝑋 = 𝐴2, (4.11)

where 𝐴2 is given in Equation 4.10. Therefore, the precision of DEM’s state and input
estimates is independent of time, and is given by Π𝑥𝑥 = �̃�𝑇 Π̃𝑧�̃� + (𝐷𝐴)𝑇 Π̃𝑤𝐷𝐴 and Π�̃��̃� =
𝑃𝑣 + �̃�𝑇 Π̃𝑤 �̃� respectively.
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4.6 Experimental design
The distinctive feature of DEM that enables it to handle colored noise (to outperform a KF
for state estimation) is its use of generalized coordinates [46, 170]. This section aims at
designing an experimental setup (as simple as possible) for real robots that can leverage
this property and provide a proof of concept for our DEM-based state and input observer
design for LTI systems with colored noise [46].

4.6.1 Experimental setup
Our experimental setup consist of a quadrotor (Parrot AR.drone 2.0) hovering in wind
produced by a blower in a controlled lab, as shown in Figure 4.2. The blower induces
wind in the negative 𝑦 direction, against the hovering quadcopter. We use an OptiTrack
motion capture system to record the position and orientation of the quadcopter. The PID
controller tries to resist the wind to hover the quadrotor at the given position (0𝑚,0𝑚,1𝑚)
and orientation (0◦,0◦,0◦), using the onboard sensor data. A total of 9 hovering experiments
were performed - 4 experiments without wind (blower off) and 4 experiments with wind
(blower on). The final experiment was used to tune all the benchmark observers and will
not be used for benchmarking. Each experiment lasted 10𝑠 with 𝑑𝑡 = 0.0083𝑠. The Optitrack
pose and PID control signals were recorded for offline evaluations.

Fig 4.2: The controlled lab environment for the experimental setup with the quadrotor and the blower.

Since wind is the result of another (unmodelled) dynamic system, we hypothesize
that the introduction of wind influences the quadrotor dynamics and acts as the source
of colored noise to the system. The experimental design enables us to control the level of
noise color entering the system by controlling the blower for its wind speed and direction.
We hypothesize that our DEM observer can leverage on the information contained in the
colored noise by keeping track of the higher derivatives of states and inputs through the
generalized coordinates.

4.6.2Quadrotor model selection
The quadrotor model selection was performed to accommodate the influence of wind using
minimum number of states, resulting in a controllable and observable LTI system. Since
the wind flows in negative 𝑦 direction, it influences the roll angle (𝜙 around 𝑥-axis) and the
roll angular velocity (�̇�) the most. Therefore, we only consider states 𝑥 = [

𝜙
�̇� ]. The model

involving these states is based on the one provided in [206]. By assuming small angles, 𝜙
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and �̇� can be decoupled from the other system dynamics. Linearizing these states around
hovering conditions gives:

[
�̇�
𝜙] = [

0 1
0 0][

𝜙
�̇�]+ [

0 0 0 0
𝑐𝐵𝜙
𝐼𝑥𝑥 − 𝑐𝐵𝜙

𝐼𝑥𝑥 − 𝑐𝐵𝜙
𝐼𝑥𝑥

𝑐𝐵𝜙
𝐼𝑥𝑥 ][

𝑝𝑤𝑚1
𝑝𝑤𝑚2
𝑝𝑤𝑚3
𝑝𝑤𝑚4 ]

𝑦 = [1 0][
𝜙
�̇�]

(4.12)

Here 𝑝𝑤𝑚𝑖 is the Pulse Width Modulation signal provided to the 𝑖th motor by the controller
for stable hovering. 𝐼𝑥𝑥 is the quadcopter’s moment of inertia around the 𝑥-axis. It’s value is
identified using the bifilar pendulum experiment and equals 3.4 ⋅10−3𝑘𝑔𝑚2. 𝑐𝐵𝜙 is the thrust
coefficient that models the relation between the PWM values and the thrust generated by
the quadcopter rotors. It’s value is obtained by averaging the results of several static thrust
tests and equals 1.274 ⋅10−3𝑁𝑚.

We normalize the input 𝑝𝑤𝑚 signals using 𝑣 = 𝑣−𝑚𝑒𝑎𝑛(𝑣)
𝑚𝑎𝑥(𝑣)−𝑚𝑖𝑛(𝑣) and use the same factor to

multiply the 𝐵 matrix, such that the system dynamics are unaltered. See [207] for more
details regarding the model derivation, system identification procedure and experimental
setup.

Since we use an accurate measurement system, Π𝑧 is very high for all experiments.
However, the presence of colored process noise 𝑤 through wind makes Π𝑤 << Π𝑧 . Π𝑤 is
further influenced by the modelling errors during linearization as the wind aggressively
drives the quadrotor away from its equilibrium.

4.7 Results and analysis
This section aims to investigate the validity of the assumptions in our experimental design
and to compare the performance of DEM observer against other benchmarks.

4.7.1 Validity of Laplace Approximation
The DEM framework approximates the probability densities of 𝑝(�̃�) and 𝑝(𝑥/�̃�) to be
Gaussian in nature, centred around their mean predictions (�̃�𝑥 and �̃�𝑥 + �̃��̃�, respectively)
with the same precision as that of the noises (Π̃𝑧 and Π̃𝑤 ):

𝑝(�̃�) =
1√

(2𝜋 )𝑚(𝑝+1)|Σ̃𝑧 |
𝑒−

1
2 (�̃�−�̃�𝑥)

𝑇 Π̃𝑧 (�̃�−�̃�𝑥),

𝑝(𝑥/�̃�) =
1√

(2𝜋 )𝑛(𝑝+1)|Σ̃𝑤 |
𝑒−

1
2 𝜖

𝑥𝑇 Π̃𝑤𝜖𝑥 ,
(4.13)

where 𝜖𝑥 = 𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�. The validity of this approximation on our experimental design
was investigated by plotting the process noise histograms for both without wind and with
wind conditions (for 400 data points each) and is shown in Figure 4.3a and 4.3b respectively.
Similar trend holds for measurement noise as well. The strong Gaussian fit indicates the
validity of Laplace approximation for our experimental design.
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(a) Histograms of the process noise 𝑤𝜙 and 𝑤�̇� with
a Gaussian fit for no wind conditions.

(b) Histograms of the process noise 𝑤𝜙 and 𝑤�̇� with
a Gaussian fit under wind conditions.

(c) The auto-correlations for the process noises 𝑤𝜙
and 𝑤�̇� under wind conditions.

Fig 4.3: The properties of process noise of our experiment. The wind introduces a colored Gaussian
distributed disturbance to the system.

4.7.2 Influence of wind on states and process noise
In this section we validate the direct influence of wind on the states and process noise. Table
4.1 demonstrates a higher standard deviation for windy conditions than for non-windy
conditions. A similar trend can be observed from the width of histograms in Figure 4.3a
and 4.3b, indicating that our experimental design can control the noise generation.

4.7.3 Confirmation of noise color
In this section we confirm that our experimental design generates colored process noise.
Figure 4.3c shows the sample auto-correlation of the process noise of all experiments
(with wind). There is stronger autocorrelation for 𝑤�̇� than for 𝑤𝜙 , because 𝜙 is observed.
The auto-correlation is different from that expected from a white noise signal where the
auto-correlation immediately drops to 0 after zero lag. This confirms the presence of strong
noise color (time-correlated noise) in data.
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𝜙 (rad) �̇� (rad/s) 𝑤𝜙 (rad) 𝑤�̇� (rad/s)
Without wind 0.00855 0.0544 0.000416 0.0284
With wind 0.0460 0.260 0.000937 0.0607

Table 4.1: The standard deviations of the states, 𝜙 and �̇�, and the process noises, 𝑤𝜙 and 𝑤�̇� , for
experiments with and without wind.

4.7.4 Estimator settings for benchmarking
We aim to benchmark the state estimation against KF, SMIKF and SA, and the input
estimation against UIO, for a total of 8 experiments (4 with and 4without wind). All methods
use the same data y and initial condition 𝑥(0) = [ 00 ]. DEM was set with learning rate 𝑘 = 1,
and the order of generalized motion of states and inputs to 𝑝 = 6 and 𝑑 = 2 respectively.
The SMIKF implementation could only accommodate a first order AR model, while the
SA implementation uses a 6𝑡ℎ order AR model, similar to the 6𝑡ℎ order derivatives (𝑝) of
DEM. The noise precision Π𝑤 was calculated for each experiment, while Π𝑧 = 8.1 ⋅10−9 was
calculated from static drone data. The 9𝑡ℎ experiment was used to tune the noise smoothness
to 𝜎 = 0.006, which was used for all experiments. The computational complexities of SMIKF,
SA and DEM are theoretically higher than KF.

4.7.5 State estimation - benchmarking
In this section, we compare the performance of DEM with the aforementioned benchmarks
for state estimation with known inputs. Figure 4.4a shows the state estimates of all
benchmarks for an experiment with wind (zoomed for visualization). Although most
benchmarks follow the general trend of the measured states (in blue), DEM performs the
best. KF shows an inferior performance due to its incapability of dealing with colored noise.
We use the sum of squared errors (SSE) between the estimate of �̇� and its measurement as
the metric to denote the quality of state estimation. The average SSE of all 4 experiments
(with and without wind separately) for all benchmarks are shown in Figure 4.4b. DEM
outperforms other benchmarks in state estimation under wind conditions with minimal
SSE, demonstrating that it is a competitive state estimator.

4.7.6 Role of Generalized Coordinates
One of the main strengths of DEM - the capability to deal with colored noise - comes
from the use of generalized coordinates. In this section, we demonstrate the usefulness of
generalized coordinates in state estimation on experimental data. The mean (and standard
deviations of) SSE of state estimation for all experiments (with wind) for varying orders
of generalized motion 𝑝 is shown in Figure 4.4c. The exponential decrease in SSE is
consistent with the results from [46] on large simulated data, and indicates the importance
of generalized coordinates in accurate state estimation in the presence of colored noise.

4.7.7 State estimation as free energy maximization
The fundamental idea behind state estimation using DEM is the gradient ascent over the
variational free energy manifold 2. In this section, we visually demonstrate that DEM’s
2maximization of the ELBO term (Section 1.4)
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(a) State estimation benchmarks with wind. (b) Average SSE of all flights.

(c) Average SSE drops exponentially with 𝑝.

Fig 4.4: DEM outperforms other benchmarks with minimal SSE in state estimation for a quadrotor
flying under windy conditions. The performance of DEM improves exponentially with higher orders
of generalized motion 𝑝, for a quadrotor flying under windy conditions, highlighting the importance
of generalized coordinates in the presence of colored noise.

state estimates for flight experiment maximize 𝑉 (𝑡). Figure 4.5 shows that the DEM state
estimate is on top of the 𝑉 (𝑡) curve at each time instance.

4.7.8 Input Estimation - benchmarking
In this section, we aim to demonstrate our DEM observer’s capability to estimate inputs
in real robot application and benchmark it against an input observer (UIO) from control
systems. We use the same settings as given in Section 4.7.4, except for providing the input
priors for 𝑝𝑤𝑚1 with a wrong value of 𝜂𝑝𝑤𝑚1 = 0.5 with a low precision of 𝑃𝑝𝑤𝑚1 = 1 to
encourage exploration and Π𝑤 = 𝑒3𝐼2. We use 𝐶 = 𝐼 for this section to meet the observability
requirements of our benchmark (UIO). Both DEM and UIO estimated the first pwm signal
and the result is shown in Figure 4.6. Both DEM and UIO followed the trend of measured
inputs (in blue).

The coinciding input estimates for DEM and UIO demonstrate that both estimators
behave the same. The estimation was repeated for all experiments and the SSE for input
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Fig 4.5: The DEM state estimate (blue curve) lies on top of the variational free energy surface,
indicating that the DEM observer maximized 𝑉 (𝑡). Plot zoomed for visualization.

Fig 4.6: DEM’s input estimation coinciding with that of UIO.

estimation is shown in Figure 4.7. This confirms the similarity in performance of UIO and
DEM for input estimation in the presence of colored noise.

4.7.9 Accuracy v/s complexity
The inherent capability of DEM to balance between estimation accuracy and complexity
is mediated by the priors 𝜂𝑣 and 𝑃𝑣 [46]. Here, accuracy is the measure of closeness of
estimates to the real measurement, and complexity is the measure of closeness to the priors.
This section aims at demonstrating this balance for simultaneous state and input estimation
on quadrotor data. This section follows the same settings as Section 4.7.4 with Π𝑤 = 𝑒3𝐼2.
Simultaneous state and input estimation was performed using wrong input prior 𝜂𝑣 = 1
for varying prior precisions 𝑃𝑣 , and the resulting input estimation is shown in Figure 4.8,
along with the measured input (in blue). As 𝑃𝑣 is relaxed, the input estimation moves away
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Fig 4.7: Similar performance of DEM and UIO for input estimation indicated by similar SSE in input
estimation.

Fig 4.8: The input estimates moving from a wrong prior of 𝜂𝑣 = 1 to the measured input (in blue),
mediated by the prior precision 𝑃𝑣 .

from the wrong prior 𝜂𝑣 and moves closer to the correct inputs. The shift from wrong
priors to the correct measurements, mediated by 𝑃𝑣 can be seen as a balance (trade-off)
between complexity and accuracy. Figure 4.9 demonstrates this balance for all experiments
with windy conditions, both for state and input estimation. The increasing SSE for higher
𝑃𝑣 indicates the shift from high accuracy with low complexity region to the low accuracy
with high complexity region. This trade-off is useful mainly in industrial fault detection
systems where any major deviations from the prior (known) inputs could be detected and
isolated during runtime. DEM’s inherent capability to balance accuracy and complexity is
an added advantage when compared to other input estimators in literature like UIO.
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Fig 4.9: The SSE plot of state and input estimation demonstrating DEM’s accuracy-complexity tradeoff.
The SSE moves from a region of low complexity and high accuracy to a region of high complexity
and low accuracy as the prior precision 𝑃𝑣 is increased.

4.8 Conclusions and future work
The FEP based perception scheme called DEM, has recently been reformulated into a
simulataneous state and input observer for LTI systems under colored noise. With this
paper, we propose an experimental design to validate the DEM observer on real robots.
Through a series of quadrotor experiments under wind conditions, we show that the
DEM based observer outperforms other benchmarks like KF, SMIKF and SA for state
estimation with minimum estimation errors. We show that DEM’s input estimation shows
similar performance compared to classical input observers like UIO. With this paper, we
provide the first experimental validation for the use of generalized coordinates to deal with
colored noise during state and input estimation on real robots. We further demonstrate the
unique capability of DEM to balance between accuracy and complexity during state and
input estimation. The main challenge of the DEM observer is the need to know the noise
precision and noise smoothness a priori. We intend to extend this work for simultaneous
noise precision and smoothness estimation in future.
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5
Noise Smoothness Estimation

This section uses precision learning to learn the noise precision matrix (parametrised by
noise smoothness 𝑠, as given in Equation 2.7) using FEP. This chapter extends the DEM based
observer design in Chapter 3 for a joint state and noise smoothness estimation, and provides
an experimental confirmation using the robot data from Chapter 4.

This chapter is a verbatim copy of the peer reviewed paper [172]  A. Anil Meera and M. Wisse, "Free Energy
Principle for the Noise Smoothness Estimation of Linear Systems with Colored Noise," 2022 IEEE 61st Conference on
Decision and Control (CDC), Cancun, Mexico, 2022, pp. 1888-1893, doi: 10.1109/CDC51059.2022.9992717.
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5.1 Abstract

T he free energy principle (FEP) from neuroscience provides a framework called active
inference for the joint estimation and control of state space systems, subjected to

colored noise. However, the active inference community has been challenged with the
critical task of manually tuning the noise smoothness parameter. To solve this problem,
we introduce a novel online noise smoothness estimator based on the idea of free energy
principle. We mathematically show that our estimator can converge to the free energy
optimum during smoothness estimation. Using this formulation, we introduce a joint state
and noise smoothness observer design called DEMs. Through rigorous simulations, we
show that DEMs outperforms state-of-the-art state observers with least state estimation
error. Finally, we provide a proof of concept for DEMs by applying it on a real life robotics
problem - state estimation of a quadrotor hovering in wind, demonstrating its practical use.

5.2 Introduction
The rising demand for autonomous drone delivery systems has increased the need for
accurate state observers that are robust against uncertain events like strong wind currents.
These unmodelled wind currents induce colored noise to the system, hindering the safe
operation of drones. We take a step in this direction by using the ideas from computational
neuroscience to introduce a novel state and noise smoothness observer design for linear
systems with colored noise.

The classical linear estimators like Kalman Filter (KF) assumes the noises to be white.
This assumption is often violated in practice, resulting in a sub-optimal estimation [208].
Many adaptations on KF have been introduced to overcome this challenge, including
Second Moment Information Kalman filter (SMIKF) [202], State Augmentation (SA) [196],
Measurement Differencing (MD) [201] etc. Dynamic Expectation Maximization (DEM)
[170], based on Free Energy Principle (FEP) [2] from neuroscience has recently been used
to design state and input observers [46] that has shown to outperform the classical methods
both in simulation and in real robot experiments [165]. However, DEM requires the prior
knowledge of the noise smoothness parameter for the accurate state estimation. To solve
this problem, we introduce a novel online noise smoothness estimator based on FEP, for
linear systems with colored noise. The core contributions of the paper include:

1. introduction of an online smoothness estimator for the state estimation of linear
systems under colored noise,

2. extensive evaluation of the estimator in simulation and its validation on a real robot
(quadrotor flight) data.

5.3 Related work
This section highlights the interdisciplinary nature of FEP with related works in neuro-
science and robotics literature.

5.3.1 Neuroscience
According to FEP, all biological systems resist their natural tendency to disorder by mini-
mizing an information theoretic measure called free energy [2], which bounds its sensory
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surprisal. FEP emerges as a unified theory of the brain by providing a mathematical for-
malism for brain functions [187], unifying action and perception [50], explaining Freudian
ideas [188], and connecting memory and attention [187]. The work closest to our proposed
idea is the Generalized filtering [169] that uses FEP for noise smoothness estimation during
the inversion of dynamic models of the brain (fMRI data) [209]. We extend this idea into
robotics to design an online state and noise smoothness observer for applications like
quadrotor flights with wind as colored noise.

5.3.2 Robotics and control
Numerous approaches for state estimation under colored noise exists in the control systems
literature [208]. SA models the colored process noise in a state space system as auto-
regressive (AR) noise. The system is then transformed into an equivalent augmented
system influenced by white noise [196]. Another approach is to incorporate the temporal
correlations of the AR noise into the prior covariance calculation of KF, resulting in
an extended KF called SMIKF [202]. MD [201] approach deals with handling colored
measurement noise. However, the white noise assumption is prevalent in robotics for
the state estimation of a quadrotor [210], which might not be effective in outdoor windy
conditions [165]. Our work fills this research gap by providing an online noise smoothness
estimator.

The brain inspired nature of FEP has already inspired the development of intelligent
agents [25] – body perception of humanoid robots [200], estimation and control of manip-
ulator robot [211], system identification of a quadrotor [166], SLAM [34], PID controller
[47], KF [45, 165] etc. These active inference applications can employ our noise estimator
for better estimation and control of robots during colored noise.

5.4 Problem statement
Consider the linear plant dynamics given in Equation 5.1 where 𝐴, 𝐵 and 𝐶 are constant
system matrices, x ∈ ℝ𝑛 is the hidden state, v ∈ ℝ𝑟 is the input and y ∈ ℝ𝑚 is the output.

ẋ = 𝐴x+𝐵v+w, y = 𝐶x+ z. (5.1)

Herew ∈ ℝ𝑛 and z ∈ ℝ𝑚 represent the process and measurement noise with noise precision
(inverse covariance) Π𝑤 and Π𝑧 respectively. Variables of the plant are denoted in boldface,
while its estimates are denoted in non-boldface. In this paper, the white noise is convoluted
with a Gaussian filter of kernel width 𝑠 to generate the colored noise.

The problem considered in this paper is the state (𝑥) and noise smoothness (𝑠) observer
design (DEMs) for the linear system given in Equation 5.1, subjected to colored noise. We
show that our observer outperforms state-of-the-art state observers, both in simulation
(Section 5.9) and on real robot data (Section 5.10).

5.5 Noise color modelling
The two key concepts behind the success of DEM in handling the colored noise are i) the
use of generalized coordinates and ii) the noise precision modelling. This section aims to
elaborate on these theoretical concepts.
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5.5.1 Generalized coordinates
Generalized coordinates is a vector representation of the trajectory of a time varying
quantity (𝑥,𝑣,𝑦) using a collection of its higher order derivatives. For example, the state
vector in generalized coordinates is written using a tilde operator as 𝑥 = [𝑥 𝑥 ′ 𝑥 ′′ ....]𝑇 ,
where the dash operator represents the derivatives. The key advantage is the capability
to track the trajectory of states, unlike the classical estimators that track only the point
estimates. This provides additional data for DEM during estimation, resulting in its superior
performance during state estimation under colored noise. Since the noises are colored, the
higher derivatives of the system model can be written as [170]:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
𝑦′ = 𝐶𝑥 ′ + 𝑧′

...
(5.2)

which can be compactly written as:
̇̃𝑥 = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (5.3)

where 𝐷𝑥 =
[

0 1
0 1
. .
0 1
0](𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛 .

Here, 𝐷𝑥 represents the shift matrix, which performs the derivative operation on the
generalized state vector. The embedding order representing the number of derivatives of
hidden states and inputs used is denoted by 𝑝 and 𝑑 respectively. The generalized system
matrices are given by �̃� = 𝐼𝑝+1⊗𝐴, �̃� = 𝐼𝑝+1⊗𝐵, �̃� = 𝐼𝑝+1⊗𝐶 , where 𝐼 denotes the identity
matrix and ⊗ the Kronecker tensor product.

5.5.2 Noise precision modelling
The second key concept is the modelling of generalized noise precision (inverse covariance)
matrix Π̃. Since the noises are assumed to be Gaussian convoluted white noise, the covari-
ance matrix embedding the relation between noise derivatives take a specific structure
[170]. The smoothness matrix defining this relation for 𝑝 = 6 is calculated as [46]:

𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

35
16 0 35

8 𝑠
2 0 7

4 𝑠
4 0 1

6 𝑠
6

0 35
4 𝑠

2 0 7𝑠4 0 𝑠6 0
35
8 𝑠

2 0 77
4 𝑠

4 0 19
2 𝑠

6 0 𝑠8
0 7𝑠4 0 8𝑠6 0 4

3 𝑠
8 0

7
4 𝑠

4 0 19
2 𝑠

6 0 17
3 𝑠

8 0 2
3 𝑠

10

0 𝑠6 0 4
3 𝑠

8 0 4
15 𝑠

10 0
1
6 𝑠

6 0 𝑠8 0 2
3 𝑠

10 0 4
45 𝑠

12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.4)

where 𝑠 is the kernel width of the Gaussian filter. 𝑠 ≈ 0 is high frequency white noise. Since
𝑠 < 1 second for practical cases (sensors have high sampling rate), the first elements in
𝑆 matrix are higher than the last ones, implying a higher correlation between the first
noise derivatives (more smooth) than the last derivatives (less smooth). The combined
(generalized) noise precision matrix can be written using the 𝑆 matrix as:

Π̃ = [
𝑆 ⊗Π𝑧 0
0 𝑆 ⊗Π𝑤] . (5.5)



5.6 Free energy optimization

5

71

With the key concepts in place, the next section derives the free energy formulations that
are necessary for the observer design in Section 5.7.

5.6 Free energy optimization
FEP uses Bayesian Inference to estimate the posterior probability 𝑝(𝜗 /y) = 𝑝(𝜗,y/∫ 𝑝(𝜗,y)𝑑𝜗 ,
where 𝜗 is the component to be estimated (𝜗 = {𝑥, 𝑠}), and y is the measurement [43]. The
presence of an intractable integral motivates the use of a variational density 𝑞(𝜗 ), called the
recognition density that approximates the posterior as 𝑞(𝜗 ) ≈ 𝑝(𝜗 /y). This approximation is
achieved by minimizing the Kullback-Leibler (KL) divergence of the distributions given by
𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /y)) = ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) − ⟨ln𝑝(𝜗 /y)⟩𝑞(𝜗 ), where ⟨.⟩𝑞(𝜗 ) represents the expectation
over 𝑞(𝜗 ). Upon simplification using 𝑝(𝜗 /y) = 𝑝(𝜗,y)/𝑝(y), it reduces to [2]:

ln𝑝(𝑦) = 𝐹 +𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 |y)), (5.6)

where 𝐹 = ⟨ln𝑝(𝜗,y)⟩𝑞(𝜗 ) − ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) is the free energy. The minimization of KL diver-
gence results in the maximization of free energy1, as ln𝑝(y) is independent of 𝜗 . This is the
core idea behind using free energy minimization as a proxy for brain’s inference, thereby
minimizing the brain’s sensory surprisal [2].

We use this idea from free energy principle for the joint observer design for 𝑥 and 𝑠
through two fundamental assumptions about 𝑞(𝜗 ) = 𝑞(𝑥, 𝑠): i) Mean field assumption [170]
that facilitates a conditional independence between the subdensities, 𝑞(𝜗 ) = 𝑞(𝑥)𝑞(𝑠), and
ii) Laplace assumption [205] that facilitates the use of Gaussian distributions with mean 𝜇
and variance Σ over these subdensities, 𝑞(𝑥) = (𝑥 ∶ 𝜇𝑥 , Σ𝑥 ) and 𝑞(𝑠) = (𝑠 ∶ 𝜇𝑠 , Σ𝑠). We
refer to [97] for an elaborate read on similar simplifications. Under these assumptions, 𝐹
reduces to the sum of precision weighted prediction errors and the information entropy as:

𝐹 = −
1
2
𝜖𝑇 Π̃𝜖 +

1
2
ln |Π̃|−

1
2
𝜖𝑠𝑇Π𝑠𝜖𝑠 +

1
2
ln |Π𝑠 |, (5.7)

where 𝜖 is the combined prediction error for outputs and states, and 𝜖𝑠 is the prediction
error for 𝑠, given by:

𝜖 = [
ỹ− �̃�𝑥

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�] , and 𝜖𝑠 = 𝑠 −𝜂𝑠 . (5.8)

Here 𝜂𝑠 and Π𝑠 are the prior smoothness and its prior precision (confidence). For this work,
we use a low prior 𝜂𝑠 ≈ 0 with a low precision Π𝑠 = 1 (practically, 0 < 𝑠 < 1). Our observer
design follows a constant precision approach where Π𝑠 is kept constant throughout the
estimation of 𝑠, unlike the precision update approach of DEM [97, 170]. This reduces the
number of update rules and simplifies 𝐹 from Equation 5.7 to:

𝐹 = −
1
2
𝜖𝑇 Π̃𝜖 +

1
2
ln |Π̃|−

1
2
𝑠2. (5.9)

The last term in Equation 5.9 is the novel term that we have introduced for optimizing
smoothness, and doesn’t appear in FEP literature. Using this, we propose an online
noise smoothness estimation algorithm which estimates 𝑠 through the gradient ascend
1maximization of the ELBO term (Section 1.4)
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(maximization2) of 𝐹 , where 𝜕𝐹
𝜕𝑠 |𝑠=𝑠𝑜 = 0 and 𝜕2𝐹

𝜕𝑠2 |𝑠=𝑠𝑜 < 0, with 𝑠𝑜 being the smoothness value
that maximizes 𝐹 . The free energy gradients necessary for this scheme are obtained by
differentiating Equation 5.9:

𝜕𝐹
𝜕𝑠

= −
1
2
𝜖𝑇

𝜕Π̃
𝜕𝑠

𝜖 +
1
2
𝜕 ln |Π̃|
𝜕𝑠

− 𝑠

𝜕2𝐹
𝜕𝑠2

= −
1
2
𝜖𝑇

𝜕2Π̃
𝜕𝑠2

𝜖 +
1
2
𝜕2 ln |Π̃|
𝜕𝑠2

−1,
(5.10)

where the gradients of ln |Π̃| can be computed as (refer Appendix 5.12.1) :

𝜕 ln |Π̃|
𝜕𝑠

= 42(𝑛+𝑚)
1
𝑠
,
𝜕2 ln |Π̃|
𝜕𝑠2

= −42(𝑛+𝑚)
1
𝑠2
. (5.11)

The usage of a gradient ascent scheme on the free energy curve for the estimation of 𝑠
is motivated by the proof for the existence of a unique maximum for 𝐹 under practical
bounds as follows.

Proposition 5.6.1. The free energy 𝐹 defined by Equation 5.9 has a unique maximum with
respect to noise smoothness 𝑠, under the practical range of noise smoothness (0 < 𝑠 < 1).

Proof. Consider all the smoothness values of 𝑠 with zero free energy gradients ( 𝜕𝐹𝜕𝑠 |𝑠=𝑠𝑜 = 0).
Substituting Equation 5.11 in 5.10 and using 𝜕𝐹

𝜕𝑠 |𝑠=𝑠𝑜 = 0 yields the condition satisfied by all
maximum and minimum points:

1
2
(𝜖𝑇 Π̃𝑠𝜖)|𝑠=𝑠𝑜 =

21(𝑛+𝑚)
𝑠𝑜

− 𝑠𝑜 (5.12)

where we use the shorthand Π̃𝑠 = 𝜕Π̃
𝜕𝑠 . Since 0 < 𝑠 < 1, we have from Equation 5.12 that:

(𝜖𝑇 Π̃𝑠𝜖)|𝑠=𝑠𝑜 > 0. (5.13)

The proof for the existence of a unique maximum is complete if we prove that 𝜕2𝐹
𝜕𝑠2 |𝑠=𝑠𝑜 < 0,

for all 𝑠𝑜 satisfying Equation 5.13. The curvature of 𝐹 at 𝑠 = 𝑠𝑜 is calculated from Equation
5.10 using Equation 5.11 as:

𝐹𝑠𝑠 |𝑠=𝑠𝑜 = −
1
2(

(𝜖𝑇 Π̃𝑠𝑠𝜖)|𝑠=𝑠𝑜 +42(𝑛+𝑚)
1
𝑠2𝑜

+1) (5.14)

Since Π̃ ≻ 0, from definition 𝜖𝑇 Π̃𝜖 > 0, and since (𝜖𝑇 Π̃𝑠𝜖)|𝑠=𝑠𝑜 > 0, we can conclude that
(𝜖𝑇 Π̃𝑠𝑠𝜖)|𝑠=𝑠𝑜 > 0, even though Π̃𝑠 ⊁ 0 and Π̃𝑠𝑠 ⊁ 0 (refer Appendix 5.12.2 for numerical
analysis). From Equation 5.14, (𝜖𝑇 Π̃𝑠𝑠𝜖)|𝑠=𝑠𝑜 > 0 ⟹ 𝐹𝑠𝑠 |𝑠=𝑠𝑜 < 0, completing the proof for
the existence of a unique maximum of free energy at 𝑠 = 𝑠𝑜 .

2maximization of the ELBO term (Section 1.4)
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5.7 Observer design
This section aims to introduce a novel observer design (DEMs) for the joint state and
noise smoothness estimation of a linear system with colored noise. We formulate the
noise smoothness estimator from the previous section (gradient ascend on 𝐹 ), using the
Newton-Gauss update scheme:

𝑠(𝑡 +𝑑𝑡) = 𝑠(𝑡) +𝑑𝑠,

𝑑𝑠 = (𝑒𝐹𝑠𝑠 |𝑠=𝑠(𝑡)𝑑𝑡 −1)(𝐹𝑠𝑠 |𝑠=𝑠(𝑡))−1𝐹𝑠 |𝑠=𝑠(𝑡),
(5.15)

where 𝑠(𝑡) is the smoothness at time 𝑡 , and 𝑑𝑠 is the smoothness increment for a time
increment of 𝑑𝑡 . We combine this observer design with the standard DEM observer design
for state estimation [46], where the update equation in the continuous time is given by:

̇̃𝑥 = 𝐴1𝑥 +𝐵1 [
ỹ
ṽ] (5.16)

where 𝐴1 = [𝐷𝑥 − 𝑘𝑥 �̃�𝑇 Π̃𝑧�̃� − 𝑘𝑥 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�)], 𝐵1 = 𝑘𝑥 [�̃�𝑇 Π̃𝑧 (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�],
and 𝑘𝑥 is the learning rate which is set to 1 throughout this paper. Since Equation 5.16 is
a linear differential equation, an exact algebraic discretization can be performed for the
observer as:

𝑥(𝑡 +𝑑𝑡) = 𝑒𝐴1𝑑𝑡𝑥(𝑡) +𝐴−1
1 (𝑒𝐴1𝑑𝑡 − 𝐼 )𝐵1 [

ỹ(𝑡)
ṽ(𝑡)] (5.17)

Equations 5.15 and 5.17 together complete our observer design. Note that 𝐴1 and 𝐵1 are
nonlinear functions of 𝑠 because of the presence of Π̃𝑤 and Π̃𝑧 in it. Moreover, the state
updates enter Equation 5.15 through the 𝐹 terms. Therefore, the update equations of state
and noise smoothness observers are coupled. Since this heavily complicates the stability
proof of the joint estimator, we leave it for future research.

5.8 Working example
This section aims to provide a working example in simulation to show the capabilities of
our observer design. We use simulation data at different 𝑠 levels to show that DEMs can
accurately estimate 𝑥 and 𝑠.

5.8.1 Simulation settings

A random system with 𝐴 = [
0.0484 0.7535
−0.7617 −0.2187], 𝐵 = [

0.3604
0.0776], and 𝐶 =

⎡
⎢
⎢
⎢
⎣

0.2265 −0.4786
0.4066 −0.2641
0.3871 0.3817
−0.1630 −0.9290

⎤
⎥
⎥
⎥
⎦

was used to generate the synthetic data for a total time of 𝑇 = 32𝑠 with increments 𝑑𝑡 =
0.1𝑠, and a Gaussian bump input 𝑣 = 𝑒−0.25(𝑡−12)2 . The colored noise was generated using
Π𝑤 = 𝑒6𝐼2 and Π𝑧 = 𝑒6𝐼4. This simulation setting will be used throughout the paper, unless
mentioned otherwise. We generate eight such time series data using different levels of
noise smoothness 𝑠, ranging from 0.1 to 0.8 and use it for the analysis in this section.
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Fig 5.1: The maximization of 𝐹 successfully estimates 𝑠 for 8 simulations with different 𝑠𝑟𝑒𝑎𝑙 . The
colored solid lines represent the online estimation of 𝑠, whereas the dotted lines represent 𝑠𝑟𝑒𝑎𝑙 . The
estimation starts from 𝜂𝑠 = 0.001 at time 𝑡 = 0 for all simulations and converges close to 𝑠𝑟𝑒𝑎𝑙 with a
bias, within a few samples.
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Fig 5.2: Free energy vs 𝑠 plot for 8 different simulations (with 8 different real 𝑠 values) from Figure
5.1 at 𝑡 = 5𝑠. All 8 free energy curves show a clear maximum around the real 𝑠 values. This shows
the effectiveness of our noise smoothness observer.

5.8.2 Test example
Figure 5.1 shows the results of our noise smoothness estimator for all eight simulations.
All simulations start with the prior 𝜂𝑠 = 0.001 and quickly stabilises around the correct
smoothness value (𝑠𝑟𝑒𝑎𝑙 in dashed black), showing the success of our estimator for a range
of noise smoothness values. Figure 5.2 shows the free energy vs 𝑠 curve at 𝑡 = 5𝑠 for
all eight simulations. The clear peaks of the free energy curve around the correct noise
smoothness value (𝑠𝑟𝑒𝑎𝑙 ) shows that free energy could be used as the objective function
for noise estimation for the operational ranges of 𝑠. The importance of estimating the
correct 𝑠 is shown in Figure 5.3, where the minimum state estimation error is achieved
when 𝑠𝑟𝑒𝑎𝑙 is known. Therefore, Figure 5.3, 5.1 and 5.2, together demonstrates the validity
of our observer design in simulation. In the next section, we will benchmark our observer
against the state-of-the-art observers.
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Fig 5.3: The sum of squared error (SSE) in state estimation of DEM deteriorates when the noise
smoothness 𝑠 used is different from the real noise smoothness 𝑠𝑟𝑒𝑎𝑙 . The solid and dotted lines
denote the SSE of DEM and KF for different simulated 𝑠. The SSE for DEM takes a minimum when
𝑠 ≈ 𝑠𝑟𝑒𝑎𝑙 . For lower 𝑠 (0.1 for example), KF outperforms DEM if 𝑠 is not close to 𝑠𝑟𝑒𝑎𝑙 , emphasizing the
importance of an online noise smoothness observer.

5.9 Benchmarking
This section aims to benchmark the performance of our smoothness estimator for a state
estimation problem. Through rigorous simulations, we show that our observer provides
competitive performance during high colored noise cases.

5.9.1 Embedding order of states
In this section, we use rigorous simulations to show that our observer design can enable
state estimation under a wide range of noises – at different embedding orders and smooth-
ness levels. We manipulate on the dimension and component values of the 𝑆 matrix in
Equation 5.4 through different 𝑝 and 𝑠 values, under the same simulation setup described
in Section 5.8.1 with 𝑑𝑡 = 0.05𝑠. The size of 𝑆 matrix increases with increasing 𝑝, whereas
the components inside it increases with increasing 𝑠. Figure 5.4 shows the results of state
estimation using 150 experiments (5 randomly generated noises each for five 𝑠 values and
six 𝑝 values). The estimation error decreases with increasing 𝑝 for different noise smooth-
ness values, highlighting the importance of using higher order generalized coordination
during estimation. This shows the applicability of our observer for a wide range of noise
smoothness, embedding orders and noises.

5.9.2 Benchmark state observer
In this section, we benchmark our observer against other state-of-the-art observers like KF,
SA and SMIKF, to show its competitiveness. 50 time series data (10 each for 5 smoothness
values with 𝑑𝑡 = 0.05𝑠) were generated using the simulation setup in Section 5.8.1 and
the SSE in state estimation was computed for KF, SA, SMIFK and DEMs. The SMIKF
and SA implementation accommodated an AR model of order 1 and 6 respectively for
the noise modelling, whereas the DEM implementation used an embedding order of 𝑝 =
6 for states and 𝑑 = 2 for inputs. Figure 5.5 shows the results, clearly indicating the
superior performance of DEMs with minimum error in state estimation for higher 𝑠. DEMs
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Fig 5.4: The error in state estimation decreases as the embedding order of states 𝑝 increases, for
a range of noise smoothness 𝑠. This shows that our smoothness estimation aids an accurate state
estimation till an embedding order of 𝑝 = 4 for a wide range of 𝑠.

outperforms other observers for a wide range of 𝑠 values. However, for low noise color
(𝑠 = 0.1), SA and SMIKF outperforms DEMs. In all cases, DEMs outperforms KF in the
presence of colored noise.
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Fig 5.5: DEMs outperform KF, SA and SMIKF with minimal estimation error during state estimation
under high colored noise (𝑠 > 0.1). For low colored noise (𝑠 = 0.1), DEMs outperforms KF, but SA and
SMIKF performs better. Solutions of SA is unstable for higher 𝑠.

5.10 Proof of concept -qadrotor flight
This section aims to provide a proof of concept for our observer design by employing
it for the state estimation of a real quadrotor flying under wind conditions. We use the
experimental design from [165] to obtain the quadrotor flight data. The experiment consist
of a quadrotor hovering at a fixed location, under the strong influence of wind generated
by a blower. The linearized quadrotor model relating the input motor signals to the output
roll angle (𝜙) of the quadcopter, without accounting for the wind dynamics is given by
[165]:
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[
�̇�
𝜙] = [

0 1
0 0][

𝜙
�̇�]+ [

0 0 0 0
𝑐𝐵𝜙
𝐼𝑥𝑥 − 𝑐𝐵𝜙

𝐼𝑥𝑥 − 𝑐𝐵𝜙
𝐼𝑥𝑥

𝑐𝐵𝜙
𝐼𝑥𝑥 ][

𝑝𝑤𝑚1
𝑝𝑤𝑚2
𝑝𝑤𝑚3
𝑝𝑤𝑚4 ]

,

𝑦 = [1 0][
𝜙
�̇�] ,

(5.18)

where 𝑝𝑤𝑚𝑖 is the PulseWidthModulation signal provided to the 𝑖th motor by the controller
for stable hovering, 𝐼𝑥𝑥 = 3.4 ⋅10−3𝑘𝑔𝑚2 is the quadcopter’s moment of inertia around the
𝑥-axis, and 𝑐𝐵𝜙 = 1.274 ⋅10−3𝑁𝑚 is the thrust coefficient that models the relation between
the PWM values and the thrust generated by the quadcopter rotors. 𝜙 was recorded using
the Optitrack system, and was used for the state estimation for a time sequence of 𝑇 = 15𝑠
with 𝑑𝑡 = 0.0083𝑠. The influence of wind dynamics on the quadrotor states (𝜙 and �̇�) is
unmodelled in Equation 5.18. Therefore, the wind dynamics induces strong colored noise
(𝑤) in the data [166]. The higher process noise (Π𝑤 = 𝑒4), and a lower measurement noise
(Π𝑧 = 𝑒10) were used to represent high unmodelled wind noise and low Optitrack noise
respectively. The embedding order of 𝑝 = 2 and 𝑑 = 2 were used to capture the noise color.
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Fig 5.6: DEMs outperforms other benchmarks in state estimation on the quadrotor flight data where it
hovers under the influence of wind, introducing colored noise into the system. DEMs (in red) is closer
to the ground truth Optitrack measurement (ideal in blue), when compared to other benchmarks. KF,
SA and SMIKF shows coinciding estimation plots.

Figure 5.6 shows the superior state estimation capabilities of DEMs. DEMs (in red) is
closer to the ground truth (in blue) when compared to other benchmarks. KF, SMIKF and
SA have coinciding state estimation curves. Figure 5.7 shows the free energy vs 𝑠 curve at
different time instances 𝑡 of the quadrotor flight, showing a clear maximum, similar to the
simulation results in Figure 5.2, validating the practical application of our estimator.
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Fig 5.7: The free energy vs 𝑠 plot for different time instances during the quadrotor flight (data from
Figure 5.6). The curves show a clear maximum, similar to the simulation results from Figure 5.2. This
provides an experimental validation for using the gradient ascend over free energy for smoothness
estimation.

5.11 Conclusion
A novel observer (DEMs) for the joint state and noise smoothness estimation of linear
systems with colored noise was introduced. Through rigorous simulations, DEMs was
shown to outperform the benchmarks like KF, SMIKF and SA in state estimation under
colored noise with minimum estimation error. The observer was face validated by applying
it on a practical robotics application - the state estimation of a quadrotor hovering in
unmodelled wind conditions, to show that DEMs is a competitive observer. The main
limitation of this work is the absence of a stability proof for the joint state and noise
smoothness observer, which can be the focus of future research. The estimator can be
extended for a confident smoothness estimation with precision updates for Π𝑠 . It can also
be extended to solve the general active inference problem for the estimation and control of
nonlinear systems with colored noise.
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5.12 Appendix
5.12.1 Gradients of ln |Π̃|
The log determinant of generalized precision can be calculated using Equations 5.4 and 5.5
as:

ln |Π̃| =ln |𝑆 ⊗Π𝑧 |+ ln |𝑆 ⊗Π𝑤 |

=ln(|𝑆|𝑚 |Π𝑧 |(𝑝+1)) + ln(|𝑆|𝑛 |Π𝑤 |(𝑝+1))
=(𝑝 +1)(ln |Π𝑧 |+ ln |Π𝑤 |) + (𝑛+𝑚) ln |𝑆|.

(5.19)



5.12 Appendix

5

79

The derivative of ln |Π̃| with respect to 𝑠 becomes:

𝜕 ln |Π̃|
𝜕𝑠

= (𝑛+𝑚)
𝜕 ln |𝑆|
𝜕𝑠

,
𝜕2 ln |Π̃|
𝜕𝑠2

= (𝑛+𝑚)
𝜕2 ln |𝑆|
𝜕𝑠2

. (5.20)

From Equation 5.4, |𝑆| = 512
6075 𝑠

42, resulting in 𝜕 ln |𝑆|
𝜕𝑠 = 42

𝑠 and 𝜕2 ln |𝑆|
𝜕𝑠2 = − 42

𝑠2 . This simplifies
Equation 5.20 to:

𝜕 ln |Π̃|
𝜕𝑠

= 42(𝑛+𝑚)
1
𝑠
,
𝜕2 ln |Π̃|
𝜕𝑠2

= −42(𝑛+𝑚)
1
𝑠2
. (5.21)

Fig 5.8: The plot demonstrating that the function 𝜖𝑇 Π̃𝜖 is mostly monotonically increasing with
respect to 𝑠 in the domain (0,1] for |𝜖 | < 1. Moreover, when 𝜖𝑇 Π̃𝑠𝜖 > 0, 𝜖𝑇 Π̃𝑠𝑠𝜖 < 0, since there are no
data points on the fourth quadrant as shown in the zoomed plot.

5.12.2 Numerical analysis on the nature of 𝜖𝑇 Π̃𝜖
We recorded the first two gradients of the polynomial 𝜖𝑇 Π̃𝜖 with respect to 𝑠 for 20,000
combinations of randomly sampled 𝜖 and 𝑠 such that |𝜖 | < 1 and 𝑠 ∈ (0,1]. From the results
shown in Figure 5.8, the data points predominantly lie on the first quadrant, suggesting that
the function has positive gradients, which is a sign of monotonically increasing function.
The absence of any points on the fourth quadrant motivates the conclusion: if 𝜖𝑇 Π̃𝑠𝜖 > 0
then 𝜖𝑇 Π̃𝑠𝑠𝜖 > 0. The results remain the same for different norm lengths of 𝜖.
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6
Dynamic Expectation

Maximization

This chapter uses precision learning for the system identification of an LTI system under
colored noise. It provides the detailed mathematical foundation of the system identification
tool used in Sections 2.5.2.3, 2.5.2.4 and 2.5.2.5. The Chapter 7 provides the convergence proof
of the parameter estimator introduced in this chapter, followed by the Chapter 8 that provides
the experimental confirmation of the estimator on real robot data from Chapter 4.

This chapter is a verbatim copy of the peer reviewed paper [97]  Ajith Anil Meera and Martijn Wisse. "Dynamic
expectation maximization algorithm for estimation of linear systems with colored noise." Entropy 23, no. 10 (2021):
1306.
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6.1 Abstract

T he free energy principle from neuroscience has recently gained traction as one of
the most prominent brain theories that can emulate the brain’s perception and action

in a bio-inspired manner. This renders the theory with the potential to hold the key for
general artificial intelligence. Leveraging this potential, this paper aims to bridge the gap
between neuroscience and robotics by reformulating an FEP-based inference scheme—
Dynamic Expectation Maximization—into an algorithm that can perform simultaneous
state, input, parameter, and noise hyperparameter estimation of any stable linear state
space system subjected to colored noises. The resulting estimator was proved to be of
the form of an augmented coupled linear estimator. Using this mathematical formulation,
we proved that the estimation steps have theoretical guarantees of convergence. The
algorithm was rigorously tested in simulation on a wide variety of linear systems with
colored noises. The paper concludes by demonstrating the superior performance of DEM
for parameter estimation under colored noise in simulation, when compared to the state-
of-the-art estimators like Sub Space method, Prediction Error Minimization (PEM), and
Expectation Maximization (EM) algorithm. These results contribute to the applicability of
DEM as a robust learning algorithm for safe robotic applications.

6.2 Introduction
The free energy principle (FEP) has emerged from neuroscience as a unifying theory of
the brain [2] and has begun to guide the search for a brain-inspired learning algorithm
for robots. Many attempts have been made in this direction, including the state and input
observer [46, 165], the adaptive controller for robot manipulators [27, 212, 213], the body
perception and action scheme for humanoid robots [200], the robot navigation of ground
robots [34] etc. However, the design of a parameter estimation algorithm for linear systems
with colored noise remains unexplored. Since the design of an accurate parameter estimator
for dynamic systems sits at the core of control systems and robotics, the reformulation of
FEP into a brain-inspired estimation algorithm has an influential impact on the industry
and applied robotics.

A wide range of estimators have been proposed in the literature for linear time-invariant
(LTI) systems [214], including the blind system identification [215–217]. However, most of
them assume the noises to be temporally uncorrelated (white noise), which is often violated
in practice. This results in biased estimation for the least-square (LS)-based methods
[218], and an inaccurate convergence for the iterative methods [219]. Although many
attempts have been made to solve this problem, mainly through bias compensation methods
[220, 221], none of them perform state, input, parameter, and noise estimation for systems
with colored noises [222]. The only method that does it is the Dynamic Expectation
Maximization (DEM) [170] algorithm, which uses FEP to invert a highly nonlinear and
hierarchical brain model from sensory data. However, the disconnect between neuroscience
and control system literature hinders the wide use of this method for practical robotics
applications. Although FEP-based tools have already been applied to practical robotics
applications [27, 34, 46, 165, 166, 200, 212, 213, 223], there is a gap in the literature on the
applications of DEM owing to the mathematical formidability of the theory and its lack of
formalism in the control systems domain. Therefore, it is important to reformulate DEM
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for the control systems audience. While DEM from computational neuroscience focuses
on emulating the brain’s perception through the hierarchical abstraction of a number of
interacting non-linear dynamic systems, our work focuses on reformulating it into a blind
system-identification algorithm for an LTI system with colored noise, which is a well-
known challenge in robotics. In this attempt, we keep all the brain-related approximations
intact, thereby aiming for a biologically plausible parameter estimation algorithm.

According to an FEP proposed by Karl Friston, the brain’s inference mechanism is
a gradient ascent over its free energy, where free energy is the information-theoretic
measure that bounds the brain’s sensory surprisal [43]. FEP emerges as a unified brain
theory [186] by providing a mathematical description of brain functions [187]; unifying
action and perception [50]; connecting physiological constructs like memory, attention,
value, reinforcement, and salience [187]; and remaining consistent with Freudian ideas[188].
Similarities of FEPwith reinforcement learning [42], neural networks [43, 44], PID controller
[47], Kalman Filter [46] and active learning [50] open up possibilities for biologically
plausible parameter estimation algorithms. Although FEP emerged as a brain theory, the
recent works have pushed the boundaries towards systems that survive over time, such as
social and cultural dynamics. Notable works include the variational approach to culture
[224], collective intelligence [225], cumulative cultural evolution [226], etc.

Numerous methods have been proposed based on the FEP framework. Predictive coding
[8] models perception through a hierarchy of dynamical systems [44] with the brain’s priors
at the top, minimizing the prediction error at each level of the hierarchy. Bayesian message
passing algorithms [227, 228] use similar ideas for belief propagation. Active inference
[50, 229] uses FEP to model the brain’s action and perception under one framework. On
the perception side, there are two main type of methods to deal with dynamic systems:
variational filtering and generalized filtering. Variational filtering [170, 230] uses mean-
field approximation (conditional independence between densities), whereas generalized
filtering [169] does not. DEM [170] is a type of variational filtering that uses a Laplace
approximation [205] (a fixed-form assumption for the conditional density of variables),
whereas [230] uses ensemble dynamics to model the free form of the conditional densities.
We focus on DEM for this work.

DEM is an FEP-based variational inference algorithm that models the brain’s inference
process as amaximization of its free energy1 for state, input, parameter, and noise estimation
from data. Although the method shows high similarity to the variational inference [52],
the key difference is in the use of generalized coordinates, which enables DEM to track
the evolution of the trajectory of states instead of just the point estimates. This renders
DEM with the capability of gracefully handling colored noises, a feature that conventional
point estimators such as the Kalman Filter (KF) lacks. The modeling of noise color as
analytic using generalized coordinates results in an improved state estimation under
colored noise for LTI systems [46, 165] and for nonlinear filtering [231], which directly
improves the parameter estimation accuracy, making DEM a topic of interest [166]. This
work directly impacts various sub-domains of robotics community: input estimation to
the industrial automation community for fault detection systems, state estimation to the
control systems community, parameter estimation to the system identification community,
and hyperparameter estimation to the signal processing community.
1maximization of the ELBO term (Section 1.4)
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With this paper, we aim to present DEM to the robotics audience as a robot learning
algorithm for the blind system identification of LTI systems with colored noise. We
elaborate on various components of DEM that are most relevant to the robotics community:
1) the derivation of the free energy objectives from Bayesian principles, 2) the modeling
of colored noise using generalized coordinates, and 3) the simplification of update rules
for LTI systems with colored noise. We reformulate DEM for LTI systems into a form that
is widely used in the robotics domain and use this mathematical formulations to prove
that the estimation steps of DEM have theoretical guarantees of convergence [167]. In our
prior work, we have discussed the stability conditions of our DEM-based linear state and
input observer design [46]. This convergence guarantees and stability criteria are essential
for robot safety while in operation and is of high relevance to the robotics community.
Through extensive simulations on a range of random systems, we show that DEM is a
competitive estimator when compared to other benchmarks in the control systems domain.
The core contributions of the paper are:

1. Reformulating DEM into an estimation algorithm for LTI systems with colored noise
(Section 6.13).

2. Proving that the estimator has theoretical guarantees of convergence for the estima-
tion steps (Section 6.15).

3. Proving through rigorous simulation that DEM outperforms the state-of-the-art
system identification methods for parameter estimation under colored noise (Section
6.17).

6.3 Problem Statement
Consider the linear plant dynamics given in Equation (6.1), where A, B and C are constant
system matrices, x ∈ ℝ𝑛 is the hidden state, v ∈ ℝ𝑟 is the input and y ∈ ℝ𝑚 is the output.

ẋ = Ax+Bv+w, y = Cx+ z. (6.1)

Here, w ∈ ℝ𝑛 and z ∈ ℝ𝑚 represent the process and measurement noise, respectively.
The notations of the plant are denoted in boldface, whereas its estimates are denoted in
nonboldface letters. The noises in this paper are generated through the convolution of
white noise with a Gaussian kernel. The use of colored noise is motivated by the fact that
in robotics, the unmodelled dynamics and the non-linearity errors can enter the plant
dynamics through the noise terms, thereby violating the white noise assumption in practice
[166].

The goal of this paper is to reformulate DEM for an LTI system such that given the
output of the system y, the estimator computes the associated states 𝑥 , inputs 𝑣, parameter
𝜃 containing the matrices 𝐴,𝐵 and 𝐶 , hyperparameters 𝜆 that model the noise precision
(Π = 𝑒𝜆), and the uncertainties of all its estimates (Σ𝑥 ,Σ𝑣 ,Σ𝜃 ,Σ𝜆), with the help of the prior
(learned) knowledge encoded in the robot brain, such that the estimate best predicts the
data. The schematic of the proposed robot brain’s inference process is given in Figure 6.1.
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Fig 6.1: A simple block diagram of the robot brain’s inference process using DEM. It uses the
measurement data y generated from the environment (also called generative process). DEM enables
the direct fusion of the prior information into the inference process. The concept of generalized
coordinates will be detailed in Section 6.4.1.

6.4 Preliminaries
To reformulate DEM into an estimation algorithm for LTI systems, this section introduces
the key concepts and terminologies that are familiar to the FEP audience.

6.4.1 Generative Model
The generative model (plant model) is the robot brain’s estimate of the generative process
in the environment that generated data. The robot brain infers this model via model
evidencing from the measurement data. The key idea behind DEM to deal with colored
noise is to model the trajectory of the time-varying components (states, for example) using
generalized coordinates. The use of generalized coordinates is new to the control systems
literature and is different from the familiar definition in classical mechanics. In mechanics,
it is the minimum number of independent coordinates that define the configuration of a
system, whereas in DEM, it is the vector defining the motion of a point using its higher
derivatives. In DEM, the emphasis is on tracking the trajectories of states, inputs and outputs
instead of their point estimates. The states are expressed in generalized coordinates using
its higher-order derivatives, i.e., 𝑥 = [𝑥 𝑥 ′ 𝑥 ′′ ...]𝑇 . The generalized state vector 𝑥 with an
order of generalized motion of 𝑝 will have 𝑝 +1 terms, with the copy of the state vector as
the first term, followed by its 𝑝 derivatives. The variables in generalized coordinates are
denoted by a tilde, and its components (higher derivatives) are denoted by primes. The
evolution of states is written as:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
�̇� = 𝐶𝑥 ′ + 𝑧′

...
(6.2)

The colored noises aremodeled such that the covariance of noise derivatives 𝑧 = [𝑧,𝑧′, 𝑧′′, ...]𝑇
and �̃� = [𝑤,𝑤′,𝑤′′, ...]𝑇 are well defined (to be explained in Section 6.4.3). The generative
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model representing the system is compactly written as:

̇̃𝑥 = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (6.3)

where 𝐷𝑥 =
[

0 1
0 1
. .
0 1
0](𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛 , performs the block derivative operation, equivalent

to shifting up all components in generalized coordinates by one block. A similar definition
holds for 𝐷𝑣 (appears later) with size 𝑟(𝑑 + 1) × 𝑟(𝑑 + 1), where 𝑝 and 𝑑 are the order of
generalized motion of states and inputs, respectively. Here, �̃� = 𝐼𝑝+1 ⊗𝐴, �̃� = 𝐼𝑝+1 ⊗𝐵, and
�̃� = 𝐼𝑝+1 ⊗𝐶 , where ⊗ is the Kronecker tensor product.

6.4.2 Parameters and Hyperparameters
To simplify the parameter estimation steps of DEM for LTI systems (Section 6.14.2) and
to facilitate the convergence proof (Section 6.15), we introduce an alternative generative
model which is the direct reformulation of Equation (6.3) given by:

̇̃𝑥 =𝑀𝜃 + �̃�, �̃� = 𝑁𝜃 + 𝑧, 𝜃 =
⎡
⎢
⎢
⎣

𝑣𝑒𝑐(𝐴𝑇 )
𝑣𝑒𝑐(𝐵𝑇 )
𝑣𝑒𝑐(𝐶𝑇 )

⎤
⎥
⎥
⎦

(6.4)

where

𝑀 =
⎡
⎢
⎢
⎣

𝐼𝑛 ⊗𝑥𝑇 𝐼𝑛 ⊗𝑣𝑇 𝐼𝑛 ⊗𝑂1×𝑚
𝐼𝑛 ⊗𝑥 ′𝑇 𝐼𝑛 ⊗𝑣′𝑇 𝐼𝑛 ⊗𝑂1×𝑚

... ... ...

⎤
⎥
⎥
⎦
,𝑁 =

⎡
⎢
⎢
⎣

𝐼𝑛 ⊗𝑂1×𝑛 𝐼𝑛 ⊗𝑂1×𝑟 𝐼𝑚 ⊗𝑥𝑇
𝐼𝑛 ⊗𝑂1×𝑛 𝐼𝑛 ⊗𝑂1×𝑟 𝐼𝑚 ⊗𝑥 ′𝑇

... ... ...

⎤
⎥
⎥
⎦
. (6.5)

Throughout the paper, 𝜃 represents the set of parameters, whereas 𝜆 = [ 𝜆𝑧
𝜆𝑤 ] represents the

hyperparameters that define the precision matrices (inverse covariance matrices) of the
observation noise and the process noise. For noise modelling, we parametrize the noise
precisions using an exponential relation with the hyperparameters, given by [170]:

Π𝑤 (𝜆𝑤 ) = 𝑒𝜆
𝑤
Ω𝑤 , Π𝑧(𝜆𝑧) = 𝑒𝜆

𝑧
Ω𝑧 , (6.6)

where Ω𝑤 and Ω𝑧 represent constant matrices encoding how different noises are correlated.
Here Π𝑤 and Π𝑧 are the inverse covariances {(Σ𝑤 )−1, (Σ𝑧)−1} or precisions of the noises.
This parameterization ensures the selection of positive definite noise precision matrices
through hyperparameter updates. We assume zero cross-correlation between 𝑤 and 𝑧. We
also assume that 𝜃 and 𝜆 are time-invariant.

6.4.3 Colored noise
The next step towards handling the colored noise is to embed the noise correlation between
different components in the generalized noises �̃� and 𝑧 given in Equation (6.3). DEM uses
generalized coordinates, which models a correlation between noise derivatives through
the temporal precision matrix 𝑆 (inverse of covariance matrix). The generalized noise
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correlation is assumed to be due to a Gaussian filter, where 𝑆 can be calculated as [170]:

𝑆(𝜎2) =
⎡
⎢
⎢
⎢
⎣

1 0 − 1
2𝜎2 ..

0 1
2𝜎2 0 ..

− 1
2𝜎2 0 3

4𝜎4 ..
.. .. .. ..

⎤
⎥
⎥
⎥
⎦

−1

(𝑝+1)×(𝑝+1)

(6.7)

where 𝜎 (from the Gaussian kernel) denotes the noise smoothness level. While 𝜎2 → 0
denotes white noise, nonzero 𝜎2 denotes colored noise. The covariance between noise
derivatives increases exponentially with the order of noise derivatives. Simulations show
that derivatives above 6 can be neglected [170]. The generalized noise precision matrices
are given by Π̃𝑤 = 𝑆(𝜎2)⊗Π𝑤 and Π̃𝑧 = 𝑆(𝜎2)⊗Π𝑧 , where Π𝑤 and Π𝑧 are the inverse noise
covariances.

6.4.4 Generalized Motion of the Outputs And Noises
The generalized motion of output ỹ is practically expensive and inaccessible to robotics
systems. Moreover, most sensors such as encoders operate with discrete measurements.
Therefore, as a pre-processing step for estimation (refer to Figure 6.1), ỹ should be computed
from discrete measurements. The goal is to first express the discrete measurements as a
function of output derivatives and then invert the function to compute the derivatives
from the discrete measurements. Given the 𝑝 temporal derivatives ỹ at time 𝑡 , the 𝑝 output
sequence surrounding y can be approximated using Taylor series as follows [170]:

ŷ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

..
y(𝑡 −𝑑𝑡)
y(𝑡)

y(𝑡 +𝑑𝑡)
..

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (𝑌 ⊗ 𝐼𝑚)ỹ, 𝑌𝑖𝑗 =
[(𝑖 − 𝑐𝑒𝑖𝑙(

𝑝+1
2 ))𝑑𝑡]

𝑗−1

(𝑗 −1)!
, (6.8)

where 𝑖, 𝑗 = 1,2, ...𝑝+1, 𝑐𝑒𝑖𝑙(.) is the smallest integer function and �̂� has the size𝑚(𝑝 +1) × 1.
Therefore, generalized motion of output ỹ at time 𝑡 is:

ỹ = (𝑌 −1 ⊗ 𝐼𝑚)ŷ. (6.9)

Using ỹ embeds more temporal information about the plant into the data in the form of
conditional trajectories, with the disadvantage of a time latency of 𝑝

2𝑑𝑡 in estimation. For
robotic systems with high sampling rates, this latency in estimation is negligible [165, 166].
The next section employs this generalized output along with the generative model for
observer designs.

6.4.5 Notations and conventions
Throughout the paper, the superscript notation will be used to represent the quantity being
referred to, and the subscript notation will be used to represent the derivative operation.
For example, Π̃𝑤

𝜆 represents the derivative of the generalized precision of the process noise
𝑤 with respect to the hyperparameters 𝜆. The tilde operator (𝑥) is used to represent a
quantity in its generalized coordinates, whereas the bar operator (𝐹 ) is used to represent
the time integral of a quantity. All the probability distributions will be represented by the
𝑝(.) notation, whereas its expectation will be represented by the ⟨𝑝(.)⟩ notation.
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6.5 Free Energy Objectives
With the preliminaries in place, we can build up towards the complete DEM algorithm.
Eventually, in Sections 6.9 and 6.13, we will see that it is an optimization algorithm that
finds the best estimates for states, inputs, parameters, and hyperparameters for given
measurement data. This result is achieved by optimizing two objective functions, which
are the core objectives under the entire Free Energy Principle: the free energy and the free
action [2]. Here we derive and simplify this objective.

The derivation starts from the fundamentals of Variational Inference (VI) [52]. In VI,
the posterior distribution 𝑝(𝜗 /𝑦) of parameter 𝜗 , given the measurement 𝑦 , is expressed as:

𝑝(𝜗 /𝑦) =
𝑝(𝑦/𝜗 )𝑝(𝜗 )

𝑝(𝑦)
=
𝑝(𝜗,𝑦)
𝑝(𝑦)

=
𝑝(𝜗,𝑦)

∫ 𝑝(𝜗,𝑦)𝑑𝜗
. (6.10)

However, the marginalization over 𝜗 to calculate 𝑝(𝑦) is often intractable because the
search space of 𝜗 is large. A widely used technique is to introduce a variational distribution
𝑞(𝜗 ) known as the recognition density, which acts as an approximate representation of
the posterior distribution with 𝑞(𝜗 ) ≈ 𝑝(𝜗 /𝑦). A common method used among variational
Bayes algorithms is to minimize the Kullback–Leibler (KL) divergence between both the
distributions, defined as:

𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)) = ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) − ⟨ln𝑝(𝜗 /𝑦)⟩𝑞(𝜗 ), (6.11)

where ⟨.⟩𝑞(𝜗 ) represents the expectation over 𝑞(𝜗 ). Substituting Equation (6.10) in Equa-
tion (6.11) and using ∫ 𝑞(𝜗 )𝑑𝜗 = 1 yields:

𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)) = ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) − ⟨ln𝑝(𝜗,𝑦)⟩𝑞(𝜗 ) + ln𝑝(𝑦). (6.12)

The rearrangement of terms yield:

ln𝑝(𝑦) = ⟨ln𝑝(𝜗,𝑦)⟩𝑞(𝜗 ) − ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) +𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)),
= ⟨𝑈 (𝜗,𝑦)⟩𝑞(𝜗 ) +𝐻 (𝜗 )𝑞(𝜗 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

free energy

+𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)), (6.13)

where ln𝑝(𝑦) is the log-evidence, 𝑈 (𝜗,𝑦) = ln𝑝(𝜗,𝑦) is the internal energy and 𝐻 (𝜗 )𝑞(𝜗 ) =
−⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) is the entropy of the density. The free energy term in Equation (6.13) is
defined as the sum of an energy term and its entropy. It acts as the lower bound on the
log-evidence because the KL divergence term 𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)) is always positive. The
maximization of free energy minimizes the divergence term in Equation (6.13) because
the log-evidence is independent of 𝑞(𝜗 ), thereby rendering the variational density 𝑞(𝜗 )
as a close approximation of 𝑝(𝜗 /𝑦). Therefore, the difficult evaluation of an intractable
integral term in Equation (6.10) is converted into a much simpler optimization problem of
maximizing the free energy2. This reduces the problem of inference to a direct optimization
of its free energy objectives and is the fundamental idea behind variation inference. The
free energy term in Equation (6.13) is equivalent to the Evidence Lower Bound (ELBO) [52].
2maximization of the ELBO term (Section 1.4)
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It can be simplified as:

𝐹 = ⟨𝑈 (𝜗,𝑦)⟩𝑞(𝜗 ) +𝐻 (𝜗 )𝑞(𝜗 ) = ∫ 𝑞(𝜗 )𝑈 (𝜗,𝑦)𝑑𝜗 −∫ 𝑞(𝜗 ) ln𝑞(𝜗 )𝑑𝜗

= ∫ 𝑞(𝜗 ) ln𝑝(𝜗,𝑦)𝑑𝜗 −∫ 𝑞(𝜗 ) ln𝑞(𝜗 )𝑑𝜗.
(6.14)

However, when the parameter set to be estimated includes both the time-variant and the
time-invariant parameters, the free action is used as the objective function to be maximized.
The free action is defined as the time integral of the free energy and is given by:

𝐹 = �̄� (𝜗 ) + �̄� (𝜗 ) = ∫ ⟨𝑈 (𝜗,𝑦)⟩𝑞(𝜗 )𝑑𝑡 +∫ 𝐻 (𝜗 )𝑞(𝜗 )𝑑𝑡, (6.15)

where 𝑉 (𝜗 ) = ⟨𝑈 (𝜗,𝑦)⟩𝑞(𝜗 ) is called the variational free energy (VFE).
The next sections will deal with two main assumptions used in DEM to simplify the

free energy objectives, namely the Laplace approximation and the mean-field assumption.
The aim is to derive the simplified free energy objectives for an LTI system under these
assumptions.

6.6 Laplace Approximation
The first common approach to simplify the free energy objective is to assume the variational
density 𝑞(𝜗 ) to be Gaussian in nature with variational parameters 𝜗 and Σ𝜃 as its mode and
covariance, respectively, [205]. Here, the inverse of Σ𝜗 (denoted by Π𝜗 and known as the
conditional precision), represents the confidence in estimation. The recognition density
takes the following form:

𝑞(𝜗 ) = (𝜗 ∶ 𝜇𝜗 ,Σ𝜗 ) =
1√

(2𝜋 )𝑛 |Σ𝜗 |
𝑒−

1
2 (𝜗−𝜇

𝜗 )𝑇Π𝜗 (𝜗−𝜇𝜗 ). (6.16)

There are two main advantages with this approximation:

1. It simplifies the internal energy expression 𝑈 (𝜗,𝑦),

2. It facilitates an easy computation of the conditional precision Π𝜗 (derived in Section
6.8.2) as the negative curvature of the internal energy at it’s mode 𝜇𝜗 .

Therefore, the main aim of this section is to simplify the expression for internal energy
𝑈 (𝜗,𝑦) using the Laplace approximation, for an LTI system with its states, inputs, and
outputs expressed in generalized coordinates.

The internal energy in Equation (6.13) can be expressed as the sum of log-likelihood
and prior terms as:

𝑈 (𝜗,𝑦) = ln𝑝(𝜗,𝑦) = ln 𝑝(𝑦/𝜗 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
generative
model

+ ln𝑝(𝜗 )
⏟⏞⏞⏟⏞⏞⏟
prior

. (6.17)

The parameter set 𝜗 includes two types of parameters:

1. the states and inputs, which are time-varying and therefore expressed in generalized
coordinates,
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2. the parameters and hyperparameters, which are time-invariant and not expressed in
generalized coordinates.

Equation (6.17) can be simplified by assuming the conditional independence of 𝑥 and �̃�
with 𝜃 and 𝜆. This factorization separates the deterministic quantities from the stochastic
ones, thereby providing a separation of temporal scales. This is one of the core ideas
behind DEM, which will be detailed in Section 6.7. With the redefinition of 𝜗 = {𝑥, �̃�, 𝜃,𝜆},
Equation (6.17) simplifies to:

𝑈 (𝜗,𝑦) = ln𝑝(𝑦/𝑥, �̃�, 𝜃,𝜆) + ln𝑝(𝑥, �̃�, 𝜃,𝜆)
= ln𝑝(𝑦/𝑥, �̃�, 𝜃,𝜆) + ln𝑝(𝑥/�̃�, 𝜃,𝜆) + ln𝑝(�̃�) + ln𝑝(𝜃) + ln𝑝(𝜆).

(6.18)

DEM combines the new sensory information 𝑦 coming from the environment with the
robot brain’s priors (refer to Figure 6.1) in a Bayesian fashion, through the internal energy
𝑈 (𝜗,𝑦) expression given in Equation (6.18). The next sections will deal with simplifying
𝑈 (𝜗,𝑦) and its action �̄� by first modeling the probability distributions for the generative
model and the priors.

6.6.1 Generative Model
The probability distribution 𝑝(𝑦/𝑥, �̃�, 𝜃,𝜆), given in Equation (6.18), represents the genera-
tive model that predicts the output from the current parameter estimates. This probability
can be assumed to be Gaussian-distributed, centered around the model’s output prediction
�̃�𝑥 (from Equation (6.3)), with the same uncertainty as that of the measurement noise Σ̃𝑧 .
The distribution 𝑝(𝑦/𝜗 ) becomes:

𝑝(�̃�/𝜗 ) =
1√

(2𝜋 )𝑚(𝑝+1)|Σ̃𝑧 |
𝑒−

1
2 (�̃�−�̃�𝑥)

𝑇 Π̃𝑧 (�̃�−�̃�𝑥). (6.19)

Since the robot cannot directly measure 𝑥 in Equation (6.3), we track the motion of the
generalized states through the approximation ̇̃𝑥 = 𝑥 ′ = 𝐷𝑥𝑥 . The prediction for motion is
�̃�𝑥 + �̃��̃� with an uncertainty of Σ̃𝑤 . The Gaussian distribution becomes:

𝑝(𝑥 ′/𝑥, �̃�,𝜗 ,𝜆) =
1√

(2𝜋 )𝑛(𝑝+1)|Σ̃𝑤 |
𝑒−

1
2 (𝐷

𝑥𝑥−�̃�𝑥−�̃��̃�)𝑇 Π̃𝑤 (𝐷𝑥𝑥−�̃�𝑥−�̃��̃�). (6.20)

6.6.2 Prior Distributions
The remaining distributions 𝑝(�̃�), 𝑝(𝜃) and 𝑝(𝜆) are the priors of the robot brain that can
be transferred from prior (learned) experiences to the inference process. Similar to the
previous section, a Gaussian prior is placed over the inputs 𝑝(�̃�) = (�̃� ∶ 𝜂�̃� , 𝐿�̃�) as well,
with mean 𝜂�̃� and prior covariance 𝐿�̃� = (𝑃 �̃�)−1, as:

𝑝(�̃�) =
1√

(2𝜋 )𝑟(𝑑+1)|𝐿�̃� |
𝑒−

1
2 (�̃�−𝜂

�̃� )𝑇 𝑃 �̃� (�̃�−𝜂�̃� ). (6.21)

The prior distribution of parameters 𝜃 ∈ ℝ𝑙 is assumed to be a Gaussian-centred around
the prior parameter value 𝜂𝜃 , with the prior covariance 𝐿𝜃 = (𝑃𝜃 )−1:

𝑝(𝜃) = (𝜃 ∶ 𝜂𝜃 , 𝐿𝜃 ) =
1√

(2𝜋 )𝑙 |𝐿𝜃 |
𝑒−

1
2 (𝜃−𝜂

𝜃 )𝑇 𝑃𝜃 (𝜃−𝜂𝜃 ). (6.22)
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Similarly, a Gaussian prior is placed over the hyperparameters 𝜆 ∈ ℝ2:

𝑝(𝜆) = (𝜆 ∶ 𝜂𝜆 , 𝐿𝜆) =
1√

(2𝜋 )2|𝐿𝜆 |
𝑒−

1
2 (𝜆−𝜂

𝜆)𝑇 𝑃𝜆(𝜆−𝜂𝜆). (6.23)

A higher value of 𝑃 �̃� , 𝑃𝜃 and 𝑃𝜆 represents the robot’s higher confidence in its prior
estimates 𝜂�̃� , 𝜂𝜃 , and 𝜂𝜆 , respectively.

6.6.3 Simplification of the Internal Energy Action �̄�
This section aims at using the distributions from the previous sections to simplify �̄� . The
logarithm of a Gaussian prior after dropping constants takes the general form:

ln𝑝(𝜃) = ln (𝜃 ∶ 𝜂𝜃 , 𝐿𝜃 ) = −
1
2
(𝜃 −𝜂𝜃 )𝑇 (𝐿𝜃 )−1(𝜃 −𝜂𝜃 ) −

1
2
ln |𝐿𝜃 | (6.24)

Therefore, substituting Equations (6.19)-(6.23) in Equation (6.18) and simplifying it using
the prediction error terms 𝜖𝑥 = 𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�, 𝜖 �̃� = �̃� − �̃�𝑥, 𝜖 �̃� = �̃� − 𝜂�̃� 𝜖𝜃 = 𝜃 − 𝜂𝜃 , and
𝜖𝜆 = 𝜆−𝜂𝜆 , after dropping constants, yields:

𝑈 (𝜗,𝑦) =−
1
2
𝜖𝜃𝑇𝑃𝜃𝜖𝜃 +

1
2
ln |𝑃𝜃 |−

1
2
𝜖𝜆𝑇𝑃𝜆𝜖𝜆 +

1
2
ln |𝑃𝜆 |−

1
2
𝜖𝑇 Π̃𝜖 +

1
2
ln |Π̃|, (6.25)

where 𝜖 =
⎡
⎢
⎢
⎣

𝜖 �̃�
𝜖 �̃�
𝜖𝑥

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

�̃� − �̃�𝑥
�̃� −𝜂�̃�

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦
, and Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃 �̃� , Π̃𝑤 ). Here 𝑑𝑖𝑎𝑔(., .) is the block

diagonal operator. Grouping the internal energy terms of the temporal and nontemporal
parameters yields:

𝑈 (𝜗,𝑦) = 𝑈 (𝑡) +𝑈 (𝜃) +𝑈 (𝜆), (6.26)

where
𝑈 (𝑡) = −

1
2
𝜖𝑇 Π̃𝜖 +

1
2
ln |Π̃|. (6.27)

Summing up the internal energy of all the temporal parameters over time yields the action
of internal energy as follows:

�̄� = 𝑈 (𝜃) +𝑈 (𝜆) +∑
𝑡
𝑈 (𝑡)

= −
1
2
𝜖𝜃𝑇𝑃𝜃𝜖𝜃 +

1
2
ln |𝑃𝜃 |−

1
2
𝜖𝜆𝑇𝑃𝜆𝜖𝜆 +

1
2
ln |𝑃𝜆 |−∑

𝑡

1
2
𝜖𝑇 Π̃𝜖 +

1
2
∑
𝑡
ln |Π̃|.

(6.28)

It can be observed from Equation (6.28) that the robot’s priors (𝜂�̃� , 𝑃 �̃� , 𝜂𝜃 , 𝑃𝜃 , 𝜂𝜆 , 𝑃𝜆) enter
the free energy objective through the internal energy term. Intuitively, this can be seen
as the direct influence of the robot’s prior beliefs on the inference process through the
mismatches in the robot’s predictions. These weighed prediction errors drive the robot’s
desire to maintain an equilibrium between its internal model and the generative process in
the environment. A large mismatch between the robot’s predictions and the data results in
a large prediction error, which gets precision-weighted and enters the free energy objective
through its internal energy.
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6.7 Mean-Field Approximation
The second widely used assumption for the simplification of free energy objectives is the
factorization of parameters into independent subdensities for the recognition density [170],
given by:

𝑞(𝜗 ) =∏
𝑖
𝑞(𝜃 𝑖) = 𝑞(𝑥)𝑞(�̃�)𝑞(𝜃)𝑞(𝜆). (6.29)

This approximation assumes the conditional independence between subdensities (states and
parameters, for example). The subdensities are assumed to interact with each other only
through the mean-field quantities. The strong biological plausibility of this approximation
in terms of biological brain’s inference process is delineated in [44]. The main advantage of
this approximation is the simplification of �̄� in Equation (6.15). However, the mathematical
proof for this simplification is missing from the DEM literature [170]. Therefore, this
section aims to fill this gap by deriving these proofs by delineating all the intermediate
assumptions.

6.7.1 Simplification of the Entropy Action �̄�
The entropy of the density in Equation (6.14), given by 𝐻 (𝜗 )𝑞(𝜗 ) = −⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ), can be
simplified for all parameters as:

𝐻 (𝜗 )𝑞(𝜗 ) = −∫ ∫ ∫ ∫ 𝑞(𝑥, �̃�, 𝜃,𝜆) ln𝑞(𝑥, �̃�, 𝜃,𝜆)𝑑𝑥𝑑�̃�𝑑𝜃𝑑𝜆 (6.30)

Substituting the mean-field assumption given in Equation (6.29) in Equation (6.30) and
using the property of normalized recognition densities ∫ 𝑞(𝜃 𝑖)𝑑𝜃 𝑖 = 1 yields:

𝐻 (𝜗 )𝑞(𝜗 ) = 𝐻 (𝜃) +𝐻 (𝜆) +𝐻 (𝑡), (6.31)

where 𝐻 (𝜃) = −⟨ln𝑞(𝜃)⟩𝑞(𝜃), 𝐻 (𝜆) = −⟨ln𝑞(𝜆)⟩𝑞(𝜆) and 𝐻 (𝑡) = −⟨ln𝑞(𝑥)⟩𝑞(𝑥) − ⟨ln𝑞(�̃�)⟩𝑞(�̃�).
We place the Laplace approximation over the marginals of the recognition densities of all
parameters as:

𝑞(𝜃) = (𝜃 ∶ 𝜇𝜃 ,Σ𝜃 ) =
1√

(2𝜋 )𝑙 |Σ𝜃 |
𝑒−

1
2 (𝜃−𝜇

𝜃 )𝑇Π𝜃 (𝜃−𝜇𝜃 )

𝑞(𝜆) = (𝜆 ∶ 𝜇𝜆 ,Σ𝜆) =
1√

(2𝜋 )2|Σ𝜆 |
𝑒−

1
2 (𝜆−𝜇

𝜆)𝑇Π𝜆(𝜆−𝜇𝜆)

𝑞(𝑥) = (𝑥 ∶ 𝜇𝑥 ,Σ𝑥 ) =
1√

(2𝜋 )𝑛(𝑝+1)|Σ𝑥 |
𝑒−

1
2 (𝑥−𝜇

𝑥 )𝑇Π𝑥 (𝑥−𝜇𝑥 )

𝑞(�̃�) = (�̃� ∶ 𝜇�̃� ,Σ�̃�) =
1√

(2𝜋 )𝑟(𝑑+1)|Σ�̃� |
𝑒−

1
2 (�̃�−𝜇

�̃� )𝑇Π�̃� (�̃�−𝜇�̃� ).

(6.32)

The recognition densities given in Equation (6.32) might look similar to the priors distri-
butions given in Equation (6.21)-(6.23), mainly due to the common Gaussian distribution.
The prior distributions are centered around the prior mean and prior covariances, whereas
the recognition density is centered around the mean 𝜇𝑖 and conditional covariance Σ𝑖 of
the 𝑖-th parameter set.
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The action of entropy can be calculated by substituting Equation (6.32) in Equation (6.31)
and summing up the entropy terms of time dependent parameters with respect to time.
Upon dropping the constant terms, it simplifies to:

�̄� = 𝐻 (𝜃) +𝐻 (𝜆) +∑
𝑡
𝐻 (𝑡) =

1
2
ln |Σ𝜃 |+

1
2
ln |Σ𝜆 |+

1
2
∑
𝑡
ln |Σ𝑥 |+

1
2
∑
𝑡
ln |Σ�̃� |, (6.33)

Equation (6.33) shows how the uncertainty in the robot’s inference directly enters the
objective 𝐹 , through �̄� .

6.7.2 Mean-Field Terms
Given the simplified expressions for �̄� and �̄� , the next step towards finding 𝐹 in Equa-
tion (6.15) is to evaluate �̄� given by:

�̄� = ∫ ⟨𝑈 (𝑦,𝜗 )⟩𝑞(𝜗 )𝑑𝑡 (6.34)

𝑈 (𝑦,𝜗 ) can be simplified using the second-degree Taylor series expansion near the mean
𝜇𝜗 = {𝜇𝑥 , 𝜇�̃� , 𝜇𝜃 , 𝜇𝜆} as:

𝑈 (𝑦,𝑥, �̃�, 𝜃,𝜆) =𝑈 (𝑦,𝜇𝜗 ) +
4
∑
𝑖=1

𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖 (𝜃
𝑖 − 𝜇𝑖) +

4
∑
𝑖=1

4
∑
𝑗=1

(𝜃 𝑖 − 𝜇𝑖)𝑇𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 (𝜃
𝑗 − 𝜇𝑗 ),

(6.35)

where we use the shorthand 𝑈 (𝑦,𝜇𝜗 ) = 𝑈 (𝑦,𝜗 )|𝜗=𝜇𝜗 and 𝑈 (𝑦,𝜇𝜗 )𝜗 = 𝑈 (𝑦,𝜗 )𝜗 |𝜗=𝜇𝜗 . This
approximation of the internal energy has nontrivial implications in terms of the biological
brain’s decision-making process [43]. The second order approximation is justified because
the Laplace and mean-field approximations entail an internal energy that is quadratic in 𝑥 ,
�̃�, and 𝜃 , as given in Equation (6.25), thereby reducing all its higher-order derivatives to
zero. Moreover, the higher derivatives of 𝑈 (𝑦,𝜇𝜗 ) with respect to 𝜆, reduce to zero because
of the assumptions made in Section 6.10. By differentiating Equation (6.25) at the mean
𝜇𝑖 , 𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖 can be found to be all zeroes, which upon substitution in Equation (6.35)
simplifies to:

𝑈 (𝑦,𝜗 ) = 𝑈 (𝑦,𝜇𝜗 ) +
4
∑
𝑖=1

4
∑
𝑗=1

(𝜃 𝑖 − 𝜇𝑖)𝑇𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 (𝜃
𝑗 − 𝜇𝑗 ). (6.36)

Substituting it in Equation (6.34), upon simplification yields:

�̄� = �̄� (𝑦,𝜇𝜗 ) +∫ 𝑊𝑑𝑡 (6.37)
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where

𝑊 =
1
2

4
∑
𝑖,𝑗=1

⟨(𝜃 𝑖 − 𝜇𝑖)𝑇𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 (𝜃
𝑗 − 𝜇𝑗 )⟩𝑞(𝜗 𝑖 )𝑞(𝜗 𝑗 )

=
1
2

4
∑
𝑖,𝑗=1

⟨𝑡𝑟((𝜃
𝑖 − 𝜇𝑖)𝑇𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 (𝜃

𝑗 − 𝜇𝑗 ))⟩𝑞(𝜗 𝑖 )𝑞(𝜗 𝑗 )

=
1
2

4
∑
𝑖,𝑗=1

⟨𝑡𝑟((𝜃
𝑗 − 𝜇𝑗 )(𝜃 𝑖 − 𝜇𝑖)𝑇𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗)⟩𝑞(𝜗 𝑖 )𝑞(𝜗 𝑗 )

=
1
2

4
∑
𝑖,𝑗=1

𝑡𝑟[⟨(𝜃 𝑗 − 𝜇𝑗 )(𝜃 𝑖 − 𝜇𝑖)𝑇 ⟩𝑞(𝜗 𝑖 )𝑞(𝜗 𝑗 )𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 ] =
1
2

4
∑
𝑖,𝑗=1

𝑡𝑟[Σ𝑖𝑗𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑗 ]

Since the parameters 𝜗 𝑖 are assumed to be independent of each other, the covariance
between them drops to zero, resulting in:

�̄� = �̄� (𝑦,𝜇𝜗 ) +
1
2 ∫

4
∑
𝑖=1

𝑡𝑟[Σ𝑖𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑖]𝑑𝑡

= �̄� (𝑦,𝜇𝜗 ) +∫ [𝑊 𝑥 +𝑊 �̃� +𝑊 𝜃 +𝑊 𝜆]𝑑𝑡,
(6.38)

where
𝑊 𝜗 𝑖 =

1
2
𝑡𝑟[Σ𝑖𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑖] (6.39)

is defined as the mean-field term. Equation (6.38) shows that �̄� is the sum of internal energy
action and the mean field terms. The simplification of �̄� is one of the main advantages
of using mean-field approximation. However, this approximation can be relaxed to build
Generalized Filtering [169, 209], which is mainly relevant to nonlinear identification. It
involves the modeling of parameters and hyperparameters in generalized coordinates
(together with states) for online system identification. However, in this work, we take a
simpler approach.

6.8 Simplified Free Energy Objectives
This section aims at simplifying the free energy objectives using the results from Sections
6.6 and 6.7.

6.8.1 Simplification of Free Action
𝐹 is simplified by substituting Equations (6.38), (6.28), and (6.33) into Equation (6.15),
yielding:

𝐹 =−
1
2
(𝜖𝜃𝑇𝑃𝜃𝜖𝜃 )|𝜗=𝜇𝜗 +

1
2
ln |𝑃𝜃 |−

1
2
(𝜖𝜆𝑇𝑃𝜆𝜖𝜆)|𝜗=𝜇𝜗 +

1
2
ln |𝑃𝜆 |−∑

𝑡

1
2
(𝜖𝑇 Π̃𝜖)|𝜗=𝜇𝜗

+
1
2
∑
𝑡
(ln |Π̃|)|𝜗=𝜇𝜗 +

1
2
∑
𝑡
(ln |Σ𝑥 |+ ln |Σ�̃� |) +

1
2
ln |Σ𝜃 |+

1
2
ln |Σ𝜆 |

+
1
2
∑
𝑡
𝑡𝑟[Σ𝑥𝑈 (𝑦,𝜇𝜗 )𝑥𝑥 +Σ�̃�𝑈 (𝑦,𝜇𝜗 )�̃��̃� +Σ𝜃𝑈 (𝑦,𝜇𝜗 )𝜃𝜃 +Σ𝜆𝑈 (𝑦,𝜇𝜗 )𝜆𝜆].

(6.40)
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We highlight three important terms in Equation (6.40): the combined prediction error of
(generalized) outputs, inputs, and states 𝐸 = 1

2 (𝜖
𝑇 Π̃𝜖)|𝜗=𝜇𝜗 , the log determinant of noise

precision 𝐺 = (ln |Π̃|)|𝜗=𝜇𝜗 , and the mean field term𝑊 𝜗 𝑖 = 1
2 𝑡𝑟[Σ

𝑖𝑈 (𝑦,𝜇𝜗 )𝜃 𝑖𝜃 𝑖]. These terms
will be used rigorously in the rest of the document.

6.8.2 Simplification of the Parameter Precisions
One of the main advantages of Laplace approximation is the simple evaluation of the
covariance associated with the parameter estimation. This is achieved by setting the
gradient of the free action with respect to individual parameter covariance as zero. The
free action gradients with respect to covariance of paramaters 𝜗 𝑖 is given by:

𝜕𝐹
𝜕Σ𝑖

=
𝜕
𝜕Σ𝑖 (

1
2
ln |Σ𝑖 |+

1
2
∑
𝑡
𝑡𝑟(Σ𝑖𝑈 (𝑦,𝜇𝜗 )𝜗 𝑖𝜗 𝑖 ))) =

1
2(

(Σ𝑖)−1 + �̄� (𝑦,𝜇𝜗 )𝜗 𝑖𝜗 𝑖). (6.41)

The optimal parameter covariance is the covariance that maximizes the free action with
zero gradients. Assuming that the parameter covariances are time-invariant, and equating
the gradients to zero yields Π𝑖 = −�̄� (𝑦,𝜇𝜗 )𝜗 𝑖𝜗 𝑖 , resulting in:

Π𝑥 = −𝑈 (𝑦,𝜇𝜗 )𝑥𝑥 , Π�̃� = −𝑈 (𝑦,𝜇𝜗 )�̃��̃� , Π𝜃 = −�̄� (𝑦,𝜇𝜗 )𝜃𝜃 , Π𝜆 = −�̄� (𝑦,𝜇𝜗 )𝜆𝜆 (6.42)

From Equation (6.42), it is clear that the precision of parameters can be estimated just by
evaluating the negative curvature of the internal energy at the conditional mode. These
precision values denote the confidence of the estimator in the parameter estimate. Ideally,
the parameter precision increases as the estimation process proceeds. Intuitively, the robot
is more confident about its estimates (higher precision) when its predictions on the sensory
data show the least variance.

6.8.3 Free Action at Optimal Precision
Substituting Equation (6.42) into Equation (6.39) at optimal precisions results in constant
mean field terms. Therefore, the mean field terms in the free action given in Equation (6.40),
reduces to a constant under the optimal precision given by Equation (6.42). Therefore, the
free action at optimal precision for an LTI system reduces to:

𝐹 =−
1
2
∑
𝑡
[ (ỹ− �̃�𝑥)

𝑇 Π̃𝑧(ỹ− �̃�𝑥) |||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of outputs

+(�̃� −𝜂�̃�)𝑇𝑃 �̃�(�̃� −𝜂�̃�) |||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of inputs

]

−
1
2
(𝜃 −𝜂𝜃 )𝑇𝑃𝜃 (𝜃 −𝜂𝜃 ) |||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of parameters

−
1
2

(𝜆−𝜂𝜆)𝑇𝑃𝜆(𝜆−𝜂𝜆) |||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of hyperparameters

−
1
2
∑
𝑡
(𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)𝑇 Π̃𝑤 (𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�) |||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prediction error of (generalized) states

+
1
2
𝑛𝑡 ln |Σ𝑋 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
state and input entropy

+
1
2
𝑛𝑡 [ ln |Π̃𝑧 |+ ln |𝑃 �̃� |+ ln |Π̃𝑤 |]

|||𝜗=𝜇𝜗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise entropy

+
1
2
ln |Σ𝜃𝑃𝜃 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
parameter entropy

+
1
2
ln |Σ𝜆𝑃𝜆 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
hyperparameter entropy

(6.43)
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Note that the free action is not a function of the latent variables (𝜗 = {𝑥, �̃�, 𝜃,𝜆}) but the
sufficient statistics (𝜇𝜗 ,Σ𝜗 ) of the approximate posterior. For example, the weighted output
prediction error term of 𝐹 is (ỹ− �̃�𝑥)𝑇 Π̃𝑧(ỹ− �̃�𝑥) |||𝜗=𝜇𝜗 = (ỹ− 𝜇�̃�𝜇𝑥 )𝑇 Π̃𝑧 |||𝜆𝑧=𝜇𝜆

𝑧 (ỹ− 𝜇�̃�𝜇𝑥 ),

where |||𝜗=𝜇𝜗 denotes the evaluation at 𝜗 = 𝜇𝜗 , (𝑥 = 𝜇𝑥 , �̃� = 𝜇�̃� , 𝜃 = 𝜇𝜃 , 𝜆 = 𝜇𝜆). We regroup

the time-dependent components into one variable 𝑋 = [
𝜇𝑥
𝜇�̃�], and use capital letters for the

mean estimates of time-independent components (Θ = 𝜇𝜃 ,Λ = 𝜇𝜆). Note that 𝑋,Θ, and Λ
are part of the generative model and are the mean estimate of the components of plant
dynamics.

6.8.4 Eqivalence with the EM Algorithm
One of the most popular approaches to solve the Expectiation Maximization (EM) algorithm
for state space models is to use the Maximum Likelihood Estimation (MLE), where the
objective function is the log-likelihood of data, given by [232]:

ln𝐿 = −
1
2
∑
𝑡
(𝑥𝑡 −𝐴𝑥𝑡−1 −𝐵𝑢𝑡−1)𝑇Π𝑤 (𝑥𝑡 −𝐴𝑥𝑡−1 −𝐵𝑢𝑡−1) −

𝑛𝑡
2
ln |Σ𝑤 |

−
𝑛𝑡
2
ln |Σ𝑧 |−

1
2
ln |Σ𝑥 |−

1
2
(𝑥0 − 𝜇)𝑇Π𝑥 (𝑥0 − 𝜇) −

1
2
∑
𝑡
(𝑦𝑡 −𝐶𝑥𝑡 )𝑇Π𝑧(𝑦𝑡 −𝐶𝑥𝑡 ).

(6.44)

Comparing the objective functions of EM and DEM given by Equation (6.44) and Equa-
tion (6.43), respectively, DEM is equivalent to EM when:

• the mean field terms are neglected,

• the generalized motion is not considered, and

• the robot’s priors on 𝜗 are not considered.

Therefore, DEM can be considered as a generalized version of the EM algorithm with
additional capabilities.

The free action at optimal precision (Equation (6.43)) is the sum of prediction errors
(PE) and entropy of generalized states, parameters, noise, and hyperparameters and is
independent of mean-field terms. Although the mean-field terms turns into a constant
at optimal precision, their gradients do not. This property is leveraged in Section 6.9 to
account for the uncertainties in the parameter estimation during state estimation and vice
versa, through the gradient of mean-field terms.

6.9 Update Rules for Estimation
The Free Energy objectives (Section 6.5), together with the two simplifying approximations
(Sections 6.6 and 6.7), will be combined with an optimization procedure to form the ultimate
DEM algorithm. The optimization procedure itself consists of the following two sets of
update rules:

1. a gradient ascent over its free action 𝐹 for the time invariant parameters 𝜃 and 𝜆,
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2. a gradient ascent over its free energy 𝐹 for the time varying parameters 𝑋 ,

where 𝐹 and 𝐹 are related through 𝐹 = 𝜕𝐹
𝜕𝑡 . The core idea is that the time varying parameters

𝑥 and �̃� can be estimated online from the robot’s instantaneous free energy, whereas the
time-invariant parameters 𝜃 and 𝜆 can be estimated from its free action after observing a
sequence of data. Accordingly, the update rules for both the gradient ascends are given by

𝜕𝜇𝑖

𝜕𝑎
= 𝑘𝑖

𝜕𝐹
𝜕𝜇𝑖

, (6.45)

for the 𝑎𝑡ℎ parameter update of the time invariant parameters and

𝜕𝜇𝑖

𝜕𝑡
= 𝐷𝜇𝑖 +𝑘𝑖

𝜕𝐹
𝜕𝜇𝑖

, (6.46)

for the time=varying parameters, where 𝑘𝑖 is the learning rate. The presence of 𝐷𝜇𝑖
term in Equation (6.46) differentiates the update rule from the general gradient ascent
equation used in machine learning. This is to accommodate the boundary condition that
when 𝐹 is maximized, 𝜕𝐹

𝜕𝜇𝑖 = 0 and �̇�𝑖 = 𝐷𝜇𝑖 . In other words, when the free energy is
maximized, the motion of the generalized states becomes their generalized motion [233].
However, the update equations for the time-invariant parameters, 𝜃 and 𝜆, do not require
the 𝐷𝜇𝑖 term. Therefore, the update equations at 𝑡 𝑡ℎ time, 𝑎𝑡ℎ parameter update step, and
𝑏𝑡ℎ hyperparameter update step, after regrouping the (generalized) states and inputs as

𝑋 = [
𝜇𝑥
𝜇�̃�], is given by:

𝜕𝑋
𝜕𝑡

= 𝐷𝑋 +𝑘𝑋
𝜕𝐹
𝜕𝑋

,
𝜕Θ
𝜕𝑎

= 𝑘Θ
𝜕𝐹
𝜕Θ

,
𝜕Λ
𝜕𝑏

= 𝑘Λ
𝜕𝐹
𝜕Λ

, (6.47)

where 𝐷 = 𝑑𝑖𝑎𝑔(𝐷𝑥 ,𝐷𝑣). Note that the gradient update rules are written not on the la-
tent variables (𝑥, �̃�, 𝜃 and 𝜆), but on their mean estimates (𝑋,Θ and Λ). Since the up-
date rules should be implemented in the discrete domain for robotics applications, Equa-
tion (6.47) is discretized under local linearization with the corresponding Jacobians as
𝐽𝑋 = 𝐷 +𝑘𝑋 𝜕2𝐹

𝜕𝑋 2 , 𝐽Θ = 𝑘Θ 𝜕2𝐹
𝜕Θ2 , and 𝐽Λ = 𝑘Λ 𝜕2𝐹

𝜕Λ2 . The (generalized) state and input update at
time 𝑡 , parameter update at step 𝑎 and hyperparameter update at step 𝑏 are given by:

𝑋𝑡+Δ𝑡 = 𝑋𝑡 +(𝑒𝐽
𝑋Δ𝑡 − 𝐼)(𝐽𝑋 )−1

𝜕𝑋
𝜕𝑡

,

Θ𝑎+1 = Θ𝑎 +(𝑒𝐽
Θ
− 𝐼)(𝐽Θ)−1

𝜕Θ
𝜕𝑎

,

Λ𝑏+1 = Λ𝑏 +(𝑒𝐽
Λ
− 𝐼)(𝐽Λ)−1

𝜕Λ
𝜕𝑏

.

(6.48)

Equation (6.48) shows that the update rules are dependent only on the gradients and
curvatures of the free energy objectives.
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6.9.1 The DEM Algorithm
The DEM algorithm is an iterative model inversion algorithm that uses Equations (6.48)
and (6.42) to perform estimation on causal dynamic systems. It can be expressed using
three steps:

1. D step: (generalized) state and input estimation,

2. E step: parameter estimation,

3. M step: noise hyperparameter estimation,

a nomenclature that is similar to the EM algorithm. Figure 6.2 shows an intuitive block
diagram that demonstrates the inference process of DEM as a coupled dynamics between D,
E, and M steps. The data from the environment and the robot brain’s prior distributions are
used to infer the generative process. The pseudocode given in Algorithm 1 demonstrates
how DEM performs estimation using only the gradient and curvatures of the free energy
objectives. The next sections will focus on deriving the algebraic expressions for these
quantities.

Fig 6.2: The DEM algorithm is represented using three coupled steps: D, E, andM steps. The algorithm
combines the data from the environment with the robot’s prior beliefs to infer the states, inputs,
parameters and hyperparameters of the system. For each parameter update in the E step, the D
step updates the (generalized) states and inputs for all times instances, and the M step iterates until
hyperparameter convergence, as demonstrated in Algorithm 1. The dynamic process is the generative
model in Section 6.4.1, the priors are the distributions given in Section 6.6.2 and the generalized
coordinates block is defined in Section 6.4.4. Section 6.14 will elaborate on the D, E, and M blocks.

6.9.2 Updated Eqations for Estimation
The free energy gradients in Equation (6.47) can be evaluated by differentiating Equa-
tion (6.40) with 𝜇𝑖 . Substituting the resulting expression in Equation (6.47), upon simplifi-



6.9 Update Rules for Estimation

6

99

Algorithm 1 Dynamics Expectation Maximization
Data: Time series data of output y
Result: 𝑋,Θ,Λ,Π𝑥,�̃� ,Π𝜃 ,Π𝜆

𝑎 = 0
while Θ not converged do

for t = 0:Δ𝑡 :T do ⊳ D step
𝜕𝑋
𝜕𝑡 = 𝐷𝑋 +𝑘𝑋 𝜕𝐹

𝜕𝑋
𝐽𝑋 = 𝐷 +𝑘𝑋 𝜕2𝐹

𝜕𝑋 2

𝑋𝑡+Δ𝑡 = 𝑋𝑡 + (𝑒𝐽
𝑋Δ𝑡 − 𝐼 )(𝐽𝑋 )−1 𝜕𝑋𝜕𝑡

end
while Λ not converged do ⊳ M step

𝜕Λ
𝜕𝑏 = 𝑘Λ 𝜕𝐹

𝜕Λ
𝐽Λ = 𝑘Λ 𝜕2𝐹

𝜕Λ2

Λ←− Λ+ (𝑒𝐽Λ − 𝐼 )(𝐽Λ)−1 𝜕Λ𝜕𝑏
end
𝐹𝑎 ←− Equation (6.43) ⊳ 𝐹 at optimal precision
if 𝐹𝑎 > 𝐹𝑎−1 then ⊳ update Θ if 𝐹 increased

𝜕Θ
𝜕𝑎 = 𝑘Θ 𝜕𝐹

𝜕Θ
𝐽Θ = 𝑘Θ 𝜕2𝐹

𝜕Θ2

Θ←− Θ+ (𝑒𝐽Θ − 𝐼 )(𝐽Θ)−1 𝜕Θ𝜕𝑎 ; ⊳ E step

end
𝑎++
Π𝑥,�̃� = −𝑈 (𝑦,𝜇𝜗 )

[𝑥�̃�][
𝑥
�̃�]

; ⊳ update generalized state precision

Π𝜃 = −�̄� (𝑦,𝜇𝜗 )𝜃𝜃 ; ⊳ parameter precision
Π𝜆 = −�̄� (𝑦,𝜇𝜗 )𝜆𝜆 ; ⊳ hyperparameter precision

end

cation yields:

�̇� = 𝐷𝑋 +𝑘𝑋 [−𝐸𝑋 +𝑊 𝑋
𝑋 +𝑊Θ

𝑋 +𝑊 Λ
𝑋 ]

𝜕Θ
𝜕𝑎

= 𝑘Θ[−𝑃
𝜃𝜖𝜃 |||𝜗=𝜇𝜗 +∑

𝑡
(−𝐸Θ +𝑊

𝑋
Θ +𝑊Θ

Θ +𝑊 Λ
Θ)]

𝜕Λ
𝜕𝑏

= 𝑘Λ[−𝑃
𝜆𝜖𝜆 |||𝜗=𝜇𝜗 +∑

𝑡
(−𝐸Λ +𝑊 𝑋

Λ +𝑊Θ
Λ +𝑊 Λ

Λ +𝐺Λ)],

(6.49)

where 𝐸𝜇𝑖 = 𝜕𝐸
𝜕𝜇𝑖 =

1
2
𝜕(𝜖𝑇 Π̃𝜖)|||𝜗=𝜇𝜗

𝜕𝜇𝑖 is the gradient of the prediction error with respect to 𝜇𝑖 ,

𝑊 𝜇𝑖
𝜇𝑗 =

𝜕𝑊 𝜇𝑖

𝜕𝜇𝑗 = 1
2

𝜕
𝜕𝜇𝑗 𝑡𝑟[Σ

𝑖𝑈 (𝑦,𝜇𝜗 )𝜇𝑖𝜇𝑖] is the gradient of the mean field term of 𝜇𝑖 with respect

to 𝜇𝑗 , and 𝐺Λ = 1
2

𝜕
𝜕Λ ln |Π̃| |||𝜗=𝜇𝜗 is the gradient of the log-determinant of the precision matrix
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with respect to Λ. From Equation (6.49), the Jacobians that are required for the updates
given in Equation (6.48) can be evaluated as:

𝐽𝑋 = 𝐷 +𝑘𝑋 [−𝐸𝑋𝑋 +𝑊 𝑋
𝑋𝑋 +𝑊Θ

𝑋𝑋 +𝑊 Λ
𝑋𝑋 ]

𝐽Θ = 𝑘Θ[−𝑃
𝜃 +∑

𝑡
(−𝐸ΘΘ +𝑊

𝑋
ΘΘ +𝑊

Θ
ΘΘ +𝑊

Λ
ΘΘ)]

𝐽Λ = 𝑘Λ[−𝑃
𝜆 +∑

𝑡
(−𝐸ΛΛ +𝑊

𝑋
ΛΛ +𝑊

Θ
ΛΛ +𝑊

Λ
ΛΛ +𝐺ΛΛ)]

(6.50)

The Jacobians are employed in different loops corresponding to the D, E, and M steps in
the Algorithm 1.

6.9.3 Update Eqation for Precision of Estimates
The uncertainty in estimation is represented by the inverse of precision matrices Π𝜗 𝑖 .
Differentiating Equations (6.25) and (6.28) twice and substituting it into Equation (6.42)
upon simplification yield:

Π𝑥,�̃� = −𝑈 (𝑦,𝜇𝜗 )
[𝑥�̃�][

𝑥
�̃�]

= 𝐸𝑋𝑋

Π𝜃 = −�̄� (𝑦,𝜇𝜗 )𝜃𝜃 = 𝑃𝜃 +∑
𝑡
𝐸ΘΘ

Π𝜆 = −�̄� (𝑦,𝜇𝜗 )𝜆𝜆 = 𝑃𝜆 +∑
𝑡
(𝐸ΛΛ −𝐺ΛΛ))

(6.51)

The only unknowns in the DEM update equations given by Equations (6.49), (6.50), and
(6.51) are the gradients and curvatures of 𝐸,𝑊 , and 𝐺. Sections 6.10–6.12 will deal with
evaluating the simplified algebraic expressions for these gradients and curvatures. Using
these simplifications, Section 6.13 will proceed towards expanding Algorithm 1.

6.10 Gradients of (Log Determinant of) Precision
This section aims at evaluating the gradients of the log determinant of noise precision
(𝐺Λ,𝐺ΛΛ) that are required for the hyperparameter update rules of the DEM algorithm.
The precision matrix for hyperparameter estimation is modeled as:

Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃 �̃� , Π̃𝑤 ) = 𝑑𝑖𝑎𝑔(𝑒𝜆
𝑧
(𝑆 ⊗Ω𝑧), 𝑃 �̃� , 𝑒𝜆

𝑤
(𝑆 ⊗Ω𝑤 )), (6.52)

where 𝑆 is the noise smoothness matrix given by Equation (6.7) and Ω𝑧 ,Ω𝑤 are the constant
matrices given in Equation (6.6). Here the precision matrix is parametrized using 𝜆 = [ 𝜆𝑧

𝜆𝑤 ],
which is the only unknown in Equation (6.52). Therefore, the log determinant of precision
and its gradients can be written as:

𝐺 = ln |Π̃| |||𝜗=𝜇𝜗 , 𝐺Λ =
1
2 [

𝑡𝑟(Π̃𝜆𝑧 Π̃−1)
𝑡𝑟(Π̃𝜆𝑤 Π̃−1)]

|||𝜗=𝜇𝜗 ,

𝐺Λ𝑖Λ𝑗 =
1
2
𝑡𝑟(Π̃𝜆𝑖𝜆𝑗 Π̃

−1 − Π̃𝜆𝑖 Π̃
−1Π̃𝜆𝑗 Π̃

−1) |||𝜗=𝜇𝜗 ,
(6.53)
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where 𝜆𝑖 is the 𝑖𝑡ℎ element in 𝜆. The gradients of precision in Equation (6.53) can be
evaluated by differentiating Equation (6.52) as:

Π̃𝜆𝑧 = 𝑑𝑖𝑎𝑔(𝑒𝜆
𝑧
(𝑆 ⊗Ω𝑧),𝑂,𝑂) = 𝑑𝑖𝑎𝑔(Π̃𝑧 ,𝑂,𝑂),

Π̃𝜆𝑤 = 𝑑𝑖𝑎𝑔(𝑂,𝑂,𝑒𝜆
𝑤
(𝑆 ⊗Ω𝑧)) = 𝑑𝑖𝑎𝑔(𝑂,𝑂, Π̃𝑧),

Π̃𝜆𝑧𝜆𝑤 = 𝑂, Π̃𝜆𝑤𝜆𝑧 = 𝑂.

(6.54)

Substituting Equations (6.54) and (6.52) in Equation (6.53) yields:

𝐺Λ =
1
2 [

𝑡𝑟(𝐼𝑛Π̃𝑧 )
𝑡𝑟(𝐼𝑛Π̃𝑤 )]

=
1
2 [

𝑛Π̃𝑧

𝑛Π̃𝑤 ] , (6.55)

where 𝐼𝑛Π̃𝑧 is the identity matrix of size 𝑛Π̃𝑧 , which is the size of the Π̃𝑧 matrix. Π𝑤

and Π𝑧 are modeled to have an exponential relation with 𝜆, so that any updates on 𝜆
would result in positive semi-definite precision matrices. However, this relation entails an
infinitely differentiable precision matrix with respect to 𝜆, increasing the computational
complexity of the algorithm. Therefore, an approximation is made by forcefully setting
Π̃𝜆𝑧𝜆𝑧 = Π̃𝜆𝑤𝜆𝑤 = 𝑂, while maintaining the exponential relation between Π̃ and 𝜆, thereby
ensuring that the optimization process proceeds along the correct gradients Π̃𝜆 . Together
with Equation (6.54), this approximation results in Π̃𝜆𝜆 = 𝑂. This assumption has two direct
consequences:

• It simplifies all the update rules given in Equations (6.49) and (6.50),

• It simplifies the precision update rule for hyperparameters given in Equation (6.51).

A direct consequence of this approximation is in the simplification of𝐺ΛΛ in Equation (6.53),
expressed as:

𝐺ΛΛ = −
1
2 [

𝑡𝑟(Π̃𝜆𝑧 Π̃−1Π̃𝜆𝑧 Π̃−1) 𝑡𝑟(Π̃𝜆𝑧 Π̃−1Π̃𝜆𝑤 Π̃−1)
𝑡𝑟(Π̃𝜆𝑤 Π̃−1Π̃𝜆𝑧 Π̃−1) 𝑡𝑟(Π̃𝜆𝑤 Π̃−1Π̃𝜆𝑤 Π̃−1)]

|||𝜗=𝜇𝜗 , (6.56)

which upon substitution of Equations (6.52) and Equation (6.54) yields:

𝐺ΛΛ = −
1
2 [

𝑡𝑟(𝐼𝑛Π̃𝑧 ) 𝑂
𝑂 𝑡𝑟(𝐼𝑛Π̃𝑤 )]

= −
1
2 [

𝑛Π̃𝑧 𝑂
𝑂 𝑛Π̃𝑤 ] , (6.57)

where 𝑛Π̃𝑧 =𝑚(𝑝+1) and 𝑛Π̃𝑤 = 𝑛(𝑝+1) are the sizes of Π̃𝑧 and Π̃𝑤 , respectively. From Equa-
tions (6.55) and (6.57), 𝐺Λ and 𝐺ΛΛ are constants, and can be pre-computed in Algorithm
1.

6.11 Gradients of Prediction Error
As opposed to the result above, the gradients of the prediction errors are not constant, as is
shown in this section.



6

102 6 Dynamic Expectation Maximization

6.11.1 Gradients ofPredictionErrorAlong (Generalized) States
The error in prediction of (generalized) outputs, inputs and states is represented together
by 𝜖, which makes up the precision weighted prediction error defined by 𝐸 = 1

2𝜖
𝑇 Π̃𝜖 |||𝜗=𝜇𝜗 ,

where Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃 �̃� , Π̃𝑤 ). The error and its gradient are:

𝜖 =
⎡
⎢
⎢
⎣

ỹ− �̃�𝑥
�̃� −𝜂�̃�

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦
, 𝜖𝑋

|||𝜗=𝜇𝜗 =
⎡
⎢
⎢
⎣

−�̃� 𝑂
𝑂 𝐼

𝐷𝑥 − �̃� −�̃�

⎤
⎥
⎥
⎦
. (6.58)

The gradient of prediction error with respect to 𝑋 can be simplified as:

𝐸𝑋 = 𝜖𝑇𝑋 Π̃𝜖
|||𝜗=𝜇𝜗 = 𝐴1𝑋 +𝐵1 [

ỹ
−𝜂�̃�] , (6.59)

where 𝐴1 = [
�̃�𝑇 Π̃𝑧�̃� + (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) −(𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�

−�̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) 𝑃 �̃� + �̃�𝑇 Π̃𝑤 �̃� ]
|||𝜗=𝜇𝜗 and

𝐵1 = [
−�̃�𝑇 Π̃𝑧 𝑂

𝑂 𝑃 �̃�]
|||𝜗=𝜇𝜗 . Since 𝐸𝑋 is linear in 𝑋 , differentiating Equation (6.59) with

respect to 𝑋 yields a simple expression for curvature 𝐸𝑋𝑋 as:

𝐸𝑋𝑋 = 𝜖𝑇𝑋 Π̃𝜖𝑋
|||𝜗=𝜇𝜗 = [

�̃�𝑇 Π̃𝑧�̃� + (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) −(𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�
−�̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) 𝑃 �̃� + �̃�𝑇 Π̃𝑤 �̃� ]

|||𝜗=𝜇𝜗 . (6.60)

6.11.2 Gradients of Prediction Error Along Parameters
To evaluate the gradients of prediction error along the parameters Θ, the reformulated
definition of 𝜖 is used:

𝜖 =
⎡
⎢
⎢
⎣

ỹ−𝑁𝜃
�̃� −𝜂�̃�

𝐷𝑥𝑥 −𝑀𝜃

⎤
⎥
⎥
⎦
, 𝜖Θ = (𝜖𝜃 )|𝜃=𝜇𝜃 =

⎡
⎢
⎢
⎣

−𝑁
𝑂
−𝑀

⎤
⎥
⎥
⎦
, (6.61)

where 𝑀 and 𝑁 are given in Equation (6.5). This is to ensure that the variable Θ can be
separated out of the expression for 𝐸Θ such that it is linear in Θ as follows:

𝐸Θ = (𝜖𝑇𝜃 Π̃𝜖)|𝜗=𝜇𝜗 = −[𝑁 𝑇 𝑂 𝑀𝑇 ] Π̃
⎡
⎢
⎢
⎣

ỹ−𝑁𝜃
�̃� − �̃�

𝐷𝑥𝑥 −𝑀𝜃

⎤
⎥
⎥
⎦

|||𝜗=𝜇𝜗

= (𝑁 𝑇 Π̃𝑧𝑁 +𝑀𝑇 Π̃𝑤𝑀) |||𝜗=𝜇𝜗 Θ− [𝑁 𝑇 Π̃𝑧 𝑀𝑇 Π̃𝑤𝐷𝑥]
|||𝜗=𝜇𝜗 [

ỹ
𝜇𝑥]

= 𝐴2Θ−𝐵2 [
ỹ
𝜇𝑥] .

(6.62)

Since 𝐸Θ is linear in Θ, differentiating Equation (6.62) with respect to Θ yields a simple
expression for 𝐸ΘΘ as:

𝐸ΘΘ = (𝜖𝑇𝜃 Π̃𝜖𝜃 )
|||𝜗=𝜇𝜗 = [𝑁 𝑇 Π̃𝑧𝑁 +𝑀𝑇 Π̃𝑤𝑀]

|||𝜗=𝜇𝜗 = 𝐴2. (6.63)
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6.11.3 Gradients of Prediction Error Along Hyperparameters
The gradients of prediction error along the hyperparameters Λ is simpler, and is given by
𝐸Λ = 1

2𝜖
𝑇 Π̃𝜆𝜖

|||𝜗=𝜇𝜗 , 𝐸ΛΛ = 1
2𝜖

𝑇 Π̃𝜆𝜆𝜖
|||𝜗=𝜇𝜗 , which upon using Π̃𝜆𝜆 = 0, gives:

𝐸Λ =
1
2
𝑡𝑟(Π̃𝜆𝜖𝜖𝑇 )

|||𝜗=𝜇𝜗 =
1
2 [

𝑡𝑟(Π̃𝑧(ỹ− �̃�𝑥)(ỹ− �̃�𝑥)𝑇 )
𝑡𝑟(Π̃𝑤 (𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)(𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)𝑇 )]

|||𝜗=𝜇𝜗 ,

𝐸ΛΛ =
1
2
𝜖𝑇 Π̃𝜆𝜆𝜖

|||𝜗=𝜇𝜗 = 0.
(6.64)

In summary, Equations (6.59), (6.62), and (6.64) represent the gradients of the prediction
error term, whereas Equations (6.60), (6.63), and (6.64) represent its curvatures. The next
sectionwill deal with evaluating the analytic expressions for all the gradients and curvatures
of the mean field term.

6.12 Gradients of Mean Field Terms
This section aims to derive the analytic expressions for the mean field terms and their
gradients: 𝑊 𝜇𝑖

𝜇𝑗 and 𝑊 𝜇𝑖
𝜇𝑗𝜇𝑗 , ∀ 𝜇 ∈ {𝑋,Θ,Λ}.

6.12.1 Gradients of mean field terms along hyperparameters
In this section, we prove that all the gradients and curvatures of 𝑊 Λ (namely 𝑊 Λ

𝜇𝑖 and
𝑊 Λ

𝜇𝑖𝜇𝑖 ) are zeroes. The mean field term for hyperparameters Λ can be expressed as:

𝑊 Λ =
1
2
𝑡𝑟[Σ

𝜆𝑈 (𝑦,𝜇𝜗 )𝜆𝜆]. (6.65)

To compute the gradients of𝑊 Λ, we need the curvature of internal energy with respect
to 𝜆. This can be evaluated by first differentiating Equation (6.25) with respect to 𝜆 and
evaluating it at 𝜗 = 𝜇𝜗 , which yields:

𝑈 (𝑦,𝜇𝜗 )𝜆 = 𝑈 (𝑦,𝜗 )𝜆
|||𝜗=𝜇𝜗 = −𝑃𝜆𝜖𝜆 |||𝜗=𝜇𝜗 −

1
2
(𝜖𝑇 Π̃𝜆𝜖)

|||𝜗=𝜇𝜗 +𝐺Λ, (6.66)

where 𝐺Λ is given by Equation (6.55). Upon further differentiation, we get:

𝑈 (𝑦,𝜇𝜗 )𝜆𝜆 = −𝑃𝜆 −
1
2
(𝜖𝑇 Π̃𝜆𝜆𝜖)

|||𝜗=𝜇𝜗 +𝐺ΛΛ. (6.67)

The assumption of Π̃𝜆𝜆 = 0 applied to Equation (6.67) yields:

𝑈 (𝑦,𝜇𝜗 )𝜆𝜆 = −𝑃𝜆 +𝐺ΛΛ (6.68)

which contains only constants. Therefore, the assumption of Π̃𝜆𝜆 = 0 reduces all the
gradients and curvatures of mean field terms of Λ to zeros:

𝑊 Λ
𝜇𝑖 =

1
2
𝑡𝑟[Σ

𝜆𝑈 (𝑦,𝜇𝜗 )𝜆𝜆𝜇𝑖] = 0, 𝑊 Λ
𝜇𝑖𝜇𝑖 = 0. (6.69)

Since the internal energy given in Equation (6.25) is quadratic in 𝜗 𝑖 , and since Π̃𝜆𝜆 = 0, all
the gradients and curvatures of the mean field term of 𝜗 𝑖 with respect to itself are zeros:

𝑊 𝜇𝑖
𝜇𝑖 =

1
2
𝑡𝑟[Σ

𝜗 𝑖𝑈 (𝑦,𝜇𝜗 )𝜗 𝑖𝜗 𝑖𝜇𝑖] = 0, 𝑊 𝜇𝑖
𝜇𝑖𝜇𝑖 = 0. (6.70)
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6.12.2 Gradients ofMeanFieldTermsAlongGeneralized States
The mean-field term of the combined generalized states 𝑋 can be expressed as:

𝑊 𝑋 =
1
2
𝑡𝑟[Σ

𝑋𝑈 (𝑦,𝜇𝜗 )𝑋𝑋 ]. (6.71)

The curvature of internal energy with respect to 𝑋 can be calculated by differentiating
Equation (6.25) with respect to 𝑋 twice, resulting in 𝑈 (𝑦,𝜇𝜗 )𝑋𝑋 = − 1

2𝜖
𝑇
𝑋 Π̃𝜖𝑋 . Substituting

it in Equation (6.71) upon differentiation with Θ yields:

𝑊 𝑋
Θ𝑖 = −

1
2
𝑡𝑟(Σ𝑋 𝜖𝑇𝑋𝜃 𝑖 Π̃𝜖𝑋 )

|||𝜗=𝜇𝜗 = −
1
2
𝑡𝑟(Σ

𝑋
[
−�̃�𝑇

𝜃 𝑖 𝑂 −�̃�𝑇
𝜃 𝑖

𝑂 𝑂 −�̃�𝑇𝜃 𝑖 ]
Π̃
⎡
⎢
⎢
⎣

−�̃� 𝑂
𝑂 𝐼

𝐷𝑥 − �̃� −�̃�

⎤
⎥
⎥
⎦
)
|||𝜗=𝜇𝜗

= −
1
2
𝑡𝑟[Σ

𝑋
[
�̃�𝑇
𝜃 𝑖 Π̃

𝑧�̃� − �̃�𝑇
𝜃 𝑖 Π̃

𝑤 (𝐷𝑥 − �̃�) �̃�𝑇
𝜃 𝑖 Π̃

𝑤 �̃�
−�̃�𝑇𝜃 𝑖 Π̃

𝑤 (𝐷𝑥 − �̃�) �̃�𝑇𝜃 𝑖 Π̃
𝑤 �̃�]]

|||𝜗=𝜇𝜗 ,

(6.72)

where the gradient of the mean field with respect to Θ is given by𝑊 𝑋
Θ =

[𝑊 𝑋
Θ1 𝑊 𝑋

Θ2 ... 𝑊 𝑋
Θ𝑖]

𝑇 . Similarly, the elements of the curvature matrix of the mean
field term with respect to Θ is given by:

𝑊 𝑋
Θ𝑖Θ𝑗 = −

1
2
𝑡𝑟(Σ𝑋 𝜖𝑇𝑋𝜃 𝑖 Π̃𝜖𝑋𝜃 𝑗 )

|||𝜗=𝜇𝜗 = −
1
2
𝑡𝑟[Σ𝑋 [

�̃�𝑇
𝜃 𝑖 Π̃

𝑧�̃�𝜃 𝑗 + �̃�𝑇
𝜃 𝑖 Π̃

𝑤�̃�𝜃 𝑗 �̃�𝑇
𝜃 𝑖 Π̃

𝑤 �̃�𝜃 𝑗
�̃�𝑇𝜃 𝑖 Π̃

𝑤�̃�𝜃 𝑗 �̃�𝑇𝜃 𝑖 Π̃
𝑤 �̃�𝑇𝜃 𝑗 ]

]
|||𝜗=𝜇𝜗 .

(6.73)
The gradient and curvature of the mean field term of 𝑋 with respect to Λ can be evaluated
as:

𝑊 𝑋
Λ = −

1
2
𝑡𝑟(Σ𝑋 𝜖𝑇𝑋 Π̃𝜆𝜖𝑋 )

|||𝜗=𝜇𝜗 = −
1
2
𝑡𝑟(Π̃𝜆𝜖𝑋Σ𝑋 𝜖𝑇𝑋 )

|||𝜗=𝜇𝜗

= −
1
2 [

𝑡𝑟(Π̃𝑧�̃�Σ𝑥 �̃�𝑇 )
𝑡𝑟(Π̃𝑤[ (𝐷𝑥−�̃�), −�̃�]Σ𝑋 [ (𝐷

𝑥−�̃�)𝑇

−�̃�𝑇 ])]
|||𝜗=𝜇𝜗

𝑊 𝑋
ΛΛ = −

1
2
𝑡𝑟(Π̃𝜆𝜆𝜖𝑋Σ𝑋 𝜖𝑇𝑋 )

|||𝜗=𝜇𝜗 = 0,

(6.74)

where Σ𝑥 is a component of Σ𝑋 = [ Σ𝑥 Σ𝑥�̃�
Σ𝑥�̃� Σ�̃� ]. Here the curvature𝑊 𝑋

ΛΛ vanishes due to the
assumption that Π̃𝜆𝜆 = 0.

6.12.3 Gradients of Mean Field Terms Along Parameters
The mean-field term of the parameters Θ can be expressed as

𝑊Θ =
1
2
𝑡𝑟[Σ𝜃𝑈 (𝑦,𝜇𝜗 )𝜃𝜃] =

1
2
𝑡𝑟[Σ𝜃 (−𝑃𝜃 − 𝜖𝑇𝜃 Π̃𝜖𝜃 )]

|||𝜗=𝜇𝜗 . (6.75)

Differentiating Equation (6.75) with 𝑋 and substituting Equation (6.61) in it yields the
gradient as:

𝑊Θ
𝑋 = −

1
2

⎡
⎢
⎢
⎢
⎣

𝑡𝑟(Σ
𝜃
(𝑁

𝑇
𝑋 1Π̃𝑧𝑁 +𝑀𝑇

𝑋 1Π̃𝑤𝑀))
𝑡𝑟(Σ

𝜃
(𝑁

𝑇
𝑋 2Π̃𝑧𝑁 +𝑀𝑇

𝑋 2Π̃𝑤𝑀))
...

⎤
⎥
⎥
⎥
⎦

|||𝜗=𝜇𝜗 , (6.76)
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and the elements of the curvature matrix as:

𝑊Θ
𝑋 𝑖𝑋 𝑗 = −

1
2
𝑡𝑟(Σ

𝜃(𝑁 𝑇
𝑋 𝑖 Π̃𝑧𝑁𝑋 𝑗 +𝑀𝑇

𝑋 𝑖 Π̃𝑤𝑀𝑇
𝑋 𝑗))

|||𝜗=𝜇𝜗 . (6.77)

Differentiating Equation (6.75) with respect to 𝜆 yields the gradient and curvature as:

𝑊Θ
Λ = −

1
2
𝑡𝑟(Σ𝜃𝜖𝑇𝜃 Π̃𝜆𝜖𝜃 )

|||𝜗=𝜇𝜗 = −
1
2
𝑡𝑟(Π̃𝜆𝜖𝜃Σ𝜃𝜖𝑇𝜃 )

|||𝜗=𝜇𝜗 ,

= −
1
2[

𝑡𝑟(Π̃𝜆𝑧 𝜖𝜃Σ𝜃 𝜖𝑇𝜃 )
𝑡𝑟(Π̃𝜆𝑤 𝜖𝜃Σ𝜃 𝜖𝑇𝜃 )]

|||𝜗=𝜇𝜗 = −
1
2[

𝑡𝑟(Π̃𝑧𝑁Σ𝜃𝑁 𝑇 )
𝑡𝑟(Π̃𝑤𝑀Σ𝜃𝑀𝑇 )]

|||𝜗=𝜇𝜗

𝑊Θ
ΛΛ = −

1
2
𝑡𝑟(Π̃𝜆𝜆𝜖𝜃Σ𝜃𝜖𝑇𝜃 )

|||𝜗=𝜇𝜗 = 0.

(6.78)

Here,𝑊Θ
ΛΛ vanishes due to the assumption that Π̃𝜆𝜆 = 0.

6.13 The Complete DEM Algorithm
By combining the gradients found from Sections 6.10, 6.11, and 6.12 with the Algorithm 1,
we can finalize the full DEM algorithm so that it can iteratively compute the estimates and
the associated precisions from data.

6.13.1 DEM Estimates
The main equations that are required to perform the update rules of DEM given in Equa-
tion (6.48) can be summarized as:

�̇� = 𝐷𝑋 +𝑘𝑋 (−𝐸𝑋 +𝑊Θ
𝑋 ), 𝐽𝑋 = 𝐷 +𝑘𝑋 (−𝐸𝑋𝑋 +𝑊Θ

𝑋𝑋 )
𝜕Θ
𝜕𝑎

= 𝑘Θ[−𝑃
𝜃𝜖𝜃 |||𝜗=𝜇𝜗 +∑

𝑡
(−𝐸Θ +𝑊

𝑋
Θ )], 𝐽

Θ = 𝑘Θ[−𝑃
𝜃 +∑

𝑡
(−𝐸ΘΘ +𝑊

𝑋
ΘΘ)]

𝜕Λ
𝜕𝑏

= 𝑘Λ[−𝑃
𝜆𝜖𝜆 |||𝜗=𝜇𝜗 +∑

𝑡
(−𝐸Λ +𝑊 𝑋

Λ +𝑊Θ
Λ +𝐺Λ)], 𝐽

Λ = 𝑘Λ(−𝑃𝜆 +𝑛𝑡𝐺ΛΛ)

(6.79)

where 𝐸𝑋 ,𝐸𝑋𝑋 ,𝐸Θ,𝐸ΘΘ,𝐸Λ,𝑊Θ
𝑋 ,𝑊Θ

𝑋𝑋 ,𝑊 𝑋
Θ ,𝑊 𝑋

ΘΘ,𝑊 𝑋
Λ , 𝑊Θ

Λ ,𝐺Λ, 𝑎𝑛𝑑𝐺ΛΛ are given by Equa-
tions (6.59), (6.60), (6.62), (6.63), (6.64), (6.76), (6.77), (6.72), (6.73), (6.74), (6.78), (6.55), and
(6.57), respectively. The hyperparameter update rule can be further simplified to reduce
the computational complexity as:

𝜕Λ
𝜕𝑏

= −𝑘Λ𝑃𝜆𝜖𝜆 |||𝜗=𝜇𝜗 +
𝑘Λ𝑛𝑡

2 [
𝑛Π̃

𝑧

𝑛Π̃
𝑤 ]−

𝑘Λ

2 [
𝑡𝑟(Π̃𝑧𝐴3)
𝑡𝑟(Π̃𝑤𝐵3)]

|||𝜗=𝜇𝜗 (6.80)

where

𝐴3 =∑
𝑡
((ỹ− �̃�𝑥)(ỹ− �̃�𝑥)𝑇 +𝑁Σ𝜃𝑁 𝑇 + �̃�Σ𝑥𝑥 �̃�𝑇 )

𝐵3 =∑
𝑡
((𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)(𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)𝑇 +𝑀Σ𝜃𝑀𝑇 + [ (𝐷𝑥−�̃�), −�̃�]Σ𝑋 [ (𝐷

𝑥−�̃�)𝑇

−�̃�𝑇 ]).

Substituting Equation (6.57) to the expression for 𝐽Λ in Equation (6.79) yields:
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𝐽Λ = −𝑘Λ(𝑃𝜆 +
𝑛𝑡

2 [
𝑛Π̃𝑧 𝑂
𝑂 𝑛Π̃𝑤 ]), (6.81)

which is independent of Λ. This reduces the algorithm’s computational complexity, as 𝐽Λ
can now be pre-computed.

6.13.2 Precision of Estimates
This section simplifies the precision for DEM’s estimates for an LTI system. The confidence
in the estimate of (generalized) states and inputs can be simplified using Equations (6.51)
and (6.60) as:

Π𝑥,�̃� = 𝐸𝑋𝑋 = [
�̃�𝑇 Π̃𝑧�̃� + (𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) −(𝐷𝑥 − �̃�)𝑇 Π̃𝑤 �̃�

−�̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) 𝑃 �̃� + �̃�𝑇 Π̃𝑤 �̃� ]
|||𝜗=𝜇𝜗 . (6.82)

From Equation (6.82), the precisions for state and input estimation are Π𝑥𝑥 = �̃�𝑇 Π̃𝑧�̃� +
(𝐷𝑥 − �̃�)𝑇 Π̃𝑤 (𝐷𝑥 − �̃�) and Π�̃��̃� = 𝑃 �̃� + �̃�𝑇 Π̃𝑤 �̃�, respectively. The cross-correlation between
the (generalized) states and inputs are given by −�̃�𝑇 Π̃𝑤 (𝐷𝑥 − �̃�). Since Π𝑥,�̃� is independent
of 𝑋 , it can be updated outside the D step.

Combining the results of Equations (6.51) and (6.63) yields the precision of parameter
estimates Π𝜃 , which is independent of Θ, as:

Π𝜃 = 𝑃𝜃 +∑
𝑡
𝐸ΘΘ = 𝑃𝜃 +∑

𝑡
[𝑁 𝑇 Π̃𝑧𝑁 +𝑀𝑇 Π̃𝑤𝑀]

|||𝜗=𝜇𝜗 . (6.83)

From Equations (6.51), (6.64), and (6.57), the precision of hyperparameter estimation is:

Π𝜆 = 𝑃𝜆 +∑
𝑡
(𝐸ΛΛ −𝐺ΛΛ)) = 𝑃𝜆 +

𝑛𝑡

2
𝑑𝑖𝑎𝑔(𝑛Π̃

𝑧
, 𝑛Π̃

𝑤
), (6.84)

which is a constant and hence is never updated in the algorithm. In conclusion, the
estimation using Equation (6.79), along with the precision of these estimates given by
Equations (6.82), (6.83), and (6.84) completely define the DEM algorithm for an LTI system
with colored noises. The complete DEM algorithm is given in Algorithm 2.
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Algorithm 2 Dynamics Expectation Maximization
Data: Time series data of output y
Result: (𝑋,Θ,Λ), (Π𝑥,�̃� ,Π𝜃 ,Π𝜆)
𝑎 = 0
Evaluate ỹ from y ⊳ Equation (6.9)
Precompute gradients �̃�𝜃 𝑖 , �̃�𝜃 𝑖 , �̃�𝜃 𝑖 ,𝑁𝑋 𝑖 ,𝑀𝑋 𝑖

Set all priors: 𝜂�̃� , 𝑃 �̃� , 𝜂𝜃 , 𝑃𝜃 , 𝜂𝜆 , 𝑃𝜆

Initialize Θ,Λ,Π𝑋 ,Π𝜃 ,Π𝜆 with their priors
𝐺Λ,𝐺ΛΛ ←− Equation (6.55) and (6.57)
Π𝜆 ←− 𝑃𝜆 −𝑛𝑡𝐺ΛΛ
𝐽Λ ←− 𝑘Λ(−𝑃𝜆 +𝑛𝑡𝐺ΛΛ)
while Θ not converged do ⊳ E step loop

Set 𝐸Θ,𝐸ΘΘ,𝐸1 to zero
𝑊Θ

𝑋𝑋 ←− 𝑓 𝑖𝑛𝑑𝑊Θ
𝑋𝑋 (𝑁𝑋 ,𝑀𝑋 , Π̃,Π𝜃 ) ; ⊳ Equation (6.77)

𝐸𝑋𝑋 ←− 𝑓 𝑖𝑛𝑑𝐸𝑋𝑋 (𝐴,𝐵,𝐶, Π̃) ; ⊳ Equation (6.60)
𝐽𝑋 ←− 𝐷 +𝑘𝑋 (−𝐸𝑋𝑋 +𝑊Θ

𝑋𝑋 )
for t = 0:Δ𝑡 :T do ⊳ D step loop

// Perform D step
𝑊Θ

𝑋 ←− Equation (6.76), 𝐸𝑋 ←− Equation (6.59)
𝜕𝑋
𝜕𝑡 ←− 𝐷𝑋 +𝑘𝑋 (−𝐸𝑋 +𝑊Θ

𝑋 )
𝑋𝑡+Δ𝑡 ←− 𝑋𝑡 + (𝑒𝐽

𝑋Δ𝑡 − 𝐼 )(𝐽𝑋 )−1 𝜕𝑋𝜕𝑡
// Accumulate terms for E step

𝑀,𝑁 ←− Equation (6.5); ⊳ use new 𝑋
𝐴2,𝐵2 ←− Equation (6.62)
𝐸Θ ←− 𝐸Θ +𝐴2Θ−𝐵2[

ỹ
𝜇𝑥 ]

𝐸ΘΘ ←− 𝐸ΘΘ +𝐴2
// Accumulate terms for M step

𝜖,𝜖𝑋 , 𝜖Θ ←− Equation (6.58), (6.61)
𝐸1 ←− 𝐸1 + 𝜖𝜖𝑇 + 𝜖𝑋Σ𝑋 𝜖𝑇𝑋 + 𝜖ΘΣ𝜃𝜖𝑇Θ

end
while Λ not converged do ⊳ M step loop

𝜕Λ
𝜕𝑏 ←− 𝑘Λ(−𝑃𝜆𝜖𝜆 +𝐺Λ − 1

2[
𝑡𝑟(Π̃𝜆𝑧 𝐸1)
𝑡𝑟(Π̃𝜆𝑤 𝐸1)])

Λ←− Λ+ (𝑒𝐽Λ − 𝐼 )(𝐽Λ)−1 𝜕Λ𝜕𝑏
Π̃←− Equation (6.52) ; ⊳ update with new Λ

end
𝐹𝑎 ←− 𝑓 𝑖𝑛𝑑𝐹 (𝑋,Π𝑋 ,Θ,Π𝜃 ,Λ,Π𝜆) ; ⊳ Equation (6.43)
if 𝐹𝑎 > 𝐹𝑎−1 then ⊳ update Θ if 𝐹 increased

𝑊 𝑋
Θ ,𝑊 𝑋

ΘΘ ←− Equation (6.72), (6.73)
𝜕Θ
𝜕𝑎 ←− 𝑘Θ[−𝑃𝜃𝜖Θ −𝐸Θ +𝑛𝑡𝑊 𝑋

Θ ]
𝐽Θ ←− 𝑘Θ[−𝑃𝜃 −𝐸ΘΘ +𝑛𝑡𝑊 𝑋

ΘΘ]
Θ←− Θ+ (𝑒𝐽Θ − 𝐼 )(𝐽Θ)−1 𝜕Θ𝜕𝑎 ; ⊳ E step
𝐴,𝐵,𝐶 ←− Equation (6.4) ; ⊳ update with new Θ

end
𝑎++
Π𝑥,�̃� = 𝐸𝑋𝑋 ; ⊳ update generalized state precision
Π𝜃 = 𝑃𝜃 +𝐸ΘΘ ; ⊳ update parameter precision

end
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6.14 Translation into SimplifiedMathematical Form
Although the pseudocode derived in the previous sections is sufficient to replicate the DEM
algorithm for an LTI system with colored noise, it is not sufficient to analyze DEM using
the standard control systems tools for stability checks, convergence, etc. Therefore, in
this section we translate the algorithm into a simplified mathematical form that control
engineers can easily analyze. The following subsections aim at converting the DEM updates
into a coupled linear system.

6.14.1 State and Input Estimation as a Linear Observer
This section deals with reformulating the D step of DEM for an LTI system as a (generalized)
state and input observer. Substituting Equation (6.59) in Equation (6.79) with a learning
rate of 𝑘𝑋 = 1 yields [46]:

�̇� = [
̇̃𝑥
̇̃𝑣] = (𝐷 −𝐴1)𝑋 −𝐵1 [

ỹ
−𝜂�̃�]+𝑊

Θ
𝑋 . (6.85)

We now aim to mathematically prove that the (generalized) state and input observer of
DEM can be reduced into an augmented LTI system, for which an exact discretization can
be performed. We proceed by simplifying the mean field terms in Equation (6.39) as:

𝑊Θ
𝑋 =−

1
2

⎡
⎢
⎢
⎣

𝑡𝑟(Σ𝜃 (𝑁 𝑇
𝑋 1Π̃𝑧𝑁 +𝑀𝑇

𝑋 1Π̃𝑤𝑀))
𝑡𝑟(Σ𝜃 (𝑁 𝑇

𝑋 2Π̃𝑧𝑁 +𝑀𝑇
𝑋 2Π̃𝑤𝑀))

...

⎤
⎥
⎥
⎦

|||𝜗=𝜇𝜗

=−
1
2

⎡
⎢
⎢
⎣

𝑣𝑒𝑐(Σ𝜃𝑇 )𝑇 (𝐼 ⊗ (𝑁 𝑇
𝑋 1Π̃𝑧)𝑣𝑒𝑐(𝑁 ))+

𝑣𝑒𝑐(Σ𝜃𝑇 )𝑇 (𝐼 ⊗ (𝑀𝑇
𝑋 1Π̃𝑤 )𝑣𝑒𝑐(𝑀))

...

⎤
⎥
⎥
⎦

|||𝜗=𝜇𝜗

=(𝑍𝑁
𝑋 𝑣𝑒𝑐(𝑁 ) +𝑍𝑀

𝑋 𝑣𝑒𝑐(𝑀)) |||𝜗=𝜇𝜗 ,

(6.86)

where,

𝑍𝑁
𝑋 = −

1
2
(𝐼 ⊗𝑣𝑒𝑐(Σ𝜃𝑇 )𝑇 )

⎡
⎢
⎢
⎣

𝐼 ⊗ (𝑁 𝑇
𝑋 1Π̃𝑧)

𝐼 ⊗ (𝑁 𝑇
𝑋 2Π̃𝑧)
...

⎤
⎥
⎥
⎦
, 𝑍𝑀

𝑋 = −
1
2
(𝐼 ⊗𝑣𝑒𝑐(Σ𝜃𝑇 )𝑇 )

⎡
⎢
⎢
⎣

𝐼 ⊗ (𝑀𝑇
𝑋 1Π̃𝑤 )

𝐼 ⊗ (𝑀𝑇
𝑋 2Π̃𝑤 )
...

⎤
⎥
⎥
⎦
. (6.87)

Since 𝑀 and 𝑁 can be obtained from linear transformation of 𝑋 , 𝑣𝑒𝑐(𝑀) and 𝑣𝑒𝑐(𝑁 ) can
be written as:

𝑣𝑒𝑐(𝑀) = 𝑍𝑀𝑋 and 𝑣𝑒𝑐(𝑁 ) = 𝑍𝑁𝑋, (6.88)
where 𝑍𝑀 and 𝑍𝑁 are matrices with elements 0 and 1. This leads to the mean field term
being expressed as a linear transformation of 𝑋 :

𝑊Θ
𝑋 = (𝑍𝑁

𝑋 𝑍𝑁 +𝑍𝑀
𝑋 𝑍𝑀 ) |||𝜗=𝜇𝜗 𝑋. (6.89)

Substituting Equation (6.89) into Equation (6.85) simplifies the observer as:

�̇� = 𝐴4𝑋 +𝐵4 [
ỹ
−𝜂�̃�] ,

𝐴4 = 𝐷 −𝐴1 + (𝑍𝑁
𝑋 𝑍𝑁 +𝑍𝑀

𝑋 𝑍𝑀 ) |||𝜗=𝜇𝜗 and 𝐵4 = −𝐵1.
(6.90)
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The (generalized) state and input observer given by Equation (6.90) is of the form of an
augmented LTI system. Therefore, an exact discretization can be used to solve it without
using the second order gradient 𝐽𝑋 as given in Equation (6.48). This reduces the algorithm’s
computational complexity because 𝐸𝑋𝑋 and𝑊Θ

𝑋𝑋 for 𝐽𝑋 calculation are no longer necessary.
Figure 6.3 shows the simplified control diagram of the observer. The stability condition of
this observer (under known 𝜃 and 𝜆) and its similarity with the Kalman Filter is discussed in
our prior work [46]. To evaluate𝑊Θ

𝑋 , one could either use Equation (6.89) or Equation (6.76).
Equation (6.90) is derived mainly for simplification and exact discretization.

Fig 6.3: The DEM algorithm for an LTI system, with the D step simplified as an augmented LTI
system given by Equation (6.90). The D-step block corresponds to the D-step loop in Algorithm 2
and operates at a different frequency from the E and M blocks.

6.14.2 Parameter Estimation—System Identification
This section aims to mathematically prove that the E step can be reduced to an augmented
LTI system, for which an exact discretization can be performed. We proceed by first
simplifying the parameter update equation given in Equation (6.79):

𝜕Θ
𝜕𝑎

= −𝑃𝜃 (Θ−𝜂𝜃 ) |||𝜗=𝜇𝜗 +∑
𝑡
(−𝐸Θ +𝑊 𝑋

Θ ). (6.91)

Grouping all𝑊 𝑋
Θ𝑖 using Equation (6.72) yields:

𝑊 𝑋
Θ = −

1
2(

𝐼 ⊗𝑣𝑒𝑐(Σ𝑋𝑇 )𝑇)
⎡
⎢
⎢
⎣

𝐼 ⊗ 𝜖𝑇𝑋𝜃1Π̃
𝐼 ⊗ 𝜖𝑇𝑋𝜃2Π̃

...

⎤
⎥
⎥
⎦
𝑣𝑒𝑐(𝜖𝑋 )

|||𝜗=𝜇𝜗 = 𝑍 𝜖
𝜃 𝑣𝑒𝑐(𝜖𝑋 )

|||𝜗=𝜇𝜗 (6.92)

where

𝜖𝑇𝑋𝜃 𝑖 Π̃ = −[
�̃�𝑇
𝜃 𝑖 Π̃

𝑧 𝑂 �̃�𝑇
𝜃 𝑖 Π̃

𝑤

𝑂 𝑂 �̃�𝑇𝜃 𝑖 Π̃
𝑤 ] ,𝑣𝑒𝑐(𝜖𝑋 ) = −𝑣𝑒𝑐[

�̃� 𝑂
𝑂 𝑂
�̃� �̃� ]

+𝑣𝑒𝑐[
𝑂 𝑂
𝑂 𝐼
𝐷𝑥 𝑂 ]

= −𝑍 𝜃𝜃 +𝑍 𝐼 . (6.93)
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Here 𝑍 𝜃 and 𝑍 𝐼 are constant matrices with elements 0 and 1. Substituting 𝑣𝑒𝑐(𝜖𝑋 ) from
Equation (6.93) in Equation (6.92) yields:

𝑊 𝑋
Θ = −(𝑍 𝜖

𝜃 𝑍
𝜃 )|𝜗=𝜇𝜗Θ+(𝑍 𝜖

𝜃 𝑍
𝐼 )|𝜗=𝜇𝜗 . (6.94)

Substituting Equations (6.94) and (6.62) in Equation (6.91), simplifies the parameter
update equation to

𝜕Θ
𝜕𝑎

= 𝐴5Θ+𝐵5,

𝐴5 = −[𝑃𝜃 +𝑛𝑡 (𝑍 𝜖
𝜃 𝑍

𝜃 )|𝜗=𝜇𝜗 +∑
𝑡
𝐴2], 𝐵5 = 𝑃𝜃𝜂𝜃 +𝑛𝑡 (𝑍 𝜖

𝜃 𝑍
𝐼 )|𝜗=𝜇𝜗 +∑

𝑡
𝐵2[

ỹ
𝜇𝑥 ],

(6.95)

where𝐴2 and 𝐵2 are given in Equation (6.62). Equation (6.95) is a linear differential equation
in Θ for which an exact discretization can be computed. For each Θ update in Algorithm 2,
𝐴2 and 𝐵2 are also updated, consequently updating 𝐴5 and 𝐵5. Therefore, Equation (6.95)
is equivalent to a linear time-varying system. Figure 6.4 shows the simplified parameter
estimation step of the robot brain. To evaluate𝑊 𝑋

Θ , one could use either Equation (6.72) or
Equation (6.94). Equation (6.94) was derived mainly for the exact discretization and for the
convergence proof in Section 6.15.

Fig 6.4: The DEM algorithm for an LTI system, with the E step simplified as an augmented LTI system
given by Equation (6.95). The E-step block corresponds to the E-step outer loop in Algorithm 2 and
operates at a different frequency when compared to the D and M blocks. The dotted lines illustrate
the flow of variables from other blocks and demonstrate the coupled nature of D, E, and M steps.
This diagram is illustrative and should not be confused with a control diagram.
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6.14.3 Hyperparameter Update
The update equation in Equation (6.80) can be simplified as:

𝜕Λ
𝜕𝑏

=𝑘Λ[−𝑃
𝜆𝜖𝜆 +

𝑛𝑡

2 [
𝑛Π̃

𝑧

𝑛Π̃
𝑤 ]−

1
2 [

𝑒𝜆𝑧 𝑡𝑟((𝑆 ⊗Ω𝑧)𝐴3)
𝑒𝜆𝑤 𝑡𝑟((𝑆 ⊗Ω𝑤 )𝐵3)]]

|||𝜗=𝜇𝜗

=−
𝑘Λ

2 [
𝑡𝑟((𝑆 ⊗Ω𝑧)𝐴3) 𝑂

𝑂 𝑡𝑟((𝑆 ⊗Ω𝑤 )𝐵3)]
𝑒Λ − (𝑘Λ𝑃𝜆)Λ+ (𝑘Λ𝑃𝜆𝜂𝜆 +

𝑘Λ𝑛𝑡

2 [
𝑛Π̃

𝑧

𝑛Π̃
𝑤 ])

=𝑎1𝑒Λ +𝑎2Λ+𝑎3,

(6.96)

where 𝑎1, 𝑎2, and 𝑎3 are constants that are independent of Λ. Since Equation (6.96) is
nonlinear in Λ, an approximate discretization like the conventional Gauss–Newton update
scheme given in Equation (6.48) should be used for theM step. In summary, the D and E steps
follow an exact discretization, whereas the M step follows an approximate discretization.

6.15 Convergence Proof for Parameter and Hyper-
parameter Estimation

In robotics, it is important that learning algorithms provide a stable solution, especially
when robot safety during operation is a concern. Therefore, a proof of convergence for DEM
is important for its widespread use in robotics as a learning algorithm. However, the DEM
literature lacks any such mathematical proof of convergence for the estimator. Therefore,
this section aims at providing one for the parameter and hyperparameter estimation step
on LTI systems.

Since the update equation given by Equation (6.95) is a linear differential equation,
proving that 𝐴5 ≺ 𝑂 is sufficient to prove that Θ converges to a stable solution. Substituting
the expression for 𝐴2 from Equation (6.62) to the 𝐴5 in Equation (6.95), yields:

𝐴5 = −[𝑃𝜃 +𝑛𝑡𝑍 𝜖
𝜃 𝑍

𝜃 +∑
𝑡
(𝑁 𝑇 Π̃𝑧𝑁 +𝑀𝑇 Π̃𝑤𝑀)] |||𝜗=𝜇𝜗 . (6.97)

Since the prior precision matrix can be chosen to be positive definite, 𝑃𝜃 ≻ 𝑂. It is straight-
forward to note from the expression for 𝐴2 in Equation (6.62) that ∑𝑡 𝐴2 ≻ 𝑂, because
Π̃𝑧 ≻ 𝑂, Π̃𝑤 ≻ 𝑂 ⟹ 𝑁 𝑇 Π̃𝑧𝑁 ≻ 𝑂, and 𝑀𝑇 Π̃𝑤𝑀 ≻ 𝑂. Therefore, the proof of convergence
is complete if we prove that 𝑍 𝜖

𝜃 𝑍
𝜃 ≻ 𝑂. Simplifying the expressions for 𝑍 𝜖

𝜃 and 𝑍 𝜃 from
Equations (6.92) and (6.93), after some nontrivial linear algebra [167], yields:

𝑍 𝜖
𝜃 𝑍

𝜃 =
1
2
𝜕𝜃
𝜕𝜃

𝑇

𝑍1𝑍2
𝜕𝜃
𝜕𝜃

(6.98)

where

𝑍1 = 𝑑𝑖𝑎𝑔(Π̃𝑤 ⊗ 𝐼 , Π̃𝑤 ⊗ 𝐼 , Π̃𝑧 ⊗ 𝐼 ),
𝜕𝜃
𝜕𝜃

= 𝑑𝑖𝑎𝑔(𝑣𝑒𝑐�̃�𝑇
𝑣𝑒𝑐𝐴𝑇 ,𝑣𝑒𝑐�̃�𝑇𝑣𝑒𝑐𝐵𝑇 ,𝑣𝑒𝑐�̃�

𝑇
𝑣𝑒𝑐𝐶𝑇 ),

𝑍2 =
⎡
⎢
⎢
⎣

𝐼 ⊗Σ𝑥𝑥𝑇 𝐼 ⊗Σ�̃�𝑥𝑇 𝑂
𝐼 ⊗Σ𝑥�̃�𝑇 𝐼 ⊗Σ�̃��̃�𝑇 𝑂

𝑂 𝑂 𝐼 ⊗Σ𝑥𝑥𝑇

⎤
⎥
⎥
⎦
.
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It is straightforward from Equation (6.98) that 𝑍 𝜖
𝜃 𝑍

𝜃 ≻ 𝑂 because 𝑍1 ≻ 𝑂, and 𝑍2 ≻ 𝑂.
Combining all the results from this section, 𝑃𝜃 ≻ 𝑂, 𝑍 𝜖

𝜃 𝑍
𝜃 ≻ 𝑂 and ∑𝑡 𝐴2 ≻ 𝑂, ⟹ 𝐴5 ≺ 𝑂.

This completes the proof that the parameter estimation step of DEM converges for an LTI
system. Similarly, from Equation (6.81), 𝐽Λ ≺ 𝑂 proves the convergence of hyperparameter
estimation step. For a detailed account of the linear algebra behind the proof of convergence,
readers may refer to [167].

6.16 A Demonstrative Example
This section aims to provide the proof of concept for DEM through simulation for the
estimation of an LTI system with colored noise. Since the algorithm can find an infinite
number of solutions for a black box estimation of 𝑥 , �̃�, 𝜃 and 𝜆 from y, a black box estimation
is not ideal as a demonstrative example. Therefore, we restrict this section to the joint
estimation of 𝑥 , 𝐴, 𝐵, Π𝑤 , and Π𝑧 from known y and 𝐶 .

6.16.1 Generative Model
A stable LTI system of the form Equation (6.3) was selected, with randomly generated
parameters 𝜃 𝑖 ∈ [−1,1] having

𝐴 = [
0.0484 0.7535
−0.7617 −0.2187] ,𝐵 = [

0.3604
0.0776] ,𝐶 =

⎡
⎢
⎢
⎢
⎣

0.2265 −0.4786
0.4066 −0.2641
0.3871 0.3817
−0.1630 −0.9290

⎤
⎥
⎥
⎥
⎦

.

A Gaussian bump input signal of 𝑣 = 𝑒−0.25(𝑡−12)2 was centered around 𝑡 = 12𝑠 and sampled
at 𝑑𝑡 = 0.1𝑠 till 𝑇 = 32𝑠 was used. The colored noise was generated with a smoothness
value of 𝜎 = 0.5 for the Gaussian kernel. The noise precisions were Π𝑤 = 𝑒8𝐼2 and Π𝑧 = 𝑒8𝐼4,
making 𝜆𝑧 = 𝜆𝑤 = 8. The embedding order of the generalized motion of states and inputs
were 𝑝 = 6 and 𝑑 = 2, respectively.

6.16.2 Priors for Estimation
As discussed in Section 6.6.2, three prior distributions are necessary for the algorithm.
Since the inputs are known, the input prior 𝜂𝑣 is initialized with the known input 𝑣,
and a tight prior precision of 𝑃𝑣 = 𝑒32𝐼1 is used to restrict any changes in 𝑣. Simi-
larly, since the parameter 𝐶 is known, the corresponding prior parameters in 𝜂𝜃 are
initialized with 𝐶 , with tight priors of 𝑃𝜃 𝑖 = 𝑒32. The prior parameters 𝜂𝜃 𝑖 for the un-
known 𝐴 and 𝐵 matrices are randomly sampled from the range of [-2,2], and a low
prior precision of 𝑃𝜃 𝑖 = 𝑒6 is used to encourage exploratory behavior. In summary, 𝜂𝜃 =
[𝑣𝑒𝑐(𝑟𝑎𝑛𝑑(2,2)𝑇 )𝑇 𝑣𝑒𝑐(𝑟𝑎𝑛𝑑(2,1)𝑇 )𝑇 𝑣𝑒𝑐(𝐶𝑇 )𝑇 ]

𝑇 and 𝑃𝜃 = 𝑑𝑖𝑎𝑔(𝑒6𝐼4, 𝑒6𝐼2, 𝑒32𝐼8). Since
the hyperparameters are unknown, their priors were set to zero 𝜆 = [0 0]𝑇 , with a prior
precision of 𝑃𝜆 = 𝑒3𝐼2 to encourage exploration.

6.16.3 Results of Estimation
The data y generated from the system in Section 6.16.1 was used to run the DEM algorithm
given in Algorithm 2. Figure 6.5a demonstrates the successful state estimation of the
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algorithm. The results of parameter estimation (𝐴 and 𝐵) are shown in Figure 6.5b. The
updates began from randomly selected priors 𝜂𝜃 , marked by red circles, to finally converge.
Table 6.1 shows that the DEM’s estimate of 𝐴 and 𝐵 are close to the real values.

Table 6.1: DEM’s estimate of 𝐴 and 𝐵 converges to real value.

𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔
Real 0.048 0.753 -0.761 -0.218 0.360 0.077

Estimate 0.034 0.714 -0.769 -0.219 0.333 0.098

This confirms that the parameter estimation can converge close to the real parameters,
even when 𝜂𝜃 is randomly selected from the range 𝜂𝜃 ∈ [−2,2] that is double the size of
the real parameter range 𝜃 𝑖 ∈ [−1,1]. Figure 6.5c shows the successful hyperparameter
convergence close to 𝜆𝑧 = 𝜆𝑤 = 8.
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(c) Hyperparameter estimation.

Fig 6.5: The results of DEM’s estimation process. (a) The estimated states in blue closely resembles
the real states in red. (b) The parameter estimation starts from randomly selected 𝜂𝜃 , marked by red
circles and converges with each E step iteration 𝑎. (c) Both the hyperparameters start from 𝜂𝜆 = 0,
and converge close to the correct value of 8.
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DEM’s confidence on its estimates increasewith the E step iterations, as can be seen from
Figure 6.6a, which demonstrates an increase in parameter precision Π𝜃 . A similar trend can
be observed for Π𝑋 . However, Π𝜆 remains a constant during the entire algorithm, as proved
in Section 6.13.2. The key idea behind DEM’s inference is the maximization of free energy
objectives. Read together, Figure 6.5 and 6.6 demonstrates that DEM successfully estimates
𝑥 , 𝜃 and 𝜆, with increasing confidence on its estimates as the estimation proceeds by
maximizing 𝐹 from Equation (6.40). In summary, DEM can be used for the joint estimation
of states, parameters and hyperparameters of an LTI system, subjected to colored noise.
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(b) Free action 𝐹 (𝑎) − 𝐹 (0).

Fig 6.6: Maximization of 𝐹 improves the confidence on estimates.

6.17 Benchmarking
This section deals with benchmarking DEM against the state-of-the-art parameter es-
timation methods such as Expectation Maximization (EM), Subspace method (SS), and
Prediction Error Minimization (PEM), for black-box estimation (fully unknown 𝑥 , 𝜃 and 𝜆).

6.17.1 Evaluation Metric for Parameter Estimation
For the black box identification, with completely unknown 𝑥 , 𝜃 , and 𝜆, there are infinite
solutions with accurate input–output mapping. However, for LTI systems, there exists
a unique transformation for identical systems. We use the companion canonical form to
check the validity of parameter estimation by transforming both the real and the estimated
parameters into their companion canonical form and then using the (square of) Euclidean
distance between them as the sum of squared error (SSE) in parameter estimation. This
evaluation metric will be used for parameter estimation in the next section.

6.17.2 Simulation Setup
A total of 500 (5×100) different randomly generated stable systems were used with five
different noise smoothness values for parameter estimation. All systems were selected
with same number of parameters 𝑛𝜃 = 14 (𝑛 = 2,𝑚 = 4 and 𝑟 = 1), with each 𝜃 𝑖 ∈ [−1,1],
while ensuring that 𝐴 matrix is stable. All the noises were generated with the precision
of 𝑒6(Π𝑤 = 𝑒6𝐼2×2,Π𝑧 = 𝑒6𝐼4×4), with the embedding orders of states and inputs as 𝑝 = 6 and
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𝑑 = 2. A Gaussian bump of 𝑣 = 𝑒−.25∗(𝑡−12)2 was used as the input signal with 𝑑𝑡 = 0.5𝑠 and
𝑇 = 32𝑠. The prior parameter was randomly initialized such that all 𝜂𝜃 𝑖 ∈ [−2,2] with a
tight prior precision of 𝑃𝜃 = 𝑒4𝐼14×14. Both the hyperparameter priors 𝜂𝜆𝑖 were set to zero,
with a prior precision of 𝑃𝜆 = 𝑒−4𝐼2×2.

The System Identification toolbox from MATLAB was used for SS (𝑛4𝑠𝑖𝑑()) and PEM
methods. The solution of SS was used to initialize PEM. An implementation of EM algorithm
for state space models was written in MATLAB based on [234]. 𝑛4𝑠𝑖𝑑() is inherently de-
signed to handle colored noise, whereas the implemented EM algorithm is not. The code for
theDEMalgorithmwill be openly available at: ℎ𝑡𝑡𝑝𝑠 ∶ //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑎𝑗𝑖𝑡ℎ𝑎𝑚123/𝐷𝐸𝑀_𝐿𝑇 𝐼 .

6.17.3 Results
The results shown in Figure 6.7 demonstrate the superior performance of DEM in compari-
son with EM, PEM, and SS, with minimum SSE during parameter estimation across different
noise smoothness. Additionally, EM and PEM exploded occasionally (< 5% times), resulting
in outliers in SSE, which were removed for better visualization. DEM demonstrated a
consistent performance without generating any such outliers or exploding solutions, which
could be explained by DEM’s convergence guarantees for parameter estimation under
colored noise [167], as proved in Section 6.15. In summary, DEM is a competitive parameter
estimator for LTI systems with colored noise.
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Fig 6.7: The sum of all SSE of Θ for 100 random systems each, for 5 different noise smoothnesses.
DEM outperforms EM, PEM, and SS with minimum SSE for parameter estimation under colored
noise.

6.18 Discussion
The quest for a brain-inspired learning algorithm for robots has culminated in the free
energy principle that postulates biological brain’s perception as an optimization over its free
energy objectives. FEP is of prime importance to robotics because of the use of generalized
coordinates that enables it to gracefully handle colored noises. Colored noises appear in
real robotics systems through the unmodeled dynamics and the non-linearity errors in
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the model, thereby providing an advantage for DEM during estimation when compared
to other estimators. An example could be the unmodeled wind disturbances acting on an
unmanned aerial vehicle while in flight, or the non linearity errors in the dynamic model
of a robotic manipulator arm involved in a pick and place operation. The scope of this
work spans across the blind system identification of such linear dynamic systems with
colored noise.

The fundamental difference between this work and the prior work is in the reformu-
lation of DEM for an LTI system. While DEM from computational neuroscience focuses
on emulating the biological brain’s perception through the hierarchical abstraction of a
number of non-linear dynamic systems that interact with each other, our work focuses on
reducing this method into an algorithm for the system identification of an LTI system with
colored noise, which is a well-known problem in robotics. This reformulation enables the
standard analysis for convergence, stability and unbiased estimation, which is an essential
analysis in practical robotics. It also enables DEM to be compared with other existing
estimation algorithms in a control systems domain. The widespread use of DEM in robotics
necessitates these mathematical analyses, especially when concerning the stable and safe
operation of robots in industry and during human–robot interaction.

An algorithm with proved convergence for estimation is preferred for safe robotic
applications. Therefore, one of the main contribution of this work was the reduction
of the estimation algorithm into a coupled augmented system to prove the convergence
of parameter and hyperparameter estimation steps. This work also demonstrated the
successful applicability of DEM for the estimation of a randomly selected LTI system.
Furthermore, we showed through rigorous simulations on a wide range of randomly
generated LTI systems that DEM is a competitive algorithm for system identification under
colored noise, thereby widening the scope of DEM to a large number of LTI systems in
robotics.

One of the main drawbacks of the algorithm is its higher computational complexity
when compared to the estimation algorithms that do not keep track of the trajectory
of states. Therefore, future work can focus on the online estimation using DEM with
reduced computational load. Future work can also focus on extending this algorithm
for linear time varying systems to deal with robots with changing system parameters
while in operation—a delivery drone dropping deliveries in mid-flight, for example. From
a practical robotics point of view, DEM’s parameter estimation module can be directly
applied to a wide range of robots such as quadrotors, robotic arms, wheeled robots, etc.
for black-box system identification, the input estimation module can be employed for
fault-detection systems, and the hyperparameter estimation module can be used for online
noise estimation for robust control. DEM can also be extended with a control loop for
active inference to perform simultaneous perception and action on robots. This would
result in the development of cognitive robots that can learn the generative model in the
environment by interacting with it and actively seeking new information (active learning)
for uncertainty resolution. This would influence multiple domains in robotics such as
human–robot interaction for task learning, swarm robotics for collective learning and
distributed control, informative path planning of aerial robots for environment monitoring,
etc. The development of such brain-inspired autonomous agents sits at the core of cognitive
robotics research. In summary, DEM has a huge potential to be the bioinspired learning
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algorithm for future robots.

6.19 Conclusion
The free energy principle from neuroscience has a great potential to be one of the most
prominent frameworks for learning and control for the autonomous systems in future.
Therefore, this paper converted the FEP-based inference scheme called DEM into a joint
state, input, parameter, and hyperparameter estimation algorithm for LTI systems with
colored noise. We derived the mathematical framework of DEM for LTI systems to prove
that the resulting estimator is a combination of linear estimators that are coupled. We
provided the proof of convergence for the estimation steps. Through rigorous simulations
on randomly generated linear systems with colored noise at varying smoothness levels,
we demonstrated that the DEM algorithm outperforms EM, PEM, and SS methods for
parameter estimation with minimal estimation error. In light of the potential for DEM to
solve the parameter estimation problem, the future research will aim at applying DEM to a
quadcopter flying in wind.
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7
Convergence Proof for DEM

This chapter provides the convergence proof for the DEM based parameter estimator introduced
in Chapter 6. The Chapter 8 provides the experimental confirmation of this estimator on real
robot data.

This chapter is a verbatim copy of the peer reviewed paper [167] Ajith Anil Meera and Martijn Wisse. "On the
convergence of DEM’s linear parameter estimator." In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 692-700. Springer, Cham, 2021.
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7.1 Abstract

T he free energy principle from neuroscience provides an efficient data-driven framework
called the Dynamic Expectation Maximization (DEM), to learn the generative model in

the environment. DEM’s growing potential to be the brain-inspired learning algorithm for
robots demands a mathematically rigorous analysis using the standard control system tools.
Therefore, this paper derives the mathematical proof of convergence for its parameter
estimator for linear state space systems, subjected to colored noise. We show that the free
energy based parameter learning converges to a stable solution for linear systems. The
paper concludes by providing a proof of concept through simulation for a wide range of
spring damper systems.

7.2 Introduction
The free energy principle (FEP) models the brain’s perception and action as a gradient
ascend over its free energy objective [2]. The action side of FEP, known as active inference
[109], has already been applied to real robots including ground robots for SLAM [34],
humanoid robots for body perception [200] and manipulator robots for pick and place
operation [27]. Similarities with standard control technique like PID was also analyzed
[47]. One of the variants of FEP, the Dynamic Expectation Maximization (DEM) [170],
provides a model inversion framework for perception and system identification. DEM’s
distinctive feature lies in its capability to gracefully handle colored noise through the use
of generalized coordinates [44], thereby rendering it with the potential to be the learning
algorithm for robots. DEM was reformulated as a linear state and input observer under
colored noise [46] and was validated for quadrotor flights [165]. A DEM based linear
parameter estimator for system identification was developed by [97] and was applied for
the perception of quadrotor in wind [166]. Since an estimator with convergence guarantees
is preferred for safe robotics applications, we aim at paving way to DEM’s practical use
by mathematically analyzing it for its convergence properties. Moreover, it is of interest
to the active inference community to develop active learning and control strategies with
stability guarantees. The presence of generalized coordinates, mean field terms and brain
priors complicates the convergence proof and makes it different from other estimators
like Expectation Maximization [232]. The goal of this paper is: 1) to show that DEM has
convergence guarantees for linear systems with colored noise, and 2) to show that it can
be applied to control system problems like the estimation of a mass-spring-damper system.

7.3 Preliminaries
Consider the linear plant dynamics (generative process) given in Eq. 7.1, where A, B and
C are constant system matrices, x ∈ ℝ𝑛 is the hidden state, v ∈ ℝ𝑟 is the input and y ∈ ℝ𝑚

is the output.

ẋ = Ax+Bv+w, y = Cx+ z. (7.1)

Here w ∈ ℝ𝑛 and z ∈ ℝ𝑚 represent the process and measurement noise respectively. The
notations of the plant are denoted in boldface, whereas its estimates are denoted in non-
boldface letters. Since the brain has no access to the plant dynamics except through the
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sensory measurements y, it maintains the copy of an approximate model of the generative
process called the generative model. The noise color assumption (convolution of white
noise with a Gaussian kernel) facilitates the differentiated form of the generative model as
[170]:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
�̇� = 𝐶𝑥 ′ + 𝑧′

...
(7.2)

One of the key technique behind DEM to model the colored noise is to express the time
varying components in generalized coordinates, denoted by a tilde operator. The colored
noises can be expressed in generalized coordinates using their higher derivatives as 𝑧 =
[𝑧,𝑧′, 𝑧′′, ...]𝑇 and �̃� = [𝑤,𝑤′,𝑤′′, ...]𝑇 . The generative model in Eq. 7.2 can be compactly
written as [170]:

̇̃𝑥 = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (7.3)

where 𝐷𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 1

. .
0 1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦(𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛, �̃� = 𝐼𝑝+1 ⊗𝐴, �̃� = 𝐼𝑝+1 ⊗ 𝐵 and �̃� = 𝐼𝑝+1 ⊗𝐶 .

Here ⊗ is the Kronecker tensor product. To facilitate the convergence proof later in the
paper, we introduce a redefinition for Eq. 7.3 with all parameters grouped to the right side
as 𝜃 :

̇̃𝑥 =𝑀𝜃 + �̃�, �̃� = 𝑁𝜃 + 𝑧, 𝜃 =
⎡
⎢
⎢
⎣

𝑣𝑒𝑐(𝐴𝑇 )
𝑣𝑒𝑐(𝐵𝑇 )
𝑣𝑒𝑐(𝐶𝑇 )

⎤
⎥
⎥
⎦
, (7.4)

where

𝑀 =
⎡
⎢
⎢
⎣

𝐼𝑛 ⊗𝑥𝑇 𝐼𝑛 ⊗𝑣𝑇 𝐼𝑛 ⊗𝑂1×𝑚
𝐼𝑛 ⊗𝑥 ′𝑇 𝐼𝑛 ⊗𝑣′𝑇 𝐼𝑛 ⊗𝑂1×𝑚

... ... ...

⎤
⎥
⎥
⎦
,𝑁 =

⎡
⎢
⎢
⎣

𝐼𝑛 ⊗𝑂1×𝑛 𝐼𝑛 ⊗𝑂1×𝑟 𝐼𝑚 ⊗𝑥𝑇
𝐼𝑛 ⊗𝑂1×𝑛 𝐼𝑛 ⊗𝑂1×𝑟 𝐼𝑚 ⊗𝑥 ′𝑇

... ... ...

⎤
⎥
⎥
⎦
. (7.5)

The goal of this paper is to mathematically prove that the DEM’s estimate for 𝜃 converges
while maximizing the free energy objective1.

7.4 Parameter learning as free energy optimiza-
tion

DEM postulates the parameter learning algorithm as the gradient ascend over the free
energy action, which is the time integral of free energy 𝐹 = ∫ 𝐹𝑑𝑡 . The parameter update
equation can be expressed as the gradient [97, 170]:

𝜕𝜃
𝜕𝑎

= 𝑘𝜃
𝜕𝐹
𝜕𝜃

= −𝑃𝜃 (𝜃 −𝜂𝜃 ) +∑
𝑡
(−𝐸𝜃 +𝑊 𝑋

𝜃 ), (7.6)

1maximization of the ELBO term (Section 1.4)



7

122 7 Convergence Proof for DEM

where 𝑘𝜃 is the learning rate, 𝐸𝜃 = 𝜕𝐸
𝜕𝜃 is the gradient of precision weighed prediction error,

𝑊 𝑋
𝜃 𝑖 =

𝜕𝑊𝑋

𝜕𝜃 is the gradient of state mean field term, 𝜂𝜃 is the prior parameters and 𝑃𝜃 is
the prior parameter precision. Subscripts will be used for the derivative operator. 𝐸𝜃 for an
LTI system can be simplified as:

𝐸𝜃 = 𝜖𝑇𝜃 Π̃𝜖, where 𝜖 =
⎡
⎢
⎢
⎣

ỹ−𝑁𝜃
�̃� − �̃�𝑣

𝐷𝑥𝑥 −𝑀𝜃

⎤
⎥
⎥
⎦
and 𝜖𝜃 =

⎡
⎢
⎢
⎣

−𝑁
𝑂
−𝑀

⎤
⎥
⎥
⎦

(7.7)

are the prediction error and its gradient. Here �̃�𝑣 is the prior on inputs with prior precision
𝑃𝑣 , Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃𝑣 , Π̃𝑤 ) is the generalized noise precision with Π𝑧 and Π𝑤 being the
precisions (inverse covariance) for measurement and process noise. Here 𝑑𝑖𝑎𝑔() represents
the block diagonal operation. Similarly, 𝑊 𝑋

𝜃 for an LTI system can be written as [97, 170]:

𝑊 𝑋
𝜃 𝑖 = −

1
2
𝑡𝑟(Σ𝑋 𝜖𝑇𝑋𝜃 𝑖 Π̃𝜖𝑋 ), 𝜖 =

⎡
⎢
⎢
⎣

ỹ− �̃�𝑥
�̃� − �̃�𝑣

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦
, 𝜖𝑋 =

⎡
⎢
⎢
⎣

−�̃� 𝑂
𝑂 𝐼

𝐷𝑥 − �̃� −�̃�

⎤
⎥
⎥
⎦
. (7.8)

7.5 Proof of convergence for parameter estimator
If 𝐸𝜃 and𝑊 𝑋

𝜃 can be expressed as linear in 𝜃 , in the form 𝐸𝜃 = 𝐸1𝜃 +𝐸2 and𝑊 𝑋
𝜃 =𝑊1𝜃 +𝑊2,

Eq. 7.6 can be rewritten as:

𝜕𝜃
𝜕𝑎

= −[𝑃
𝜃 +∑

𝑡
(𝐸1 −𝑊1)]𝜃 + [𝑃

𝜃𝜂𝜃 +∑
𝑡
(−𝐸2 +𝑊2)]. (7.9)

The differential equation given by Eq. 7.9 is of the form of a linear state space equation
(�̇� = 𝐴𝜃𝜃 +𝐵𝜃 .1). From the basics of control theory, the solutions of this equation converges
exponentially (stabilise) if 𝐴𝜃 = −[𝑃𝜃 +∑𝑡 (𝐸1 −𝑊1)] is negative definite (negative eigen
values). This section aims to prove this result.

Lemma 7.5.1. If 𝐴,𝐵 ≻ 𝑂, then 𝐴+𝐵 ≻ 𝑂.

As per Lemma 7.5.1, the positive definiteness of 𝑃𝜃 −∑𝑡𝑊1 +∑𝑡 𝐸1 can be proved by
proving the positive definiteness of the individual terms 𝑃𝜃 , −𝑊1 and 𝐸1. We know by
definition that the prior parameter precision 𝑃𝜃 is positive definite. We now proceed to
prove that 𝐸1 ⪰ 𝑂. Upon simplification of Eq. 7.7, 𝐸𝜃 can be written as 𝐸𝜃 = 𝐸1𝜃 +𝐸2, where:

𝐸1 = 𝑁 𝑇 Π̃𝑧𝑁 +𝑀𝑇 Π̃𝑤𝑀 and 𝐸2 = −[𝑁 𝑇 Π̃𝑧 𝑀𝑇 Π̃𝑤𝐷][
ỹ
𝑥] . (7.10)

Lemma 7.5.2. If 𝐴 ⪰ 𝑂, then 𝐵𝑇𝐴𝐵 ⪰ 𝑂.

Proof. By definition, if 𝐴 ⪰ 𝑂, there exists a square root 𝐴 1
2 ⪰ 𝑂. Therefore, 𝑥𝑇 (𝐵𝑇𝐴𝐵)𝑥 =

𝑥𝑇 (𝐵𝑇𝐴
1
2𝐴

1
2 𝐵)𝑥 = (𝐴

1
2 𝐵𝑥)𝑇 (𝐴

1
2 𝐵𝑥) ≥ 0, ⟹ 𝐵𝑇𝐴𝐵 ⪰ 𝑂.

Since Π̃𝑧 ≻ 𝑂 and Π̃𝑤 ≻ 𝑂 by definition, from Lemma 7.5.1 and 7.5.2, 𝐸1 = 𝑁 𝑇 Π̃𝑧𝑁 +
𝑀𝑇 Π̃𝑤𝑀 ⪰ 𝑂. Therefore, 𝐸1 is proved to be positive semi-definite.



7.5 Proof of convergence for parameter estimator

7

123

The final term under consideration is𝑊1. The rest of this section aims to prove that
𝑊1 ≺ 𝑂, which will conclude the entire convergence proof of parameter estimation. We
rewrite the mean field term for parameter 𝜃 𝑖 from Eq. 7.8 as:

𝑊 𝑋
𝜃 𝑖 =−

1
2
𝑡𝑟(Σ𝑋 𝜖𝑇𝑋𝜃 𝑖 Π̃𝜖𝑋 ),

=−
1
2
𝑡𝑟
[[

Σ𝑥𝑥 Σ𝑥�̃�
Σ�̃�𝑥 Σ�̃��̃�][

�̃�𝑇
𝜃 𝑖 Π̃

𝑧�̃� − �̃�𝑇
𝜃 𝑖 Π̃

𝑤 (𝐷 − �̃�) �̃�𝑇
𝜃 𝑖 Π̃

𝑤 �̃�
−�̃�𝑇𝜃 𝑖 Π̃

𝑤 (𝐷 − �̃�) �̃�𝑇𝜃 𝑖 Π̃
𝑤 �̃�]]

=−
1
2
𝑡𝑟
[[

Σ𝑥𝑥 Σ𝑥�̃�
Σ�̃�𝑥 Σ�̃��̃�][

�̃�𝑇
𝜃 𝑖 Π̃

𝑧�̃� + �̃�𝑇
𝜃 𝑖 Π̃

𝑤�̃� �̃�𝑇
𝜃 𝑖 Π̃

𝑤 �̃�
�̃�𝑇𝜃 𝑖 Π̃

𝑤�̃� �̃�𝑇𝜃 𝑖 Π̃
𝑤 �̃�]]

−
1
2
𝑡𝑟
[[

Σ𝑥𝑥 Σ𝑥�̃�
Σ�̃�𝑥 Σ�̃��̃�][

−�̃�𝑇
𝜃 𝑖 Π̃

𝑤𝐷 𝑂
−�̃�𝑇𝜃 𝑖 Π̃

𝑤𝐷 𝑂]]
.

(7.11)

Since the second trace term in Eq. 7.11 is independent of 𝜃 𝑖 , it is lumped into the𝑊 𝜃 𝑖
2 term.

Equation 7.11 is further simplified as:

𝑊 𝑋
𝜃 𝑖 = −

1
2[

𝑡𝑟(Σ𝑥𝑥 �̃�𝑇
𝜃 𝑖 Π̃

𝑧�̃�) + 𝑡𝑟(Σ𝑥𝑥 �̃�𝑇
𝜃 𝑖 Π̃

𝑤�̃�) + 𝑡𝑟(Σ𝑥�̃� �̃�𝑇𝜃 𝑖 Π̃
𝑤�̃�)

+ 𝑡𝑟(Σ�̃�𝑥 �̃�𝑇
𝜃 𝑖 Π̃

𝑤 �̃�) + 𝑡𝑟(Σ�̃��̃� �̃�𝑇𝜃 𝑖 Π̃
𝑤 �̃�)]+𝑊

𝜃 𝑖
2

(7.12)

We aim to separate 𝜃 out so that the mean field term can be expressed in the form𝑊 𝑋
𝜃 =

𝑊1𝜃 +𝑊2. We proceed by first introducing the transpose of the generalized parameter
matrices �̃�, �̃� and �̃� to Eq. 7.12 and then moving them out of the trace terms.

Lemma 7.5.3. If 𝐴, 𝐵, 𝐶 and 𝐷 are matrices, then 𝑡𝑟(𝐴𝐵𝐶𝐷) = 𝑡𝑟(𝐶𝑇𝐵𝑇𝐴𝑇𝐷𝑇 )

Proof. 𝑡𝑟(𝐴𝐵𝐶𝐷) = 𝑡𝑟((𝐴𝐵𝐶𝐷)𝑇 ) = 𝑡𝑟(𝐷𝑇𝐶𝑇𝐵𝑇𝐴𝑇 ) = 𝑡𝑟(𝐶𝑇𝐵𝑇𝐴𝑇𝐷𝑇 ).

Lemma 7.5.4. If 𝐴, 𝐵 and 𝐶 are matrices, then 𝑡𝑟(𝐴𝐵𝐶) = 𝑣𝑒𝑐(𝐴𝑇 )𝑇 (𝐼 ⊗𝐵)𝑣𝑒𝑐(𝐶).

Applying Lemma 7.5.3 throughout Eq. 7.12 results in:

𝑊 𝑋
𝜃 𝑖 = −

1
2[

𝑡𝑟(Π̃𝑧𝑇𝐶𝜃 𝑖Σ
𝑥𝑥𝑇 �̃�𝑇 ) + 𝑡𝑟(Π̃𝑤𝑇𝐴𝜃 𝑖Σ

𝑥𝑥𝑇 �̃�𝑇 ) + 𝑡𝑟(Π̃𝑤𝑇 ̃𝐵𝜃 𝑖Σ
𝑥�̃�𝑇 �̃�𝑇 )

+ 𝑡𝑟(Π̃𝑤𝑇𝐴𝜃 𝑖Σ
�̃�𝑥𝑇 �̃�𝑇 ) + 𝑡𝑟(Π̃𝑤𝑇 ̃𝐵𝜃 𝑖Σ

�̃��̃�𝑇 �̃�𝑇 )]+𝑊
𝜃 𝑖
2 ,

(7.13)

which upon further expansion using Lemma 7.5.4 and grouping yields:

𝑊 𝑋
𝜃 𝑖 = −

1
2[(

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 Π̃

𝑤 )𝑇 (𝐼 ⊗Σ𝑥𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 Π̃
𝑤 )𝑇 (𝐼 ⊗Σ𝑥�̃�𝑇 ))𝑣𝑒𝑐(�̃�

𝑇 )

+(𝑣𝑒𝑐(�̃�
𝑇
𝜃 𝑖 Π̃

𝑤 )𝑇 (𝐼 ⊗Σ�̃�𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 Π̃
𝑤 )𝑇 (𝐼 ⊗Σ�̃��̃�𝑇 ))𝑣𝑒𝑐(�̃�

𝑇 )

+(𝑣𝑒𝑐(�̃�
𝑇
𝜃 𝑖 Π̃

𝑧)𝑇 (𝐼 ⊗Σ𝑥𝑥𝑇 ))𝑣𝑒𝑐(�̃�
𝑇 )
]
+𝑊 𝜃 𝑖

2 .

(7.14)
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We have now separated all the generalized parameters out of the trace terms in their vector
forms. These vectors can be grouped such that the mean field term is linear with respect to

the generalized parameter vector 𝜃 =
⎡
⎢
⎢
⎣

𝑣𝑒𝑐(�̃�𝑇 )
𝑣𝑒𝑐(�̃�𝑇 )
𝑣𝑒𝑐(�̃�𝑇 )

⎤
⎥
⎥
⎦
as:

𝑊 𝑋
𝜃 𝑖 = −

1
2[

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 Π̃

𝑤 )𝑇 (𝐼 ⊗Σ𝑥𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 Π̃
𝑤 )𝑇 (𝐼 ⊗Σ𝑥�̃�𝑇 ),

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 Π̃

𝑤 )𝑇 (𝐼 ⊗Σ�̃�𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 Π̃
𝑤 )𝑇 (𝐼 ⊗Σ�̃��̃�𝑇 ),

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 Π̃

𝑧)𝑇 (𝐼 ⊗Σ𝑥𝑥𝑇 )
]
𝜃 +𝑊 𝜃 𝑖

2 .

(7.15)

Lemma 7.5.5. If 𝐴 and 𝐵 are matrices, then 𝑣𝑒𝑐(𝐴𝐵)𝑇 = 𝑣𝑒𝑐(𝐴)𝑇 (𝐵⊗ 𝐼 ).

We use Lemma 7.5.5 to further simplify Eq. 7.15 as:

𝑊 𝑋
𝜃 𝑖 = −

1
2[

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 )

𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 )
𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥�̃�𝑇 ),

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 )

𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ�̃�𝑥𝑇 ) +𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 )
𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ�̃��̃�𝑇 ),

𝑣𝑒𝑐(�̃�𝑇
𝜃 𝑖 )

𝑇 (Π̃𝑧 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥𝑥𝑇 )
]
𝜃 +𝑊 𝜃 𝑖

2 .

(7.16)

Since the parameters𝐴,𝐵 and𝐶 are independent of each other, their derivatives with respect
to each other are zeros, resulting in 𝑣𝑒𝑐(�̃�𝑇

𝜃 𝑖 ) = 𝑂,∀𝜃 𝑖 ∈ {𝐵,𝐶}, 𝑣𝑒𝑐(�̃�𝑇𝜃 𝑖 ) = 𝑂,∀𝜃 𝑖 ∈ {𝐴,𝐶}
and 𝑣𝑒𝑐(�̃�𝑇

𝜃 𝑖 ) = 𝑂,∀𝜃 𝑖 ∈ {𝐴,𝐵}. This simplifies the expression for 𝑊 𝑋
𝜃 𝑖 in Eq. 7.16. The total

mean field term 𝑊 𝑋
𝜃 can be computed by vertically stacking the individual mean field

contributions 𝑊 𝑋
𝜃 𝑖 from each parameter 𝜃 𝑖 as:

𝑊 𝑋
𝜃 = −

1
2
𝑊3𝜃 +𝑊2, (7.17)

where𝑊3 = [
𝑊4 𝑂
𝑂 𝑊5,]

with𝑊5 = 𝑣𝑒𝑐(�̃�𝑇 )𝑇𝑣𝑒𝑐𝐶𝑇 (Π̃𝑧 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥𝑥𝑇 ) and

𝑊4 = [
𝑣𝑒𝑐(�̃�𝑇 )𝑇𝑣𝑒𝑐𝐴𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥𝑥𝑇 ) 𝑣𝑒𝑐(�̃�𝑇 )𝑇𝑣𝑒𝑐𝐴𝑇 (Π̃𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ�̃�𝑥𝑇 )
𝑣𝑒𝑐(�̃�𝑇 )𝑇𝑣𝑒𝑐𝐵𝑇 (Π̃

𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ𝑥�̃�𝑇 ) 𝑣𝑒𝑐(�̃�𝑇 )𝑇𝑣𝑒𝑐𝐵𝑇 (Π̃
𝑤 ⊗ 𝐼 )(𝐼 ⊗Σ�̃��̃�𝑇 )] .

𝑊3 can be simplified as:

𝑊3 =
𝜕𝜃
𝜕𝜃

𝑇 ⎡
⎢
⎢
⎣

Π̃𝑤 ⊗ 𝐼 𝑂 𝑂
𝑂 Π̃𝑤 ⊗ 𝐼 𝑂
𝑂 𝑂 Π̃𝑧 ⊗ 𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐼 ⊗Σ𝑥𝑥𝑇 𝐼 ⊗Σ�̃�𝑥𝑇 𝑂
𝐼 ⊗Σ𝑥�̃�𝑇 𝐼 ⊗Σ�̃��̃�𝑇 𝑂

𝑂 𝑂 𝐼 ⊗Σ𝑥𝑥𝑇

⎤
⎥
⎥
⎦
, (7.18)
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where 𝜕𝜃
𝜕𝜃 = 𝑑𝑖𝑎𝑔(𝑣𝑒𝑐�̃�

𝑇
𝑣𝑒𝑐𝐴𝑇 ,𝑣𝑒𝑐�̃�𝑇𝑣𝑒𝑐𝐵𝑇 ,𝑣𝑒𝑐�̃�

𝑇
𝑣𝑒𝑐𝐶𝑇 ). Since the generalized parameter vector

𝜃 is linear in parameter vector 𝜃 , we can write:

𝜃 =
𝜕𝜃
𝜕𝜃

𝜃 =
⎡
⎢
⎢
⎣

𝑣𝑒𝑐�̃�𝑇
𝑣𝑒𝑐𝐴𝑇 𝑂 𝑂
𝑂 𝑣𝑒𝑐�̃�𝑇𝑣𝑒𝑐𝐵𝑇 𝑂
𝑂 𝑂 𝑣𝑒𝑐�̃�𝑇

𝑣𝑒𝑐𝐶𝑇

⎤
⎥
⎥
⎦
𝜃. (7.19)

Substituting Eq. 7.18 and 7.19 in Eq. 7.17 yields:

𝑊 𝑋
𝜃 =𝑊1𝜃 +𝑊2,

𝑊1 = −
1
2
𝜕𝜃
𝜕𝜃

𝑇 ⎡
⎢
⎢
⎣

Π̃𝑤 ⊗ 𝐼 𝑂 𝑂
𝑂 Π̃𝑤 ⊗ 𝐼 𝑂
𝑂 𝑂 Π̃𝑧 ⊗ 𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐼 ⊗Σ𝑥𝑥𝑇 𝐼 ⊗Σ�̃�𝑥𝑇 𝑂
𝐼 ⊗Σ𝑥�̃�𝑇 𝐼 ⊗Σ�̃��̃�𝑇 𝑂

𝑂 𝑂 𝐼 ⊗Σ𝑥𝑥𝑇

⎤
⎥
⎥
⎦

𝜕𝜃
𝜕𝜃

.
(7.20)

Therefore, the mean field term 𝑊 𝑋
𝜃 is linear in 𝜃 . For the parameter estimator to provide a

converging solution, we need to prove that𝑊1 ≺ 𝑂. Lemma 7.5.2 could be applied to the
expression for 𝑊1 to prove that 𝑊1 ≺ 𝑂 if:

𝑊6 =
⎡
⎢
⎢
⎣

Π̃𝑤 ⊗ 𝐼 𝑂 𝑂
𝑂 Π̃𝑤 ⊗ 𝐼 𝑂
𝑂 𝑂 Π̃𝑧 ⊗ 𝐼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐼 ⊗Σ𝑥𝑥𝑇 𝐼 ⊗Σ�̃�𝑥𝑇 𝑂
𝐼 ⊗Σ𝑥�̃�𝑇 𝐼 ⊗Σ�̃��̃�𝑇 𝑂

𝑂 𝑂 𝐼 ⊗Σ𝑥𝑥𝑇

⎤
⎥
⎥
⎦
≻ 𝑂 (7.21)

Lemma 7.5.6. If 𝐴,𝐵 ⪰ 𝑂 and 𝐴 is invertible, then 𝐴𝐵 ⪰ 𝑂 .

Proof. 𝐴𝐵 =𝐴
1
2 (𝐴

1
2 𝐵𝐴

1
2 )𝐴− 1

2 , implies 𝐴𝐵 and 𝐴 1
2 𝐵𝐴

1
2 are similar matrices, sharing all eigen

values. Using lemma 7.5.2, since 𝐵 ⪰ 𝑂, 𝐴 1
2 𝐵𝐴

1
2 ⪰ 𝑂 ⟹ 𝐴𝐵 ⪰ 𝑂.

Using lemma 7.5.6 it is straightforward to see that𝑊6 ⪰𝑂 because: Π̃𝑧 ≻ 𝑂, Π̃𝑤 ≻ 𝑂, ⟹
Π̃𝑧 ⊗ 𝐼 ≻ 𝑂 and Π̃𝑤 ⊗ 𝐼 ≻ 𝑂, 𝐼 ⊗Σ𝑋 ≻ 𝑂. Therefore, 𝑊1 ⪯ 𝑂. This completes the proof that
the parameter estimation of DEM converges for an LTI system with colored noise.

7.6 Proof of concept: mass-spring-damper system
This section aims at providing a proof of concept for the convergence of DEM’s parameter
estimator, through realistic simulations. A mass-spring-damper system with mass 𝑚 =
1.4𝑘𝑔, spring constant 𝑘 = 0.8𝑁 /𝑚 and damping coefficient 𝑏 = 0.4𝑁𝑠/𝑚, is considered in
the state space form given by:

[
�̇�
𝑥] = [

0 1
− 𝑘
𝑚 − 𝑏

𝑚][
𝑥
�̇�]+ [

0
1
𝑚]

𝑣, 𝑦 = [1 0][
𝑥
�̇�] . (7.22)

A Gaussian bump input 𝑣 = 𝑒−0.25(𝑡−12)2 , centred around 12s and sampled at 𝑑𝑡 = 0.1𝑠 for
𝑇 = 32𝑠 was used. To generate the colored noise, the white noise (Π𝑤 = 𝑒6𝐼2 and Π𝑧 = 𝑒6)
was convoluted using a Gaussian kernel with a width of 𝜎 = 0.5𝑠. A partially known system
with unknown 𝜃3 = − 𝑘

𝑚 , 𝜃4 = − 𝑏
𝑚 and 𝜃6 = 1

𝑚 was considered. Using the output y generated
from the spring damper system, parameter estimation was performed using DEM for 25
experiments with different 𝜂𝜃 . The parameter priors 𝜂𝜃 for unknown parameters were



7

126 7 Convergence Proof for DEM

5 10 15 20 25

Iteration step

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
a
ra

m
e
te

r 
e
s
ti
m

a
te

6

4

3

true 

5 10 15 20 25

Iteration step

0

1000

2000

3000

4000

5000

6000

F
re

e
 e

n
e
rg

y
 o

b
je

c
ti
v
e

Fig 7.1: The parameter estimates of DEM converges to the correct value of 𝜃3 = − 𝑘
𝑚 = −0.5714,

𝜃4 = − 𝑏
𝑚 = −0.2857 and 𝜃6 = 1

𝑚 = 0.7143, marked in black, for a set of 25 experiments, despite being
initialized by randomly sampled priors such that 𝜂𝜃 𝑖 ∈ [−2,2] and that the prior A matrix is stable.
The parameter estimation proceeds by maximizing the free energy objective as shown on the right
(sample realization).

randomly sampled from [-2,2] such that the resulting prior A matrix is stable. A low prior
precision (𝑃𝜃𝑖 = 𝑒−4) was used for known parameters, and a high precision (𝑃𝜃𝑖 = 𝑒32) was
used for unknown parameters. The order of generalized motion of 𝑝 = 6 and 𝑑 = 2 were
used for the states and inputs respectively. The result for DEM’s parameter estimation is
shown in Fig. 7.1. Despite being initialized by random wrong priors, DEM’s parameter
estimates exponentially converges to the correct values, by maximizing the free energy
objective.

Next, we proceed to show that the estimate converges for a wide range of systems.
The same experiment was repeated for 25 different randomly selected stable mass-spring-
damper systems. Although the convergence applies to unstable systems, sampling was
restricted to stable systems within the range [-1,1] (𝜃3, 𝜃4 ∈ [−1,0] and 𝜃6 ∈ [0,1]) for better
visualization. DEMwas initialized with the same priors for all experiments (𝜂𝜃6 = 2, 𝜂𝜃4 = −1
and 𝜂𝜃3 = −2). Figure 7.2 shows that DEM is capable of providing converging solutions
for a wide range of stable spring-damper systems, that are influenced by colored noise.
Note that the numerical analysis is restricted to the dynamics of spring damper systems
for demonstrative purposes, and can be extended to other systems. In summary, DEM
can provide converging parameter estimates for linear systems with colored noise, by
maximizing the free energy objective.
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Fig 7.2: DEM’s parameter estimates for 25 different randomly sampled stable mass-spring-damper
systems. The estimates for all the experiments started from the same prior of 𝜂𝜃6 = 2, 𝜂𝜃4 = −1
and 𝜂𝜃3 = −2, and converged, while maximizing the free energy objective. Therefore, the estimator
converges for a wide range of systems.

7.7 Conclusion
DEM has the potential to be a bioinspired learning algorithm for future robots, due to its
capability to robustly handle colored noise. Its superior performance in state estimation
under colored noise was proven by [46] and was experimentally validated by [165]. In this
paper, we derived a mathematical proof of convergence for DEM’s parameter estimator,
applied to linear systems with colored noise. We proved that a perception scheme based
on the gradient ascend of the free energy action, provides a converging solution. Since
a convergence proof is mandatory for the safe and reliable application of DEM on real
robots, this work widens its applicability in robotics. The applicability of DEM for real
control system problem was demonstrated through rigorous simulations on the estimation
problem for mass-spring-damper systems. The future research will focus on the conditions
for unbiased estimation and on applying DEM to real robots.
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8
DEM forQuadrotor in Wind

This chapter uses precision learning for the robot model learning of a quadrotor in wind. It
provides the experimental confirmation for the system identification tool developed in Chapter
6, and used in Section 2.5.2.3.

This chapter is a verbatim copy of the under-review paper [166] Ajith Anil Meera and Martijn Wisse. "Dynamic
Expectation Maximization for the System Identification of a Quadrotor in Wind." IEEE Robotics and Automation
Letters (2022), (𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑣𝑖𝑒𝑤).
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8.1 Abstract

S ystem identification under colored noise is still an open challenge in robotics. In
this paper, we introduce a brain inspired system identification method for the output

prediction of a quadrotor hovering in wind. Using real quadrotor flight experiments, we
show that our approach outperforms state of the art system identification methods like
Subspace Identification, Expectation Maximization and Prediction Error Minimization
with least output prediction error. With this work, we provide the first experimental
confirmation outside of simulations, for the use of Dynamic Expectation Maximization as
a robot model learner. Based on the empirical results, we propose an extended algorithm
for the model order selection during the blind identification of linear systems.

8.2 Introduction
The uncertainty handling capabilities of the human brain has been inspiring roboticists
to search for brain inspired algorithms for robot perception. The recent advancements in
computational neuroscience has culminated in the Free Energy Principle (FEP) that models
the brain’s perception and action under one optimization scheme [2]. Fundamentally rooted
in Bayesian Inference, FEP emerges as a brain theory that can learn hierarchical causal
dynamic models from limited data under uncertainties. In light of these developments, we
aim to bridge the gap between FEP and robotics by providing the first experimental proof of
concept for an FEP based parameter estimator called Dynamic Expectation Maximization
(DEM) [170] for robot model learning.

We introduce the idea of leveraging the information content in the noise - emerging
from the unmodelled system dynamics (wind) and linearization error - for accurate output
predictions. We propose a DEM based model learning scheme that models this noise
(prediction error) as colored and improves the estimation using Generalized Coordinates
(GC). Fig. 8.1 shows our proposed perception scheme applied to a quadrotor hovering
under unmodelled wind conditions. The possible applications of this approach is wide
and include the handling of unmodelled wind dynamics on a delivery drone, linearization
errors of an industrial manipulator robot, friction dynamics of a skid steer ground robot in
unknown terrains like martian surface. The core contributions of the paper include:

1. introduce a brain inspired output prediction scheme for a quadrotor hovering in
wind,

2. provide the first experimental confirmation for the use of DEM and GC for robot
model learning,

3. introduce a model order estimation algorithm (Algorithm 3) for the blind identifica-
tion of linear systems.
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Fig 8.1: The proposed brain inspired prediction scheme. The unmodelled wind and the linearization
errors in the robot brain’s internal model manifests as the sensory surprisal (output prediction errors).
The free energy principle (DEM) drives the robot brain to update its internal model of the world
(quadrotor dynamics) for uncertainty resolution, resulting in better output predictions.

8.3 Related work
In this section, we capture the multidisciplinary nature of FEP literature, connecting
neuroscience and robotics.

8.3.1 Cognitive neuroscience
FEP emerges from neuroscience as a unifying brain theory [2] that explains the brain
functions under a single framework - free energy optimization. According to FEP, every
self organising system that is in equilibrium with the environment should minimize its free
energy. This drives a biological agent into minimizing its sensory surprisal for uncertainty
resolution while interacting with the environment. This is done in two ways - through
perception (learning) and action (active inference). Perception involves learning the genera-
tive process in the environment for accurate predictions, whereas active inference involves
acting on the environment to suppress sensory surprisal. Numerous methods have been
developed around these ideas to explain brain functions including predictive coding [8],
hierarchical brain models [44], active inference [109], DEM [170] etc. The biological plausi-
blity of FEP rests in its capability to provide a mathematical description of brain functions
[187], to unify action and perception [50], to connect physiological constructs like memory,
attention, value, reinforcement and salience [187], to explain active vision [133], while
remaining consistent with Freudian ideas[188]. Similarities of FEP with reinforcement
learning [42], neural networks [43, 44], Kalman Filtering [46], PID control [47] and active
learning [50] further guides the quest for a brain inspired robot learning algorithm towards
FEP as the unified robot learning algorithm.

8.3.2 Robotics
Recent applications of FEP in robotics include the body perception of humanoid robots
[200], adaptive control for robot manipulators [27], robot navigation and mapping (SLAM)
[34] etc. Simultaneous state and input observer designs for linear time invariant (LTI)
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systems with colored noise was developed [46] and applied to quadrotors [165]. On the
learning side, DEM was developed into a system identification method [97] with theoretical
convergence guarantees [167]. In this paper we provide the proof of concept for DEM by
learning a quadrotor model for output prediction.

8.3.3 System identification
In control systems, output predictions can be done using system identification, which is a
mature field [235] withmethods like Subspace Identification (SS), ExpectationMaximization
(EM), Prediction Error Minimization (PEM). However, most of them consider the noises to
be white, which is often a wrong assumption in practice and results in biased estimation
for least square based methods [218] and inaccurate convergence for the iterative methods
[219]. Although various bias compensation methods have been proposed to solve this
problem [220, 221], none of them perform simultaneous state, input, parameter and noise
hyperparameter estimation, except for DEM. Therefore, DEM is of importance to the
research community and requires experimental validation on real robots. With this paper,
we aim to fill this research gap.

8.4 Problem statement
Consider the linearized plant dynamics given in Equation 8.1 whereA, B andC are constant
system matrices, with hidden state x ∈ ℝ𝑛 , input v ∈ ℝ𝑟 and output y ∈ ℝ𝑚 .

ẋ = Ax+Bv+w, y = 𝐶x+ z. (8.1)

Here w ∈ ℝ𝑛 and z ∈ ℝ𝑚 represent the process and measurement noise respectively. In this
paper, we consider a special case where the system is a hovering quadrotor. Variables of
the plant are denoted in boldface, while its estimates are denoted in non-boldface. The
noises are assumed to be colored such that it was generated by the convolution of white
noise with a Gaussian filter. The unmodelled wind dynamics and the linearization errors
enter the system through 𝑤 , making it colored. The problems considered in the paper are:
1) learn an LTI model to accurately predict the output 𝑦 from the inputs 𝑣, and 2) learn the
order of the system 𝑛 for black box identification.

8.5 Preliminaries
To lay the foundations of our prediction scheme, this section introduces the key concepts
behind DEM.

8.5.1 Generalized coordinates
The key concept that differentiates DEM from other methods is its use of GC. GC is a
relatively new concept in robotics and shouldn’t be confused with the definition in multi-
body dynamics. GC enables the estimator to gracefully handle colored noise by modelling
the trajectory (instead of point estimates) of all the time dependent components like states,
inputs, outputs and noises using their higher order derivatives, thereby providing additional
information for model learning. For example, the states in GC is given by 𝑥 = [𝑥 𝑥 ′ 𝑥 ′′ ...]𝑇 .
The variables in generalized coordinates are denoted by a tilde, and their components
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(higher derivatives) are denoted by primes. In Section 8.6.7 we will demonstrate the
usefulness of GC in providing additional information for robot model learning.

8.5.2 Generative model
The generative model denotes the robot brain’s internal model of the generative process
in the environment that is responsible for data generation. Since the time dependent
components of the generative model are differentiable and because the noises are coloured,
the evolution of states of an LTI system (generative process) in Equation 8.1 can be extended
as:

𝑥 ′ = 𝐴𝑥 +𝐵𝑣 +𝑤
𝑥 ′′ = 𝐴𝑥 ′ +𝐵𝑣′ +𝑤′

...

𝑦 = 𝐶𝑥 + 𝑧
𝑦′ = 𝐶𝑥 ′ + 𝑧′

...
(8.2)

which can be compactly written as:

𝑥 ′ = 𝐷𝑥𝑥 = �̃�𝑥 + �̃��̃� + �̃� �̃� = �̃�𝑥 + 𝑧 (8.3)

where 𝐷𝑥 =
[

0 1
0 1
. .
0 1
0](𝑝+1)×(𝑝+1)

⊗ 𝐼𝑛×𝑛

performs derivative operation, equivalent to shifting up all components in generalized
coordinates by one block. 𝑝 and 𝑑 are the order of generalized motion of states and inputs
respectively. Here, �̃� = 𝐼𝑝+1⊗𝐴, �̃� = 𝐼𝑝+1⊗𝐵 and �̃� = 𝐼𝑝+1⊗𝐶 , where ⊗ is the Kronecker tensor
product. The generalized motion of output ỹ are computed from the discrete measurements
y [46].

8.5.3 Colored noise modeling
The colored noises are analytic such that the covariance of noise derivatives 𝑧 = [𝑧,𝑧′, 𝑧′′, ...]𝑇
and �̃� = [𝑤,𝑤′,𝑤′′, ...]𝑇 are well defined. The correlation between noise derivatives are
represented using the temporal precision matrix 𝑆 (inverse of covariance matrix). Since
the correlation is assumed to be due to a Gaussian filter, 𝑆 becomes [170]:

𝑆(𝜎2) =
⎡
⎢
⎢
⎢
⎣

1 0 − 1
2𝜎2 ..

0 1
2𝜎2 0 ..

− 1
2𝜎2 0 3

4𝜎4 ..
.. .. .. ..

⎤
⎥
⎥
⎥
⎦

−1

(𝑝+1)×(𝑝+1)

(8.4)

where 𝜎2 is the variance of Gaussian filter, with 𝜎 denoting the noise smoothness. While
𝜎2 = 0 denotes white noise, non-zero 𝜎2 denotes colored noise. The generalized noise
precision matrices are given by Π̃𝑤=𝑆(𝜎2)⊗Π𝑤 and Π̃𝑧 = 𝑆(𝜎2)⊗Π𝑧 , where Π𝑤 and Π𝑧 are the
inverse noise covariances.
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8.5.4 Parameters and noise hyperparameters
The parameter 𝜃 is the vectorized𝐴, 𝐵,𝐶 matrices, 𝜃 = [𝑣𝑒𝑐(𝐴𝑇 )𝑇 𝑣𝑒𝑐(𝐵𝑇 )𝑇 𝑣𝑒𝑐(𝐶𝑇 )𝑇 ]

𝑇 ,
and the noise hyperparameter 𝜆 = [𝜆𝑧 𝜆𝑤]

𝑇 models the noise precision:

Π𝑤 (𝜆𝑤 ) = 𝑒𝜆
𝑤
Ω𝑤 , Π𝑧(𝜆𝑧) = 𝑒𝜆

𝑧
Ω𝑧 , (8.5)

where Ω𝑤 and Ω𝑧 represent constant matrices encoding how different noises are correlated.
We use Ω𝑤 and Ω𝑧 as identity matrices for this work. Parameter and hyperparameter
estimation entails the estimation of 𝜃 and 𝜆 respectively.

8.5.5 Priors of the brain
DEM enables the transfer of prior knowledge through Gaussian prior distributions for
inputs, parameters and hyperparameters, centred around 𝜂 as 𝑝(�̃�) =  (𝜂�̃� , 𝑃 �̃�), 𝑝(𝜃) =
 (𝜂𝜃 , 𝑃𝜃 ) and 𝑝(𝜆) = (𝜂𝜆 , 𝑃𝜆) respectively. The mean 𝜂 acts as the starting point for the
model learning on new data and the precision 𝑃 shapes the confidence on these priors.
𝑃 controls the robot brain’s exploration-exploitation trade off during learning - lower 𝑃
favours exploration, whereas higher 𝑃 favours exploitation. We will exhaustively use this
idea to pass known information to the algorithm (for example, known inputs ) through 𝜂
with high 𝑃 .

8.5.6 Perception as Bayesian Inference
The biological brain’s perception is modelled as a Bayesian Inference which involves
the computation of the posterior probability density 𝑝(𝜗 /𝑦) of parameter 𝜃 , given the
sensory measurement 𝑦 [170]. Since it involves the computation of an intractable integral
𝑝(𝜗 /𝑦) = 𝑝(𝜗,𝑦)/∫ 𝑝(𝜗,𝑦)𝑑𝜗 , a variational density 𝑞(𝜗 ) called the recognition density is
defined to closely approximate the posterior as 𝑞(𝜗 ) ≈ 𝑝(𝜗 /𝑦). This approximation is
achieved by minimizing the Kullback-Leibler (KL) divergence of the distributions given by
𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)) = ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 ) − ⟨ln𝑝(𝜗 /𝑦)⟩𝑞(𝜗 ), where ⟨.⟩𝑞(𝜗 ) represents the expectation
over 𝑞(𝜗 ). Upon simplification using 𝑝(𝜗 /𝑦) = 𝑝(𝜗,𝑦)/𝑝(𝑦), it becomes:

ln𝑝(𝑦) = ⟨ln𝑝(𝜗,𝑦)⟩𝑞(𝜗 ) − ⟨ln𝑞(𝜗 )⟩𝑞(𝜗 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

free energy

+𝐾𝐿(𝑞(𝜗 )||𝑝(𝜗 /𝑦)), (8.6)

where ln𝑝(𝑦) is called the log-evidence. Since ln𝑝(𝑦) is independent of 𝜗 , the minimization
of KL divergence for inference results in the maximization of free energy1. This is the core
idea behind using free energy as a proxy for perception through Bayesian Inference.

8.5.7 Free energy objectives
Two types of free energy objectives are used by DEM for perception: 1) free energy 𝐹 for

the estimation of time varying components (𝑋 = [
𝑥
�̃�]) and 2) free energy action 𝐹 = ∫ 𝐹𝑑𝑡

for the estimation of time invariant components (𝜃 and 𝜆). The free energy 𝐹 emerges from

1maximization of the ELBO term (Section 1.4)
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(a) 𝐹 𝑜 with respect to parameters 𝐴 and 𝐵. (b) Perception as maximization of 𝐹 𝑜 .

(c) Top view of Fig. 8.2b.

Fig 8.2: (a) The shape of the free energy manifold 𝐹 𝑜 with respect to parameters 𝐴 and 𝐵 (both chosen
as scalars for vizualization) changes with each E step iteration 𝑖, because of the interdependence
between 𝑥 and 𝜃 . Gradient ascend over 𝐹 𝑜 at each E step sharpens the peak around the real parameters,
where 𝐹 𝑜 is the maximum. (b) Visualization of perception as a gradient ascend over free energy
objective. 50 randomly sampled 𝜂𝜃 (green dots) lying on a circle climb up the free energy curve to
converge to the same parameters (magenta dot) that coincides with the peak of one of the realizations
of the free energy curve. (c) Top view of Fig. 8.2b.

Bayesian statistics (Variational Inference) as an upper bound on surprise [2], and can be
written as the sum of its internal energy 𝑈 , mean field term 𝑊 and the entropy term 𝐻 as:

𝐹 = 𝑈 +𝑊 +𝐻. (8.7)

After Laplace approximation and mean-field approximation, 𝑈 ,𝑊 and 𝐻 for an LTI system
can be simplified as [97, 170]:

𝑈 =−
1
2
𝜖𝑇 Π̃𝜖 −

1
2
𝜖𝜃𝑇𝑃𝜃𝜖𝜃 −

1
2
𝜖𝜆𝑇𝑃𝜆𝜖𝜆 +

1
2
ln |Π̃|+

1
2
ln |𝑃𝜃 |+

1
2
ln |𝑃𝜆 |,

𝑊 = 𝑡𝑟(Σ𝑥𝑈𝑥𝑥 +Σ�̃�𝑈�̃��̃� +Σ𝜃𝑈𝜃𝜃 +Σ𝜆𝑈𝜆𝜆),

𝐻 =
1
2
ln |Σ𝜃 |+

1
2
ln |Σ𝜆 |+

1
2
ln |Σ𝑥 |+

1
2
ln |Σ�̃� |,

(8.8)
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where 𝜖 =
⎡
⎢
⎢
⎣

ỹ− �̃�𝑥
�̃� − �̃�𝑣

𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�

⎤
⎥
⎥
⎦
, 𝜖𝜃 = 𝜽 −𝜃 and 𝜖𝜆 = 𝝀−𝜆 are the prediction error for components

in generalized coordinates, parameters and hyperparameters respectively. The prediction
errors are precision weighed with the generalized precision matrix Π̃ = 𝑑𝑖𝑎𝑔(Π̃𝑧 , 𝑃 �̃� , Π̃𝑤 ),
where 𝑑𝑖𝑎𝑔(.) is the block diagonal operation. Here Σ𝑥 , Σ�̃� , Σ𝜃 and Σ𝜆 are the covariance
matrices denoting the uncertainty in the estimation of states, inputs, parameters and
hyperparameters respectively. The free energy action 𝐹 can be written as [97]:

𝐹 =−
1
2
𝜖𝜃𝑇𝑃𝜃𝜖𝜃 −

1
2
𝜖𝜆𝑇𝑃𝜆𝜖𝜆 +

1
2
∑
𝜗 𝑖

∑
𝑡
𝑊 𝜗 𝑖 +

1
2
∑
𝑡
(− 𝜖

𝑇 Π̃𝜖 + ln |Π̃|+ ln |Σ̃𝑥 |+ ln |Σ̃𝑣 |)

+
1
2
ln |𝑃𝜃 |+

1
2
ln |𝑃𝜆 |+

1
2
ln |Σ𝜃 |+

1
2
ln |Σ𝜆 |,

(8.9)

where 𝑊 𝜗 𝑖 = 𝑡𝑟(Σ𝜗 𝑖𝑈𝜗 𝑖𝜗 𝑖 ) is the mean field term of 𝜗 𝑖 ∈ {𝑥, �̃�, 𝜃,𝜆}. 𝐹 can be seen as
a generalized objective for Expectation Maximization (EM) algorithm with additional
capabilities to handle colored noise. Removing generalized coordinates, brain’s priors and
the mean-field terms equates the objective functions of EM and DEM.

8.5.8 Perception as free energy optimization
DEM models the brain’s inference process probabilistically through the estimation of two
main components: the mean estimate and the uncertainty (inverse precision) in estimation.
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Fig 8.3: Perception as the maximization of 𝐹 𝑜 . The parameter estimates (circles) start at 𝑖 = 1 with
wrong priors (𝜂𝐴 = −8, 𝜂𝐵 = 8) and converges to the correct parameters (yellow and violet lines) at
𝐴 = −2 and 𝐵 = 2. The 𝐹 𝑜 curves (red and blue) are the cross sections of the manifold similar to the
one in Fig. 8.2a at different E step iteration 𝑖. The peak of these curves rise and narrows around the
correct parameter until convergence. The increasing curvature of these peaks during learning is
indicative of increasing confidence in estimation Π𝜃 as given in Equation 8.12.
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The mean estimate is computed through a gradient ascend on the free energy manifold.
Accordingly, the update equation at time 𝑡 , 𝑎𝑡ℎ parameter update and 𝑏𝑡ℎ hyperparameter
update can be written as [170]:

𝜕𝑋
𝜕𝑡

= 𝐷𝑋 +𝑘𝑋
𝜕𝐹
𝜕𝑋

,
𝜕𝜃
𝜕𝑎

= 𝑘𝜃
𝜕𝐹
𝜕𝜃

,
𝜕𝜆
𝜕𝑏

= 𝑘𝜆
𝜕𝐹
𝜕𝜆

, (8.10)

where 𝑘𝑋 , 𝑘𝜃 and 𝑘𝜆 are the learning rates. 𝐹 is maximized with respect to the estimation
uncertainty Σ𝜗 𝑖 when the first gradient is zero and the second gradient is negative definite.

𝜕𝐹
𝜕Σ𝜗 𝑖

=
1
2

𝜕
𝜕Σ𝜗 𝑖 (

ln |Σ𝜗
𝑖
|+∑

𝑡
𝑡𝑟(Σ𝜗

𝑖
𝑈𝜗 𝑖𝜗 𝑖 )) =

1
2(

(Σ𝜗
𝑖
)−1 + �̄�𝜗 𝑖𝜗 𝑖),

𝜕2𝐹
(𝜕Σ𝜗 𝑖 )2

=−
1
2
(Σ𝜗

𝑖
)−2 ≺ 𝑂.

(8.11)

Forcing the first gradient to zero yields the optimal precision (inverse covariance) of
estimates as:

Π𝑥 = −𝑈𝑥𝑥 , Π�̃� = −𝑈�̃��̃� , Π𝜃 = −�̄�𝜃𝜃 , Π𝜆 = −�̄�𝜆𝜆 (8.12)

Note that �̄� and 𝑈 are used for time independent and time dependent 𝜗 𝑖 respectively.
Therefore, the mean estimates and the uncertainty in their estimation can be obtained
from Equations 8.10 and 8.12, only by using the first two gradients of the energy terms
(𝐹 ,𝐹 ,𝑈 , �̄� ). Substituting Equation 8.12 in 8.9 eliminates the mean field terms and simplifies
𝐹 for an LTI system at optimal precision as the sum of weighted prediction errors and
entropy [97]:

𝐹 𝑜 =
1
2
𝑛𝑡[ ln |Π̃

𝑧 |+ ln |𝑃𝑣 |+ ln |Π̃𝑤 |
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

noise entropy
]+

1
2
𝑛𝑡 ln |Σ̃𝑋 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
state and input entropy

+
1
2
ln |Σ𝜃𝑃𝜃 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
parameter entropy

+
1
2
ln |Σ𝜆𝑃𝜆 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
hyperparameter entropy

−
1
2
∑
𝑡
[ (ỹ− �̃�𝑥)

𝑇 Π̃𝑧(ỹ− �̃�𝑥)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of outputs

+(�̃� − �̃�𝑣)𝑇𝑃𝑣(�̃� − �̃�𝑣)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prediction error of inputs

]−
1
2

(𝜃 −𝜂𝜃 )𝑇𝑃𝜃 (𝜃 −𝜂𝜃 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prediction error of parameters

−
1
2
∑
𝑡
[ (𝐷

𝑥𝑥 − �̃�𝑥 − �̃��̃�)𝑇 Π̃𝑤 (𝐷𝑥𝑥 − �̃�𝑥 − �̃��̃�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prediction error of states
]−

1
2

(𝜆−𝜂𝜆)𝑇𝑃𝜆(𝜆−𝜂𝜆)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prediction error of hyperparameters
(8.13)

Maximizing 𝐹 for perception is equivalent to minimizing the prediction error, while max-
imizing the uncertainty in estimation through the entropy terms. This acts like regular-
ization, preventing the brain from overfitting the model to the data, making it an ideal
objective function for robot learning.

8.5.9 Dynamic Expectation Maximization
DEM postulates the brain’s perception as a gradient ascend of its free energy objectives
using three steps [170]:

• D step - state (𝑥) and input (�̃�) estimation,
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Table 8.1: LINEARIZED QUADCOPTER MODELS of DIFFERENT ORDER.

Order x A B C v

System 1 1 �̇� 0 [0.3748 −0.3748 −0.3748 0.3748] 𝐼1

⎡
⎢
⎢
⎢
⎣

𝑝𝑤𝑚1

𝑝𝑤𝑚2

𝑝𝑤𝑚3

𝑝𝑤𝑚4

⎤
⎥
⎥
⎥
⎦

System 2 2 [
𝜙
�̇�] [

0 1
0 0] [

0 0 0 0
0.3748 −0.3748 −0.3748 0.3748] 𝐼2

⎡
⎢
⎢
⎢
⎣

𝑝𝑤𝑚1

𝑝𝑤𝑚2

𝑝𝑤𝑚3

𝑝𝑤𝑚4

⎤
⎥
⎥
⎥
⎦

System 3 3
⎡
⎢
⎢
⎣

�̇�
𝜙
�̇�

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 −9.81 0
0 0 1
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 0 0
0 0 0 0

0.3748 −0.3748 −0.3748 0.3748

⎤
⎥
⎥
⎦

𝐼3

⎡
⎢
⎢
⎢
⎣

𝑝𝑤𝑚1

𝑝𝑤𝑚2

𝑝𝑤𝑚3

𝑝𝑤𝑚4

⎤
⎥
⎥
⎥
⎦

System 4 4
⎡
⎢
⎢
⎢
⎣

𝑦
�̇�
𝜙
�̇�

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

0 1 0 0
0 0 −9.81 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0

0.3748 −0.3748 −0.3748 0.3748

⎤
⎥
⎥
⎥
⎦

𝐼4

⎡
⎢
⎢
⎢
⎣

𝑝𝑤𝑚1

𝑝𝑤𝑚2

𝑝𝑤𝑚3

𝑝𝑤𝑚4

⎤
⎥
⎥
⎥
⎦

• E step - parameter (𝜃) estimation and

• M step - hyperparameter (𝜆) estimation.

DEM results in Gaussian probability distributions with its mean as the estimate and its
standard deviation as the uncertainty in estimation. The D steps follows the gradient
ascend over 𝐹 given in Equation 8.7 to estimate 𝑥, �̃�,Π𝑥 and Π�̃� . The E and M steps follows
the gradient ascend over 𝐹 given in Equation 8.9 to estimate 𝜃,Π𝜃 and 𝜆,Π𝜆 respectively.
We use the reformulated version of DEM for LTI systems from our previous work [97]
for rest of the paper. As an illustrative example, Fig. 8.2 demonstrates DEM’s parameter
learning procedure, whereas Fig. 8.3 demonstrates the evolution of the cross sections of 𝐹 𝑜
manifold.

Fig 8.4: The quadcopter and the wind blower in the lab environment.
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8.6 Experimental results and analysis
This section aims to provide a proof of concept for DEM using the data from a real quadrotor
hovering in turbulent wind conditions, using the simplest linear model possible.

8.6.1 Experimental setup
A Parrot AR drone 2.0 was used to hover under turbulent wind conditions in a controlled
lab environment [165], as shown in Fig. 8.4. A PID controller tries to resist the turbulent
wind to hover the quadrotor at position (0𝑚,0𝑚,1𝑚). A simple linear state space model
(Equation 8.1) that maps four rotor PWM signals of the quadrotor to its roll angle 𝜙 and
roll angular velocity �̇� is constructed (System 2 in Table 8.1). A linear model is used so
that some linearization error is generated and contributes to the colored process noise.
The model doesn’t account for the wind disturbances, further contributing to the noise
color. The optitrack motion capture system directly observes the internal states (𝑥) of the
quadcopter through measurements 𝑦 with a precision of measurement noise Π𝑧 . The model
is derived from [207] after linearization around the equilibrium point. The key idea behind
this experimental design is to generate colored process noise 𝑤 in the quadrotor system
(with unmodelled wind dynamics) using turbulent wind.

Fig 8.5: The histograms of process noise 𝑤 �̇� for all five flight experiments follow a Gaussian distribu-
tion.

8.6.2 Data preparation
We consider five quadrotor flights under different wind conditions (wind speed and blower
orientation), all for a duration of 850 time steps each with 𝑑𝑡 = 0.0083𝑠. Although different
wind conditions might induce different levels of noise color, it doesn’t influence our final
result. We split each time series data into two parts: training data (700 time steps ≃ 80%)
and test data (150 time steps ≃ 20%). The training data is used to learn the model, whereas
the test data (unseen data) is used to test the performance of the learned model for output
prediction. As a pre-processing step, the input pwm signal to the rotor was mean shifted
to zero, and scaled down from high values using: 𝑣 = 𝑣−𝑚𝑒𝑎𝑛(𝑣)

𝑚𝑎𝑥(𝑣)−𝑚𝑖𝑛(𝑣) .

8.6.3 Noise color and Laplace approximation
We validate the two fundamental assumptions of DEM, the Laplace approximation and
the noise color assumption, by using noise histogram and noise autocorrelation graph
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(a) Output prediction.
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(c) Maximize free energy action 𝐹 (𝑖) − 𝐹 (0).

Fig 8.6: The robot brain’s perception as a free energy optimization scheme (DEM) for the output
prediction of a quadcopter hovering under wind conditions. (a) The coinciding blue and red curves
demonstrate that DEM can accurately perform one step ahead output prediction on the training data
(white background). The green curve following the trend of the red curve demonstrates that DEM
can perform 150 step ahead output predictions on unseen data (grey background) using the learned
model. (b) The parameter estimation step (E step) explores the parameter space to finally converge
to a solution for 𝐴, 𝐵 and 𝐶 matrices. (c) Perception driven by the maximization of 𝐹 .

respectively on all experiments. Fig. 8.5 demonstrates that the histogram of process noise
𝑤 �̇� is Gaussian in nature, confirming DEM’s Laplace approximation. Fig. 8.7 demonstrates
that the autocorrelation plot of 𝑤 �̇� does not correspond to white noise where it should have
been bounded within the confidence bounds for lags above 0. This confirms the presence
of strong color in process noise, which was induced by unmodelled wind dynamics and
linearization errors.

8.6.4 Algorithm settings for DEM
The parameter priors 𝜂𝜃 were randomly selected from [-1,1], and a moderate level of
parameter precision (𝑃𝜃 = 𝑒4) was set to encourage exploration in the parameter space,
starting from random priors 𝜂𝜃 . A high observation noise hyperparameter (𝜆𝑧 = 20) was
used with high confidence (𝑃𝜆𝑧 = 𝑒25) to represent the accurate motion capture system
measurements (optitrack). A low process noise hyperparameter (𝜆𝑤 = 3) was used with
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high confidence (𝑃𝜆𝑤 = 𝑒20) to represent high process noise emerging from wind and
linearization errors. The noises were assumed to have a Gaussian temporal correlation
with a noise smoothness of 𝑠 = 𝑑𝑡 for all the experiments. To handle colored noise, the
generalized coordinate was used with an order of generalization for states and inputs as
𝑝 = 2 and 𝑑 = 1 respectively. DEM used the same settings to process all data.

8.6.5 Output prediction using DEM
The robot brain’s perception of a quadrotor hovering in wind was emulated using the
DEM algorithm. The quadrotor model was learned by maximizing 𝐹 using the experiment
2 data and the result is shown in Fig. 8.6. The parameter estimation (E step) explores
the parameter space and converges to a solution within few iterations (Fig. 8.6b), despite
starting from wrong random priors (𝜂𝜃 ) in the range [-1,1]. The learned model is tested for
one step ahead output prediction on the training data, and for output predictions until 150
step ahead on the test data. The coinciding predictions and measured output in Fig. 8.6a
demonstrates DEM’s successful model learning for output prediction, both on seen and
unseen data. Fig. 8.6c shows the maximization of 𝐹 during perception.

8.6.6 Metric for comparison
We measure the quality of output prediction using the Mean Squared Prediction Error
(MSPE) for 150 step ahead predictions on unseen test data:

𝑀𝑆𝑃𝐸 =
1
150

𝑇+150
∑
𝑖=𝑇+1

(𝑦𝑖 − �̂�𝑖)2, (8.14)

where 𝑦𝑖 is the measured output and �̂�𝑖 is the output prediction at time step 𝑖. A high
quality perception algorithm will have the least MSPE when compared to other methods.
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Fig 8.7: The autocorrelation plot of process noise (𝑤 �̇� ) for all five experiments doesn’t drop within
the confidence bound immediately after zero lag, confirming the presence of a range of noise color.
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8.6.7 Importance of generalized coordinates
The key difference between DEM and other classical estimators is its capability to deal with
colored noise using the generalized coordinates (GC). In this section, we show that the
use of generalized coordinates improves the accuracy of output prediction of a quadrotor
flying in wind. We repeat the same procedure in Section 8.6.5 for two different conditions:
1) output prediction with GC (𝑝 = 2) and 2) without GC (𝑝 = 1). Fig. 8.8 demonstrates that
the use of GC provides a better output prediction than when no GC was used. MSPE was
used to measure the quality of output prediction for all five flight experiments for both
conditions (with and without GC), and the results are tabulated in Table 8.2. The results
show a lower MSPE for DEMwith GC when compared to DEMwithout using GC, revealing
the importance of using GC for output prediction.

Table 8.2: INFLUENCE of GC on MSPE.

expt 1 expt 2 expt 3 expt 4 expt 5 total
DEM without GC 0.1197 0.0640 0.1647 0.0518 0.0951 0.4953
DEM with GC 0.0521 0.0133 0.0583 0.0458 0.1172 0.2867

8.6.8 Benchmarking
In this section, we will show that DEM outperforms the classical system identification
methods (SS, EM and PEM) with the least MSPE for five quadrotor flight experiments
in wind. The System Identification toolbox from MATLAB was used for SS (n4sid()) and
PEM (pem()) methods, whereas an EM algorithm implementation for state space model
was written based on [234]. PEM was initialized using the solutions of SS. The data from
experiment 2 was used to learn the state space model of the quadrotor for all methods. The
grey area in Fig. 8.9a shows the results of output prediction on unseen test data, using the

Fig 8.8: The output prediction of DEM on the test data improves when GC is used during model
learning. The green curve follows the trend of the red curve better than the yellow curve.
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(a) Benchmarking output prediction.
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(b) The n-step ahead prediction error.
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(c) MSPE for five quadrotor experiments.

Fig 8.9: The parameter learning using DEM is benchmarked against other system identification
methods - PEM, SS and EM. (a) The output predictions of 𝜙 and �̇� for experiment 2 on the unseen test
data (in grey background). DEM (in green) best follows the trend of the ground truth measurement
(in red) when compared to other methods. (b) A comparison of n-step ahead output prediction error
(squared). DEM (green curve) has the lowest error, in comparison with PEM, SS and EM. (c) DEM
outperforms other methods with the best quality output prediction by minimizing MSPE for all five
experiments, thereby demonstrating that DEM is a very competitive algorithm.

model learned by the benchmarks. All predictions tend to follow the trend of the ground
truth measurement (red curve). The prediction accuracy of different methods in Fig. 8.9a is
visualized in Fig. 8.9b using the n step ahead squared prediction error. It can be observed
that DEM outperforms other methods with the least prediction error on unseen data. MSPE
was used as the evaluation metric to compare the performance of DEM with other methods
on all five flight data, and the results are shown in Fig. 8.9c. DEM outperforms other
methods for all five experiments with minimum MSPE on unseen test data.

8.6.9 Extended DEM for black-box estimation
The previous sections use the known inputs, outputs and model order for the output
prediction, which differs from the biological brain’s perception that do not have access to
the real inputs and model order. Therefore, in this section we unleash the full capability
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of DEM with unknown inputs, and then extend it by proposing a free energy objective
based scheme to evaluate the model order for black box estimation. Since 𝐹 is the sum of
prediction errors for 𝑥 , �̃�, 𝜃 and 𝜆 and their entropies, it is intuitive for the correct model
order (or above) to maximize 𝐹 . In this section, we test this hypothesis for quadrotor flights.

We consider the linearlized model of the quadcopter dynamics given in [207] to derive
4 different LTI systems as given in Table 8.1. All systems are observable and controllable,
and use motor pwm signals as the input. 𝑦, �̇� 𝜙 and �̇� were selected as states since they
are the most influenced by the wind in 𝑦 direction, thereby generating colored process
noise in data. We use the same algorithm setup in Section 8.6.4 except for an additional
constraint for unknown input (𝜂𝑣 = 0 with low precision 𝑃𝑣 = 𝑒2), to run DEM for all five
experiments. The converged values of 𝐹 for all experiments were recorded by assuming a
model order of 1,2,3 and 4 for all systems. The average 𝐹 of five experiments with different
model orders for all four systems is shown in Fig. 8.10. 𝐹 saturates when the model order
matches the system order, proving that 𝐹 is an indicator for model order selection. We use
this idea to extend the original DEM algorithm for complete black box estimation as given
in Algorithm 3. It generates an internal model via free energy maximization to estimate
𝑥, �̃�, 𝜃,𝜆 and 𝑛𝑥 that best explains the data.

Algorithm 3 Extended DEM - black box estimation
Initialize priors 𝜂 = {𝜂𝑣 , 𝑃𝑣 , 𝜂𝜃 , 𝑃𝜃 , 𝜂𝜆 , 𝑃𝜆}
Initialize brain’s model order 𝑛𝑥 = 0
while 𝐹𝑏 not converged do ⊳ model order

Initialize 𝑎←− 1 and 𝐹𝑎 ←− −∞;
𝑛𝑥 ←− 𝑛𝑥 +1; ⊳ increment model order
while 𝜃 not converged do

for t = 0:Δ𝑡 :T do
𝑥(𝑡), �̃�(𝑡)←− D_STEP(�̃�(𝑡), 𝜃,𝜆,𝑛𝑥 , 𝜂)

end
while 𝜆 not converged do

𝜆←−M_STEP(�̃�, 𝑥, �̃�, 𝜃,𝜆,𝑛𝑥 , 𝜂)
end
𝐹𝑎 ←− Equation (8.13) ⊳ 𝐹 at optimal precision
if 𝐹𝑎 > 𝐹𝑎−1 then ⊳ update 𝜃 if 𝐹 increased

𝜃 ←− E_STEP(�̃�, 𝑥, �̃�, 𝜃,𝜆,𝑛𝑥 , 𝜂)
end
𝑎←− 𝑎+1

end
𝐹𝑏 = 𝐹𝑎−1

end
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Fig 8.10: The average 𝐹 of five experiments for different model orders. 𝐹 saturates when the model
order matches the real system order (4 for blue, 3 for red, 2 for yellow and 1 for violet).

8.7 Conclusion
System identification under colored noise is still an open challenge. We take a step towards
developing a brain inspired model learning algorithm (DEM) for real robots. We introduced
a DEM based system identification scheme under colored noise for a quadcopter flying in
wind conditions. We demonstrated its superior performance through its minimum output
prediction error, when compared to estimators like SS, PEM and EM. The usefulness of
generalized coordinates in providing additional (derivative) information for estimation
during unmodelled dynamics (wind) was demonstrated. Based on the results, the original
DEM algorithm was extended for model order selection for complete black box estimation.
The main disadvantage of DEM is that the noise smoothness needs to be known apriori,
which can be addressed by the future research.
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9
Active Inference for Multi

Robot Navigation in
Formation

This chapter uses precision modelling to solve practical problems in multi robot navigation
in formation, within the active inference framework. It builds on the idea of using precision to
modulate robot behavior (from Chapter 2) in the context of multi robot problems.

This chapter contains the preliminary results from an upcoming unpublished paper with the same title.
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9.1 Abstract
The last decade has witnessed the rise of active inference as a mathematical framework
from neuroscience that describes the action selection procedure of the human brain as the
minimization of an information theoretic objective called the free energy. In this paper, we
introduce an active inference framework for multi robot navigation in formation problems,
in a hope to move towards a brain inspired formation control algorithm for robot swarms.
Through a series of simulations, we show that our active inference framework is effective
in solving a number of multi robot navigation problems like goal directed navigation, static
and dynamic obstacle avoidance and object transportation in formation. Finally, we show
the utility of precision modulation within the active inference framework (as a mode of
robot attention) in effectively solving multi robot problems like deadlock resolution in
symmetric circular swapping of agents, splitting and merging of formation for obstacle
avoidance and to negotiate through narrow gaps. With this framework, we contribute
towards the development of active inference as the brain inspired swarm intelligence.

9.2 Introduction
Multi robot navigation is a well researched field in robotics [236] with a huge societal
impact with applications including exploration [237], object transportation [238, 239] and
pattern formation [240]. While most swarm intelligence researches have been inspired
from the collective behavior of biological agent like ants, bees, birds and fishes [241], there
is a gap in robotics literature for swarm intelligence from the cognitive neuroscience side
[225]. With this work, we aim to take a step in this direction by using one of the most
prominent neuroscience theory of the brain - the Free Energy Principle (FEP) [2] - to solve
swarm robotics problems.

The recent developments in cognitive neuroscience have culminated in FEP, emerging
as a unified theory of the brain [2]. The success of FEP in explaining a wide range of
cognitive functions of the brain motivates its selection as the principled methodology for
the development of a brain-inspired swarm intelligence algorithm. Based on FEP, active
inference provides a mathematical framework to model the brain’s action selection process
as the minimization of an information theoretic measure called free energy [229]. The
free energy minimization is a direct consequence of modelling the brain as a Bayesian
engine that tries to do Bayesian inference using its sensory measurements [187]. The key
idea behind active inference is that each agent in equilibrium with its environment tries
to take those actions that would minimize its sensory surprisal, or in other words, the
precision weighted prediction errors (and uncertainty). In the context of robot navigation,
this is a plausible way to model the agent behavior because surprise minimization is central
towards enabling robots with the capability to handle uncertainties (avoiding dynamic
obstacles for example). This motivates the use of active inference for the design of our
brain inspired multi robot navigation algorithm.

Owing to its wide popularity within the neuroscience community, active inference
has been widely used to solve robotics challenges [25] like pick and place tasks [242],
self-adaptation on humanoid robots [32], simultaneous localization and planning [34]
etc. Our approach is different from other active inference based goal-directed obstacle
avoidance algorithms mainly because of the use of a continuous time reactive navigation
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scheme, instead of the discrete active inference solved as POMDPs [243] or the use of
neural networks [35]. The novel and distinctive feature of our framework is the capability
to solve multi robot navigation in formation problems in robotics using continuous time
active inference [109]. The core contributions of the paper include:

1. introduce a continuous time active inference framework to solve the multi robot
navigation in formation problem (Algorithm 4, Section 9.4, 9.5).

2. demonstrate the usefulness of precision modulated attention for multi robot naviga-
tion in formation problems (Section 9.6).

In Section 9.3, we introduce a continuous time active inference based reactive planner,
which is used to solve the goal directed obstacle avoidance problem in Section 9.4, and the
formation control problem in Section 9.5. The utility of precision modulation as a means
to robot attention for multi robot problem is shown in Section 9.6.

9.3 Active inference based reactive planner
In this section, we introduce a general active inference framework for a reactive agent
that takes control actions 𝑎 = [ 𝑎

𝑥
𝑎𝑦 ] in a 2D planar environment (𝑥 and 𝑦 axis) such that

it minimises its free energy. This section distinguishes the generative model from the
generative process and builds a reactive planner. The generative process is part of the
world where the actions are executed, while the agent’s internal model of the generative
process is called the generative model. The planner is part of the agent and is responsible
for generating the control actions. The free energy is the only objective that shapes
the agent’s behavior. Here the planner and the generative model are part of the agent,
while the generative process is part of the world. The agent can sense the world through
measurements and can change the world by taking actions. This section works towards
building the fundamentals of our active inference based reactive planner given in Algorithm
4.

9.3.1 Free energy
Active inference relies on action selection based on the minimization of an objective called
the free energy, which derives from the Bayes rule, following the same routine as that of
variational inference [52]. The generic form of the free energy objective used in this work
can be seen as a sum of two terms: i) the precision weighted prediction error and ii) the
entropy term. The combined free energy is written as [2]:

𝐹 =
1
2
𝜖𝑇Π𝜖 − ln |Π|, (9.1)

where 𝜖 is the agent’s prediction error andΠ is the precision or inverse covariance associated
with the prediction error. Here, 𝜖 is the difference between the sensory measurements
and the agent’s predictions about it, written as 𝜖 =𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 −𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. In active
inference, predictions can be seen as the prior preferences - reference trajectory, control
goal etc. In the later sections, different variations of this error will be used to encode
different agent behaviors. Any deviation of the sensory measurements from the predictions
will reflect in the free energy term. Therefore, taking those actions that minimizes 𝐹 would



9

150 9 Active Inference for Multi Robot Navigation in Formation

drive the agent towards the resolution of sensory surprisal, which is the core idea behind
active inference. For continuous time problems, this is realised by doing gradient descent
on the free energy surface for action selection. Since, we only deal with constant precision
throughout this paper, the entropy term is constant and therefore dropped from 𝐹 . Next
sections will detail on how action influences the world through a generative process and
how an agent can make predictions about the sensory measurements using a generative
model and a planner.

9.3.2 Generative process
The dynamic system or process in the environment that is responsible for the data genera-
tion behind the sensory measurements is called the generative process. We use a simple
linear time invariant state space representation to model the agent dynamics in the planar
environment, given by:

�̇� = [
�̇�
�̇�] = −𝐴𝑋 +𝑈

= −[
𝑎𝑥 0
0 𝑎𝑦][

𝑥
𝑦]+ [

𝑢𝑥
𝑢𝑦] ,

(9.2)

where 𝑋 = [
𝑥
𝑦] is the combined position vector with 𝑥,𝑦 coordinates and 𝑈 is the combined

action vector of the agent. This equation determines the agent’s dynamics, given the
control actions. The exact discretization of the differential equation along 𝑥 at time 𝑡 +𝑑𝑡
can be written as:

𝑥(𝑡 +𝑑𝑡) = 𝑒−𝑎
𝑥𝑑𝑡𝑥(𝑡) −

1
𝑎𝑥

(𝑒−𝑎
𝑥𝑑𝑡 −1)𝑢𝑥 (𝑡),

𝑦(𝑡 +𝑑𝑡) = 𝑒−𝑎
𝑦𝑑𝑡𝑦(𝑡) −

1
𝑎𝑦

(𝑒−𝑎
𝑦𝑑𝑡 −1)𝑢𝑦 (𝑡).

(9.3)

This completes the generative process of an agent moving in a 2D planar environment.
Since the equations along the 𝑥 and 𝑦 axes are similar in form, only those along 𝑥 will be
derived in the following sections.

9.3.3 Generative model
The agent tries to model the generative process by maintaining a generative model, which
might not be the same as the generative process. We use the generative model that is same
as that of the generative process, except for the knowledge of the parameters 𝑎𝑥 and 𝑎𝑦 ,
which are assumed to be 1. The generative model, maintaining the same dynamics as that
of Equation 9.2 is given by:

�̇� = −𝑥 +𝑢𝑥 ,

𝑥(𝑡 +𝑑𝑡) = 𝑒−𝑑𝑡𝑥(𝑡) − (𝑒−𝑑𝑡 −1)𝑢𝑥 (𝑡).
(9.4)

This model will be used by the planner in the next section.
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9.3.4 Reactive planner
We use a reactive planner based on the gradient descent of free energy, given by [109]:

𝑑𝑢𝑥

𝑑𝑡
= −𝑘𝑢

𝜕𝐹
𝜕𝑢𝑥

, (9.5)

where 𝑘𝑢 is the learning rate. Since the action influences the free energy through the
position, the planner is rewritten as:

𝑑𝑢𝑥

𝑑𝑡
= −𝑘𝑢

𝜕𝐹
𝜕𝑥

𝜕𝑥
𝜕𝑢𝑥

−𝑘𝑢
𝜕𝐹
𝜕𝑦

𝜕𝑦
𝜕𝑢𝑥

. (9.6)

Since 𝑦 is independent of 𝑢𝑥 , 𝜕𝑦
𝜕𝑢𝑥 = 0. For simplicity, we assume that 𝜕�̇�

𝜕𝑢𝑥 = 0. This yields
𝜕𝑥
𝜕𝑢𝑥 = 1 after differentiating the generative model given in Equation 9.4. From these results,
the planner simplifies to:

𝑑𝑢𝑥

𝑑𝑡
= −𝑘𝑢

𝜕𝐹
𝜕𝑥

. (9.7)

We use Newton Gauss update scheme to evaluate discrete actions in steps:

𝑢𝑥 (𝑡 +Δ𝑡) = 𝑢𝑥 (𝑡) +Δ𝑢𝑥 ,
𝑢𝑦 (𝑡 +Δ𝑡) = 𝑢𝑦 (𝑡) +Δ𝑢𝑦 ,

Δ𝑢𝑥 = (𝑒−𝑘
𝑢 𝜕2𝐹
𝜕𝑥2

|𝑡Δ𝑡 −1)(
𝜕2𝐹
𝜕𝑥2

|𝑡 )−1
𝜕𝐹
𝜕𝑥

|𝑡 ,

Δ𝑢𝑦 = (𝑒−𝑘
𝑢 𝜕2𝐹
𝜕𝑦2

|𝑡Δ𝑡 −1)(
𝜕2𝐹
𝜕𝑦2

|𝑡 )−1
𝜕𝐹
𝜕𝑦

|𝑡 .

(9.8)

These update rules plans the next control action such that the free energy of the agent
is minimized via a gradient descent. The algorithmic form of our active inference based
reactive planner is given in Algorithm 4. The next sections will use this reactive planner to
perform goal directed obstacle avoidance and formation control.

9.4 Goal directed obstacle avoidance
This section aims to use the reactive planner in Algorithm 4 to embed goal directed obstacle
avoidance behavior in agents, driven by free energy.

9.4.1 Goal directed behavior
A goal directed behavior can be embedded in an agent using active inference by using the
goal position as the agent’s prior, within the free energy objective [109]. Any deviation
of the agent’s position from its priors reflects in the free energy and drives the agent
towards performing a goal directed behavior, similar to an attractor dynamics. Therefore,
a goal directed behavior is a natural consequence of free energy minimization, resulting
in actions that would drive the agent towards the least suprising state - the goal position.
The component of free energy that drives the goal directed behavior is given by:

𝐹 𝑔 =
1
2
(𝑥 −𝑥𝑔 )Π𝑔 (𝑥 −𝑥𝑔 ) +

1
2
(𝑦 −𝑦𝑔 )Π𝑔 (𝑦 −𝑦𝑔 ), (9.9)

where Π𝑔 is the precision associated with the goal directed behavior.
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Algorithm 4 Active inference based reactive planner
for 𝑡 = 0 ∶ Δ𝑡 ∶ 𝑇 do

Compute 𝐹 , 𝜕𝐹𝜕𝑥 |𝑡 ,
𝜕2𝐹
𝜕𝑥2 |𝑡

// Compute next action

Δ𝑢𝑥 = (𝑒−𝑘
𝑢 𝜕2𝐹
𝜕𝑥2

|𝑡Δ𝑡 −1)( 𝜕
2𝐹

𝜕𝑥2 |𝑡 )
−1 𝜕𝐹

𝜕𝑥 |𝑡

Δ𝑢𝑦 = (𝑒−𝑘
𝑢 𝜕2𝐹
𝜕𝑦2

|𝑡Δ𝑡 −1)( 𝜕
2𝐹

𝜕𝑦2 |𝑡 )
−1 𝜕𝐹

𝜕𝑦 |𝑡
𝑢𝑥 (𝑡 +Δ𝑡) = 𝑢𝑥 (𝑡) +Δ𝑢𝑥
𝑢𝑦 (𝑡 +Δ𝑡) = 𝑢𝑦 (𝑡) +Δ𝑢𝑦

// Take those actions in the world
𝑥(𝑡 +Δ𝑡) = 𝑒−𝑎𝑥Δ𝑡𝑥(𝑡) − 1

𝑎𝑥 (𝑒
−𝑎𝑥Δ𝑡 −1)𝑢𝑥 (𝑡 +Δ𝑡)

𝑦(𝑡 +Δ𝑡) = 𝑒−𝑎𝑦Δ𝑡𝑦(𝑡) − 1
𝑎𝑦 (𝑒

−𝑎𝑦Δ𝑡 −1)𝑢𝑦 (𝑡Δ𝑡)

end

9.4.2 Static obstacle avoidance
In this section we introduce an obstacle avoidance scheme into the active inference frame-
work, and demonstrate its applicability for a number of drones performing goal direction
behavior by avoiding all collisions. We combine the idea of Artificial Potential Field (APF)
[244] with active inference by using the zero collision cost in the APF as the agent’s expec-
tation or prior. Any deviation from a zero collision cost in the APF would drive the agent
towards an obstacle avoidance behavior. To ensure a smooth free energy landscape, we use
a special form of APF that takes a Gaussian function form. The component of free energy
that drives the obstacle avoidance behavior is defined as:

𝐹 𝑜 =
1
2

𝑚
∑
𝑗=1

[𝑒−
1

2𝜎𝑜 ((𝑥−𝑜
𝑥
𝑗 )

2+(𝑦−𝑜𝑦𝑗 )
2) −0]Π𝑜

[𝑒−
1

2𝜎𝑜 ((𝑥−𝑜
𝑥
𝑗 )

2+(𝑦−𝑜𝑦𝑗 )
2) −0]

=
1
2
Π𝑜

𝑚
∑
𝑗=1

[𝑒−
1

2𝜎𝑜 ((𝑥−𝑜
𝑥
𝑗 )

2+(𝑦−𝑜𝑦𝑗 )
2)]

2,

(9.10)

where Π𝑜 is the precision associated with the obstacle avoidance, 𝜎 𝑜 is the hyperparameter
of APF defining the required level of obstacle avoidance, 𝑜𝑥𝑗 is the x position of obstacle
𝑗 and 𝑚 is the total number of obstacles. When the agent is sufficiently away from the
obstacle, APF imposes zero collision cost.

9.4.3 Dynamic obstacle avoidance
In this section, we propose a position based dynamic obstacle avoidance strategy within
the active inference framework, similar to the static obstacle avoidance in the previous
section. The motivation behind not using a velocity based dynamic obstacle avoidance
strategy is its redundancy because of the use of the gradients of free energy within the
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active inference framework, which implicitly handles the velocity. The use of two gradients
of 𝐹 in Algorithm 4 helps in embedding the dynamic obstacle behavior into the active
inference framework. The component of free energy that drives the obstacle avoidance
behavior is defined as:

𝐹 𝑜𝑎 =
1
2
Π𝑜𝑎

𝑛
∑
𝑗=2

[𝑒−
1

2𝜎𝑜 ||𝑝−𝑝
𝑗 ||2]

2, (9.11)

where 𝑝 is the position vector of the agent, 𝑝𝑗 is the position vector of agent 𝑗 and Π𝑜𝑎 is
the precision associated with obstacle avoidance with other agents.
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(a) Obstacle avoidance. (b) 3D view of free energy curve

(c) Top view of free energy curve.

Fig 9.1: (a) The goal directed behavior of six active inference agents, successfully avoiding obstacles
(in black) by going down their individual free energy curves for action selection. (b) 3D view of the
free energy curve of agent 5 (green in Figure 9.1a) showing the peaks for all three static obstacles and
five dynamic obstacles. (c) Top view of Figure 9.1b showing the minimum value at the goal position
(1.6,1.5). The agent is pulled towards the goal while repelling the obstacles.

9.4.4 Goal directed obstacle avoidance
In this section, we show the navigation behavior of a group of active inference agents
moving towards their individual goals in an obstacle filled environment. This is done by
using Algorithm 4, by following a gradient descent on their free energy curves given by:

𝐹 = 𝐹 𝑔 + 𝐹 𝑜 + 𝐹 𝑜𝑎 . (9.12)
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The free energy gradients in Algorithm 4 are computed using symbolic differentiation
apriori. Figure 9.1 shows six active inference agents using the free energy curve to do
obstacle avoidance during a goal directed behavior. Figures 9.1b and 9.1c shows the free
energy curve of agent 5 (in green in Figure 9.1a). All agents successfully reaches the goal
without any collisions with static and dynamic obstacles, showing the usefulness of the
algorithm.

We take a step further by simulating the agent behavior in a challenging scenario that
demands close contact between neighbouring agents. Figure 9.2 shows the asymmetric
circular swapping of positions of 7 active inference agents, each following the gradients of
their own free energy curve. Each agent avoids all other dynamic obstacles on their way
towards the goal, without any collisions. This shows the usefulness of our framework to
solve dynamic obstacle avoidance problems in robotics.
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Fig 9.2: The final position and the path followed by a group of agents performing asymmetric circular
swapping of positions using active inference. The agents initially move towards the centre. However,
beyond a particular distance, the dynamic obstacles are too close that all the agents decide to move
in a circular manner to negotiate towards their goals. This shows that active inference is effective in
performing dynamic obstacle avoidance without any collisions.

9.5 Formation control
In this section we introduce a formation control scheme into the active inference framework
for a group of agents to do multi robot navigation in formation tasks.

Some collaborative tasks in robotics like object transportation demands that all the
agents maintains their formation throughout navigation so that the structural integrity
of the transported object is maintained. We develop an active inference framework for
these problems by shaping the free energy with expectations on inter agent distances. Each
agent holds a prior expectation about the Euclidean distance it has to maintain with all
other agents in the formation. Any deviation from this prior over distances will result in a
corrective behavior by the agents, forcing them to remain in formation. The component of
the free energy that drives agents towards formation control is defined as:

𝐹 𝑓 =
1
2
Π𝑓

𝑛
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

(||𝑝
𝑗 −𝑝𝑖 ||− ||𝑝𝑓 𝑗 −𝑝𝑓 𝑖 ||)

2
, (9.13)
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Fig 9.3: A group of five agents navigating in a circular formation towards their circular and linear
shifted goal positions. The centroid of the formation marked in black follows a straight line between
their start and goal centroid, indicating an unbroken formation throughout the navigation.

where 𝑝𝑖 and 𝑝𝑗 is the position vector of agent 𝑖 and 𝑗 respectively, 𝑝𝑓 𝑗 and 𝑝𝑓 𝑖 are the initial
position of the agents making a formation that is to be maintained, ||.|| is the Euclidean
distance, 𝑛 is the number of agents, and Π𝑓 is the precision associated with the formation.
In summary, a group of agents that has to perform a goal directed behavior, by avoiding
obstacles and maintaining the initial formation should use all three contributing free energy
components defined as:

𝐹 = 𝐹 𝑔 + 𝐹 𝑜 + 𝐹 𝑜𝑎 + 𝐹 𝑓 . (9.14)

This free energy and its gradients are directly used in Algorithm 4, completing the reactive
planner design.

We use a test case scenario to demonstrate the functionality of active inference to solve
the multi robot object transportation task. We simulate such a scenario in Figure 9.3 where
a group of agents tries to maintain the formation during a goal directed behavior towards
the circular and linear shifted goal positions. The centroid of the formation, indicated
in black follows a straight line between the centroid of the start and goal formations,
indicating that the formation was maintained throughout the navigation. This shows the
usefulness of active inference for multi robot collaboration problems.

9.6 Precision modulation for robot attention
Precision modulation is central to attention models in neuroscience [19, 55, 245]. This
section aims to show the utility of precision modulation in the context of robot attention for
practically relevant multi robot problems like deadlock resolution, splitting and merging
for obstacle avoidance and escape manoeuvre through narrow gaps.

9.6.1 Precision modulation for deadlock resolution
The symmetric circular swapping of agents is a popular problem in multi agent systems
that results in deadlocks. During deadlocks, the agents come face to face, resulting in a
wastage of time while negotiating their way towards a deadlock resolution. In this section,
we show the usefulness of precision modulation for deadlock resolution during multi robot
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Fig 9.4: The symmetric circular swapping of agents resulting in a deadlock. The agents did not reach
their goals within the stipulated time as most of it was wasted in coming face to face with other
agents in a deadlock.
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Fig 9.5: The use of precision modulation for deadlock resolution of agents in a symmetric circular
swapping problem. Each agent uses a randomly selected goal precision Π𝑔 ∈ [0,3] which determines
the level of urgency of each agent to reach the goal. The agents with high Π𝑔 chooses the easiest
path towards the goal, while the agents with a low Π𝑔 gives way to the agents in an urgency, thereby
resolving the deadlock. The green agent is in urgency, while the yellow agent is in low urgency and
gives way to other agents.

navigation. A challenging deadlock scenario is simulated in Figure 9.4 where an even
number of agents try symmetric circular swapping and is unable to reach the goal in time.

We propose the use of precision modulation for the deadlock resolution, where each
agent randomly picks a goal precision Π𝑔 depending on their preference towards urgency
(or the required attention level) to reach the goal, and communicates this information with
other agents. The agents with a high Π𝑔 are surprised more when they are far from the
goal, when compared to the agents with low Π𝑔 , This directly reflects in their velocity
through the free energy term. Figure 9.5 shows the deadlock resolution through precision
modulation, where some agents (green for example) act like in a sense of urgency, while
other agents (yellow) gives way to other agents, thereby resolving the deadlock in Figure
9.4 and saving the time to reach the goal.
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Fig 9.6: The obstacle avoidance behavior of a group of agents navigating in a circular formation
during an object transportation task. A higher precision for formation control Π𝑓 = 5 was used to
attend more towards the formation control than towards the goal directed behavior.

9.6.2 Precision modulation for obstacle avoidance
This section demonstrates the role of precision modulation in splitting and merging behav-
ior during obstacle avoidance tasks in multi robot navigation problems. We demonstrate a
test case example where a group of agents navigating in formation shows two different
behaviors just through precision modulation: i) obstacle avoidance by maintaining the
formation and ii) obstacle avoidance by splitting and merging the formation. More the
precision on formation control, the agent attends to keeping the formation. Figure 9.6
shows the goal directed behavior of a group of agents in formation, avoiding the obstacle
in an object transportation task. The same setup results in an obstacle avoidance through
splitting and merging when precision is modulated by changing Π𝑓 from 5 to 2, as shown
in Figure 9.7. The agent now attends more towards reaching the goal than towards keeping
the formation. This demonstrates that precision modulation can be used to model emerging
behavior during the robot navigation in formation.

9.6.3 Precision modulation for escape manoeuvre
This section aims to show the utility of precision modulation in tasks like escape manoeuvre
of robots in formation where the formation has to operate in tight spaces. Figure 9.8a
shows one such scenario where a group of robots should escape from a room through
a window that is narrower than the formation size. These challenging scenarios results
in splitting and merging of formation being the most effective solution for an escape
maneuver. Through simulations, we show that the active inference agents can show such
emerging behavior in formation without any hand coding for the expected behavior. A low
Π𝑓 enables such a behavior as shown in Figure 9.8b where the formation is temporarily
split and each agent escapes in a narrow line through the gap, until all agents reach the
other side and regroups to move towards their goal positions. This shows the usefulness of
precision modulation in obtaining emerging behavior on robots moving in formation.
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Fig 9.7: The exact same setting as that of Figure 9.6, except for a relaxed precision on formation
control Π𝑓 = 2 . The violet agent autonomously decided to temporarily split from the formation and
merge later. This behavior was not hard coded, but was an emergent behavior of the active inference
framework, as a consequence of precision modulation. With a decreased Π𝑓 , the agents now attend
less to the formation control.
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(a) Tight space scenario.
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(b) Paths taken by the agents.

(c) Free energy curve of green agent.

Fig 9.8: (b) The active inference agents negotiating through a tight space (given in Figure 9.8a) to
move towards their goal positions by splitting and merging the formation. This behavior emerges
from lowering the formation precision Π𝑓 as the formation approaches the obstacle wall, showing the
usefulness of precision modulation in formation control. (c) The free energy curve of the green agent
shows the obstacle wall and five other dynamic obstacles to be avoided. The agent takes actions to
move down the free energy curve to reach its goal.
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9.7 Conclusion
In this paper, we introduced an active inference framework to solve the multi robot naviga-
tion in formation problem. Through multiple simulations, we showed the effectiveness
of our algorithm in solving challenging problems in swarm robotics. We showed the use
of precision modulation within the active inference framework for deadlock resolution,
obstacle avoidance by splitting and merging in formation and escape manoeuvre through
narrow spaces. The main advantage of the algorithm is that it is real time and benefits from
the reactive nature that helps towards the online planning in formation control amongst
dynamic obstacles. However, a reactive planner might not be the best strategy for problems
that demands a finite look ahead. This could be solved by extending the algorithm using
expected free energy as the objective for path planning. The future research can focus on
implementing the algorithm on real robots and can include comparison against benchmarks.
The same framework could be used to design autonomous driving agents for road traffic
environments.
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10
Conclusions and future work

This thesis proposed a precision modulation based robot attention model using FEP - one
of the most prominent brain theories from neuroscience. Four precision modulations
were identified for robot attention to handle uncertainties: precision modelling, precision
learning, precision optimization and precision fluctuation. The advantages of the model
was explored within the scope of three class of robot problems: action, perception and
active perception. Each chapter followed the development of the mathematical framework,
extensive testing of the method in simulation with benchmarks, and its experimental
validation on real robot data. These results were used together to answer the two main
research questions of the thesis, showing that FEP is indeed useful to solve real robotics
problems and that it can outperform classical robot algorithms, especially for estimation
under colored noise. This chapter concludes the thesis by outlining the future research
directions and ideas for extending this work.

10.1 Conclusions
This section lists the high-level conclusion of the research done in this thesis under each
precision modulation method proposed in Chapter 2.

Precision modelling: In chapter 3, a state and input observer design for LTI systems
under colored noise was proposed to seamlessly handle colored noise. Precision modelling
was used to attend to the most informative noise derivatives during estimation. The
resulting observer was shown to outperform classical linear observers in state and input
estimation under colored noise. In chapter 4, an experimental setup was designed to test
the effectiveness of the observer on real quadrotor flight data. The results demonstrated
that the observer is highly competitive when compared to the state of the art methods,
when applied to real robot data. In chapter 9, an active inference algorithm was introduced
for multi robot navigation in formation. Using this algorithm, the precision modelling
was used to attend to the desired robot behavior, where different strategies emerge during
multi robot navigation in formation, when faced with an obstacle.

Precision learning: In chapter 6, a system identification tool for LTI systems under
colored noise was developed through precision learning. The resulting estimator was
proved to outperform classical estimators in simulation. The safe operation capabilities
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of the algorithm on robots were motivated using a convergence proof for the parameter
estimator in chapter 7. In chapter 8, the quadrotor hovering data was used to show that
the estimator is competitive when applied to real robot data. In chapter 5, a novel online
noise smoothness estimator was designed through precision (hyperparameter) learning.
A joint state and noise smoothness estimator called DEMs was designed. DEMs was
shown to outperform classical state estimation methods both using simulation data and
real quadrotor data.

Precision optimization: In chapter 2, a general class of information gathering prob-
lems - especially for applications like target search, mapping, exploration etc - that relied
on uncertainty reduction as the objective were identified as precision optimization. The
path planner was shown to result in pure exploration strategies. Its application was shown
on a sample IPP problem aimed at searching for human targets in an urban search and
rescue.

Precision fluctuation: In chapter 2, a rhythmic precision modulated neurorobotic
attention model was proposed to solve the active perception problems. The advantages
of temporal scheduling of action and perception was shown within the context of the
IPP problem, inspired from the rhythmic fluctuation between the eye saccades and the
visual sampling of the eye on a reading task. The potential benefits of fluctuating the prior
precision during system identification was highlighted in the context of an exploration-
exploration tradeoff.

Combining all the results, the thesis answers the two main research questions. FEP is
indeed useful to solve real robotics problems in estimation, control and planning. FEP based
methods developed in the thesis outperform classical estimation algorithms in estimation
accuracy, when the system is subjected to colored noise.

This thesis proposed a precision modulation based robot attention mechanism for un-
certainty resolution in light of three pertinent sub-problems in robotics: action, perception
and active perception. However, this proposition has a wider scope and can be expanded
to accommodate a large class of robotics problems. The sub-problems addressed were
limited in number and do not represent the full scale of the applicability of the model.
For example, discrete problems that are typically solved using reinforcement leaning etc
were not considered in this thesis. In the context of these problems, identifying an explicit
precision term that needs to be modulated for attention is also a challenge. Although the
neuroscience literature points to precision for attention modelling, this might not be feasi-
ble for all robotics problems because of the non existence of such a term. Therefore, more
research should be done to identify the exact scope of this model, and to mathematically
define alternatives for precision manipulation under these contexts.

10.2 Future work
This section lists the potential future research directions and further ideas to extend this
work.

1. The distinguishing feature of DEM when compared to other methods is the use
of generalized coordinates to model the colored noise in the system. This thesis
considered only linear systems for estimation. However, the true potential of gen-
eralized coordinates could be exploited by evaluating DEM for nonlinear systems
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using standard control system tools and techniques. This is an important research
direction since a large part of the real world systems are non-linear in nature.

2. The usefulness of generalized coordinates for robot control still remains unexplored.
Further research in this direction could result in better controller designs.

3. The practical use of the DEM based state and input observer design in Chapter 3 and
4 is for the delivery drones flying under strong wind conditions, which is of strong
economic value to the industry. For this to be practical, the sensory measurements
should rely on the internal signals of the drone, unlike the controlled lab experimental
setup where the accurate Optitrack sensory data is available. Future research could
focus on making this transition of the algorithm from the lab setup to real outdoor
drone experiments.

4. The system identification method was not explored in the direction of identifiability,
frequency domain analysis, robustness and persistent excitation. This research is
essential for the widespread practical use of DEM as a system identification tool.

5. A stability proof for the DEMs observer developed in chapter 5 could be derived.
The observer could be extended by learning the precision of the noise smoothness
estimates, resulting in a more confident smoothness estimation and possibly a more
accurate state estimation. The observer could also be extended by learning the
magnitude of the noise precision online using the gradient ascent on the free energy
curve. An accurate noise estimation is important for the widespread deployment of
robots on highly uncertain environments.

6. The rhythmic precision modulated neurorobotic attention model was tested on the
IPP model without using an explicit precision term, but by using the most informative
future flight plan (path length). Further research in this direction to identify an
explicit precision term that determines when to perform action and perception could
make the robot search algorithm perform the search like a brain. This could help the
roboticists to design a better search and rescue algorithm.

7. The precision optimization for IPP problem results in a pure exploration strategy,
which is not favourable when there are constraints to be met. For example, obstacle
avoidance, formation control etc. A Bayesian optimal way to do target search would
be to use the full free energy as the objective function instead of just the precision, by
encoding the constraints as prior preferences. This would result in an IPP algorithm
that optimally balances between prior preferences and uncertainty resolution through
exploration, thereby contributing towards the rise of an efficient search algorithm.

8. The preliminary results of the IPP problem points to the hypothesis that the free
energy objective is the same as that of Bayesian optimization with Upper Confidence
Bound (UCB) as the acquisition function. More research in this direction could be
useful to test the mathematical and experimental validity of this hypothesis.
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10.3 Discussion and insights
One of the main technical contributions of this thesis is the demonstration of the utility
of generalized coordinates in robotics, especially for the estimation under colored noise.
This thesis could contribute to the widespread use of generalized coordinates in solving
real robot problems in future. Under colored noise, DEM outperforms the benchmarks
in state estimation, system identification and noise estimation. Since building the robot
algorithms that can perform tasks robustly in a highly noisy environment lies at the core of
robotics, DEM could be highly impactful in the survival of the robot in a highly uncertain
environment. The brain inspired nature of the mathematical framework further motivates
its role in the rise of FEP as the central pillar of solving the general robot intelligence
problem. If FEP is indeed the grand theory of the brain, then using it for the development of
robot intelligence could lead to better algorithms that can seamlessly handle uncertainties.
At the same time, it is prone to the pitfalls of the brain, giving rise to agents that are highly
effective and robust against uncertainties in the world for survival, but are biased towards
its prior beliefs, are heavily influenced by wrong data and data sources, and are prone to
hyperactivity, attention deficits, conspiracy theories, hallucinations, quick generalizations,
wrong judgements, prejudices, autistic behavior etc. It is highlighted that the uncertainty
handling capabilities of the brain are embedded within the attention model and plays a
crucial role in the survival of the organism. However, this might not lead to the global
objective performance of the agent in the real world because it is evident that humans
are mostly leading a suboptimal life that are highly biased by their environments, data
sources and the prior genetic makeup. Therefore, care should be taken such that the future
intelligent agents can escape both the pitfalls of the human brain and the suboptimal robot
life.

With a hope that this thesis contributes to the rise of FEP as the grand unification
theory for robot intelligence, this thesis is concluded.
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Glossary

AR auto regressive.

DEM Dynamic Expectation Maximization.

EM Expectation maximization.

FEP Free energy principle.

GC Generalized coordinates.

GP Gaussian process.

IPP Informative Path Planning.

KF Kalman filter.

KL Kullback–Leibler divergence.

LTI Linear time invariant.

MF Mean field.

PE Prediction error.

PWM Pulse width modulation.

SA State augmentation.

SC Superior colliculus.

SMIKF Second-moment information based Kalman Filtering.

SS Subspace identification.

SSE Sum of squared error.

UAV Unmanned aerial vehicle.

UIO Unknown Input Observer.

WM Working memory.
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