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ARTICLE

Assessment of the COVID-19 infection risk at a workplace
through stochastic microexposure modeling
Sergey Vecherin1✉, Derek Chang1, Emily Wells1,2, Benjamin Trump1, Aaron Meyer1, Jacob Desmond1, Kyle Dunn1, Maxim Kitsak3 and
Igor Linkov 1,2✉

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022

BACKGROUND: The COVID-19 pandemic has a significant impact on economy. Decisions regarding the reopening of businesses
should account for infection risks.
OBJECTIVE: This paper describes a novel model for COVID-19 infection risks and policy evaluations.
METHODS: The model combines the best principles of the agent-based, microexposure, and probabilistic modeling approaches. It
takes into account specifics of a workplace, mask efficiency, and daily routines of employees, but does not require specific inter-
agent rules for simulations. Likewise, it does not require knowledge of microscopic disease related parameters. Instead, the risk of
infection is aggregated into the probability of infection, which depends on the duration and distance of every contact. The
probability of infection at the end of a workday is found using rigorous probabilistic rules. Unlike previous models, this approach
requires only a few reference data points for calibration, which are more easily collected via empirical studies.
RESULTS: The application of the model is demonstrated for a typical office environment and for a real-world case.
CONCLUSION: The proposed model allows for effective risk assessment and policy evaluation when there are large uncertainties
about the disease, making it particularly suitable for COVID-19 risk assessments.

Keywords: Disease Spreading Modeling; Microenvironment approach; Probability of infection; Spatial probability of transmission;
Temporal probability of transmission; COVID-19 risk assessment
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INTRODUCTION
The COVID-19 pandemic has caused severe disruption to our
normal lives [1]. The pandemic has imposed a severe toll on
human health and wellbeing, destroyed families, and significantly
affected the economy [2, 3]. COVID-19’s impact to the economy in
the long run can be devastating. It is apparent that lockdown of all
businesses can be used as a short-term emergency policy, but will
not be viable or sustainable over prolonged periods for many
businesses [4]. Therefore, risk infection models are needed to
make decisions regarding workplace opening and pandemic
mitigation policies [5].
There are several approaches for modeling the spread of viral

infections. One of the most renowned approach is the susceptible-
infected-recovered (SIR) models [6–8]. In fact, ref. [9] cites the
CHIME model [10], which is a SIR model with a one-day cycle, as
one of the most widely used tools in the US. In this approach, the
main assumption is that the population is homogeneous and
flows between different categories at rates specific to the disease
being modeled. Typically, these models are deterministic,
described by a system of differential equations with fixed rates
of transition from one category to the next. Additional models
have incorporated uncertainty in the parameter estimation [11]
and time-varying parameters [12]. Although these models require

relatively few parameters, one must provide rates of infection for
individuals who come into contact with one another. At small
scales and heterogeneous population, these rates can vary
drastically from one individual to the next depending on effective
precautions taken and individual’s daily routine at the workplace.
Furthermore, significant complexity arises when a specific work-
place floorplan is considered, or when local mitigation factors are
imposed on a workforce, such as social distancing, or staggered
scheduling [13].
The agent-based models for COVID-19 can overcome many of

the shortcomings of the SIR models [14, 15]. In this approach,
relatively simple rules are prescribed for every agent (e.g., a
person) to model its behavior. The simulation then evolves in
time according to these interaction rules. Eventually, the
collective outcome of such interactions can be analyzed on the
macro level to make meaningful statistical inferences. These
models can capture many individual-level behaviors, but at the
risk of being too detailed. Among known issues with agent-
based modeling are the dependence of the results on initial
conditions (i.e., it will matter which specific employees are
infected at the beginning of the simulation, not only how many)
and on the internal structure of the model itself, so that
simulations with the same parameters lead to different
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inferences. Another issue is the difficulty in calibration of the
rules between the agents so that the macro effect would match
the empirical knowledge [16, 17].
Another established approach for disease spread modeling is

based on aerosol simulation techniques [18, 19]. This approach
assumes that infection occurs when a number of contaminants in
the air exceeds a certain concentration. The approach can
incorporate the specific building design, air paths, and ventila-
tion systems to estimate pathogen concentrations, and, thus,
make an inference on the infection spread. Some of the
simulations include a full fluid dynamic solution for air motion
in a specific floorplan of the building [20]. However, the aerosol
mechanism of COVID-19 transmission, unlike the close-contact
transmission, is debatable, and, currently, there is no expert
agreement on whether this mechanism is actually engaged [21].
Furthermore, aerosol models require very specific infection
parameters as inputs, such as the virus emission rate, the size
distribution of aerosol particles that carry viable viruses, aerosol
viral load, and the minimum infectious dose. None of these
parameters are known for COVID-19 exactly. Furthermore, other
characteristics are required, such as lung capacity, speech/breath
ratio, and concentration of infectious particles at an exhale,
which can vary by orders of magnitude among different
individuals, and depend on the surrounding conditions and
ventilation efficiency [18]. In this paper, the aerosol transmission
mechanism is not considered in the model, but the model could
be modified to include this or other mechanisms.
The stochastic model developed in this paper was derived

fusing principles of “microexposure” [22, 23] modeling, agent-
based modeling, and probabilistic modeling, which together are
best suited to estimate individual-level COVID-19 exposure and
infection risk. A daily workplace activity of an individual is parsed
to elementary typical work environments. We estimate the
probability of becoming infected in each of these microenviron-
ments. Then, fusing probabilities of all activities for the entire day,
we obtained the probability that a single uninfected person
becomes infected at the end of his or her typical workday.
Similar to the agent-based and microexposure models, Monte-

Carlo simulations are used in our model to estimate the number
and duration of an uninfected individual’s encounters with others.
However, for each single interaction, the quantity of interest is the
probability of becoming infected, which depends on the closest
distance and duration of the contact. The innovation in
comparison with other approaches is that the infection probability
is modeled directly by introducing explicit formulas for the spatial-
temporal probability of virus contraction. These probabilities
require only a few parameters for calibration that can be
estimated from empirical data easier than collecting precise
information about virus concentration and person’s lung capacity.
Once the probability is estimated, the fusion of different
microenvironment risks can be implemented rigorously using
the theory of probability. This significantly reduces the required
number of trials in the Monte-Carlo simulations and removes
oversensitivity of the agent-based models to the initial conditions.
The proposed model can be used in practice in three different

ways. The main application is to predict disease dynamics in time
for a specific workplace. For this purpose, all or some parameters
of the model either should be estimated by direct measurements
at that workplace, or should be treated as fitting parameters to
match the predictions to actual new cases during the few first
days observed at that workplace. Another application is to predict
a typical-case infection dynamics at a desired scale. For this
application, typical statistical parameters can be used. And finally,
the model can be used to estimate relative effectiveness of
workplace policies aimed at preventing the spread of the disease
at a workplace. In the paper, examples for all three model
applications are provided.

MODEL
Baseline micro model
In the baseline micro model, the probability of becoming infected
due to a single contact between two people is deemed
dependent on three probabilities: the probability that a randomly
chosen person is infected, the probability that an infected person
exposes another person to the virus, and the probability of
contracting the virus. Specifically, the single contact infection
probability is described by the following formula:

Pj;inf ¼ P0Pexp;ai Pc;aj r; tð Þ; (1)

where Pj,inf is the probability that an uninfected person j becomes
infected after a single contact with a person i, P0 is the probability
that a randomly chosen person i is infected, Pexp;ai is the
probability of virus exposure, Pc;aj is the probability of virus
contraction, ai and aj are the ith and jth person’s behavioral
archetypes (explained below), r is the closest distance of contact
between the person i and j, and t is the duration of the contact at
the closest distance.
The probability of virus exposure, Pexp;ai , characterizes the

effectiveness of spreading the virus by an infected person i and
depends on the infected person’s behavioral archetype, ai. The
behavioral archetype reflects usage of different personal protec-
tion equipment (PPE) or adherence to other safety compliance
measures. For simplicity, let ai denote a random event of the ith
person wearing a mask and ai denote the ith person not wearing a
mask. Then, Pexp;ai can be expressed as:

Pexp;ai ¼ P expjaið ÞPai þ PðexpjaiÞð1� Pai Þ (2)

where P(exp│ai) is the probability for virus exposure under the
condition that the ith person wears a mask, PðexpjaiÞ is the
probability for virus exposure under the condition that the ith
person does not wear a mask, and Pai is the probability that the
ith person wears a mask. These probabilities can be treated as
fitting parameters at model calibration to a specific community or
microenvironment.
The probability that the jth person contracts the virus, Pc;aj r; tð Þ,

depends on the behavioral archetype of the jth person (i.e., if the
jth person wears a mask), the closest distance between the ith and
jth individuals, and the duration of the contact:

Pc;aj r; tð Þ ¼ Pc;rðaj; rÞPc;tðaj; tÞ (3)

where Pc,r(aj,r) and Pc,t(aj,t) are spatial and temporal probabilities of
virus contraction, both dependent on the jth person’s behavioral
archetype.
The spatial dependence of the risk of virus contraction may

not be known exactly. Currently, there is no unanimous
agreement on which functional form for spatial dependence is
most accurate for modeling COVID-19 risks [24]. Some studies
suggest using the inverse squared [24] or exponential models
[25]. Moreover, if the aerosol mechanism for COVID-19 spreading
is occurring, then the spatial dependence will likely be
anisotropic and affected by the airflow in the building. In this
paper, we do not pursue this direction and limit ourselves by the
isotropic inverse squared model, suitable for the aerial droplet
transmission mechanism, following the same arguments pre-
sented in ref. [24]:

Pc;r aj ; r
� � ¼ CðajÞ

r2 ; r � RðajÞ
1; r<RðajÞ

(
(4)

where C(aj) is a fitting constant to match empirical data for an
archetype aj, and R(aj) can be interpreted as a critical distance
below which contracting the virus for long exposure times
becomes inevitable, i.e., Pc,r(aj,R) = 1. Keeping in mind that aj
denotes the jth individual wearing a mask, and aj denotes the
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opposite, it is reasonable to set up the following reference point:
the probability to contract the virus at r = 2 m and at infinite
exposure time is 0.9 for the aj and 0.4 for the aj archetypes.
Although 0.9 value for the reference point is chosen arbitrarily, it
reflects the current CDC recommendations stating that the
probability of virus contraction is “high” at close distances. The
infection risk of 0.4 under mask usage is linked to the choice of
0.9 and is based on particle removal efficiency of masks, which is
estimated to be 53–75% for commercial surgical masks and can
reach 90% when snugged to the face under a nylon layer [26].
These choices result in the following fitting constants from Eq.
(4):

C aj
� � ¼ 1:6m2; C aj

� � ¼ 3:6m2; R aj
� � ¼ 1:26m; R aj

� � ¼ 1:90m

(5)

The temporal dependence is modeled using the Wells–Riley
equation [27], which describes the probability of airborne
infection under some specific assumptions. Specifically, it operates
in terms of an infection “quanta” and assumes the Poisson
distribution of infected particles in the air [28]. The Wells–Riley
equation reads as following:

PI ¼ 1� exp � Ipqt
Q

� �
; (6)

where PI is the probability of infection, I is the number of infectors,
p is the pulmonary ventilation rate of a person, q is the quanta
generation rate, t is the exposure time interval, and Q is the room
ventilation rate with the clean air. The Wells-Riley equation is
applicable to any disease with airborne transmission mechanism
(subject to assumptions made in the derivation of the Wells-Riley
equation), particularly, it is applicable to COVID-19.
In our paper, we aggregated disease- and person-specific

characteristics, p and q, and the room ventilation rate Q into a
single new variable, called T = Q/Iqp. The motivation is that it is
more practical to estimate a single parameter T from a single
reference point than four other parameters (also found from a
reference point). As the result, the following equation was used in
the manuscript:

Pc;t aj ; t
� � ¼ 1� exp � t

T aj
� �

 !
; t � 0; (7)

where the fitting time constant T depends on the person
behavioral archetype aj because all four parameters are affected
by wearing a mask, I, p, q, and Q.
According to the CDC recommendations [29], a 15-min

exposure to the virus in close contact with an infected person
leads to a high risk of being infected. Setting the probability of
contraction during a 15-min contact to 0.99 for the archetype aj

and 0.6 for the archetype aj , the temporal fitting constants are:

T aj
� � ¼ 982:22 s; T aj

� � ¼ 195:43 s (8)

Figure 1a, b shows the spatial and temporal probabilities of
virus contraction, respectively.
Equation 1 provides a probability of being infected in a single

contact. If an uninfected person j experiences N contacts, then,
under assumptions that these contacts are statistically indepen-
dent and identical, the probability of being infected in at least one
of the contacts can be found as:

PinfðNÞ ¼ 1� 1� Pj;inf
� �N (9)

where Pj,inf is given by Eq. 1.

In-person work meetings
Work meetings represent one of the typical microenvironments at
a workplace. It is assumed that in-person meetings take place in a
large room, where people are seated at specific places on a round
or rectangular table. The number of participants, time spent in the
meetings, dimensions of the tables, and places where the
employees are seated can be regulated or measured. The duration
of contact is assumed to be the same for any person at the
meeting. The distribution of people around both types of tables
are different, and because the separation distance between
employees is an ingredient in the model, so too are the risks of
infection.
Fig. 2a shows the probability of becoming infected during a 60-

min work meeting held at round tables of different radii, for
scenarios where all participants wear a mask, and where no
participants wear masks. Note that the size of the table has a more
profound effect in the case of not wearing masks than in the case
when all participants wear masks. Also of interest to note: masks
wearing is a far more dominant effect than the table size,
especially for small tables (compare the solid and dotted lines, and
the dashed and dash-dotted lines).
Figure 2b depicts the probability of becoming infected at a 2 m

radius round table for meetings of different durations, where all
participants wear masks. One insight in Fig. 2b is that the
probability has uneven time dependence, i.e., it saturates at about
60-min meetings. Another note of interest is that the dependence
on the number of participants bears quadratic, rather than linear,
character. The same feature is present in Fig. 2a, but less
pronounced due to different axis scale. For closed space scenarios,
like having a room or a table of a fixed size, the distance between
N people becomes inverse proportional to N. Recalling that the
spatial probability of contracting the virus is inversely proportional
to the distance squared, the squared dependence on N becomes
apparent. If any single individual has the same probability, the
expected number to become infected in the group of N people

Fig. 1 Probability of virus contraction. a Spatial dependence. b Temporal dependence.
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can be found as a product of N and the individual probability.
Therefore, for close spaces and a group of N people, the average
number of attendees getting infected is proportional to N3,
leading to a “super spreading” event, where a twofold increase in
the number of meeting participants leads to an eightfold increase
of new infections.

Time dynamics
The daily infection probability can be used to predict the expected
number of infections at the workplace as a function of time. Let
the infections occur at the end of the day, and the moment an
employee becomes infected, they are both asymptomatic and
contagious during the incubatory period i0. After this time has
ended, they may develop symptoms, which is controlled by the
asymptomatic rate parameter α. In this case, they quarantine at
home for the duration of infection. The employee is infected for a
total duration of τ, after which they either recover or die according
to the recovery rate β. Once an employee recovers, they are
immune to a second infection. As the number of infected
employees in the workplace grows, the probability a particular
employee is infected deviates from the original P0. Thus,
consecutive workdays of the same workforce cannot be treated
as independent trials and results in the need to (1) daily update
the probability that a randomly chosen person becomes infected
on the ith day, P0(i), and (2) keep track of the infected and
uninfected employees. To do so, we separate the workforce into
the following disjoint populations. Let Nsus, Na, Ns, Nr, and Nd be
vectors indexed over the beginning of the ith day at work and
representing the numbers of susceptible, asymptomatic, sympto-
matic, recovered, and deceased employees, respectively. Addi-
tionally, let Ninf denote the number of currently infected
individuals, Nnew denote the number of daily new infections,
and Nwork the number of people attending work. The following
equations must hold for every day i:

Ninf ið Þ ¼ Ns ið Þ þ Na ið Þ (10)

Nwork ið Þ ¼ Nsus ið Þ þ Na ið Þ þ Nr ið Þ: (11)

In order to reflect the daily change to the percentage of
infected employees at work, the following recursive algorithm is
used. At the end of the ith day, the model returns P1(i),
the probability an uninfected employee is infected on that
particular day. Since only Nsus(i) employees are able to contract
the virus, the expected number of new infections at the end of the
day is Nnew(i) = P1(i)Nsus(i). The number of currently infected
employees is then calculated to be

Ninf ið Þ ¼ Ninf i � 1ð Þ þ Nnew ið Þ � Nr ið Þ � Nd ið Þ; (12)

where

Nr ið Þ ¼ Nr i � 1ð Þ þ βNnew i � τð Þ (13)

for I > τ > 1 and zero otherwise. The deceased population is
similarly defined, using 1-β instead of β. Defining

Ns ið Þ ¼ Ns i � 1ð Þ þ 1� αð Þ Nnew i � i0ð Þ � Nnew i � τð Þð Þ (14)

and

Na ið Þ ¼ Na i � 1ð Þ þ α Nnew i � i0ð Þ � Nnew i � τð Þð Þ
þ Nnew ið Þ � Nnew i � i0ð Þð Þ; (15)

one can check that Ninf(i) = Ns(i)+Na(i) for all i. If I < 1, the values of
the corresponding vectors are zeros.
In order to initialize the model, we set Ninf(1) = Nnew(1) = P0(1)

Nwork(1), the expected number of infected employees at the
beginning of the first day. Note that the range of the expected
value of Ninf(i) is continuous, i.e., it may not be a whole number.
After using the aforementioned equations to update the
population pools, the percentage of infected employees on the
(I+ 1)th day is given by

P0 i þ 1ð Þ ¼ Na i þ 1ð Þ
Nwork i þ 1ð Þ (16)

Equation 16 with the given initialization of Nnew and Eq. 15 for
Na result in the probability of infection equal to P0(1) for all
days, if there are no interactions in the workplace. In other
words, the model accounts for the probability that employees
might be infected outside of the workplace with the probability
P0(1), while the interactions at the workplace may result in
higher probabilities. Using this process, the model can be
applied to multiple workdays to predict the total number of
infected employees.

TYPICAL OFFICE EXAMPLE AND A REAL-WORLD CASE
This section provides an example of model application to a typical
office workplace and describes an application of the developed
model to a real-world case. The floorplan of a simulated workplace
is shown in Fig. 3, with 5 identical floors, and, by assumption, no
employee interactions between different floors except for the
elevator use and cafeteria.
As one can see in Fig. 3, this floorplan can accommodate 6

people in single offices, 6 people in double-occupancy offices, 8
employees in cubicles, resulting in 20 employees per floor and a
100-employee building. There are two restrooms on a single floor,
being used by 10 employees each, and one elevator in the
building. A typical workday includes 2 rides in the elevator, with
heavy elevator use for 1.5 h in the morning and evening; 1

Fig. 2 Probability of becoming infected at meetings at a round table. a 60-min-long meeting. b 2m—radius table, all participants
wear masks.
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meeting at a round table with 6 participants; and 1 meeting at a
rectangular table with 6 participants. Supplementary Fig. 1 shows
probabilities for the restroom and elevator microenvironments,
while Supplementary Fig. 2 depicts probabilities at close contacts
for 15 min and 5min contact duration.

Parameter choices
The probability that a random person is infected, P0, can be
estimated as the ratio of the total number of infected people
capable of virus transmission to the total number of people.
According to the CDC guidelines, an infected person is capable of
virus transmission for about 12–14 days [29]. In our paper, 14 days
was used as the infection period, after which an infected person
recovers or dies, in accordance to the mortality rate. Therefore, the
number of infected people capable of virus transmission can be
estimated by summing over all new cases for the past 14 days.
Such an estimate can be made on the organizational (workforce),
regional, state, or national scale. It also can be refined for specific
types of professional occupations, e.g., healthcare workers. For
example, on the national scale, the probability that a randomly
chosen person in the USA is infected and capable of virus
transmission, as of 2 March 2021, can be estimated as:

P0;national ¼ Ninf;14

Nn
¼ 905; 961

330; 111; 838
¼ 0:0027; (17)

where Ninf,14 = 905,961 is the total number of new infections in
the USA for the past 14 days, including 2 March 2021 [29], and Nn

= 330,111,838 is the total USA population [30]. In this paper, an
infected person implies a person capable of virus transmission.
The percentage of asymptomatic cases among infected was

estimated to be about 30% in early stages of pandemic [31],
however, a more recent meta-analysis of various data yielded 17%
[32], echoing by the case study on the Diamond Princess cruise
ship, in the confined environment, yielding 18% [33], which was
used in our simulations. The estimates of the incubation period
are more consistent and lie in the 4 ̶ 5 days range;[34–36] 4 days
was used in our simulations. The death rate for the USA, according
to the John Hopkins University, is 1.8% [37]. A complete list of
parameters used in this example and their values are shown in the

Supplementary Table 1, where N(μ,σ) denotes the normal
distribution with mean μ and standard deviation σ.

Effectiveness of pandemic-mitigating policies
The probability of becoming infected after a workday can be used
as a metric to compare the effectiveness of different pandemic-
mitigating policies. For this example, we consider a few simple
restrictive policies in addition to mask mandates.

● Cafeteria Policy—Everyone eats lunch in their office, cafeteria
is not used.

● Elevator Policy—Maximum elevator capacity is one.
● Restroom Policy—Maximum restroom capacity is one.
● Office Policy—Everyone has a single office, no cubicle or

multi-user office use.
● Meeting Policy—There are no meetings.
● Hallway Policy—If people are encountered in hallways,

the closest distance of contact must be substantially larger
than 2m.

The effectiveness of these policies were measured in the
percentage of the decrease of daily probability of becoming
infected, in comparison with nominal workplace policies.
Figure 4 addresses the efficacy of workplace policy interven-

tions. A single bar shows the reduction in the daily risk of infection
as a percentage of the unrestricted case. One can see that the
order of most efficient policies is different for the cases of all
wearing masks vs. no one wearing masks. Imposing more than
one policy is predictably more effective than a single policy. In the
case of all employees wearing masks, the combination of cafeteria
and meetings policies reduces the chance to get infected by 80%.
In the case of no employees wearing masks, several combinations
of policies have similar 80% risk reduction: meetings and office
policy, meetings and restrooms, meetings and elevators, meetings
and cafeteria, and meetings and hallways. Interestingly, the single
most effective policy in both cases is the meeting policy.

Time dynamics simulation
The time dynamics for the unrestricted workplace is shown in Fig. 5,
which provides several insights for the course of pandemic at a
workplace. The parameters for the simulation are provided in
Supplementary Table 1. The curve depicting currently infected has
an exponential growth at the beginning, reaches the full workplace
capacity at approximately day 11, and then, at day 18, starts
receding because the infected population either recovers or
deceases. This observation is supported by the recovered and
deceased curves, showing growth at the same time as the number
of currently infected declines. The number of symptomatic
infections peaks at about day 15, and is delayed in comparison
with the total infected curve, because, once an employee becomes
infected, he or she remains asymptomatic for a number of days,
and then, either becomes symptomatic and is quarantined at
home, or remains asymptomatic and continue going to work, or
recovers, or deceases. The asymptomatic curve has rather a non-
trivial behavior. At the beginning of the pandemic, the asympto-
matic infection rapidly spreads and reaches a peak of 15 employees
at day 9. Then, it declines mostly due to asymptomatic cases
becoming symptomatic. At this time, it coincides with the
population going to work, because asymptomatic employees are
not aware about their infection and continue their work schedule as
usual. Then, after day 15, the recovery population start increasing,
and that decreases both, the symptomatic and asymptomatic cases.
Eventually, almost all employees are recovered except those who
deceased. The population at work has a remarkable behavior. It has
a pronounced minimum of employees at work of about 4 people
(20% of the workforce) at day 16, and then increases to almost the
full capacity by day 25. Note that such a short pandemic lifecycle is
in major part due to small number of employees considered in the

Fig. 3 The floorplan for simulated workplace. Circles denote round
tables for work meetings. A rectangle indicates a larger meeting
talbe. Female and male pictograms indicate restrooms. Cross-
shaped tables above six circular tables indicate cubicles, and a
walking man pictogram with up and down arrows indicate an
elevator. Double ocupancy offices have a larger area than a single
occupancy offices.

S. Vecherin et al.

716

Journal of Exposure Science & Environmental Epidemiology (2022) 32:712 – 719



example. For larger workplaces, a different time dynamics is
expected.

South Korea call center case
The example considered above uses national parameters perti-
nent to the USA. Next, we show applicability of the model to a real
case of COVID-19 pandemic outbreak, which was carefully
documented at the telephone call center in Seoul Metropolitan
area, South Korea [38]. The model parameters of any particular
workplace may have deviations from the national or regional
statistics. Therefore, the governing parameters of the model
should be fitted to empirical data of the specific workplace if the
comparison between a model and any particular case to be made.
The working environment for the call center represents an open

space with operators seating at large tables. The study represents
early stages of pandemic at the call center. New cases of COVID-19
were documented at the center, but all employees were required to
attend the work regardless whether they had symptoms or not. The
study was terminated at day 14 after 76 employees became
infected. In our model, we set that masks were not worn, and all
infected were treated as asymptomatic. The daily typical activity was
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Fig. 5 Expected total number of infected employees when there are
no restriction policies.
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Fig. 4 Relative efficiency of restriction policies. a All wear masks. b No masks.
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assumed to use the elevator twice a day, bathrooms a few times,
and working at the tables. No hallways encounters, cafeteria use,
and conference meetings were assumed. The probabilities P0 and
PðexpjaiÞ were the fitting parameters to the new registered cases of
infection. The complete list of parameters used for the South Korea
call center case can be found in Supplementary Table 2.
The empirical data and model predictions for the South Korea

call center case are shown in Fig. 6. The currently infected curve
coincides with the total infected curve up until the infection
period ends. After which, people either recover or die, in
accordance to the mortality rate. One can see that the exponential
growth at the beginning of the pandemic, reflected in the
empirical data, is captured accurately by the infection curves. If the
call center were not closed, the model predicts that the peak of
infections at work would reach almost the entire workforce by the
day 20, after which, people would start recovering. However,
the total number of infected would still grow so that all people in
the center would become infected by the day 25. Eventually, by
day 40, almost all workforce would recover except for those who
might have been deceased.
This example demonstrates that the model can describe real-

world cases, provided that the model parameters are fitted to the
empirical data.

CONCLUSIONS
This paper presents a decision-making model suitable for risk
assessment and policy evaluation at a workplace regarding
COVID-19 infection. The model was applied to a small group
within a larger population, accounting for the daily routines of
each employee and workplace settings. Yet, this model requires a
relatively small number of parameters, and is flexible enough to
accommodate uncertainties about COVID-19 transmission
mechanisms. The model also accurately reproduced a real-world
case study, after being fit to the initial data on new
registered cases.
The model combines agent-based, microexposure, and prob-

abilistic modeling principles, making it more robust and addres-
sing uncertainty about the virus being modeled. Unlike previously
explored models, the model works through probabilistic estimates
of spreading and contracting the disease at various microenviron-
ments directly, with the spatial and temporal virus contraction
probability being the modeled quantity of interest. Any contact
has non-zero probability of becoming infected, which depends on
the duration and the distance of the contact. Such an approach
allows one to work with highly uncertain or unknown disease

characteristics, increases robustness to the uncertainties in the
initial conditions, does not require specific disease spreading
parameters or even mechanisms. Unlike agent-based approaches,
there is no need to simulate every interaction between agents,
and unlike SIR-based approaches, no exact values for the disease
transmission rates are required. The model can also be used to
estimate time dynamics of the expected total number of infected
at a workplace.
The model is also applicable to evaluation of the efficacy of

specific disease mitigation policies at a workplace. Simulations of
specific scenarios considered in the paper demonstrated that the
expected number of new infections for in-person meetings grows
cubically with the number of participants, while other micro-
environments exhibit quadratic trends, at least, within the
considered ranges of probabilities.
The policy that had the greatest influence on infection risk was

the mask policy, and for this reason mask use policies were
considered separately in each example. The other most risky
factor, according to the model, were in-person meetings. The
restrictions on both, meetings and cafeteria, meetings and
elevators, and meetings and restrooms have the largest effect in
risk mitigation, accounting for about 80% of the total risk.
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