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A B S T R A C T   

Field investigations of geometric discontinuity properties in rock masses are increasingly using three- 
dimensional point cloud data. These point clouds sample the rock mass surface and are typically acquired by 
photogrammetry or LiDAR. The automatic segmentation and extraction of planar surfaces from point cloud data 
have attracted significant attention among researchers. This paper reviews the capabilities, merits, and limita
tions of different segmentation methods for discontinuity plane surface extraction and the specific challenges of 
processing point cloud data collected from rock faces. The segmentation and orientation results of a series of 
studies on two point cloud datasets of rock mass surfaces are critically discussed. A new set of ground truth 
orientations for one point cloud and some challenges faced while labeling a ground truth discontinuity plane are 
presented. Some suggestions to establish reliable and reproducible ground truth orientation results are presented. 
Two popular open-source software tools (CloudCompare and Discontinuity Set Extractor) for planar surface 
extraction are reviewed, and their capabilities and shortcomings are discussed. Acquisition of high-quality point 
cloud data and sharing it on a public repository establishes a basis for researchers to implement their method
ologies and meaningfully compare their results to advance the knowledge in the field. Finally, some recom
mendations for future research and development are summarized.   

1. Introduction 

Advances in airborne and terrestrial remote sensing techniques to 
generate bare-earth point clouds have revolutionized various geoscience 
fields in the last decade. Light detection and ranging (LiDAR) and 
photogrammetry techniques are among the most common methods in 
remote sensing. These techniques can provide high accuracy and high- 
resolution 3D data for ground surfaces and remove the drawbacks of 
traditional measurement and geological mapping practices, which re
sults in substantial improvement in the data acquisition process. The 3D 
surface data acquired from geometric remote sensing techniques are 
extensively used in geology, geotechnical engineering, and mapping 
surveys. Their applications cover a vast spectrum of practices, including 
hazard identification and monitoring (Herrera et al., 2010; Jones and 
Hobbs, 2021), analysis of volcanic activities (Fornaciai et al., 2010), 
landslides (Colesanti and Wasowski, 2006; Jaboyedoff et al., 2012a), 

earthquakes (Rathje and Franke, 2016), identification of fault areas 
(Chen et al., 2015), mapping ground texture (Yan et al., 2015), and 
geospatial analysis of data (de Oliveira et al., 2021; Deibe et al., 2020; 
Kong et al., 2020; Smith and Holden, 2021). 

Rock masses often exhibit complex geomechanical behavior because 
of the presence of discontinuities. These discontinuities can affect the 
strength, deformability, and permeability of a rock mass. Therefore, the 
reliable design of an engineered structure on or within a discontinuous 
rock mass is closely linked to accurately characterizing and identifying 
the discontinuities involved. The reliability of traditional manual mea
surements of discontinuity orientations with a compass along an in-situ 
scanline depends on the amount of data collected and the bias involved 
during sampling (Priest and Hudson, 1981). Manual measurements are 
impossible in inaccessible regions or high steep slopes where there is a 
threat to human safety. In addition, the data collected are affected by the 
experience and skill of the geologist or engineer (Lato et al., 2012; Vöge 
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et al., 2013). On the other hand, the use of remote sensing techniques in 
rock engineering provides the following benefits: (i) automating the 
sampling procedure with a rapid collection of data in a safe mode, (ii) 
the possibility of mapping rock faces, irrespective of height and slope, 
(iii) minimum disruption to on-going operating activities, (iv) devel
opment of a permanent archival record of the collected data, (v) 
increased quantity of data with good accuracy, and (vi) minimizing the 
user subjective and bias interpretation during the data acquisition 
process. 

In rock engineering, a variety of methods have been presented to 
automatically identify the geometric properties of discontinuity planes 
using various mathematical modeling techniques and available software 
packages. However, the task of plane detection and extraction from 
point cloud data of rock mass structures comes with unique challenges 
due to the irregularity of the rock surface, compounded by factors such 
as weathering, vegetation cover, noise, biases, and data gaps (empty 
areas in point cloud data). Therefore, it is imperative to implement new 
algorithms and techniques to address these challenges to achieve effi
cient detection and extraction of discontinuities planes from the surface 
of rock faces (Abellán et al., 2014). 

The recently published review paper (Battulwar et al., 2021) covers a 
wide range of topics, including joint sets detection, persistence, joint 
spacing, roughness, and block size using point clouds, digital elevation 
maps, or mesh models. Conversely, the current critical review paper 
exclusively focuses on discontinuity plane extraction from 3D point 
cloud data. It brings breadth and depth by comprehensively reviewing 
methods and techniques and analyzing the discussion and results in the 
literature with a critical lens. Discussion regarding calculating more 
efficient discontinuity orientation practices for reliable comparison and 
verification is also presented. 

Section 2 discusses the most common point cloud acquisition 
method, their characteristics, merits, and drawbacks in this critical re
view paper. Section 3 introduces and reviews various techniques to 
segment and extract planar surfaces and their geometric features from 
rock surface point cloud data. The challenges and limitations associated 
with these methods are summarized. Some recommendations to over
come these limitations are also presented. Section 4 critically discusses 
the qualitative and quantitative results of hybrid techniques imple
mented on rock face point clouds. The qualitative results explore the 
segmentation metrics and orientation on the plane surface of rock faces 
using two case studies. The advantages and disadvantages of the dis
cussed methods are summarized. Some guidelines for generating reli
able and reproducible ground truth orientations are also presented. 
Useful software tools for working with point cloud data are introduced, 
and two common open-access tools for processing point cloud data of 
rock masses are described in Section 5. Finally, Section 6 presents con
clusions and recommendations and a summary of directions for future 
research. 

2. 3D point clouds 

A point cloud is a collection of points in 3D space representing the 
surface exposure of an object. Each point has a 3D coordinate (x, y, and 
z). In addition to coordinates, other useful data can be associated with 
each point, such as Red-Green-Blue (RGB) color or laser beam intensity. 
There are two main techniques through which point clouds can be 
generated: (1) photogrammetry and (2) LiDAR. 

2.1. Imaged-based methods 

Cost-effective cameras are easy to use to acquire images of an area of 
interest. The images can be processed in photogrammetry software to 
create a point cloud representation of the area. Photogrammetry 
methods are increasingly used thanks to a rise in computational power 
and the introduction of structure-from-motion (SfM) image progressing 
algorithms (Chandler, 1999; Eltner et al., 2016; Tannant, 2015). The 

structure-from-motion photogrammetry method allows for 3D recon
struction using stereo pairs of overlapping images and performs a bundle 
adjustment of many automatically located, corresponding points in each 
image. This results in the determination of the location and the orien
tation of the camera for each image and the 3D coordinates of points 
matched in the images (Eltner et al., 2016; Triggs et al., 2000). Un
manned aerial vehicles (UAVs) can be used to obtain stereo- and 
multi-view images and provide a rapid and inexpensive surveying tool 
for geoscience applications. To generate image-based point cloud data, 
integration of dense matching (Hirschmüller, 2005, 2008; Hirschmüller 
and Scharstein, 2007), multi-view stereovision (MVS) (Furukawa and 
Ponce, 2010; Nex and Remondino, 2014), and SfM (Snavely et al., 2006, 
2008; Westoby et al., 2012) is required. The camera position and 
orientation and simultaneous multi-view image processing are accom
plished through SfM. The dense matching and MVS algorithms create a 
large number of points in the point cloud (Xie et al., 2020). The SfM 
photogrammetry workflow typically has the following steps: (1) image 
acquisition, (2) image matching: recognition and matching of the cor
responding points of overlapping photos, (3) reconstruction of image 
geometric data and the corresponding 3D coordinates of a sparse set of 
points in matched images using bundle adjustment, (4) densification of 
the sparse point cloud from reconstructed image geometry, and (5) 
geo-referencing (also applicable in step 2) (Eltner et al., 2016). 

Structure-from-motion image processing can generate high- 
resolution point cloud data with good accuracy (Javadnejad et al., 
2021; Martinez et al., 2021; O’Banion et al., 2018). Point cloud acqui
sition with high accuracy is particularly important for crack detection 
and damage assessment in construction projects (Martinez et al., 2021) 
and detecting rock mass features (joints). 

The error sources of 3D reconstruction in SfM photogrammetry may 
include camera calibration, image blur due to platform motion, image 
resolution, image network geometry, image-matching performance, the 
texture of the surface, illumination conditions, and ground control point 
(GCP) accuracy and distribution (Bolkas, 2019; Eltner et al., 2016; 
Javadnejad et al., 2021). 

2.2. LiDAR scanning 

The LiDAR remote sensing method uses a laser beam to measure the 
distance (range) from the sensor to the targeted object under measure
ment. There are two different approaches to determining the range, the 
phase and pulse methods (Wehr and Lohr, 1999). The phase method 
provides more accurate and faster range determination, with the 
expense of having a limited range. In contrast, the pulse method, which 
is the most common method for remote sensing purposes, offers a wider 
range of measurements. Based on sensors and platforms, the resolution 
or the density of points may vary from ten to thousands of points per 
square meter (Qin et al., 2016). Concerning platforms, they are cate
gorized into four main systems: terrestrial (TLS), airborne (ALS), un
manned (ULS), and mobile LiDAR scanning (MLS). A TLS mounted on a 
static tripod is used for close to middle-range conditions and can 
generate high-density point clouds. The point density for TLS can range 
from 50 to 10000 points/m2, whereas, for ALS, it is typically 0.5 to 100 
points/m2 (Jaboyedoff et al., 2012b). Generally, ALS yields compara
tively low-density point clouds since the sensor is flown at the highest 
distance from the ground. ALS point clouds tend to be the most expen
sive. MLS can be mounted on a moving platform, such as a car, and can 
be a suitable choice for providing 3D geospatial roadway information 
(Guan et al., 2016) for transportation-related applications (Toth, 2009). 
ULS systems installed on unmanned vehicles are relatively cheap 
compared to ALS and create point clouds with higher density due to 
their typically shorter measurement distance. ULS can be employed in 
various surveying tasks such as forestry, mining, and disaster monitoring 
(J. Li et al., 2019; Sankey et al., 2017; X. Zhang et al., 2019). 
Full-waveform LiDAR systems that sample the full return signal as a 
function of time can be used to accurately recognize scattered returns 
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from targets such as vegetation (Hancock et al., 2011, 2015). Fig. 1 
summarizes the commonly used point cloud acquisition methods. 

3. Segmentation techniques to extract planar surfaces from 
point clouds 

The individual points in a point cloud can be separated into groups 
that share particular characteristics or belong to the same object. The 
process is often called segmentation, and it aims to facilitate the iden
tification of intended regions as explicitly understandable features. 
Some point cloud properties make segmentation challenging. These 
challenges are illustrated in Fig. 2. All point cloud data are affected by 
some level of noise. This noise typically varies throughout a point cloud 
depending on acquisition geometry and surface properties. In addition, 
point clouds are often affected by outliers, which are data points that are 
geometrically inconsistent with the original surface (Wolff et al., 2016). 
Points in a point cloud are not uniformly spaced (Qi et al., 2017b), and 
some regions may be missing points. Downsampling can reduce this 
irregularity effect to some degree. There is no grid structure in a point 
cloud, as in a digital image, and in general, points do not have a natural 
order. Consequently, the relationships among neighboring points are not 
explicitly known, which results in a less efficient neighboring points 
search in an unstructured point cloud. (Qi et al., 2017a). 

This section reviews various segmentation techniques deployed to 
extract planar segments from a point cloud (Fig. 3). The advantages and 
disadvantages of each method are also discussed. Then, the corre
sponding studies conducted to extract discontinuity planes from a rock 
mass point cloud are presented. In addition, some other relevant studies 
for extracting planar features from point cloud data in the literature are 
discussed. The goal is to highlight those methods that have not been 

applied on a rock mass point cloud but look promising. 
The four main topics are discussed in the following section. First, 

edge-based methods that were first implemented on image data and then 
extended to 3D data are introduced. Next, region growing methods 
followed by surface fitting methods (Hough Transform and RANSAC) 
are discussed. Finally, unsupervised clustering-based methods are pre
sented, and some of the commonly used algorithms to extract disconti
nuity planes are introduced. 

3.1. Edge-based methods 

The goal of edge-based methods is to identify the pixels on or close to 
regions with a significant local change in the intensity or color, defined 
as traces (radiometric-based edges). A rapid change in gray intensity 
number, an integer ranging from 0 (black) to 255 (white) of the data 
point, is a fundamental characteristic of edge-based methods for images 
(Nguyen and Le, 2013). Nevertheless, there are geometric-based edges 
(regions with high spatial gradients) where 3D coordinates are analyzed. 
These edge points can then be used to determine the shape of objects. To 
distinguish between the radiometric- and geometric-based edges in the 
point cloud data, we use the term “trace” for the radiometric-based 
edges and use the word “edge” for geometric-based edges in this work. 
Fig. 4 shows an image with numerous planar discontinuities, traces, and 
edges. Some of these are marked with a different color (planes indicated 
by a dashed closed polyline, traces are inside dashed red rectangles, and 
edges are shown with a yellow polyline). 

The main steps in edge-based segmentation are (Rabbani et al., 
2006): (1) detect edges to derive the borders of different regions, and (2) 
group points inside the boundaries as a common object. Bhanu et al. 
(1986) used a gradient-based method to fit 3D lines to data points and 

Fig. 1. Common point cloud acquisition methods and a summary of their characteristics.  
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monitored the variations in perpendicular directions to the surface (unit 
normal vector directions). A fast segmentation approach, in which the 
amount of data was reduced, was developed by Jiang et al. (1996). The 
method used high-level segmentation primitives. However, this method 
may not work well for a 3D point cloud with variable point density 

despite often being efficient and accurate. 
Generally, edge-based algorithms deliver a fast segmentation of a 

point cloud because of their simplicity. They yield satisfactory perfor
mance when dealing with a dataset with an even density and low noise. 
However, such methods often end up with disconnected edges and poor 

Fig. 2. Challenging properties of 3D point clouds, (a) Noise, (b) Varying point density (ovals highlight two low-density areas, a high-density area is highlighted by a 
rectangle; (c) unstructured, (d) Unordered. 

Fig. 3. Taxonomy of 3D point cloud planar surface segmentation methods.  
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segmentation if no filling or interpretation techniques are used (Castillo 
et al., 2013; Grilli et al., 2017). This makes these methods inefficient for 
analyzing large datasets and dense point clouds (Xie et al., 2020). 

Early attempts to automatically find discontinuity traces from digital 
images of a rock face were performed by Franklin et al. (1988) and 
Tanimoto et al. (1991). The resulting discontinuity traces were found to 
be insufficient and spurious. To improve the automatic tracing of dis
continuities, Reid and Harrison (1997) considered a digital image of a 
rock face as a greyscale topographic surface on which light pixels reflect 
high elevation and dark ones as low elevation. They used the gradient 
and curvature of the surface, with an artificial topographic label at each 
pixel as the output on the intended discontinuity. Detecting and linking 
the labeled pixels in an appropriate manner resulted in the formation of 
the discontinuity trace. However, the traces detected by their algorithm 
were not satisfactory and only applied to a limited range of rock surface 

morphologies. Furthermore, Lemy and Hadjigeorgiou (2003) noted that 
binary images that emerge from segmentation contain pixels incorrectly 
associated with discontinuity traces, and filtering as a pre-processing 
stage is often required. They also argued that the optimal threshold 
value is not a convenient approach to building an automatic mapping 
tool. Therefore, algorithms such as those by Reid and Harrison (1997) 
are unreliable for obtaining the discontinuity traces from digital images 
of rock exposures, and only some discontinuities are detected. 

Lemy and Hadjigeorgiou (2003) compared various edge and line 
detection methods and suggested a more efficient mapping procedure. 
The methodology follows the steps of (a) acquisition, (b) pre-processing, 
(c) segmentation, (d) representation, (e) recognition, and (f) interpre
tation. Depending on the intended complexity, these steps may be 
reduced to three main categories (Gonzalez et al., 2002). The 
semi-automatic detection for the trace length worked very well for 
limestone, while for carbonatite and granodiorite exposures, it was 
challenging to reach satisfactory results (Gonzalez et al., 2002). 

Bolkas et al. (2018) investigated space-frequency transforms using 
LiDAR data to evaluate the effectiveness of those transforms in detecting 
discontinuities in a rock mass. They used several edge detection algo
rithms (Canny, Sobel, and Prewitt) to study the suitability of each for 
discontinuity detection. Wavelet, contourlet, and shearlet transforms 
were also compared. Contourlet and shearlet outperformed the other 
methods. 

Similarly, Guo et al. (2018) presented an automatic methodology to 
detect discontinuity edges from 3D point cloud data using 1D truncated 
Fourier series and a Laplacian-based curvature-weighted smoothing 
technique to refine and thin the potential feature points. Lastly, the edge 
lines were developed using a feature-weighted line-growing algorithm. 
The different procedures are depicted in Fig. 5. 

Maps of discontinuity traces were extracted by the fusion of a 3D 
point cloud and image data by Zhang et al. (2019). The 2D trace was 
derived using a hybrid local and global threshold method and image 
processing algorithms. The pixel locations of the detected traces were 
then linked to the 3D coordinates of a point cloud by transforming the 

Fig. 4. Illustration of planes (blue), traces (red), and edges (yellow). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 5. (a) Image of the rock face (Lato et al., 2013), (b) Detected potential edge points (red and blue points), (c) Thinned edge points, and (d) Final edge lines 
(reprinted with permission from Elsevier (Guo et al., 2018)). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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coordinates between the image and those of the point cloud. Finally, 3D 
spatial features of the traces were used to obtain the 3D discontinuity 
orientations. 

3.2. Region-growing methods 

A region-growing method was introduced for image segmentation by 
considering the color information of pixels around the neighborhood of 
a selected initial seed point (Xiao et al., 2013). A local search is per
formed through the k-nearest neighbors (knn) data points of a seed point 
to determine if an adjacent point should be added to the initial region. 
Later, this approach was extended to identify planes in 3D point clouds 
and define planar areas of building structures (Dong et al., 2018; Gorte, 
2002; Hähnel et al., 2003; Nurunnabi et al., 2012; Rabbani et al., 2006; 
Vo et al., 2015; Xiao et al., 2013). 

The region starts its growing procedure from a point with a low 
curvature value, or low local planar residual value, since it is located in a 
relatively flat area, and growth from this area reduces the total number 
of segments. A normal to a point is determined using a best-fit plane to a 
group of close points surrounding the point of interest. The angle is 
determined between the normals of a current seed point and an adjacent 
point. If the angle is less than a defined threshold value, the current 
point is added to the seed point, and the region of points belonging to the 
same plane grows. The output of this method results in clusters of points 
that should belong to the same roughly planar surface. 

This method works best when the point cloud data are well orga
nized. An organized point cloud corresponds to an arrangement where 
adjacent points in the file are spatially close to each other in the field, 
and this helps the nearest neighbor search procedures run more effi
ciently (“Point Cloud Library (PCL),” n.d.). The nearest neighbor search 
is the most crucial component of this algorithm, as it runs at each step of 
the growth (Xiao et al., 2013). 

The location of the seeds and the growth criteria significantly affect 
the accuracy of region-growing algorithms. The seed locations and 
growth criteria need to be predefined and modified for each dataset, 
which introduces subjectivity into the process (Vo et al., 2015; Xie et al., 
2020). The potential for inaccurate segmentation results is high if these 
methods are used for unstructured point clouds (Pu and Vosselman, 
2006). Furthermore, these methods are computationally expensive, and 
a trade-off between accuracy and efficiency may be required (Xie et al., 
2020). 

The region-growing method was used to derive the discontinuity 
planes based on the variation of local surface normals or curvature 
(Wang et al., 2017). First, within the nearest neighbor search, a 
least-squares plane is estimated. The region growing is then applied by 
selecting the point with the minimum curvature as the initial seed point 
for the planar surfaces. Li et al. (2016) implemented a region-growing 
algorithm on a triangulated model of the point cloud data. They inves
tigated four post-processing stages for discontinuity edge grouping, 
segment growth of the edge line, segment linkage, and removal of 
redundant edge points to obtain refined discontinuity edges. A disad
vantage of this method is that the mesh size is required to be tuned (Li 
et al., 2016). 

A modified region-growing method was used to improve the speed 
and efficiency of estimating the geometric parameters of discontinuities 
from point cloud data collected using LiDAR (Ge et al., 2018). The ge
ometry parameters considered include orientation (using a normal 
vector of a discontinuity), spacing (estimating the distance between two 
planes), exposed area (using the dip angle of the discontinuity and 
projected area), and roughness (using fractal geometry). Two case 
studies of regular polyhedrons and a hydropower station tunnel were 
investigated in this work. The optimum threshold T, related to the dif
ference between the normal adjacent points, was approximately 40◦ in 
the case study. However, finding a proper value for T can be a 
time-consuming task. The implementation of this study cloud be facili
tated if a machine learning or optimization technique is used to estimate 

the optimum threshold T. 

3.3. Surface fitting methods 

3.3.1. Hough Transform 
The Hough Transform (HT) in the image processing method (Hough, 

1960) is used to detect geometric primitives within 2D images to extract 
lines and circles (Duda and Hart, 1972). Based on the 2D Hough 
Transform, a 3D Hough Transform was developed to detect surfaces such 
as planes, cylinders, and spheres within a 3D point cloud (Dube and Zell, 
2011). HT operates by transforming the data to parameter space and 
finding clusters that correspond to geometric features in the point cloud 
(Tarsha-Kurdi et al., 2008a). To avoid the problem of the infinite slope, 
the Standard Hough Transform (SHT) (Duda and Hart, 1972) employs 
an angle-radius parametrization rather than the original form of 
slope-intercept (Xie et al., 2020). 

The major disadvantage of this algorithm is its high memory con
sumption and computational cost (Kaiser et al., 2019), making it less 
popular for surface extraction for large point clouds. The method is also 
sensitive to segmentation parameters (Awwad et al., 2010; Tarsha-Kurdi 
et al., 2008b). Borrmann et al. (2011) reviewed various HT studies and 
presented a new accumulator design to improve HT performance by 
improving the efficiency of the voting process. HT-based methods in 
their review comprised the Standard Hough Transform (Duda and Hart, 
1972; Illingworth and Kittler, 1988; Kälviäinen et al., 1995; Kiryati 
et al., 1991), Probabilistic Hough Transform (Kiryati et al., 1991; Matas 
et al., 2000; YlaJaaski and Kiryati, 1994), and Randomized Hough 
Transform (RHT) (Xu et al., 1990). The Randomized Hough Transform 
was the best choice for plane detection in a 3D point cloud because of its 
efficiency if there are only a few planes. While the processing time does 
not increase with the number of points in a 3D point cloud, it does with 
the number of planes. If there are over 15 planes in the dataset, the 
segmentation time required using the Randomized Hough Transform 
can be considerably longer than the region-growing method, as noted by 
Borrmann et al. (2011). It was also noted that the method requires a long 
processing time and a large amount of memory because of the need to 
store all parameters. 

Recently, Limberger and Oliveira (2015) developed a deterministic 
3D kernel-based Hough transform (3D KHT) technique for plane 
detection in unorganized point clouds. The 3D KHT method uses a fast 
technique to cluster coplanar points with a computational effort pro
portional to n log n (n is the points in point cloud data). Limberger and 
Oliveira (2015) reported that the technique was a few orders of 
magnitude faster than algorithms such as RHT and RANSAC for plane 
detection in a point cloud. 

3.3.2. Random sample consensus 
The random sample consensus (RANSAC) method is an iterative al

gorithm that estimates the parameters of a geometric primitive from a 
minimum number of points generating that primitive in a point cloud 
(Fischler and Bolles, 1981; Raguram et al., 2008, 2013). It is extensively 
used for shape detection (Nguyen and Le, 2013; Schnabel et al., 2007; Xu 
et al., 2016), including the identification of building façades (Adam 
et al., 2018; Bauer et al., 2003; Boulaassal et al., 2007) and roofs (Chen 
et al., 2014). 

Plane construction in RANSAC starts by randomly choosing three 
non-collinear points and using these to define the parameters of the 
equation for a plane. This surface can be a plane. Next, other neigh
boring points are iteratively checked to see if they match the plane 
within a threshold level. Points that match the surface form a consensus 
set, and others are considered outliers. The surface model is dismissed if 
the consensus set contains only a few points and is kept if the consensus 
set is large. 

RANSAC is computationally costly due to its randomness (Liu et al., 
2019; Raguram et al., 2013) and its iterative nature (Xiao et al., 2013). 
The method is nondeterministic, and its main limitation is that spurious 
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planes can appear depending on the parameter values used to detect 
planes (Li et al., 2017; Limberger and Oliveira, 2015) (Fig. 6). To deal 
with this issue, one suggested solution is the use of MSAC (M-estimator 
sample and consensus) and MLESAC (maximum likelihood estimation 
sample consensus), which uses a loss function rather than a fixed 
threshold (Torr and Zisserman, 2000). Also, a soft threshold voting 
function with respect to two weight functions was developed to enhance 
the quality of the segmentation (Xu et al., 2016). The use of a threshold 
voting function is not efficient in large point clouds because a calcula
tion of the normal at each point is required (Li et al., 2017). 

While HT and RANSAC are powerful approaches, they come with 
downsides (Limberger and Oliveira, 2015; Maalek et al., 2018; Vo et al., 
2015): (a) they may extract numerous spurious (false) planes that do not 
exist in the datasets; (b) the results of point cloud segmentation are 
sensitive to the positional accuracy of the point, point density, and noise; 
(c) they show poor performance when dealing with large datasets 
and/or complex geometries. 

The two main merits of RANSAC-based algorithms are that they are 
robust to noise and do not require advanced optimization. RANSAC can 
deliver more successful object detection compared with the Hough 
transform methods (Tarsha-Kurdi et al., 2008b; Xie et al., 2020). 

Within the last decade, numerous modifications to the RANSAC al
gorithms have been developed to enhance the accuracy, efficiency, and 
robustness of the method for identifying surfaces. These methods are 
presented in Fig. 7. The original diagram was proposed by Choi et al. 
(2009), and two additional methods (EVSAC (Fragoso et al., 2013) and 
GC-RANSAC (Barath and Matas, 2018)) were added by Xie et al. (2020) 
to this original illustration. 

RANSAC can be used in various forms and extensions. An efficient 
approach to extract discontinuity plane orientations from rock mass 
point clouds is to apply RANSAC on clustering results from unsupervised 
machine-learning methods. As such, the randomness effect in RANSAC 
output is successfully controlled, leading to a more deterministic 
orientation estimation. 

3.4. Unsupervised clustering-based methods 

Clustering-based methods are considered unsupervised learning that 
categorizes points based on similarity in underlying structures, 
geometrical features, or spatial distribution. As opposed to surface 
fitting (RANSAC, Hough Transform), region-growing methods, and 
supervised-learning methods (Filin, 2001), the hidden patterns in clus
tering methods are not pre-assumed. In these methods, an array of 
similarity indexes with different features can be specified, such as 
normal vector, Euclidean distance, and density (Xu et al., 2018). 

Some of the most common approaches for point cloud segmentation 
using clustering methods are K-means (Kuçak et al., 2017; Morsdorf 
et al., 2004; Sampath and Shan, 2006; Shahzad et al., 2012; Zhu and 
Shahzad, 2014) and its variants, fuzzy clustering (Guo et al., 2017; Kong 

et al., 2014; Sampath and Shan, 2010), and mean-shift (Ximin et al., 
2015; Zhang et al., 2018). There are also methods in which the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm is employed to conduct the clustering (Aljumaily et al., 2017; 
Gélard et al., 2017; Wang et al., 2019). 

Table 1 summarizes the characteristics of the common unsupervised 
machine-learning algorithms that are discussed in this section of the 
paper. 

3.4.1. K-means algorithm 
The K-means algorithm is a popular data clustering algorithm that 

starts with a collection of randomly selected initial centers. Each data 
point is placed in a cluster based on the computed distance between the 
point and each cluster center. It then assigns that point to the cluster 
whose center is closest. This algorithm is simple and relatively fast. It 
can handle large datasets, including nominal and numerical data, and it 
is adaptable to sparse data. A significant disadvantage is that this al
gorithm is sensitive to noisy data points, and it requires the number of 
clusters to be preset. 

The K-means algorithm is prone to converge to local minima and is 
slow for high-dimensional data. The randomness of initial partitions can 
yield dissimilar clusters, and it does not deliver accurate results if 
clusters have non-convex or non-spherical shapes (Fränti and Sieranoja, 
2019; Xu and Tian, 2015). Yu et al. (2020) developed a tri-level and 
bi-layer K-means algorithm to address its noise and initialization 
sensitivity, and they reported higher accuracy compared with classic 
K-means. In a recent study (Sinaga and Yang, 2020), a novel unsuper
vised K-means (U–K-means) was proposed to automate the initialization 
by defining an entropy penalty term for bias control and choosing an 
optimum cluster number using a learning schema. Using a newer version 
of the K-means algorithm may improve the extraction of discontinuity 
planes from a point cloud. The traditional K-means needs to be associ
ated with other methods to handle noise, initialization, and the spherical 
shape of clusters. 

Chen et al. (2016) studied the automatic extraction of discontinuity 
orientations from a rock mass point cloud. Their method consisted of 
four main steps. First, they grouped the discontinuity sets by employing 
the K-means clustering method. Second, the discontinuities were 
segmented and optimized. Third, using the RANSAC method, the best-fit 
discontinuity planes were found. Finally, the coordinates of the 
discontinuity planes were transformed. Case studies were used to eval
uate the method. 

Using point cloud data acquired from photogrammetry, Li et al. 
(2019) developed a graphical user interface (GUI) tool using MATLAB in 
which five discontinuity parameters are extracted from a point cloud of 
a rock mass. The orientation, aperture, edge, spacing, and roughness of 
discontinuities were derived. They used improved K-means to group the 
discontinuity sets and a RANSAC plane fitting method to determine the 
planar surfaces. 

3.4.2. Fuzzy clustering 
A modified version of K-means, known as soft clustering, works in a 

continuous interval of 0–1 to express the relationship of a sample point 
to a cluster. The fuzzy C-means clustering (FCM) algorithm is frequently 
used in pattern recognition. The method is capable of assigning each 
data point to multiple clusters. Some advantages of the method are that 
it is computationally efficient, only needs a single parameter of band
width size, and it is robust to outliers. The disadvantages of the method 
include relatively low scalability, and the solution can be trapped in a 
local rather than regional optimal. The method is also sensitive to the 
hyperparameter values, and the number of clusters must be preset. 

A revised fuzzy C-means (RFCM) (Askari, 2021) method was pro
posed to deal with noisy data and clusters of different sizes and densities 
and remove cluster overlap. This extension of FCM can be a suitable 
approach for a rock mass point cloud as it can address noise, point 
density variations, and both the size of the point cloud and clusters of 

Fig. 6. Two well-estimated hypothetical planes are shown in blue, and a 
spurious plane in orange is generated using the same threshold (reprinted from 
(Li et al., 2017)). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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point clouds. 
Guo et al. (2017) studied semi-automatic analysis of rock mass 

discontinuity orientation from a 3D point cloud. They prepared the data 
for segmentation by removing outliers first. The point cloud was divided 
into subsets, considering various parameters such as the normal vector 
and discontinuity dip and dip direction. The firefly algorithm (FA) and 
the fuzzy c-means (FCM) algorithm were used to cluster points based on 
their normal vectors. In the end, clusters belonging to each discontinuity 
set were merged and colored for better visualization. 

3.4.3. Mean-shift algorithm 
The mean-shift algorithm is a moving window-based approach to 

assign the data points to the cluster centroid by shifting them towards 
the dense area of data points. Unlike the K-means algorithm, a mean- 
shift does not require the number of clusters to be set in advance. The 
mean-shift algorithm determines this number for the given data. The key 
parameter in this algorithm is the bandwidth size of the kernel used. An 
important advantage of the method is that the number of clusters does 
not need to be predefined. The method can handle point clouds of any 
shape, needs only a single parameter of bandwidth size, and is robust to 
outliers. The disadvantages of the method are that the output depends 
on bandwidth size, and its selection may not be trivial. 

The mean-shift algorithm is relatively slow, especially for large 
datasets, and has poor scalability with high-dimensional data. The 
computation time for this algorithm is generally O(n log n) to O(n2). This 
algorithm clusters discontinuity sets using normal vectors of points 

better than other algorithms when used in their classic form (Comaniciu 
and Meer, 2002; Xu and Tian, 2015). 

Zhang et al. (2018) performed automatic detection of discontinuities 
in a 3D digital surface model (DSM) of a rock mass. A mean-shift clus
tering algorithm was used to identify and classify the orientation and 
position of discontinuity planes. Then, a region-growing algorithm was 
used to extract the corresponding feature planes. This method elimi
nated spurious points in a point cloud related to vegetation and may 
directly extract planar features such as joints. 

3.4.4. Density-based spatial clustering of applications with noise 
(DBSCAN) 

DBSCAN is a non-parametric algorithm that begins with a random 
starting point (p). A radial distance is defined to form a neighborhood for 
the selected starting point. If there are a minimum number of points 
(MinPts) within this radius, point p is defined as a core point. When the 
number of points in a defined neighborhood is smaller than the value of 
MinPts, this point is defined as a border point. A core point with all 
points within the radial distance creates a cluster. Each core point that is 
not within a cluster forms a new cluster. 

While similar to the mean-shift algorithm, DBSCAN has remarkable 
advantages. As opposed to the mean-shift algorithm, which places out
liers in a cluster, DBSCAN is robust to noise and is capable of identifying 
outliers as noise. The method also finds arbitrarily sized and shaped 
clusters comparatively well. Another advantage of DBSCAN is that the 
number of clusters does not need to be preset. 

In dealing with hierarchical clusters, DBSCAN cannot efficiently 
handle datasets with highly variable point densities. In this case, a hi
erarchical density-based clustering method may be used. Ordering 
points to identify the clustering structure (OPTICS) (Ankerst et al., 1999) 
and Hierarchical-DBSCAN (HDBSCAN) algorithms are examples of this 
method (Campello et al., 2013). Another disadvantage of DBSCAN is the 
difficulty of estimating an appropriate distance threshold with 
high-dimensional datasets. 

The orientation and position of rock mass discontinuities from 3D 
LiDAR point cloud data were derived using a semi-automatic procedure 
by Riquelme et al. (2014). Their procedure involved: (1) normal vector 
estimation of discontinuity planes using principal component analysis 
(PCA), (2) coplanarity test to remove anomalous points, (3) 
semi-automatic detection of discontinuity sets by KDE (kernel density 
estimation) analysis, assigning each point to a group of discontinuity set 

Fig. 7. RANSAC algorithms are categorized according to their performance and basic techniques (reprinted with permission from (Choi et al., 2009)).  

Table 1 
Comparison of common unsupervised machine-learning algorithms (notation O 
describes the relationship between the time complexity and the number of in
puts, n).   

K-means FCM Mean-shift DBSCAN 

Computational time O(n) O(n) O(n log n) to 
O(n2) 

O(n log n) to 
O(n2) 

Initialization problem yes yes no no 
Noise sensitive high moderate low low 
Stability (sensitive to 

input data) 
high moderate little moderate 

High-dimensional data no no no yes 
Scalability moderate moderate low low 
Cluster shape convex convex arbitrary arbitrary  
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through the distribution patterns, and (4) automatic extraction via a 
density-based clustering algorithm for single discontinuities. It was 
highlighted that a solid background in rock mechanics combined with 
field images is required for the optimal application of this method. Fig. 8 
illustrates the scanned area and the corresponding segmented 3D point 
cloud showing each discontinuity set in a different color. In subsequent 
work, a discontinuity spacing study using a 3D point cloud was carried 
out by Riquelme et al. (2015). This method requires the 3D dataset to be 
pre-classified, reflecting that discontinuity sets are extracted, and each 
point is labeled with the related discontinuity set. Three case studies 
were considered in their work using laser scanning and synthetic data. 
They reported that their method’s results on discontinuity orientation 
estimation are reasonably close to those obtained through manual 
measurements. 

Singh et al. (2021) presented automated discontinuity extraction 
from a point cloud. As the first step, several filtering methods were 
applied to remove the vegetation from the raw point cloud. They defined 
five descriptors, namely eigenvalue descriptor (EVD), radial surface 
descriptor (RSD), fast point feature histogram (FPFH), normal, and 
curvature, on which K-Medoids clustering was implemented to obtain 
the discontinuity sets. Then, DBSCAN was performed to separate each 
discontinuity plane. It was reported that the proposed method might 
provide reliable results in a complex environment. 

3.5. Principal component analysis method 

Principal component analysis (PCA) is a statistical technique that, 
with emphasis on variation, identifies strong patterns in a dataset using 
an orthogonal transformation. PCA is a common method to detect local 
planar surfaces and linear points in a 3D point cloud. It converts a set of 
potentially correlated variables into several linearly independent (un
correlated) variables referred to as principal components. The regular 
PCA forms a covariance matrix that is decomposed into eigenvalues and 
eigenvectors. The purpose is to capture the dataset variation and 
transform it into independent orthogonal axes (three axes are possible 
for a 3D point cloud). 

For planar surface segmentation of a point cloud, K-nearest neigh
bors are calculated for each point in a point cloud. Next, a least-square 
local plane is fitted to the local neighbors of the point. The usual method 
to estimate the normal vector for each point is to apply PCA (Hoppe 
et al., 1992). The covariance matrix,C3×3, can be written as: 

C3×3 =
1
k
∑k

i=1
(pi − p)T

(pi − p); p=
1
k
∑k

i=1
pi (1)  

where pi is the local centroid of the k-neighborhood of the pointp. 
Applying a Singular Value Decomposition (SVD) on C3×3, the eigen
vectors (v1, v2, and v3) and the corresponding eigenvalues,λ3 ≤ λ2 ≤ λ1, 
can be obtained. 

The normal vector is estimated as the eigenvector (v3) corresponding 
to the smallest eigenvalue (λ3). The three eigenvalues represent an 

ellipsoid that defines a local 3D data distribution. The smaller λ3 is the 
variance of deviations from the best-fit plane (λ1 ≅ λ2≫λ3). In the case 
λ1≫λ2, λ3, the ellipsoid represents a linear feature (edge, border, etc.), 
and when λ1 ≅ λ2 ≅ λ3, the ellipsoid is closer to a sphere (Mallet et al., 
2011). 

The eigenvalues can be used to define eight local 3D shape features 
(Mallet et al., 2011; Pauly et al., 2003; Toshev et al., 2010; Weinmann 
et al., 2015; West et al., 2004), which are listed in Table 2. These are 
common eigenvalue-based shape features representing the local spatial 
distribution of points in a point cloud. 

The variation in the values of λ3 in a region of points yields an esti
mate of the local noise level or surface roughness as a deviation from the 
fitted plane. The concept of surface variation or curvature (σk) is defined 
in Table 2 (Pauly et al., 2002, 2003). The parameter σk will be zero if all 
the neighbor points perfectly fit a plane. 

3.6. Methods for improving normal vectors and edges 

The PCA technique performs accurately if the neighboring points 
exist on a smooth surface. Despite being a fast approach, calculating a 
normal to a point becomes erratic at corners and edges and in the 
presence of outliers. Thus the classical PCA does not work well for point 
clouds with noise and in the vicinity of geometric singularities (Khaloo 
and Lattanzi, 2017; Maalek et al., 2018; Nurunnabi et al., 2015). This 
challenge is shown in Fig. 9. (a) Challenges with estimating normal 
vectors (reprinted with permission from Elsevier (Khaloo and Lattanzi, 
2017)), (b) Example of a rock cliff with horizontal and vertical discon
tinuity planes perpendicular to the rock face (Athabasca River, Alberta, 
Canada) 9(a) and is discussed by Khaloo and Lattanzi (2017) in terms of 
point cloud analysis of civil infrastructure. This is important for point 
clouds of rock mass structures where geometry variation and topog
raphy can be highly irregular. 

Despite the limitations of PCA, many researchers have used PCA 
combined with other techniques to extract planar surfaces (Ballast, 
2007; Belton and Lichti, 2006; Bosché and Biotteau, 2015; Bremer et al., 
2013; Filin and Pfeifer, 2006; Kim et al., 2007, 2016; Maquet, 2010; Pu 
and Vosselman, 2006; Rottensteiner et al., 2005; Su et al., 2016; Tovari 
and Pfeifer, 2005; Wang et al., 2015) and sharp edges (Bazazian et al., 

Fig. 8. (a) A section of the scanned area (Lato et al., 2013), (b) Segmented 3D point cloud showing colored points assigned to five discontinuity sets (J1, J2, J3, J4, 
and J5), with black points not associated with a discontinuity set (reprinted with permission from Elsevier (Riquelme et al., 2014)). 

Table 2 
Geometric features based on the eigenvalues.  

Sum λ1 + λ2 + λ3 

Omnivariance 
(λ1 • λ2 • λ3)

1
3 

Eigenentropy −
∑3

i=1λi • ln (λi)

Anisotropy (λ1 − λ3)/λ1 

Linearity (λ1 − λ2)/λ1 

Planarity (λ2 − λ3)/λ1 

Surface variation λ3/(λ1 + λ2 + λ3)

Sphericity λ3/λ1  
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2015; Gumhold et al., 2001). For example, Nurunnabi et al. (2014) 
demonstrated that robust-PCA achieves efficient and accurate surface 
normal results. Similarly, Khaloo and Lattanzi (2017) found that sharp 
edges are maintained, and the segmented surfaces properly reflect the 
actual geometry of the physical object. 

Statistical approaches are commonly used to minimize the effect of 
outliers by estimating model parameters. MVE (minimum volume 
ellipsoid) and MCD (minimum covariance determinant) are two popular 

robust multivariate dispersion estimates. The MVE has a low conver
gence rate and is not very efficient (Nurunnabi et al., 2014). In contrast 
to MVE, MCD embodies several merits. MCD is more statistically effi
cient because of being an asymptotically normal estimator (Seheult 
et al., 1989). It has higher accuracy and a higher convergent rate. 
Furthermore, MCD is affine equivariant, resulting in the estimator being 
independent of the measurement scale (Hubert et al., 2012). This makes 
an MCD estimator a better choice for point cloud processing purposes 

Fig. 9. (a) Challenges with estimating normal vectors (reprinted with permission from Elsevier (Khaloo and Lattanzi, 2017)), (b) Example of a rock cliff with 
horizontal and vertical discontinuity planes perpendicular to the rock face (Athabasca River, Alberta, Canada). 
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(Maalek et al., 2018). There are two common MCD estimators, namely 
fast-MCD and deterministic-MCD (Det-MCD). Det-MCD is permutation 
invariant because the results do not rely on the order of the data, 
whereas fast-MCD is not. Furthermore, Det-MCD is reported to be faster 
than fast-MCD while being equally or even more robust than fast-MCD 
(Hubert et al., 2012; Nurunnabi et al., 2012). Thus, more accurate 
planar or linear clustering results are anticipated for robust-PCA when 
using Det-MCD. More details about Det-MCD are found in Hubert et al. 
(2012). The results suggest that DetRD-PCA and DetRPCA methods 
outperform and correctly identify the edges at the top and bottom of the 
point cloud (Nurunnabi et al., 2014). As for planar surface segmentation, 
DetRD-PCA and DetRPCA yield better performance, each with only one 
over-segment (OS) area and no under-segment area. 

3.7. Summary, challenges and solutions 

This sub-section summarizes the segmentation techniques intro
duced in Section 3 and presents some challenges and potential solutions. 
Four approaches for planar surface segmentation of point clouds were 
discussed in this section. Some are based on a mathematical model using 
geometry and spatial analysis (i.e., region growing and model fitting) 
along with estimators to match linear/nonlinear models to point data 
(Nguyen and Le, 2013). These methods can reach a satisfactory outcome 
for non-complex scenes. However, limitations include difficulty select
ing the model size while fitting objects, noise sensitivity, and the 
methods may not work well for complex geometries. The other approach 
uses machine-learning techniques to explore 3D features using feature 
descriptors to learn different object type classes from point cloud data. 
Then they apply the knowledge learned to classify the data (Nguyen and 
Le, 2013). Machine-learning techniques generally yield better perfor
mance than geometry-based techniques for complex point clouds. This is 
because point cloud data often contains noise, variable point density, 
and occlusions, which are better handled by machine-learning 
techniques. 

An accurate normal estimation in a point cloud plays a crucial role in 
properly segmenting the intended plane features. Applying PCA on a 
point cloud may result in satisfactory normal vector calculation for each 
point if proper procedures are applied to remove or modify the outlier 
data points or edges and boundaries with a rapid change in curvature. 
Some interesting methodologies discussed in Section 3.6 can correct 
normal vectors to better segment planes and edge points and reduce 
under-/over-segmentation. The recently introduced modified PCA 
methods are a promising approach, but no studies have been published 
in the literature on their applications to rock mass point clouds. Also, to 
properly detect discontinuities in a rock mass point cloud, methods 
should be deployed that can adapt to irregular and frequent changes in 
surface orientations to preserve the boundaries and edges of the plane 
surfaces and show robustness to noise. 

A common issue of geometry-based methods for discontinuity 
extraction is that they fail to properly recognize discontinuity planes 
that are perpendicular to rock faces, which are only exposed as traces 
(Menegoni et al., 2019) or those with slight curvature changes (Guo 
et al., 2019; P. Zhang et al., 2019). Menegoni et al. (2019) found that 
dominant bedding planes perpendicular to a rock slope face were not 
recognized. They reported that a lack of consideration of these discon
tinuities might lead to misinterpretation of potential rock failure modes. 
Fig. 9(b) presents an example of discontinuity planes perpendicular to a 
rock face. Two samples from horizontal and vertical planes are depicted. 
These plane exposures are traces on the rock face and often remain 
undetected by geometry-based methods. For detecting such disconti
nuities, color information (RBG or intensity) is required and should be 
used along with the XYZ coordinates. For a point cloud with color in
formation, calculating the color gradient can recognize the trace of 
discontinuities perpendicular to the rock face. 

4. Comparison of different methods 

In this section, two point cloud datasets are introduced and used to 
compare the implementation of some of the methodologies presented in 
Section 3. The segmentation results for planar discontinuities in rock 
mass point clouds are qualitatively (visually) and quantitatively dis
cussed and compared. 

Researchers have frequently used the first introduced rock mass 
point cloud dataset (PC1) in the field of artificial intelligence. They 
assessed their developed methodologies using commonly accepted per
formance metrics for segmentation. Their evaluation was performed for 
individual planes and/or the whole point cloud by comparison with a 
‘ground truth’ point cloud. 

The geotechnical and geological engineering community frequently 
uses the second rock mass point cloud dataset (PC2). Two sets of ground 
truth orientations were introduced, and various automated workflows 
were developed to estimate the orientation of planes within this point 
cloud. Our research presents a new set of ground truth plane orienta
tions. The semi-/automated orientations results found in previous 
studies are compared with the ground truth orientations. 

4.1. Rock surface point cloud datasets 

Point cloud 1 (PC1) was acquired using a Leica HDS600 scanner near 
Kingston, Ontario, Canada. Point cloud 2 (PC2) represents a quarzitic 
rock cut captured using an Optech scanner near Ouray, Colorado, USA. 
These two point clouds originate from the Rockbench repository (Lato 
et al., 2013). Fig. 10 shows a front photo and the corresponding trimmed 
point cloud for the two rock surfaces. The size and the average density of 
the point clouds are listed in Table 3. 

4.2. Performance metrics 

The point cloud segmentation performance may be examined using 
evaluation metrics such as precision, recall, and F1 (Vo et al., 2015). The 
results can be visualized by forming a confusion matrix in which the 
ground truth labels (i.e., the points belonging to a specific plane) are 
compared with the model prediction. 

Accuracy is the ratio of correctly predicted observations (data points) 
to total data points, as shown in Equation (2). Precision represents the 
portion of correctly predicted positive observations (data points) rela
tive to the total positive data points, as defined in Equation (3). Recall is 
the portion of correctly predicted positive observations (data points) to 
all data points in the actual class, as defined in Equation (4). The F1 
score is a balance between precision and recall, defined in Equation (5). 
Another performance metric, intersection over union (IOU), is used for 
various tasks such as segmentation, tracking, and detection. It is defined 
as the intersection size between the ground truth and the model esti
mation over the sum of the ground truth and the model estimation sizes. 
IOU shows more sensitivity towards false detections as it considers FN 
and FP in its calculation (Equation (6)). When the IOU reaches equal or 
greater than 0.5, the prediction is usually assumed to be correct. 

Accuracy=
TP + TN

TP + FP + FN + TN
(2)  

Precision=
TP

TP + FP
(3)  

Recall=
TP

TP + FN
(4)  

F1= 2 ×
Precision × Recall
Precision + Recall

(5)  

IOU =
TP

TP + FN + FP
(6) 
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4.3. Results for hybrid methods 

Many research studies combine segmentation techniques to use each 
method’s advantages. In this subsection, two main groups of studies are 
presented. The first group (Section 4.3.1) evaluates discontinuity plane 
segmentation in rock mass point clouds based on the performance 
metrics introduced in Section 4.2. The second group analyzes the quality 
of the orientations calculated for the segmented discontinuity planes 
(Section 4.3.2). 

4.3.1. Segmentation performance 
Leng et al. (2016) combined HT and RG (HT-RG) to segment the rock 

mass planes. Instead of using a standard HT, a clustering-based pro
cedure for the voting distribution in the parameter space was used. 
HT-RG can detect discontinuity planes with different sizes, and the 
overall segmentation precision was around 91%. However, it may miss 
detecting the small and low-density plane surfaces, is inclined to 
over-segmentation, and its computation time is relatively high. 

Liu et al. (2019) presented a three-step methodology (MOE). (1) 
Spatial grid for voxelization was performed, followed by coplanar 
clustering based on an analysis of the eigenvalues in the covariance 
matrix. This step segments the point cloud into three voxel types: 

coplanar, non-coplanar, and sparse voxels. (2) Major orientation for 
normal vectors of coplanar voxels was estimated using the bivariate 
Gaussian kernel. (3) Finally, the seed voxels were selected based on 
major orientations, and a voxel-based region-growing method was 
applied to extract the surface cluster sets. The sub-surfaces of each 
cluster are coplanar and a single plane surface can be defined and 
extracted from other coplanar and non-adjacent surfaces. 

RHT, region growing, and RANSAC were implemented with C++

code using the PCL library (Rusu and Cousins, 2011). Similarly, an 
optimized RANSAC (Schnabel et al., 2007) was implemented using the 
Computational Geometry Algorithms Library (CGAL). MOE imple
mentation is fast, can detect the planes with good accuracy (92% for 
precision), and preserves the boundaries. However, similar to HT-RG, it 
may miss detecting the small and low-density plane surfaces. Also, a 
large number of parameters need to be tuned. 

In a similar attempt, RANSAC with voxel-based RG (RAN-RG) was 
used to extract the planes from a point cloud (Hu et al., 2020). First, 
normal vectors were estimated using the covariance matrix formed after 
applying PCA. Then, the point cloud was voxelized, and a coplanarity 
test on each voxel produced in the previous step was performed. The 
optimum plane in each voxel was selected as the growth unit for RG in 
the next step. The performance metrics for this method (91% for pre
cision) are similar to those obtained by MOE. While the computation 
cost in this method (RAN-RG) is slightly higher than MOE, the results 
seem less prone to over-segmentation than MOE. 

RAN-RG was modified by introducing the supervoxel concept 
(Supervoxel-RG) (Yu et al., 2020) to improve rock mass point cloud 
segmentation results. Supervoxel segmentation is designed after a 
coplanarity test and edge information extraction to obtain the growing 
units. The RG method is split into smaller subtasks for more accurate 
segmentation results. The computation time for this method is higher 

Fig. 10. (a) Photograph of rock surface for the first dataset (Lato et al., 2013), (b) First point cloud (PC1), (c) Photograph of rock surface for the second dataset (Lato 
et al., 2013), (d) Second point cloud (PC2). 

Table 3 
Basic information about rock mass point cloud data.  

Name Number of points Average point spacing 
(cm) 

Bounding box size (m) 

PC1 387,610 4 48.86 × 36.04 × 14.19 
PC2 1,024,521 2 29.29 × 25.85 × 22.88  
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than RAN-RG and MOE. It is also inclined to over-segmentation and 
occasionally leaves holes in the segmented plane. However, the reported 
results suggested a slightly better accuracy in the segmentation of 
planes. 

Qualitative comparisons of the results for two point cloud datasets 
are presented for PC2 in Fig. 11 and for PC1 in Fig. 12. The segmentation 
results suggest that RHT, RG, and RANSAC have poor performance 
(detecting spurious planes and over-segmenting) when segmenting the 
planar surfaces, particularly for PC2 shown in Fig. 11, which has various 
challenges such as data gaps, low-density areas, and smaller plane sizes. 
While the optimized RANSAC outperformed the RANSAC, it yielded 
some over-segmented planes. HT-RG could not detect small planes and 
removed data points in areas with sparse density and the edges of planes. 

DSE and the voxel-based method (MOE) generally achieved better 
results. However, DSE and MOE removed the sparse-density plane areas 
in the segmentation. Comparing the segmentation results for PC2 using 
DSE originally presented by Riquelme et al. (2014) (see Fig. 8b) and 
those presented in Fig. 11(g) (Liu et al., 2019) suggests that the seg
mentation results in Fig. 11(g) may not represent the best results using 
DSE. 

Segmentation results of PC1 for ground truth data, shown in Fig. 12 
(a), and different methods in Fig. 12(b)–(j) are illustrated. Red polygons 
reveal deficiencies in the results. An ellipse indicates over-segmentation, 
a rectangle represents scattered data points in the plane, a parallelogram 
represents incorrect results, a rhombus represents a bad boundary, and a 
trapezoid represents missing detection (Liu et al., 2019). The black areas 
in Fig. 12 correspond to non-coplanar points, and other colors each 
shows an individual planar surface. Red polygons are used to highlight 
the deficiencies in the results for each method. RHT and the optimized 
RANSAC resulted in over-segmented planes. They also assigned scat
tered points on some planes to the wrong cluster. RG results were partly 
incorrect with over-segmentation planes detected. The shortcomings of 
RANSAC results are over-segmentation, inaccurate plane boundaries, 
and scattered points. The results for HT-RG and DSE were found to 
over-segment and miss small and low-density surfaces in PC1. The 
voxel-based results by Liu et al. (2019) generally showed satisfactory 
results compared to other methods. However, it misses areas with low 
density and smaller surfaces. The relative computation time, advan
tages, and deficiencies of these methods and their overall performance 
are quantitatively compared for PC1 in Table 4. 

4.3.2. Discontinuity plane orientations for PC2 
Chen et al. (2016) studied the automatic extraction of blocks of rock 

from a 3D point cloud using a modified RANSAC method combined with 

an estimation of the discontinuity intersections. One advantage of this 
approach is that the extraction uses the raw point cloud rather than a 
triangulated mesh. This reduces the processing time to extract features 
such as the size and volume of the blocks. 

In recent work by Kong et al. (2020), a density-based approach (Zhu 
et al., 2016) was used to segment discontinuities from rock mass point 
clouds. Unlike DBSCAN, this approach is not sensitive to point cloud 
data with varying densities and handles noisy data points better. Clus
tering of discontinuity sets was performed using the CFSFDP (Clustering 
by Fast Search and Find of Density Peaks) algorithm (Rodriguez and 
Laio, 2014) and iterative estimation of Fisher’s K-value (Kulatilake, 
1985; Slob, 2010) to remove noisy data points. The RANSAC method 
was also used to fit the discontinuity plane. Two case studies on rock 
slopes were used to demonstrate this procedure. One of the merits of the 
presented method is that the point cloud data are directly used, rather 
than a 2.5D interpolated or triangular irregular network (TIN) genera
tion, thereby significantly enhancing the accuracy of the normal vector 
estimation. Furthermore, the CFSFDP method does not have an initial
ization problem (the number of clusters is not required). This approach, 
however, cannot detect line-type traces of discontinuities in an outcrop. 

Chen et al. (2020) proposed a four-stage procedure: a normal vector 
calculation of the point cloud, a modified RANSAC algorithm, delinea
tion of discontinuity boundary by a modified Graham scan algorithm, 
and the orientation estimation based on discontinuity. 

The visual segmentation results for these studies and that of 
Riquelme et al. (2014) are illustrated in Fig. 13. Some examples of de
ficiencies are indicated by rectangles and the type of deficiency (EA: 
empty area; OS: over-segmentation; MS: mis-segmentation; IS: incom
plete segmentation; US: under-segmentation). Fig. 13(a) shows highly 
over-segmented discontinuities compared with other studies in Fig. 13. 
The over-segmentation areas and the number of data points removed as 
noise in Fig. 13(c) are fewer compared with Fig. 13(a). Fig. 13(b) and (c) 
suggest more smooth segmentation results for the discontinuities, which 
lead to more distinguishable boundaries and the area of the disconti
nuities. However, this may include shortcomings such as 
mis-segmentation, incomplete-segmentation, and under-segmentation 
due to merging two or more planes. 

Riquelme et al. (2014) and Chen et al. (2020) previously measured 
the ground truth orientations of discontinuities for PC2. Riquelme et al. 
(2014) manually extracted the orientation data (GT1) using the 
best-fitting plane to each set of points, following the method presented 
by Fernández (2005) using Polyworks. Chen et al. (2020) manually 
extracted the orientation data (GT2) using a best-fitting plane to each set 
of points using the Compass plugin in CloudCompare. The process was as 

Fig. 11. Qualitative comparison of different methods for PC2 (the raw point cloud was taken from Rockbench (Lato et al., 2013); Execution of segmentation 
techniques and visualization were conducted by Liu et al. (2019); PCL library for RHT, RG, and RANSAC, and CGAL library for optimized RANSAC were used). 
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follows. The plane tool is activated to create a red circle by clicking on a 
point in the point cloud; the circle’s center is specified. The radius of the 
circle was controlled through the degree of zooming. Points falling 
within the circle are used to determine the dip and dip direction with a 
least-square method for plane fitting. This orientation measurement 
method can be accurate if the target plane surface is selected using a 
large circle radius to consider all points on that surface. 

A review of the two ground truth datasets (GT1 and GT2) orienta
tions revealed some significant differences with an angle difference of up 
to 16.5◦. This discrepancy prompted an effort to conduct a third manual 
measurement of the discontinuity orientations from the point cloud. We 
manually determined the discontinuity orientations using the Segment 
tool in CloudCompare to draw a closed polygon around points falling on 
a specific discontinuity. Then, the best-fit plane tool in CloudCompare 
was used to extract the plane’s orientation (GT3) (dip and dip direction) 
from the selected points. This approach is more labor-intensive than the 
approach used by Chen et al. (2020). However, it can select all points 
falling on a plane to determine a more accurate and representative 
discontinuity orientation. 

The ground truth measurements and their orientation differences for 
PC2 are presented in Table 5. The plots displayed in Fig. 14 show the 
angle differences between the various methods. 

It is believed that the ground truth orientations found using Cloud
Compare give more reliable and reproducible orientation results as all 
the points of a plane can be extracted. Generally, the GT2 results have a 
smaller discrepancy with GT3 and are considered better orientation 
results than GT1. There are three planes, No. 12, 13, and 32, with sig
nificant angle differences (14.9◦, 10.8◦, and 11.7◦) when comparing GT3 
with GT1. The highest angle discrepancies observed between GT2 and 
GT1 are for planes No. 32 (16.5◦) and 41 (15.2◦). 

Interestingly, ground truth data deviations exceed those of semi/ 
automatic orientations versus GT3, which may question the validity of 
the ground truth orientations. Similarly, Drews et al. (2018) introduced 
two orientation measurement sources as the ground truth data 
(geological compass and Virtual Reality Geological Studio (VRGS) 

software) to compare their proposed automatic detection of the 
discontinuity planes. A mean error (deviation angle) of around 5◦

(automated vs. compass), 1.8◦ (automated vs. VRGS software), and 5.2◦

(compass vs. VRGS software) were reported. The compass measure
ments were reported to be less precise than the other two digital-based 
methods, algorithmic and VRGS software, due to curvature, roughness, 
and accessibility to the complex rock surfaces. 

The two main reasons for inconsistent orientations for a target plane 
seem to be (1) lack of concise specification of plane borders and (2) 
uneven non-planar sub-surfaces (e.g., single-stepped, multi-stepped, arc- 
shaped, undulating) relative to the size of the whole plane. It is argued 
that selecting such planes as ground truth may not lead to reliable and 
reproducible segmentation and orientation results, and therefore the 
subsequent comparison could be misleading. 

The number assigned for ground truth planes in PC2 (Fig. 15) 
matched those used in DSE, which is also followed by other studies. This 
facilitates visualization of results comparison. Examples of problematic 
discontinuity surfaces with inconsistent orientation measurements in 
PC2 are described as follows. Plane No. 12 is a comparatively small 
plane, with a portion of the area like a pothole shown in red. Due to the 
small area, the segmentation of this plane may partly exclude the red 
points and the area close to the border. That can lead to a plane fitting 
with different orientation results. Plane No. 32 has a surface with mul
tiple relatively parallel planes (multi-stepped). Volatile segmentation 
results can appear depending on the methods and parameter values 
used, and the resulting plane may include three to five distinct plane 
segments. Plane No. 33 resembles a single-stepped surface. The seg
mentation area in blue may split the surface into two distinct plane 
segments. For plane No. 41, all comparisons of ground truth orientation 
data in Table 5 show a comparatively high angle difference because this 
plane is a multi-planar surface, and the resultant segmentation may not 
yield a single or three-plane segment, as shown in Fig. 16. The bound
aries for Plane No. 52 are indefinite and lead to inconsistent interpre
tation by users who set the boundary for the ground truth. This plane can 
be split into two (or more) smaller segments, mainly including an arc- 

Fig. 12. Comparison of segmentation results for different methods vs. ground truth data for PC1; Raw dataset provided by Lato et al. (2013) and visualization of 
methods presented by Liu et al. (2019). 
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shaped surface area. 
Extra caution is needed when dealing with discontinuities with 

profiles similar to those shown in Fig. 16 to minimize the deviation from 
ground truth orientations and produce a more objective plane specifi
cation as a reference. It is recommended to compare both precision and 
recall as the two common performance indexes since the former shows 
the degree of false positives and the latter does that of false negatives. 
This provides a more informed perspective of the relationship between 
the ground truth and prediction results. 

For rock mass surfaces that are highly irregular, setting a concrete 
ground truth segmentation of discontinuity planes in the corresponding 
point cloud can be challenging and questionable. In such cases with a 
higher degree of uncertainty, the ground truth should be adjusted 
considering the geometry, field observation, and engineering judgment 
to maintain more tangible fact-tested ground truth results. 

Segmentation results of discontinuities from a rock surface point 
cloud may include over-segmentation, under-segmentation, mis- 
segmentation, or removed surface areas due to sparse density and 
noise removal steps. The degree of over/under-segmentation can be 
partially controlled by adjusting the hyperparameter values, depending 
on the methods used. For instance, increasing the knn value in the 
normal vector estimation can reduce over-segmentation. 

The voxel-grid downsampling reduces the effect of uneven discon
tinuity surfaces and helps control the over-segmentation phenomenon 
(Daghigh et al., 2021). This downsampling works best when the point 
cloud density is relatively high compared to the size of the planes 
intended to be detected. This technique may be used as a pre-processing 
step (Daghigh et al., 2021) or after the segmentation. However, when 
used as a pre-processing step, it can more efficiently diminish the un
expected over-segmentation areas shown in Fig. 16. However, a large 
voxel size causes the curvature of the intersection(s) between planes to 
be reduced, which increases the likelihood of merging planes in the 
segmentation results. As a result, it yields under-segmentation and 
mis-segmentation areas. Therefore, the voxel size should be optimized 
for each rock surface point cloud considering the size and type of planes 
required to be extracted. 

A collection of studies with technique(s), input data used, and their 
advantages and deficiencies are summarized in Table 6. 

5. Open-source tools to extract discontinuity planes 

Commercial and open-source software can be used to extract dis
continuities using various methods and techniques. Examples of com
mercial software include RockScan (Ferrero et al., 2009), Coltop-3D 
(Jaboyedoff et al., 2009), Split-FX, Maptek PointStudio (“Split-FX 
Analysis Service,” 2021), DiAna (Gigli and Casagli, 2011), Visualization 
Toolkit (Vöge et al., 2013), ShapeMetrix 3D (“ShapeMetrix 3D,” n.d.), 
and Sirovision (Datamine Software). FACETS (Dewez et al., 2016) is a 
tool to extract the planar surfaces from 3D point clouds as a plugin in the 
open-access CloudCompare software (“CloudCompare User Manual,” 
2021). A MATLAB tool, PlaneDetect (Li et al., 2019), was introduced in 
2019, but the source code is not publicly available. 

The two open-source tools, CloudCompare and Discontinuity Set 
Extractor (DSE) (Riquelme et al., 2014), are selected for further dis
cussion because they are publicly available and popular among re
searchers. The capabilities of CloudCompare to extract discontinuity 
planes are demonstrated using a point cloud of a dodecahedron and a 
real rock mass dataset. The methodology used by DS is briefly presented, 
and its performance is discussed. 

5.1. CloudCompare 

CloudCompare can be used to analyze point clouds related to earth 

Table 4 
Summary of various methods to segment discontinuities from rock surface point 
clouds (performance metrics: P (precision) |R (recall) |F1 (F1-score)).  

Method Technique Advantages Deficiencies By Yu et al. 
(2020) for 
PC1 

Run 
time 
(s)  

P| 
R| 
F1 
(%) 

RHT using 
PCL 

Model-fitting Quite fast Over- 
segmentation, 
Wrong/ 
inaccurate 
plane 
boundaries, 
Relative high 
computation 
time 

40 74| 
78| 
76 

RG using 
PCL 

Seed growth 
and 
neighboring 
info 

seed points 
and criteria 
to grow can 
be 
determined 

Incorrect 
planes, over- 
segmentation, 
Wrong/ 
inaccurate 
plane 
boundaries, 
Sensitive to seed 
growing 

12.2 78| 
76| 
77 

RANSAC 
using PCL 

Model-fitting Robust to 
noise 

Over- 
segmentation, 
Spurious planes, 
Inaccurate 
plane 
boundaries, 
Missing small 
and low-density 
surfaces, 
Relative high 
computation 
time 

28.4 82| 
81| 
81 

Optimized 
RANSAC 
using 
CGAL 

Model-fitting Fast Over- 
segmentation, 
Inaccurate 
plane 
boundaries, 
Missing small 
and low-density 
surfaces, 

2.9a 85| 
84| 
85a 

HT-RG 
(Leng 
et al., 
2016) 

Model-fitting 
and Region 
growing 

Multi-scale 
planes can 
be found 

Over- 
segmentation, 
Missing small 
and low-density 
surfaces, 
relative high 
computation 
time 

151.1 91| 
86| 
88 

MOE (Liu 
et al., 
2019) 

Gaussian 
kernel 
estimation 
and 
Neighboring 
info 

Very fast, 
Preserves 
the 
boundaries 
of planes, 
Good 
accuracy 

Missing small 
and low-density 
surfaces, Large 
number of 
parameters to 
tune 

1.1 92| 
92| 
92 

RAN-RG 
(Hu et al., 
2020) 

Model-fitting 
and Region 
growing 

Fast, 
Preserves 
the 
boundaries 
of planes, 
Good 
accuracy 

Missing small 
and low-density 
surfaces 

1.7 91| 
92| 
91 

Supervoxel- 
RG (Yu 
et al., 
2020) 

RANSAC and 
Region 
growing 

Fast, 
Preserves 
the 
boundaries 
of planes, 
Good 
accuracy 

Leaving holes in 
some planes, 
over- 
segmentation 

4.1 95| 
98| 
96  

a Numeric results of optimized RANSAC using CGAL are taken from Liu et al. 
(2019). 
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science and geological structures. CloudCompare is a general 3D data 
processing software that includes advanced features. It was developed in 
C++ and is capable of fast processing and handling large 3D datasets. 
The normal estimation in CloudCompare may not deliver high-quality 
results for rock mass point clouds because of noisy points, high curva
ture areas, and non-uniform normal orientations. Thus, automatic 
detailed extraction of plane surfaces in a complex rock mass point cloud 
may not be adequately achieved using the current features available in 
the CloudCompare software. 

The following subsections (Normal computation, Delaunay triangu
lation, Outlier filtering, and RANSAC shape detection) discuss some 
useful capabilities within CloudCompare. 

5.1.1. Normal computation 
There are several local surface models in CloudCompare to estimate 

normal vectors. The first and most common one is Plane, which finds the 
best-fit plane. This method is robust to noise while not efficient with 
sharp edges, borders, and corners. The other common method is trian
gulation, which uses 2D triangles to mesh data points. This method 
works satisfactorily with sharp edges. However, it is sensitive to noisy 
data. For the neighbor selection for normal estimation, the octree 
structure is the default, and all neighboring points within a specified 
radius are included. The greater the radius, the more points are involved 
in the computation, and the smoother the result will be. This is at the 
expense of a higher processing time (CloudCompare User Manual, 
2021). 

The local surface model only accounts for estimating the direction of 
the normal. However, the resulting normal orientations (inward or 
outward) should be adjusted, as they are generally inconsistent. To this 
end, the Minimum Spanning Tree (MST) algorithm is used to specify the 
maximum number of neighbors (knn) connected to each data point. The 
greater this number knn, the more memory and time are required. Also, 
the normal vector variation is generally reduced with an increase in knn, 
resulting in a smoother surface in the segmentation stage (Daghigh et al., 
2021). Fast Marching (FM) as an alternative to MST can be used. 
However, FM is not very accurate, and it is strongly recommended to use 
the MST method (CloudCompare User Manual, 2021). 

5.1.2. Delaunay triangulation 
In order to mesh the point cloud using triangulation, the point cloud 

should be projected on a 2D x-y plane or the best fitting plane (least 
squares). The triangulation is done in 2D space, and the mesh structure is 
applied to the 3D points. The maximum length parameter for the edges 
of the triangle can be determined. The normal vector can be calculated 
for each triangle, and sharp edges are better preserved (CloudCompare 
User Manual, 2021). 

5.1.3. Outlier filtering 
Point cloud datasets often include outliers, points that are connected 

to the majority sampling a surface. These outliers introduce errors in the 
estimation of normals and curvatures. By applying a statistical outlier 
removal (SOR) analysis to the neighborhood of each point, those points 
failing to satisfy a particular criterion are removed. This method is based 
on the computation of the mean distance of each point to all its neigh
bors (CloudCompare User Manual, 2021). Assuming a Gaussian distance 
distribution, all points outside a defined mean and standard deviation 
are assumed as outliers and removed from the dataset. 

A noise filter tool based on the relative or absolute distance of a point 
to a best-fit plane can be used to filter points. The points selected to find 
the best-fit plane are defined with a knn value or a sphere radius. This 
algorithm fits a plane to these points and removes any point found to be 
too far from the fitted plane. This filter tool works best for point clouds 
representing planar surfaces. Using a very high kernel radius or very 
small error threshold should be avoided as this will not preserve sharp 
edges and corners (“CloudCompare User Manual,” 2021). Instead, it is 
recommended to use a small radius and comparatively high error 
threshold while the algorithm is run repeatedly. The application of the 
noise filter on a dodecahedron point cloud dataset is displayed in Fig. 17. 
As shown in the rectangular area, this filter effectively removes noisy 
points near the planar surface. 

A fixed neighborhood radius (R) is specified along with a relative 
max error (with respect to the fitted plane) to determine whether a point 
is filtered. 

The RANSAC shape detection algorithm in CloudCompare was 
designed by Schnabel et al. (2007), and it can be used as a plugin. Based 
on random sampling, this algorithm automatically detects basic shapes, 

Fig. 13. Segmentation comparison with examples of deficiencies for PC2 (the raw point cloud was provided by (Lato et al., 2013)), (a) Riquelme et al. (2014), (b) 
Chen et al. (2016), (c) Kong et al. (2020), and (d) Chen et al. (2020). 
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including planes. This method is simple and robust to noise and should 
be used on a point cloud with consistent normals. 

The RANSAC algorithm was demonstrated on a point cloud repre
senting a dodecahedron (Fig. 18) and PC2 (Fig. 19) with changing point 

density and plane sizes. The dodecahedron point cloud dataset was ac
quired using a 3D digitizer and provided by Riquelme et al. (2014), and 
it contains 40414 points, and its bounding box is around 62 × 60 × 32 
mm. The RANSAC algorithm generally works best on a point cloud with 
accurate normals. The optimal values for parameters used in the RAN
SAC implementation demonstrated in Figs. 18(b), and Fig. 19(b) are 
presented in Table 7. RANSAC in CloudCompare effectively detects 
planar surfaces in the simple dodecahedron point cloud by choosing a 
proper set of values for the parameters. The spurious planes may be 
detected if a different distance threshold is used (Fig. 18(c)). 

For a complex point cloud of a rock mass, running RANSAC multiple 
times with various combinations of parameters may still not lead to the 
proper detection of all the planar surfaces. When the size and density of 
planar faces in a rock mass point cloud are highly variant, spurious 
planes are likely detected, while some planes are left undetected. Fig. 19 
(b) shows the rock mass point cloud for which most planes were 
detected, including a few spurious planes. Nevertheless, some areas that 
are shown in yellow rectangles in Fig. 19(a) were undetected. In Fig. 19 
(c), some undetected planes shown in Fig. 19(b) are detected, yet the 
number of spurious planes exceeds ten. 

Table 5 
Different ground truth manual mapping results and orientation differences for 
PC2 (GT1 by Riquelme et al. (2014), GT2 by Chen et al. (2020), and GT3: present 
study).  

Plane Ground truth dip direction and dip and their differences 

Dip direction/Dip (◦) Orientation differences (◦) 

GT1 GT2 GT3 GT3 vs. 
GT2 

GT3 vs. 
GT1 

GT2 vs. 
GT1 

11 249.2/ 
40.2 

242/ 
41 

246.1/ 
39.1 

3.2 2.3 4.8 

12 264.2/ 
57.0 

255/ 
50 

248.1/ 
49.5 

5.3 14.8 10.5 

13 264.0/ 
41.9 

248/ 
36 

249.8/ 
35.7 

1.1 10.8 11.6 

14 252.6/ 
36.5 

251/ 
35 

251.8/ 
34.7 

0.5 1.9 1.8 

15 248.7/ 
37.0 

248/ 
37 

249.3/ 
35.4 

1.8 1.6 0.4 

16 254.8/ 
29.8 

249/ 
35 

250.1/ 
35.7 

0.9 6.4 6.1 

17 249.9/ 
35.9 

254/ 
34 

253.4/ 
33.3 

0.8 3.3 3 

21 338.7/ 
82.4 

342/ 
83 

339.5/ 
83.1 

2.5 1.1 3.3 

22 347.5/ 
79.0 

347/ 
71 

345.7/ 
73.2 

2.5 6.1 8.0 

23 341.0/ 
89.5 

347/ 
86 

338.2/ 
88.1 

9 3.1 6.9 

24 353.5/ 
76.4 

174/ 
76 

173.7/ 
76.7 

0.8 0.4 0.6 

31 314.1/ 
77.2 

133/ 
81 

136.7/ 
77.0 

5.4 2.5 4.0 

32 302.4/ 
75.9 

137/ 
84 

131.0/ 
84.0 

6.0 11.7 16.5 

33 330.2/ 
83.0 

144/ 
89 

147.2/ 
89.1 

3.2 6.8 8.6 

41 286.1/ 
58.9 

100/ 
73 

97.2/ 
62.2 

11.1 8.4 15.2 

42 274.2/ 
51.1 

91/47 92.5/ 
48.6 

1.9 2.8 4.8 

43 277.2/ 
46.4 

95/46 97.7/ 
48.8 

3.4 2.4 1.6 

51 305.0/ 
77.6 

305/ 
78 

304.4/ 
77.9 

0.6 0.7 0.4 

52 290.2/ 
67.0 

286/ 
70 

286.7/ 
70.7 

1.0 4.9 4.9 

Ave. – – – 3.2 4.8 5.9 
S.D. – – – 2.9 4.0 5.7  

Fig. 14. Comparison of orientation results for PC2. (a) Evaluation of various semi-/automated orientation extraction methods versus our ground truth (GT3), (b) 
Deviation of ground truth results (GT1: Riquelme et al. (2014); GT2: Chen et al. (2020); GT3: present study), (c) Box plot specifications. 

Fig. 15. Ground truth planes displayed in the present work for PC2 with the 
same numbering scheme used in DSE. 
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The RANSAC algorithm in CloudCompare may satisfactorily detect 
the planes in regular shaped point clouds. However, its implementation 
on the rock mass point cloud cannot fully detect all correct planes with 
one set of parameter values. The RANSAC may also detect small planes 
with sparse density, but it comes at the expense of yielding incorrect 
planes, which is inefficient. Therefore, implementing just RANSAC, in its 
current form, on a complex rock mass point cloud may not deliver 
satisfactory plane detection results. 

5.2. Discontinuity Set Extractor (DSE) 

The DSE is an open-source tool developed in MATLAB (Riquelme 
et al., 2014) to process 3D point clouds. The tool operates in three main 
stages (Fig. 20):  

1) Local curvature calculation (plane detection) is done using the 
nearest neighbor search. A fixed number of neighbors is preferred 

Fig. 16. Discontinuity surfaces in PC2 cause a high discrepancy in orientation results (scale bar unit is in meters).  
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because errors may arise when using a fixed distance due to changing 
point density (Lato et al., 2010; Riquelme et al., 2014). Next, a 
coplanarity test is conducted using PCA by considering a specified 
threshold. This analysis checks whether the surrounding points fall 
within the same plane. After all coplanar points are recognized, the 
normal to the plane is obtained using the eigenvector.  

2) Statistical analysis of the planes using stereographic projection.  
3) Clustering analysis is performed using DBSCAN, PCA, and a check on 

the error fitting. Two parameters are required as input, the distance 
threshold between two points as neighbors, ε, and a minimum 
neighboring point q (a core point), in that threshold, Min-pts. It was 

reported that large variations in the point density might cause pro
cessing difficulty (Ester et al., 1996; Lato et al., 2010). It was rec
ommended by Ester et al. (1996) to set the Min-pts parameter to 4 
and ε by considering the distance of the 4th neighbor for each 
discontinuity set. 

A clustering analysis may detect many small clusters in a point cloud. 
The user may disregard small clusters and only consider clusters with a 
sufficient number of points (Riquelme et al., 2014). 

The following subsections present parameters setting for the copla
narity, the effects of knn, deviation tolerance, and pole dispersion in the 

Table 6 
Summary of studies for extraction of discontinuity traces and planes.  

Method Technique Input Advantages Deficiencies 

Reid and Harrison 
(1997) 

Edge based 2D image Relatively simple, Fast Incomplete and spurious, 2D traces 

Gonzalez et al. 
(2002) 

Edge based 2D image Suitable for limestone Semi-automatic, Unsatisfactory for carbonatite and 
granodiorite exposures, 2D traces 

Lemy and 
Hadjigeorgiou 
(2003) 

Edge based 2D image Relatively simple, Fast Incomplete and noisy, 2D traces 

DSE (Riquelme 
et al., 2014) 

Clustering using 
DBSCAN and kernel 
density estimation 

3D point 
cloud 

Robust to noise, comparison with the developed ground 
truth orientations for the point cloud for each plane, 
Satisfactory accuracy 

Semi-automatic, Computationally expensive, over- 
segmentation, large number of parameters to tune 

Chen et al. (2016) Clustering using an 
improved K-means 
and RANSAC 

Digital 
surface 
model (TIN) 

Automatic, Robust to the surface irregularity and 
roughness, Number of the cluster is set by the Silhouette 
validity index, Good accuracy 

Choosing a proper triangular mesh size can be 
challenging, Normal vectors are so sensitive to noise 
due to TIN as input, High computation time due to 
optimization 

Wang et al. (2017) Region growing 3D point 
cloud 

Automatic, Not suitable for areas larger than 70 m2, over- 
segmentation, computationally expensive for point 
cloud over 1 million points, inaccurate plane 
boundaries 

Bolkas et al. (2018) Edge based 3D surface Relatively simple, Fast 2D traces, noisy, discrete sets of edges 
Guo et al. (2018) Edge based 3D point 

cloud 
3D detection, Automatic, more efficient than manual or 
semi-automated methods 

No distinction between discontinuity trace and other 
fractures (e.g., blasting) 

Ge et al. (2018) Region growing 3D point 
cloud 

Automatic, use of a modified RG with enhanced run- 
time efficiency compared with regular RG 

Over-segmentation, qualitative segmentation 
comparison for each plane, and lack of ground truth 
point cloud 

Zhang et al. (2018) Clustering using 
mean-shift and 
Region growing 

Digital 
surface 
model 

Automatic, few key hyperparameters need to be set Computationally expensive, prone to error due to 
triangulation than the direct use of 3D coordinates 

Guo et al. (2018) Clustering using FCM 3D point 
cloud 

Automatic, Voxelization to smooth and reduce over- 
segmentation, number of clusters estimated using FA 

Inaccurate plane boundaries, qualitative segmentation 
comparison for each plane, and lack of ground truth 
point cloud 

Drews et al. (2018) Region growing 3D point 
cloud 

Automatic, comparison with the two sets of ground 
truth orientations for the point cloud, Good accuracy 

Computationally expensive (high computation for 
normals), large number of parameters to tune 

Zhang et al. (2019) Edge based 2D image 
and 3D point 
cloud 

3D, Automatic, Efficient No distinction between discontinuity trace and other 
fractures, no detailed detection 

Kong et al. (2020) Clustering using 
CFSFDP and RANSAC 

3D Point 
cloud 

Automatic, Improved normal estimation ar sharp edges 
using iterative reweighted plane fitting (IRPF), No need 
to specify the number of clusters, Satisfactory accuracy 

High computation time, Lack of line-type discontinuity 
traces (e.g., perpendicular to the surface rock outcrop) 

Chen et al. (2020) Modified RANSAC 3D Point 
cloud 

Automatic, Good accuracy Some under- and over-segmentation areas 

Singh et al. (2021) Clustering using K- 
Medoids and DBSCAN 

3D point 
cloud 

Satisfactory accuracy, Ground and vegetation removal, 
Orientation comparison with other results 

Unclear border for ground truth planes  

Fig. 17. Noise filter implementation (R = 1 mm and relative max error = 1) (the raw point cloud presented by (Riquelme et al., 2014) and the dataset was accessed at 
http://www.3d-landslide.com/projects/discontinuity/) RANSAC shape detection. 
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cluster analysis in the DSE. 

5.2.1. Coplanarity, number of neighbors, and deviation tolerance 
For coplanarity calibration, the number of neighbors knn and the 

maximum deviation ƞ are the most important parameters to select. The 

process may start with a variation of knn to examine the ƞmax. It is crucial 
to choose a value such that only noisy data is disregarded rather than 
valuable data points. If a low value is assigned to knn, the value for ƞ is 
often high, while this correlation diminishes if knn increases (Riquelme 
et al., 2014). 

Fig. 18. (a) Raw point cloud data of dodecahedron, (b) RANSAC implementation on the dodecahedron point cloud with six planes detected using parameter values in 
Table 7, (c) RANSAC implementation on a dodecahedron point cloud (max distance to primitive = 2 mm; two spurious planes detected). 

Fig. 19. (a) Raw point cloud data (PC2), (b) RANSAC implementation on the rock mass point cloud with 36 planes detected using parameter values in Table 7, (c) 
RANSAC implementation on the rock mass point cloud (max distance to primitive = 0.1 m; over ten spurious planes detected). 
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Based on sensitivity analysis (Riquelme et al., 2014), selecting a high 
knn and a low ƞmax leads to a better distinction between planar and 
non-planar features. In their case study, a low number of neighbors 
(knn<15) resulted in outlier points being included in the pole estima
tion. In contrast, a higher knn (knn>30) overly smoothed the local 
curvature. Therefore, a range of 15–30 for knn was an optimal tradeoff 
between accuracy and resolution. As well, the optimal value for ƞmax was 
around 20%. 

5.2.2. Pole dispersion effects in the cluster analysis 
The number of neighbors, knn, impacts the way that poles are 

dispersed in the stereo-plot. An increase in knn results in a higher con
centration of normal vectors around the mean. This suggests that higher 
precision is attained with more neighbor points. A summary of the 
optimal parameters found when processing the dodecahedron point 
cloud is presented in Table 8. Note that γ2 is the maximum threshold for 
the associated normal vector and the assigned principal plane normal 
vector. 

After a comprehensive sensitivity analysis (Riquelme et al., 2014), 
the number of neighbors was considered of prime importance in deter
mining planar features and non-planar ones like edges and vertices. 
Meanwhile, the coplanarity test was found as the most computationally 
expensive procedure in their method, increasing the run time as larger 
knn values are used. 

Riquelme et al. (2014, 2015) improved the capability of DSE by 
adding the ability to estimate the discontinuity normal spacing and 
persistence. 

DSE workflow can handle noisy point cloud data. One advantage of 
this method is the direct use of 3D data points without utilizing a 2.5D 
interpolated mesh surface. It also recognizes some areas with curvature 
on a discontinuity plane as noise points and removes them, and this 
leads to areas where planes are not extracted. DSE is not a fully auto
matic approach and tends to yield over-segmented plane clustering 
results. 

6. Conclusions 

The evolution in the 3D point cloud data analysis of rock faces has 
improved the extraction of rock discontinuities. The number of publi
cations on the 3D automatic extraction of discontinuity planes has 
accelerated over the past decade. This paper reviewed various methods 
to segment and extract discontinuity plane surfaces from 3D point cloud 
data. The advantages and limitations of each method, along with their 
improved versions, were discussed. Generally, machine-learning ap
proaches (unsupervised clustering-based methods) may yield better 
performance for large complex datasets than surface fitting methods. 

Detailed comparative results in the literature were critically dis
cussed qualitatively and quantitatively. The quantitative results eval
uate segmentation performance and orientation of discontinuity planes 
compared to ground truth data. The deviation of ground truth orienta
tions is analyzed, and the reasons and the potential solutions for deriving 
more reliable ground truth orientation data from a rock face point cloud 
are discussed. 

A comparison of results suggests that hybrid methods, when appro
priately deployed, can enhance the segmentation quality and orienta
tion estimation of discontinuities compared with conventional methods 
used individually. This is because using different techniques for different 
stages in the hybrid methods offers the advantage of better segmentation 
results with less over-/under-segmentation of discontinuity planes 
compared with conventional methods when applied indiscriminately 
across all stages. 

6.1. Recommendations and future directions 

Future research should be directed toward more accurate normal 
vector calculation and better preservation of edges and boundaries of 
planar surfaces in a rock mass point cloud. Section 3.6 of this article 
discusses interesting methodologies that have not yet been implemented 
on rock mass point cloud data but hold promise for addressing edge 
preservation in rock mass point clouds. 

To handle the noise for processing the rock surface point clouds, pre- 

Table 7 
Optimal parameters used for the RANSAC shape detection algorithm in Cloud
Compare for dodecahedron and PC2 datasets.   

Min 
support 
points 
per 
primitive 

Advanced parameters 

max 
distance 
to 
primitive 

sampling 
resolution 

max 
normal 
deviation 

overlooking 
probability 

dodecahedron 300 0.31 mm 0.620 20◦ 0.01 
PC2 1000 0.02 m 0.1 10◦ 0.01  

Fig. 20. Summary of procedures used in DSE (Riquelme et al., 2014).  

Table 8 
Summary of the optimal values suggested by Riquelme et al. (2014) for pa
rameters in each stage in DSE.  

Stage No. Parameter(s) 

Stage 1 knn=30 ηmax = 20% – 
Stage 2 γ1 = 20◦ nP = 20 γ2 = 30◦

Stage 2 ppc = 50 – –  
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processing and post-processing steps, including downsampling and 
voxelization, can be helpful and efficient approaches for large point 
clouds. 

Most 3D point cloud processing methods ignore the color informa
tion and rely solely on geometry-based methods to extract discontinuity 
planes. Further improvements to 3D point cloud analysis methods to 
extract discontinuities should incorporate both geometry and spectral 
information. Workflows to extract geometrically planar surfaces 
through processing XYZ coordinates may find planar surfaces that are 
not discontinuities in rock, such as a uniform soil slope (talus) on a rock 
face or a rock fracture created by blasting. It is, therefore, essential to 
have high-quality, dense point clouds with coordinates and texture in
formation (RGB color). For instance, planar-like surfaces that are not 
discontinuities may be detected by investigating how their roughness 
pattern and color differ from rock discontinuities. 

Publicly available point cloud datasets provide a solid platform for 
testing, evaluating, and comparing the performance of various algo
rithms. However, very few datasets are available in online repositories. 
Researchers should contribute new high-quality point clouds to public 
repositories to expand the variety of geological features (such as faults, 
bedding planes, and joints) captured in the available datasets. Most 
available rock mass point clouds originate from LiDAR surveys, and it 
would be helpful to have more datasets acquired with photogrammetry. 
The most efficient and stable approach for hosting a repository of 
datasets is a professional society website or a public repository such as 
GitHub that can be continuously monitored, maintained, and updated. It 
is strongly recommended that the point cloud data from open re
positories be used when researchers present a new workflow and 
demonstrate the capabilities of their method. This facilitates a mean
ingful comparison of results and builds an enhanced understanding of 
the strengths and the research gaps, which can significantly propel the 
advances in rock engineering-related studies. 
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