

Delft University of Technology

Permutation-Invariant Tabular Data Synthesis

Zhu, Yujin ; Zhao, Zilong ; Birke, Robert; Chen, Lydia Y.

DOI
10.1109/BigData55660.2022.10020639
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Conference on Big Data (Big Data)

Citation (APA)
Zhu, Y., Zhao, Z., Birke, R., & Chen, L. Y. (2022). Permutation-Invariant Tabular Data Synthesis. In S.
Tsumoto, Y. Ohsawa, L. Chen, D. Van den Poel, X. Hu, Y. Motomura, T. Takagi, L. Wu, Y. Xie, A. Abe, & V.
Raghavan (Eds.), Proceedings of the 2022 IEEE International Conference on Big Data (Big Data) (pp. 5855-
5864). IEEE. https://doi.org/10.1109/BigData55660.2022.10020639
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/BigData55660.2022.10020639
https://doi.org/10.1109/BigData55660.2022.10020639

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 5855

Permutation-Invariant Tabular Data Synthesis
Yujin Zhu

Computer Engineering
TU Delft

Delft, the Netherlands
Y.Zhu-17@student.tudelft.nl

Zilong Zhao
Computer Science

TU Delft
Delft, the Netherlands

Z.Zhao-8@tudelft.nl

Robert Birke
Computer Science

University of Torino
Torino, Italy

birke@ieee.org

Lydia Y. Chen
Computer Science

TU Delft
Delft, the Netherlands
LydiaYChen@ieee.org

Table

Table

Reorder columns

Synthetic data

Similarity
comparison Real data

Reordered real data

Table
Synthesizer

Table

Synthetic data

Table
Synthesizer

Table

Similarity
comparison

Downstream
analysis

Downstream
analysis

Fig. 1. Illustration of lacking column permutation invariance of training
tabular data synthesizer. This leads to dissimilarity between real and synthetic
data and different downstream analysis results.

tabular data is often more complex than the spatial or semantic
correlation in image or language data. Related features can be
far apart spatially, and multiple features can be inter-correlated.

Although the state-of-the-art AI-based tabular data syn-
thesizers show promising results [8], [11]–[13], they suffer
from a critical and undiscovered limitation: their training is
sensitive to column permutations. Changing the input column
order during training influences the quality of the synthetic
data, e.g., statistical similarity with real data (see Figure 1).
Theoretically, reordering the columns of the training input
shall not change the capability of synthesizers because the
position of columns does not imply any semantic information.
We call this property column permutation invariance, i.e.,
the output of generative models is invariant to the column
order of their training input. However, our extensive empirical
analysis shows that the statistical difference between real and
synthetic data increases by up to 38.67% after changing the
input column order. The main reason is the sparsity issue
caused by one-hot data encoding for categorical features and
mode-specific normalization for numerical features.

In this paper, we address the limitation of being sensitive
to input column permutations and striking a tradeoff between
the quality of synthetic data and the training time by two ap-
proaches. Our first solution is to leverage an autoencoder [14]
to improve the representation of tabular data and then design
a Wasserstein GAN with gradient penalty (WGAN-GP) [15]
based on fully connected networks to synthesize the latent
representation. This solution is named AE-GAN. Our second
solution is to leverage a feature sorting algorithm that is
capable of exploring the correlation among columns and pro-

Abstract—Tabular data synthesis is an emerging approach to
circumvent strict regulations on data privacy while discovering
knowledge through big data. Although state-of-the-art AI-based
tabular data synthesizers, e.g., table-GAN, CTGAN, TVAE, and
CTAB-GAN, are effective at generating synthetic tabular data,
their training is sensitive to column permutations of input data.
In this paper, we first c onduct a n e xtensive e mpirical s tudy to
disclose such a property of permutation invariance and an in-
depth analysis of the existing synthesizers. We show that changing
the input column order worsens the statistical difference between
real and synthetic data by up to 38.67% due to the encoding of
tabular data and the network architectures. To fully unleash the
potential of big synthetic tabular data, we propose two solutions:
(i) AE-GAN, a synthesizer that uses an autoencoder network
to represent the tabular data and GAN networks to synthesize
the latent representation, and (ii) a feature sorting algorithm
to find t he s uitable c olumn o rder o f i nput d ata f or CNN-based
synthesizers. We evaluate the proposed solutions on five datasets
in terms of the sensitivity to the column permutation, the quality
of synthetic data, and the utility in downstream analyses. Our
results show that we enhance the property of permutation-
invariance when training synthesizers and further improve the
quality and utility of synthetic data, up to 22%, compared to the
existing synthesizers.

Index Terms—GAN; Autoencoder; Tabular data synthesis;
Column permutation invariance

I. INTRODUCTION

As one of the most common data types, tabular data are
ubiquitous in the operation of banks, governments, hospitals,
and manufacturers, which lay the foundations of modern
society [1]. The synthesis of realistic tabular data, i.e., gener-
ating synthetic tabular data that are statistically similar to the
original data, is crucial for many applications, such as data
augmentation [2], imputation [3], [4], and re-balancing [5]–
[7]. Another important application is to use generated data to
overcome data sharing restrictions [8] caused by regulations
on data protection and privacy, such as European General Data
Protection Regulation (GDRP) [9].

Synthesizing realistic tabular data is a non-trivial task.
Compared to image and language data, tabular data are
heterogeneous - they contain dense continuous features and
sparse categorical features. The former can have multiple
modes, whereas the latter often have highly-imbalanced distri-
butions [10]. Furthermore, the correlation between features in

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
06

39

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5856

vides the permutation that enhances the synthesizer training,
especially for the ones based on convolutional neural networks.

We evaluate both solutions on five real-world machine
learning datasets against four state-of-the-art tabular data syn-
thesizers: table-GAN [8], CTGAN [11], CTAB-GAN [12], and
TVAE [11]. The results show that, compared to the baselines,
AE-GAN makes a better trade-off among more permutation-
invariance, generating high-quality data, and leading to accu-
rate downstream analyses. Moreover, its training time is sig-
nificantly shorter than CTAB-GAN, the best performing model
in synthesizing realistic tabular data. Besides, after applying
the feature sorting algorithm to CTAB-GAN, the statistical
difference between real and synthetic data is improved by 22%
averaged across five datasets.

The contributions of this paper are as follows:

• The first empirical study to analyze sensitivity to column
permutations for training tabular data synthesizer which
reveals its root cause, i.e., data representation and spar-
sity.

• A novel tabular data synthesizer, AE-GAN, which ef-
fectively achieves high permutation invariance and good
quality of synthetic data in terms of statistical similarity
and machine learning utility.

• A feature sorting algorithm for tabular data synthesiz-
ers, which helps preserve the relation between highly-
correlated features.

II. BACKGROUND AND RELATED WORK

In this section, we first provide the background on two
methods, GAN and autoencoder, which are the cores of the
prior art. Then, we compare the related studies in terms of
their network structures and data encoding schemes.

A. Generative Adversarial Network

Generative adversarial networks (GAN) are a recently de-
veloped algorithm [16] for synthetic data generation. A GAN
consists of two components: a generator (G) that learns to
produce realistic synthetic data, and a discriminator (D) that
tries to distinguish real data from synthetic (fake) data. Both
G and D are neural networks, e.g., Fully-Connected Networks
(FCNs) or Convolutional Neural Networks (CNNs). In the
training process, G and D play an adversarial game described
as follows:

min
G

max
D

V (G,D) =E[logD(x)]x∼pdata(x)

+ E[log(1−D(G(z)))]z∼p(z),
(1)

where x is the real sample, z is the random input signal given
to G, G(z) is the synthetic sample, and D(·) is the probability
of a sample being real from the perspective of D. The goal
of G is to minimize the chance that its generated samples are
identified as synthetic, whereas D maximizes the chance of
correctly distinguishing real and synthetic samples.

B. Autoencoder

An autoencoder (AE) is an unsupervised learning algorithm
that learns a mapping from high-dimensional inputs to low-
dimensional representations [14], [17], namely latent vectors.
It consists of two models, an encoder (Enc) and a decoder
(Dec). Enc takes a high-dimensional input and compresses it
to a latent vector, and Dec uses the latent vector to reconstruct
the original input. Enc and Dec are trained as a whole and
penalized for creating output that deviates from the input. The
loss function is defined as follows:

min
θ,ϕ

L(θ, ϕ) =
1

N

N∑
i=1

||xi −Decθ(Encϕ(xi))||22, (2)

where θ and ϕ are the parameters of Dec and Enc, xi

is a high-dimensional input, Encϕ(xi) is the latent vector,
Decθ(Encϕ(xi)) is the reconstructed input, and N is the total
number of samples.

C. Tabular data synthesizers

We focus on deep-learning approaches for tabular data
synthesis and skip the discussion of classical methods such
as Copulas [18], [19] and Bayesian Networks [20]. Table I
summarizes the recently developed deep learning methods for
tabular data synthesis in terms of models, network architec-
ture, and datasets. MedGAN [21] is designed for aggregated
electronic health records (EHRs), which only have count
and binary features. Since EHRs are high-dimensional and
sparse [22], medGAN uses a pre-trained autoencoder to learn
compact representations of the input data and thereby simpli-
fies the GAN’s task. MedGAN is improved by [22], where
the standard GAN loss is replaced by Wasserstein loss with
gradient penalty, and the new model is named medWGAN.
However, different from AE-GAN, medGAN and medWGAN
are limited in generalizing to real-world scenarios because they
only consider count and binary features.

A few recent tabular data synthesizers are suitable for
general data types, including table-GAN [8], CTGAN [11],
TVAE [11], and CTAB-GAN [12]. CTGAN, TVAE, and
CTAB-GAN use Variational Gaussian Mixture (VGM) to en-
code numerical features and one-hot encoding for categorical
features. Moreover, CTAB-GAN defines the mixed datatype
and proposes a new encoding method. In addition, CTGAN,
TVAE, and CTAB-GAN adopt the training-by-sampling tech-
nique to handle highly-imbalanced distributions. Despite their
effectiveness in tabular data synthesis, these models overlook
and do not abide by the key property of column permutation
invariance.

D. Column permutation invariance

In computer vision similar concepts have been brought
up and investigated, including permutation invariance [23],
[24], translation invariance [25]–[27], and translation equiv-
alence [28]. Permutation invariance means that the output of
a neural network stays the same despite permutations of its
input. For example, the classification of an image should not
change after adjusting the object location in the image.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5857

TABLE I
DEEP LEARNING METHODS FOR TABULAR DATA SYNTHESIS

Method Model design Network Data

medGAN [21] AE + GAN FCN Medical records
table-GAN [8] DCGAN + Classifier CNN General

medWGAN [22] AE + WGAN-GP FCN Medical records
CTGAN [11] Conditional WGAN-GP FCN General
TVAE [11] Conditional VAE FCN General

CTAB-GAN [12] Conditional DCGAN + Classifier CNN, FCN General

TABLE II
TABLEGAN EXPERIMENT RESULTS: WASSERSTEIN-1 DISTANCE

BETWEEN REAL AND SYNTHETIC DATA

Dataset Column order Max diff.
(%)

Original order Order by type Order by corr.

Loan 2.062 2.047 2.066 0.93%
Adult 12.153 12.563 11.512 9.13%
Credit 0.420 0.410 0.403 4.22%

Covtype 1.282 1.284 1.345 4.91%
Intrusion 6.486 5.896 5.645 14.90%

Avg. 4.481 4.440 4.194 6.82%

Motivated by that, we define column permutation invariance
in tabular data synthesis as follows. The performance of a
tabular data synthesizer should not be affected by permutations
on the input column order. To the best of our knowledge,
column permutation invariance has not been researched by the
prior art on tabular data synthesis.

III. EMPIRICAL ANALYSIS

In this section, we analyze the column permutation invari-
ance property of the state-of-the-art tabular data synthesizers,
with a particular focus on its root causes.

A. Pitfall of CNNs for tabular data synthesis

Initially designed for images, CNNs use a set of convolution
kernels to slide over the input feature space, abstract high-
dimensional features, and then aggregate them into knowledge
about the input. Due to the limited kernel size, CNNs only
learn local relations between neighboring features and fall
short to capture global dependencies.

The focus of CNNs on local relations hinders high quality
tabular data synthesis. In contrast to image data, tabular data do
not have necessarily strong local relations. Highly-correlated
features can be very far apart, and their dependencies can
be complex and irregular [29]. These characteristics make
modeling tabular data extra challenging for CNNs [30], [31],
despite their remarkable performance in many machine learn-
ing tasks [32].

Since CNNs capture mainly local relations, CNN-based
tabular data synthesizers are sensitive to column permutations.
We use table-GAN to verify this assumption. We test it with
five datasets arranged using three column orders, namely
the original order, order by type, and order by correlation.
Order by type means putting all continuous columns on the
left of the table, and all categorical columns on the right.
Order by correlation means placing highly-correlated columns

on the left and weakly-correlated columns on the right. For
each order, we train the model separately and calculate the
Wasserstein-1 distance (WD) between real and synthetic data.
Every experiment is repeated 5 times. Table II summarizes our
results. The best, i.e. lowest, distance values are highlighted
in bold. The last column shows the maximum WD change in
percent across all three column permutations. The results show
that table-GAN is most sensitive on the Intrusion dataset with
a maximum difference in WD of 14.90%.

B. Sparsity v.s. sensitivity

Efficient representation of categorical features is one of
the main challenges in tabular data synthesis. In the state-
of-the-art, table-GAN uses label encoding to transform cat-
egorical features into numerical ones and normalizes them
with min-max normalization. This method often leads to sub-
optimal performance due to the artificial order in categorical
features [33]. In contrast, CTGAN, CTAB-GAN, and TVAE
use one-hot encoding to represent categorical features. Despite
its simplicity and effectiveness, one-hot encoding introduces
many zeros to the input data and thus increases sparsity.

Representing numerical features in tabular data is relatively
straightforward. The most common method is mapping them
into [-1, 1] with min-max normalization. However, the authors
of CTGAN, TVAE, and CTAB-GAN adopt mode-specific nor-
malization, which uses Variational Gaussian Mixture to rep-
resent multi-modal numerical features. Although this method
improves the quality of the synthetic data, we find it leads
to sparse input because one-hot encoding is used to represent
multiple modes.

Our experiments show that sparse tabular data causes sen-
sitivity to column permutations. We compare CTAB-GAN,
a model using one-hot encoding and mode-specific normal-
ization, with table-GAN, a model using label encoding and
min-max normalization. Note that label encoding and min-
max normalization do not change the dimensionality of the
input data, whereas one-hot encoding and mode-specific nor-
malization increase sparsity. Table III shows our experiment
results of CTAB-GAN. Compared to table-GAN (see Table II),
CTAB-GAN synthesizes more realistic data (shown by a lower
WD which is about 1/4 of table-GAN’s WD), but with higher
sensitivity to column permutations on all datasets. The average
maximum change in WD across the five datasets is 38.67%,
whereas in table-GAN it is 6.82%.

To further highlight the sparsity of the encoded data we
visualize the input of table-GAN and CTAB-GAN in Figure 2.
We note that the sparsity is determined by the sum of all levels
of all variables, i.e., the number of modes per continuous
variable and the discrete levels per discrete variable. We
reshape each row of a table into a square matrix to make it
compatible with CNNs. In table-GAN, one row of the Adult
dataset is represented by a 4× 4 matrix, but in CTAB-GAN a
24× 24 matrix is needed due to one-hot encoding and mode-
specific normalization which increases the number of zeros,
i.e. purple matrix cells in the figure accounting for roughly
97% area. This increase in sparsity makes CTAB-GAN more

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5858

TABLE III
CTAB-GAN EXPERIMENT RESULTS: WASSERSTEIN-1 DISTANCE

BETWEEN REAL AND SYNTHETIC DATA

Dataset Column order Max diff.
(%)

Original order Order by type Order by corr.

Loan 0.356 0.283 0.216 64.81%
Adult 1.517 0.934 1.203 62.42%
Credit 0.115 0.144 0.137 25.22%

Covtype 0.539 0.514 0.583 13.42%
Intrusion 2.668 3.401 2.831 27.47%

Avg. 1.039 1.055 0.994 38.67%

0 1 2 3

0
1

2
3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
2

4
6

8
10

12
14

16
18

20
22 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Visualization of the encoded input to table-GAN (left) and to CTAB-
GAN (right) using Adult dataset.

sensitive to column permutations than table-GAN since the
average distance between related columns (pixels) is increased.

C. FCNs column permutation invariance

Theoretically, fully-connected networks (FCNs) should be
robust to column permutations because all features are con-
nected. However, we find FCNs are not fully permutation
invariant. Tests with CTGAN and TVAE, two FCN-based
tabular data synthesizers, on five datasets show an average
WD of 1.87 with an average maximum change of 18.62% for
CTGAN and 1.80 with 14.89% for TVAE (details skipped due
to space constraints). Overall, the state-of-the-art tabular data
synthesizers either provide the high quality synthetic data or
are resilient to column order permutations, struggling to make
a good trade-off.

IV. AE-GAN
We propose AE-GAN, a GAN-based tabular data synthe-

sizer, which aims to improve the resilience to the input column
permutations by using latent representations of tabular data
via an autoencoder. Figure 3 shows the overall architecture
and data flow of AE-GAN. It has five components: Encoder
(Enc), Decoder (Dec), Generator (G), Discriminator (D), and
Classifier (C). The main objective of the encoder and the
decoder is to find a more compact latent representation of the
input data, which follow the data encoding scheme proposed
below. Once the autoencoder is trained, the encoded latent
vector and the random noise vector are used as input to train
the GAN. The GAN aims to generate a synthetic latent vector
having high similarity to the original one. During training the
classifier provides additional feedback to ensure the semantic
integrity of synthetic data. We explain the design choice of
each component in the following.

Generator Discriminator Classifier

Encoder D
ec

od
er

Random noise

Latent
vectors

Real Table Synthetic Table

Class 1 Class 2 Class 3Validity

Evaluation

...

...

...

... ...

Fig. 3. The overall architecture and data flow of AE-GAN.

A. Data representation

Following [11], we use mode-specific normalization for nu-
merical features and one-hot encoding for categorical features.
Mode-specific normalization preserves the multi-modal distri-
bution of numerical features and improves the performance of
tabular data synthesizers [11], [12]. One-hot encoding is a sim-
ple yet effective way to convert categorical values to numerical
ones without losing too much information. Certainly, one-hot
encoding and mode-specific normalization causes sparse input,
but the autoencoder in AE-GAN maps the sparse encoded
input into compact latent vectors solving this issue.

B. Encoder and decoder

Since we identify sparsity as one of the main reasons for
tabular data synthesizers’ sensitivity to column permutations,
one natural solution is to use an autoencoder to extract the
features of tabular data and compress them into compact latent
vectors. Such an advantage can apply to all kinds of tabular
data synthesizers.

We use two three-layer fully connected networks as Enc
and Dec. Based on our study of mainstream open-source
implementations of autoencoders [34]–[36], fully-connected
networks with 2-4 layers are common choices for autoen-
coders.

Another important design choice is the length of the latent
vector, i.e., the output size of Enc and the input size of Dec.
This determines the autoencoder’s capacity to represent high-
dimensional data. We choose this parameter based on the
size of the input dataset. For datasets with a large number
of columns, we increase the length of the latent vector to
ensure that complex relations between columns can be well
represented, therefore helping the generator to synthesize
realistic data.

C. Generator and discriminator

The core of AE-GAN is a GAN, which has two competing
networks, namely the generator, G, and the discriminator, D.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5859

Real / synthetic
latent vector

Fully-connect
layer

Leaky ReLU

Fully-connect
layer

Leaky ReLU

Fully-connect
layer

Validity
Fu

lly
-c

on
ne

ct
ed

 la
ye

rs

Random noise

Block 1

Block 2

Fully-connect
layer

Tanh

Fully-connected
layer

Batch
normalization

Leaky ReLU
A

ct
iv

at
io

n
Fu

lly
-c

on
ne

ct
ed

 la
ye

rs

Synthetic latent
vector

Discriminator Generator

Fig. 4. Architectures of the discriminator and the generator in AE-GAN.

Figure 4 shows their architectures. Both G and D have three
fully-connected layers which are more resilient to permuta-
tions of elements in the (more compact) latent vector. In the
discriminator, the fully connected layers are followed by leaky
ReLU activation and the final output is the validity of the input.
In the generator, the fully-connected layers are followed by
batch normalization and leaky ReLU activation, and the final
output is the synthetic latent vector. The design is based on
the architecture of WGAN-GP [37].

D. Auxiliary classifier

To enhance the training of G and thus the quality of the
generated tabular data, we introduce an auxiliary classifier C
to the GAN. This design is inspired by [8], where an auxiliary
classifier is added to maintain the semantic consistency of syn-
thetic data. Note that the input to C is the reconstructed data
from Dec, rather than the latent data from Enc and G because
we want C to learn the semantic relations between columns
directly. Specifically, given a categorical target column with
several categories, C learns to classify which category a
sample belongs to according to the columns other than the
target column. This is how C differs from the D: D determines
the “realness” of a sample based on all columns in the latent
space, whereas C learns the relationship between the target
column and all other columns in the reconstructed space. By
combining C with the GAN, we simultaneously leverage the
flexibility of unsupervised training with the control provided
by supervised training, thereby improving the quality of the
synthetic data.

E. Loss functions

The training of AE-GAN requires four loss functions:
autoencoder loss LAE , generator loss LG, discriminator loss
LD, and classifier loss LC .

1) Autoencoder loss: Autoencoder loss is the reconstruction
loss, i.e., the element-wise mean squared error between its
input and reconstructed output. It is defined as follows:

LAE = E||x− x̃||22, (3)

where x and x̃ are the input and the reconstructed output.
2) Generator loss: The generator receives feedback from

both the discriminator and the classifier. Therefore, its loss
function is the sum of: discriminator feedback LD

G and classi-
fier feedback LC

G.

LG = LD
G + LC

G (4)

Discriminator feedback is the validity of synthetic samples:

LD
G = −E[D(G(z))], (5)

where G(z) is the generator output and D(G(z)) is the
discriminator output.

Classifier feedback is the cross entropy between the pre-
dicted value and the actual value of the target column:

LC
G = H(m,m′), (6)

where m and m′ are the actual and predicted values of the
target column, and H(·) is the cross entropy operator.

3) Discriminator loss: The discriminator loss measures
how well it differentiates the real samples and the synthetic
samples. We use Wasserstein loss with gradient penalty to
improve the training stability and alleviate the vanishing
gradient problem of GANs [15]. It is calculated by:

LD = −E[D(x)−D(G(z))− λ · (||∇D(x̂)||2 − 1)2], (7)

where D(x), D(G(z)) and D(x̂) are the discriminator output
on real samples, synthetic samples, and the interpolates be-
tween real and synthetic samples. λ is the gradient penalty
coefficient, ∇D(x̂) is the gradient of D(x̂) on x̂.

4) Classifier loss: The classifier loss also has two parts:
loss on real samples LR

C and loss on synthetic samples LS
C .

LC = LR
C + LS

C . (8)

The calculation of LR
C and LS

C are similar to LC
G.

F. Training algorithm

We test two training strategies: disjoint training and joint
training. For disjoint training we first train the AE until
convergence and then train the GAN with the classifier while
utilizing the compression power of the AE. For joint training,
inspired by TimeGAN [38] and the hypothesis of possible
training synergies, we first pre-train the autoencoder for a
certain number of epochs and then co-train it with the GAN
and the classifier. Ablation tests, details in Section VI-D, show
that disjoint training achieves lower training losses. Hence we
use disjoint training for all results if not specified.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5860

F1 F2 F15 F16

F1 F2

F15 F16

Highly correlated Highly correlated

F1 F2

F15 F16

.... F1 F2 F15 F16

Reshape

Reshape

Feature sorting

Highly correlated

Fig. 5. Top: The highly correlated features, F1, F2, F15 and F16 are on
the border of the input matrix, suffering from the boundary effects of CNNs.
Bottom: After feature sorting, F1, F2, F15 and F16 are at the center of the
input matrix.

V. FEATURE SORTING ALGORITHM

Although features in tabular data are often heterogeneous,
some are highly correlated. However, as discussed in Sec-
tion III-A, CNN-based tabular data synthesizers often fail
to capture these correlations due to the distance between
correlated columns.

A simple solution for this problem is to put highly-
correlated features together, such that a convolution kernel can
capture them simultaneously.

The location of features also matters. In a convolution pro-
cess, features on the border of the input matrix are convoluted
fewer times than features within the border, leading to potential
loss of information. This is called boundary effects in image
processing [39], [40] which can lead to statistical biases in
finite-sampled data [25], [41], [42]. To better capture the
correlation between features, one must also carefully choose
the location of high-correlated features.

To address both issues our solution is to group highly-
correlated features together in the middle of the table and
mitigate the boundary effect. Figure 5 illustrates the base of
our idea. Since each row must be reshaped into a square matrix
to be fed into a CNN, we have to carefully sort the features
such that they end up in the middle after reshaping.

Although this idea seems straightforward, one complication
arises due to the encoding of features. Variational Gaussian
Mixture [11] and One-hot encoding require multiple columns
to represent one feature. Consequently, each feature may
occupy a different number of columns. To put highly correlated
features in the middle after encoding, we must consider the
length of each encoded feature.

We developed a feature sorting algorithm that groups
highly-correlated features and puts them in the middle, see
Algorithm 1. We first pick the most correlated feature pairs
and then add other features to their left or right side. We have
two counters, cleft and cright, for columns taken by features
added to the left and the right side. Before adding a feature,
we compare cleft and cright, and then add it to the side with
fewer columns. Thereby we ensure that the highly correlated
features stay in the middle even after encoding.

Algorithm 1 Feature Sorting Algorithm
Input: Original Table To = {F0, F1, ..., Fn}
Output: Sorted Table Tsorted

1: Tsorted ← {}
2: cleft, cright ← 0 ▷ No. columns added to the left / right

of Tsorted

3: corr ← [] ▷ Pair-wise correlation / association
4: for all possible pairs of features in To do
5: Calculate the absolute value of their correlation /

association and save it in corr
6: end for
7: while length(Tsorted) ̸= length(To) do
8: Find the largest value v in corr
9: Find the corresponding pair of features {Fx, Fy}

10: Fnew ← {Fx, Fy} − {Fx, Fy} ∩ Tsorted ▷ Feature(s)
not yet in Tsorted

11: c← No. columns occupied by Fnew after encoding
12: if Tsorted is empty then
13: Tsorted ← {Fx, Fy} ▷ Add the first pair
14: else
15: if cright < cleft then
16: Tsorted ← Tsorted + Fnew ▷ Add the new

feature(s) to the right
17: cright ← cright + c
18: else
19: Tsorted ← Fnew + Tsorted ▷ Add the new

feature(s) to the left
20: cleft ← cleft + c
21: end if
22: end if
23: Remove v from corr
24: end while
25: return Tsorted

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Datasets: We use five tabular datasets that are common
in the machine learning community. Table IV summaries their
main statistics. The Loan dataset1 contains the demographic
information about bank customers and their response to a
personal loan campaign. The Adult dataset2 has many census
data and is used to predict whether the income of an adult
exceeds $50k/year. The Credit dataset3 consists of anonymized
credit card transactions labeled as fraudulent or genuine.
The Intrusion dataset4 has encrypted WiFi traffic records and
classifies whether a record is from an unmanned aerial vehicle.
The Covtype dataset5 contains the cover type of forests and
the related geographical information. Every dataset has a

1https://www.kaggle.com/code/pritech/bank-personal-loan-modelling/data
2https://archive.ics.uci.edu/ml/datasets/Adult
3https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
4https://archive.ics.uci.edu/ml/datasets/Unmanned+Aerial+Vehicle+%28U

AV%29+Intrusion+Detection
5https://archive.ics.uci.edu/ml/datasets/Covertype

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5861

TABLE IV
STATISTICS OF DATASETS

Datasets # Continuous
columns

Categorical
columns

Columns
after encoding # Samples

Loan 5 8 55 5k
Adult 5 9 151 48k
Credit 30 1 301 50k

Covertype 10 45 205 50k
Intrusion 22 20 322 50k

target column for classification tasks. Due to the limitation
of computational resources, we randomly select 50k samples
from the Credit, Intrusion, and Covtype datasets.

2) Baselines: Four state-of-the-art tabular data synthesizers
are selected as the baseline models, namely table-GAN [8],
CTGAN [11], TVAE [11], and CTAB-GAN [12]. We use
the same hyperparameters as the original papers, and every
experiment is repeated three times to obtain reliable results.

3) Computational Environment: We implemented our pro-
posed solutions using Pytorch on a server equipped with
an Intel(R) Core(TM) i9-10900KF CPU @3.70GHz and a
GeForce RTX 2080 Ti GPU.

B. Evaluation Metrics

Our evaluation of tabular data synthesizers focuses on the
statistical difference and machine learning utility difference
between real and synthetic data. Two metrics quantify the
statistical difference.

Wasserstein-1 Distance (WD) measures the difference
between two continuous/discrete 1-dimensional distributions.
We use this metric to compare the per features difference
between real and synthetic data.

Difference in Correlation Matrix (Dif. Corr.) measures
how well the cross-column correlations6 are captured by a
tabular data synthesizer. We calculate the difference between
the correlation matrices of the real and synthetic table as
follows:

Dif. Corr. =

√∑
i,j

(CorrRi,j − CorrFi,j)
2, (9)

where CorrRi,j and CorrFi,j are the correlation coefficients
between features i and j in the real and synthetic correlation
matrices.

We measure machine learning utility as the performance
differences of machine learning models trained on the real
and synthetic data. Specifically, we first train four machine
learning models with real and synthetic data separately. Then
we obtain their average prediction accuracy and compute the
difference. The difference is small if the synthetic data has
high machine learning utility.

6Note that we use “correlation” as a general term. For two numerical
features, it refers to the Pearson correlation coefficient; for two categorical
features, it is their Cramer’s V; and for a categorical features and a numerical
features, it means their correlation ratio.

TABLE V
AE-GAN EVALUATION RESULTS AGAINST THE STATE-OF-THE-ART. FOR

ALL METRICS, A LOWER VALUE IS BETTER.

Model Sensitivity to
permutations

Stat. diff. ML utility
diff.

Training time
(mins)

WD Dif. Corr.

table-GAN 6.82% 4.481 3.651 21.14% 1.31
CTAB-GAN 38.67% 1.039 1.905 9.11% 63.70

CTGAN 18.62% 1.857 3.079 14.99% 10.47
TVAE 17.29% 1.723 2.848 12.84% 7.00

AE-GAN 11.71% 2.699 2.331 9.98% 9.89

C. AE-GAN

AE-GAN is evaluated on four aspects: column permutation
invariance, statistical similarity and machine learning utility
of the synthetic data, and training time. We aim to verify if
AE-GAN is robust to column permutations and achieves good
synthesis quality compared with the state-of-the-art. Addition-
ally, we evaluate the scalability of AE-GAN by analyzing its
training time. Table V summarises the results averaged on five
datasets.

Column Permutation Invariance. Similar to our empirical
analysis, we arange training data in three different orders,
i.e., original order, order by type, and order by correlation,
and test the performance of AE-GAN. The second column
of Table V shows the sensitivity to column permutations of
the baseline models and AE-GAN, averaged on five datasets.
We find AE-GAN ranks second in permutation invariance
among the five models. Table-GAN is the most permutation-
invariant model because it does not have the sparsity issue
caused by one-hot encoding and mode-specific normalization.
In contrast, CTAB-GAN, TVAE, CTGAN and AE-GAN adopt
one-hot encoding for categorical features and mode-specific
normalization for numerical features and thus have sparse
input, leading to higher sensitivity. However, since AE-GAN
has an autoencoder to compress the input, it is more robust to
column permutations than CTAB-GAN, TVAE, and CTGAN.

Synthesis Quality Comparison. We evaluate the quality
of the synthesized data with two metrics: statistical difference
and ML utility difference between real and synthetic data.
Table V shows that CTAB-GAN is the best model in synthesis
quality because its synthetic data have the lowest statistical
difference and ML utility difference compared with real data.
Table-GAN is the worst among all models. In the rest three
models, AE-GAN is better than CTGAN and TVAE on Dif.
Corr, but worse on WD. However, the ML utility of AE-
GAN is better than CTGAN and TVAE. The results show that
the autoencoder of AE-GAN helps preserve the correlation
between different features, but for each feature, the statistical
difference between real and synthetic data may increase due
to the information loss caused by data compression. Future
work may look into optimizing the trade-off between the
performance boost for GAN and the compression loss caused
by compact representations.

Training Time Analysis. A model with a short training
time can scale up to large datasets. It also requires fewer

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5862

hardware resources than slow models given the same input. We
compare the scalability of AE-GAN with the baseline models
by analyzing their total training time. Table V shows that AE-
GAN is faster than CTGAN and CTAB-GAN, but slower than
table-GAN and TVAE. Table-GAN has the shortest training
time because of its simple data representation, which leads
to small input size. TVAE is faster than AE-GAN because
AE-GAN has an auxilliary classifier. Nonetheless, AE-GAN
is significantly faster than CTAB-GAN, speeding up as much
as 6 times.

Summary. AE-GAN achieves the best tradeoff between
permutation invariance, synthesis quality, and training time
compared with state-of-the-art tabular data synthesizers. It is
more permutation-invariant than CTAB-GAN, CTGAN, and
TVAE, and it has better synthesis quality than table-GAN,
CTGAN, and TVAE in terms of ML utility. Although table-
GAN is less sensitive to column permutations and takes less
time to train than AE-GAN, its synthesis quality is much
worse. In a similar vein, although CTAB-GAN is better than
AE-GAN in synthesis quality, it is much slower and more
sensitive to column permutations. Compared with CTGAN and
TVAE, AE-GAN is more permutation-invariant, has better ML
utility, and takes a similar time to train.

D. Ablation Study

We conduct an ablation study to understand the influence
of the design choices we made with AE-GAN. We change
the data representations, model architecture, and training al-
gorithm to test their effect. Table VI summarizes the results
of the ablation study.

Without Mode-Specific Normalization (MSN). We use
mode-specific normalization in AE-GAN to normalize numeri-
cal features. Although it preserves the multi-model distribution
of numerical features, it increases the sparsity in training
data. We replace it with min-max normalization to understand
its effect. Table VI shows that after removing mode-specific
normalization, the WD becomes worse on all datasets, mean-
ing that mode-specific normalization improves the synthesis
quality. However, it also makes AE-GAN more sensitive
to column permutations. After removing it, the sensitivity
to column permutations decreases on the Loan, Credit, and
Covtype datasets. In conclusion, mode-specific normalization
increases sensitivity to column permutations, but it improves
synthesis quality.

Without One-hot and Mode-Specific Normalization. To
further reduce sparsity in the input data, we remove one-hot
encoding and mode-specific normalization together. Similar to
table-GAN, we pre-process categorical and numerical features
using min-max normalization. We found that the WD is
worse than only removing mode-specific normalization, which
proves that one-hot encoding can enhance synthesis quality.
Moreover, the sensitivity to column permutations decreases
on all datasets except the Adult dataset after removing one-
hot encoding and mode-specific normalization, especially on
datasets with a high proportion of categorical features such as

the Covtype and Intrusion datasets. The results verify again
that reducing sparsity can enhance permutation invariance.

Without Auxiliary Classifier. We use an auxiliary classifier
to improve the synthesis quality of AE-GAN. After removing
the auxiliary classifier, the Wasserstein distance between real
and synthetic data worsens on all datasets except the Loan
dataset. Overall, the average WD on five datasets increases
from 2.669 to 2.773 after removing auxiliary classifier, show-
ing that the classifier improves synthesis quality.

Co-training AE and GAN. The AE and GAN in AE-
GAN are trained separately. To study whether co-training AE
and GAN can improve the synthesis quality, we first pre-
train the AE for 300 epochs and then train it together with
GAN. Surprisingly, the results show that co-training makes the
synthesis quality worse. We find that the training loss of AE
is already low after pre-training. However, during co-training,
the feedback from GAN increases AE’s loss and makes it
unstable.

E. Feature sorting algorithm

We evaluate the proposed feature sorting algorithm on
table-GAN and CTAB-GAN, two CNN-based tabular data
synthesizers, because this algorithm is designed to alleviate
the limitations of CNN as explained in Section V.

Table-GAN. Table VII shows the effect of the feature
sorting algorithm on table-GAN. A negative change in Dif.
Corr. or WD means the difference between synthetic and real
data becomes smaller. That is, the feature sorting algorithm
helps tabular data synthesizers generate more realistic data.
The results show that the feature sorting algorithm works best
on the Credit dataset, where Dif. Corr. and WD are decreased
by 12% and 4%. It also improves the results on the Intrusion
dataset, where WD is reduced by 16%, whereas Dif. Corr
slightly increases by 3%. However, it does not influences much
the Loan and Covtype datasets, where the Dif. Corr. and WD
change less than 5%. Moreover, the results on the Adult dataset
become worse, with Dif. Corr and WD increase by 24% and
3%.

The algorithm performs best on the Credit dataset because
of the simple correlations between its features. Using ±0.2
as the threshold for high correlation, only Time and Amount
are strongly-correlated with other features. All other features
have a close-to-0 correlation. Besides, Time and Amount are
only correlated with 3 and 5 features, respectively. With such a
small number of correlated features, capturing their relation in
the convolution process is easy once we group them together.

The algorithm also alleviates the CNN boundary effect on
the highly-correlated features of the Credit dataset. In the
original order, Time and Amount are the leftmost and rightmost
columns in the table, and many of their correlated features are
far apart. However, after feature sorting, these features are in
the middle of the table therefore reducing the boundary effect.

In contrast to the Credit dataset, the other four datasets have
a larger number of correlated features. For example, in the
Adult dataset most features are correlated with at least one
other feature, and seven features are correlated with more than

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5863

TABLE VI
ABLATION STUDY RESULTS ON SYNTHESIS QUALITY AND PERMUTATION INVARIANCE OF AE-GAN

Dataset WD between real and synthetic data Sensitivity to column permutations

AE-GAN w/o MSN w/o one-hot & MSN w/o classifier co-train AE & GAN AE-GAN w/o MSN w/o one-hot & MSN

Loan 1.374 2.309 3.749 1.308 1.880 7.28% 3.29% 4.45%
Adult 6.042 6.319 15.432 6.293 6.508 21.77% 39.20% 40.65%
Credit 0.341 1.650 1.505 0.344 0.534 9.09% 3.19% 2.70%

Covtype 1.408 3.099 5.954 1.428 2.437 10.16% 5.48% 0.79%
Intrusion 4.328 14.915 58.241 4.492 4.836 10.28% 26.84% 2.76%

Avg. 2.699 5.658 16.976 2.773 3.239 11.71% 15.60% 10.27%

TABLE VII
TABLE-GAN BEFORE AND AFTER THE FEATURE SORTING ALGORITHM.

Dataset Before sorting After sorting Change

Dif. Corr. WD Dif. Corr. WD Dif. Corr. WD

Loan 2.284 2.062 2.203 2.087 -4% 1%
Adult 1.563 12.153 1.942 12.502 24% 3%
Credit 3.092 0.420 2.728 0.403 -12% -4%

Covtype 4.885 1.282 4.915 1.348 1% 5%
Intrusion 6.433 6.486 6.597 5.418 3% -16%

Avg. 3.651 4.481 3.677 4.352 1% -3%

three features. Due to the limited kernel size, it is challenging
for CNNs to capture all the cross-column relations even after
putting the highly-correlated features together. Besides, our
algorithm is based on pairwise correlation, but putting one pair
of highly-correlated features together could possibly separate
another pair of highly-correlated features, which explains why
sometimes Dif. Corr. and WD become worse after applying
the feature sorting algorithm. In this case, domain knowledge
is required to effectively group the correlated features and
arrange them in a good order.

CTAB-GAN. To understand whether our feature sorting
algorithm works when sparsity is involved, we test it on
CTAB-GAN, and the results are summarized in Table VIII.
Surprisingly, the algorithm can reduce Dif. Corr. and WD by
more than 10 % on all datasets except the Credit dataset. On
the Loan dataset, the Dif. Corr. and WD are decreased by 57%
and 29% after feature sorting, meaning that the algorithm can
effectively improve the statistical similarity between synthetic
and real data.

Compared with table-GAN, CTAB-GAN has more perfor-
mance gain after feature sorting. This is due to the sparsity
issue caused by the encoding methods of CTAB-GAN, i.e.,
mode-specific normalization for numerical features and one-
hot encoding for categorical features. Since the input data are
sparse after encoding, putting the highly-correlated columns
together can drastically reduce the distance between correlated
columns, and therefore improves CTAB-GAN’s ability to
capture the relation between highly-correlated columns.

To summarize, our feature sorting algorithm can improve
the performance of CNN-based table synthesizers, especially
when the input tabular data are sparse. For dense tabular data,

TABLE VIII
CTAB-GAN BEFORE AND AFTER THE FEATURE SORTING ALGORITHM.

Dataset Before sorting After sorting Change

Dif. Corr. WD Dif. Corr. WD Dif. Corr. WD

Loan 1.469 0.356 0.638 0.253 -57% -29%
Adult 0.448 1.517 0.296 1.205 -34% -21%
Credit 1.688 0.115 1.660 0.134 -2% 17%

Covtype 1.948 0.539 1.442 0.475 -26% -12%
Intrusion 3.969 2.668 3.385 1.999 -15% -25%

Avg. 1.904 1.039 1.484 0.813 -22% -22%

it also works if the relation between correlated features is
relatively simple.

VII. CONCLUSION

Motivated by the soaring need of synthetic big data, we
discover and analyze the varying performance of AI-based
tabular data synthesizers to the input column permutation.
The state-of-the-art tabular data synthesizers, especially the
ones based on convolution neural networks, are sensitive to
the column order of the training input. Through empirical
analysis on extensive combinations of column permutations,
synthesizers, and datasets, we find the root causes for lacking
column permutation invariance are the data representation
of tabular data and use of convolution neural networks. To
address these limitations, we first propose AE-GAN, a GAN-
based synthesizer leveraging the representation capacity of
autoencoder. Secondly, we propose a feature sorting algo-
rithm that preserves the correlation across input columns
and enhances the-state-of-the-art synthesizers considered. Our
evaluation results on five datasets show that AE-GAN makes
the excellent trade-off among the sensitivity to the input
column permutation, training time and the high synthetic data
quality and utility. The proposed feature sorting algorithm, on
the other hand, enhances the synthesis quality of exiting CNN-
based synthesizers, i.e., the statistical difference and ML utility
difference between real and synthetic data, by 22%.

REFERENCES

[1] M. Ryan, Deep learning with structured data. Simon and Schuster,
2020.

[2] H. Chen, S. Jajodia, J. Liu, N. Park, V. Sokolov, and V. Subrahmanian,
“Faketables: Using gans to generate functional dependency preserving
tables with bounded real data.,” in IJCAI, pp. 2074–2080, 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

5864

[3] L. Gondara and K. Wang, “Mida: Multiple imputation using denoising
autoencoders,” in Pacific-Asia conference on knowledge discovery and
data mining, pp. 260–272, Springer, 2018.

[4] R. Camino, C. Hammerschmidt, and R. State, “Working with deep
generative models and tabular data imputation,” in ICML Workshop on
the Art of Learning with Missing Values (Artemiss), 2020.

[5] J. Engelmann and S. Lessmann, “Conditional wasserstein gan-based
oversampling of tabular data for imbalanced learning,” Expert Systems
with Applications, vol. 174, p. 114582, 2021.

[6] M. Quintana and C. Miller, “Towards class-balancing human comfort
datasets with gans,” in Proceedings of the 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-
portation, pp. 391–392, 2019.

[7] A. Koivu, M. Sairanen, A. Airola, and T. Pahikkala, “Synthetic mi-
nority oversampling of vital statistics data with generative adversarial
networks,” Journal of the American Medical Informatics Association,
vol. 27, no. 11, pp. 1667–1674, 2020.

[8] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” Proc. VLDB
Endow., vol. 11, no. 10, p. 1071–1083, 2018.

[9] EU, “General data protection regulation (gdpr),” 2018.
[10] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and

G. Kasneci, “Deep neural networks and tabular data: A survey,” CoRR,
vol. abs/2110.01889, 2021.

[11] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
Modeling Tabular Data Using Conditional GAN. Red Hook, NY, USA:
Curran Associates Inc., 2019.

[12] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan: Effective table
data synthesizing,” in Asian Conference on Machine Learning, pp. 97–
112, PMLR, 2021.

[13] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan+: Enhancing
tabular data synthesis,” arXiv preprint arXiv:2204.00401, 2022.

[14] M. Tschannen, O. Bachem, and M. Lucic, “Recent advances
in autoencoder-based representation learning,” arXiv preprint
arXiv:1812.05069, 2018.

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[17] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72,
no. 2011, pp. 1–19, 2011.

[18] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pp. 399–410, 2016.

[19] Z. Li, Y. Zhao, and J. Fu, “Sync: A copula based framework for gen-
erating synthetic data from aggregated sources,” in 2020 International
Conference on Data Mining Workshops (ICDMW), pp. 571–578, IEEE,
2020.

[20] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“Privbayes: Private data release via bayesian networks,” ACM Transac-
tions on Database Systems (TODS), vol. 42, no. 4, pp. 1–41, 2017.

[21] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” in Machine learning for healthcare conference, pp. 286–305,
PMLR, 2017.

[22] M. K. Baowaly, C.-C. Lin, C.-L. Liu, and K.-T. Chen, “Synthesiz-
ing electronic health records using improved generative adversarial
networks,” Journal of the American Medical Informatics Association,
vol. 26, no. 3, pp. 228–241, 2019.

[23] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh, “Set trans-
former: A framework for attention-based permutation-invariant neural
networks,” in International conference on machine learning, pp. 3744–
3753, PMLR, 2019.

[24] E. Cohen-Karlik, A. Ben David, and A. Globerson, “Regularizing
towards permutation invariance in recurrent models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18364–18374, 2020.

[25] O. S. Kayhan and J. C. v. Gemert, “On translation invariance in
cnns: Convolutional layers can exploit absolute spatial location,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14274–14285, 2020.

[26] E. Kauderer-Abrams, “Quantifying translation-invariance in convolu-
tional neural networks,” arXiv preprint arXiv:1801.01450, 2017.

[27] H. Furukawa, “Deep learning for target classification from sar im-
agery: Data augmentation and translation invariance,” arXiv preprint
arXiv:1708.07920, 2017.

[28] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters
for rotation equivariant cnns,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 849–858, 2018.

[29] Y. Zhu, T. Brettin, F. Xia, A. Partin, M. Shukla, H. Yoo, Y. A. Evrard,
J. H. Doroshow, and R. L. Stevens, “Converting tabular data into images
for deep learning with convolutional neural networks,” Scientific reports,
vol. 11, no. 1, pp. 1–11, 2021.

[30] L. Katzir, G. Elidan, and R. El-Yaniv, “Net-{dnf}: Effective deep
modeling of tabular data,” in International Conference on Learning
Representations, 2021.

[31] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, “On the spectral bias of neural networks,” in
Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of
Machine Learning Research, pp. 5301–5310, PMLR, 09–15 Jun 2019.

[32] F. Sultana, A. Sufian, and P. Dutta, “Advancements in image classifica-
tion using convolutional neural network,” in 2018 Fourth International
Conference on Research in Computational Intelligence and Communi-
cation Networks (ICRCICN), pp. 122–129, IEEE, 2018.

[33] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for
neural networks,” Journal of Big Data, vol. 7, no. 1, pp. 1–41, 2020.

[34] X. Liao, “L1aoxingyu/pytorch-beginner: Pytorch tutorial for beginners,”
2020.

[35] Y. Zhao, “Yzhao062/pyod: A comprehensive and scalable python library
for outlier detection (anomaly detection),” 2020.

[36] M. Zhou, “Morvanzhou/pytorch-tutorial: Build your neural network easy
and fast,” 2020.

[37] E. Linder-Noren, “Pytorch-gan/wgan gp.py,” 2019.
[38] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative ad-

versarial networks,” Advances in neural information processing systems,
vol. 32, 2019.

[39] K. R. Castleman, Digital image processing. Prentice Hall Press, 1996.
[40] G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996.
[41] D. A. Griffith, “The boundary value problem in spatial statistical

analysis.,” Journal of regional science, vol. 23, no. 3, pp. 377–387,
1983.

[42] D. Griffith and C. Amrhein, “An evaluation of correction techniques
for boundary effects in spatial statistical analysis: traditional methods,”
Geographical Analysis, vol. 15, no. 4, p. 352, 1983.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2023 at 13:14:23 UTC from IEEE Xplore. Restrictions apply.

