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h i g h l i g h t s

� Multi-objective surrogate-model-
based optimization was applied to a
complex reaction.

� Several non-obvious optima were
obtained in agreement with physical
interpretation.

� Most influential variables were
identified.

� Results suggested future
investigations to efficiently adopt
different feedstocks.

� The method is promising for complex
biowaste valorization for circular
economy.
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a b s t r a c t

Production of functional molecules from renewable bio-feedstocks and bio-waste has the potential to sig-
nificantly reduce the greenhouse gas emissions. However, the development of such processes commonly
requires invention and scale-up of highly selective and robust chemistry for complex reaction networks
in bio-waste mixtures. We demonstrate an approach to optimising a chemical route for multiple objec-
tives starting from a mixture derived from bio-waste. We optimise the recently developed route from a
mixture of waste terpenes to p-cymene. In the first reaction step it was not feasible to build a detailed
kinetic model. A Bayesian multiple objectives optimisation algorithm TS-EMO was used to optimise
the first two steps of reaction for maximum conversion and selectivity. The model suggests a set of very
different conditions that result in simultaneous high values of the two outputs.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Development of routes to functional molecules starting from
bio feedstocks is one of the strategies to de-carbonise the chemical
supply chain: replacement of fossil carbon sources with renewable
carbon, preferably from bio-waste sources, allows to significantly
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reduce green-house gases emissions along the chemical supply
chain (Guo et al., 2019). We are interested in developing novel
routes for valorisation of bio-waste materials which allow access
to functional molecules, as drop-in replacements or with novel
structures, with quantifiable importance in reaction networks
(Jacob et al., 2017; Lapkin et al., 2017; Weber et al., 2019). Most
of such routes will start from feedstocks which are complex mix-
tures: products of de-polymerisation of lignin, of hydrolysis of cel-
lulose, crude glycerol, mixtures of terpenes, etc., and which allow
access to a very broad range of functionalised molecules (Guo
et al., 2019; Corma et al., 2007).

(Bio)chemical conversion of such feedstocks requires either
highly selective and robust chemistry, or prior purification. For
example, crude sulphate turpentine (CST) is a waste by-product
from the pulp and paper industry and can be used to produce p-
cymene (Scheme 1) (Linnekoski et al., 2014; Zou et al., 2012). p-
Cymene is used as a solvent for dyes and varnishes and it is the
main precursor of p-cresol (Eggersdorfer, 2000). It shows a wide
range of antioxidant and biological activity which makes it partic-
ularly suited for applications in the food and pharmaceutical
industry. Other applications include the synthesis of fragrances
and it has been proposed as an alternative precursor of tereph-
thalic acid. The route could start from a purified single terpene,
but in our work, the starting point is directly the CST (Tibbetts
and Bull, 2021a; Tibbetts and Bull., 2021b; Williams and
Whittaker, 1970). In this work a mixture of alpha-pinene, beta-
pinene, 3-carene, limonene, and dimethyl sulfide (DMS) was used
to mimic CST.

The first reaction in the proposed route is an acid-catalysed ring
opening of a mixture of terpenes Ia-d to a mixture of isomers IIa-c.
This reaction exemplifies a highly promising approach to valorisa-
tion of bio-waste feedstocks via chemical routes that converge a
starting mixture of substrates to a single compound, in this case
p-cymene (III), without significant loss of carbon. p-Cymene can
then be converted to a range of functional molecules, as, for exam-
ple, terephthalic acid (IV) (Tibbetts et al., 2021).

Within this reaction sequence, optimisation of the acid-
catalysed ring opening is particularly challenging for traditional
process development tools, since many species interconvert into
each other and are too similar for most time-resolved sampling
techniques. The mechanism of this reaction has been suggested
(Linnekoski et al., 2014; Tibbetts and Bull, 2021a; Williams and
Whittaker, 1970; Holmen, 2015). It is a multiphase reaction occur-
ring through the reversible addition of DMS to the double bonds of
monoterpenes that generate surfactant-like species improving
mass transfer between the acidic and the organic phase. Previous
studies have demonstrated the preliminary formation of mixtures
rich in limonene and terpinolene, converting to a-terpinene, c-
terpinene, and isoterpinolene through equilibrium protonation
reactions (Tibbetts and Bull, 2021a). Acid-catalysed polymeriza-
tions decrease the selectivity to the products of interest. As a result,
the development of a mechanistic kinetic model for rational scale-
up of this process is rather challenging. Model-free optimisation
approaches are a promising alternative to model-based methods.

In the recent years, a number of optimisation algorithms has
been used for the design of experiments (DoE) in the ‘self-optimisa
tion’ mode of experiments. In self-optimisation, automated exper-
imental systems perform optimisation of a reaction, and poten-
tially also separation, without intervention of a human
(Schweidtmann et al., 2018; Fabry et al., 2016). Several algorithms
such as Nelder-Mead-Simplex (McMullen et al., 2010a), SNOBFIT
(Jeraal et al., 2018), steepest descent (Moore and Jensen, 2012),
MOAL (Echtermeyer et al., 2017) and TS-EMO (Schweidtmann
et al., 2018) were used for optimising reactions ranging from
nanoparticle synthesis (Krishnadasan et al., 2007) to heteroge-
neous catalytic reactions (Ley et al., 2015). These methods do not
require any prior model of the chemical system and focus on the
relationships between input and the output variables or objectives
(Reizman and Jensen, 2016).

Out of the algorithms mentioned above, Nelder-Mead-Simplex
is a local search algorithm that scales poorly to larger systems
and is known to have limited convergence guarantees even for

Scheme 1. A proposed route for conversion of crude sulphate turpentine (CST) to terephthalic acid.
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convex problems (Lagarias et al., 1998). Steepest descent is an
established algorithm but not suitable for experimental systems
because derivatives need to be estimated through finite differ-
ences, which is expensive and inaccurate for noisy systems. SNOB-
FIT, is a global search algorithm that has been used successfully
used in many self-optimisation studies but has also shown rather
slow convergence (McMullen and Jensen, 2010b; Holmes et al.,
2016). Bayesian optimisation approaches, such as MOAL, TS-EMO,
and Google Vizier (Golovin et al., 2017) construct non-parametric
statistical models, Gaussian processes, using a sequential active
learning approach (re-training a model when new experimental
observations become available). Bayesian optimisation approaches
utilise all available data to build statistical models and are thus
data efficient. The models provide quantification of uncertainty
that is used to solve the inherent exploration–exploitation trade-
off within the derivative-free optimisation. The methods can be
used to either develop an accurate model that is valid on the whole
input domain or they can be used for efficient optimisation. There
exist algorithm extensions to multi-objective optimisation that
have been used successfully in self-optimisation and solvent selec-
tion (Schweidtmann et al., 2018; Amar et al., 2019).

In this work we extend the previously developed TS-EMO algo-
rithm (Schweidtmann et al., 2018; Bradford et al., 2018; Bradford
and Schweidtmann, 2018) to improve its efficiency with respect
of experimental budget for optimisation of reaction time, and use
it for the optimisation of the ring-opening reaction, step 1, and
dehydrogenation, step 2 in Scheme 1.

Most of the existing studies on self-optimisation published to
date are limited to optimising up to five reaction variables for a sin-
gle objective (Mateos et al., 2019). Using the modified version of
Bayesian optimisation algorithm TS-EMO, this work demonstrates
a model-free approach to building an accurate statistical model for
a complex reaction by optimising eight continuous variables for
multiple objectives. Successful generation of such accurate models
for complex reactions paves the way for establishing model-free
hierarchical optimisation of multi-step processes, facilitated by
the use of Gaussian processes surrogate model, allowing a certain
degree of interpretability.

2. Material and methods

2.1. Materials

Reagents: 3-carene, 90%, stabilized; (1S)-(-)-beta-pinene, 98%;
(1S)-(-)-alpha-pinene, 98%; dimethyl sulfide, 99+%, extra pure;
alpha-terpinene, 90% tech.; gamma-terpinene, 97%, stabilized;
ethyl acetate, 99%; cobalt(II) nitrate hexahydrate, 99%, pure; man-
ganese(II) bromide, 99%, anhydrous were purchased from Acros
Organics and used as received. (R)-(+)-Limonene, 97% was pur-
chased from Alfa Aesar and used as received. Reagents 1,2,4,5-
tetramethylbenzene, 98%; sulfuric acid, ACS reagent, 95.0–98.0%;
terpinolene, �90% (GC); p-cymene 99%; di-tert-butyl peroxide
98%; acetic acid, reagent grade, �99%, silicone oil, chloroform-d,
were all purchased from Sigma Aldrich and used as received. De-
ionised water was used to prepare acid solutions.

2.2. Procedures

Experiments for the first step of CST conversion were carried
out in batch mode using 100 mL glass bottles immersed in a sili-
cone oil bath. The reaction mixture was magnetically stirred
(650 rpm). A glass thermometer was immersed into the reaction
medium through a hole in the plastic cap to monitor the reaction
temperature. The caps were not sealed and no pressure build up
was observed. The temperature was kept constant using an IKA

magnetic hot plate equipped with Pt sensor and a feedback con-
troller, for precise temperature control. To start the reaction, first,
the calculated relative amounts of all five components of crude-
sulphate turpentine (CST) were weighed and added into the reac-
tion bottle. Then, 0.032 mol (0.5 M) of 1,2,4,5-
tetramethylbenzene (durene) was added as an internal standard.
The reaction was then stirred until the mixture was homogeneous
and heated to the given reaction temperature (explored range 70 –
110 �C). The volume of the organic phase – five CST components
and the internal standard in the reaction mixture was fixed to
50 mL in every experiment, roughly three times the one previously
reported in the literature (Tibbetts and Bull, 2021a). The sulfuric
acid solution with the given concentration (4.0 to 7.0 mol L-1,
depending on the experiment) and volume (7.5 to 17.5 mL,
depending on the experiment) was added to the organic phase;
the time of addition was taken as t = 0. Sampling of the reaction
mixture for 1H NMR analysis was at different time intervals, as sug-
gested by the algorithm, over the approx. 4.5 h of reaction. Col-
lected samples were decanted in the fridge to quench the
reaction and allow for phase separation. The lighter organic phase
was then dissolved in chloroform-d in NMR tubes. Details of the
reaction and analysis are given in the Electronic Supplementary
Information (ESI). Repeated experiments under selected conditions
allowed to estimate an average RMSE of 1.41 and 1.83, for conver-
sion and yield, respectively.

The second reaction step was carried out feeding compressed
air and the liquid phase containing organic substrate to a
continuous-flow stainless steel compact reactor with recycle,
packed with glass inert spheres to increase the contact surface
between the phases. A full description of the device can be found
elsewhere (Bavykin et al., 2005). The organic mixture was prepared
using p-xylene as a solvent, and tert-butyl hydroperoxide was
added as a radical initiator to increase the concentration of radicals
at the start of the reaction. A 9 mL stirred reservoir was used for the
liquid phase, equipped with a condenser at �18 �C to reflux the
evaporated compounds. Liquid phase was pumped through the
continuous flow reactor using a Vapourtec HPLC pump module
and continuously recirculated to the reservoir. Air was directly
fed to the reactor using a MFC (SmartTrack 100 Sierra). Samples
were collected at different reaction times from the reservoir using
a sampling port connected to a syringe. Samples were rapidly
diluted in acetonitrile (30 lL in 1 mL) and analysed by GC/MS.
Detailed reaction system diagram is given in ESI. This reaction
was inspired by the one reported in a previous paper (Tibbetts
and Bull, 2021b), but with three fundamental differences: (i) no
DMS was used in the starting mixture, (ii) p-xylene was used as
solvent, and (iii) the experimental set-up was changed from batch
to continuous flow with recycle, which does mimic the overall
batch behaviour. Repeated experiments under selected conditions
allowed to estimate an average RMSE of 2.27 and 1.27, for conver-
sion and yield, respectively.

2.3. Analytical methods

1H NMR spectra were recorded using a Bruker AVANCE III
400 MHz spectrometer with Bruker QNP Cryoprobe. The experi-
mental condition was 32 scans with the receiver gain set to 4,
d1 = 2 s, and the total acquisition time of 2.94 s.

For the isoaromatisation, the product composition was analysed
using GC–MS (Agilent Technologies 7890B GC, 5977A MSD, CTC
PAL autosampler; HP-Innowax Agilent column 19091 N-133,
30 m � 0.25 mm, 0.25 lm; the system was built and supplied by
JSB UK and Ireland Ltd). The inlet condition for the sample injection
was 300 �C at the septum purge flow of 3 mL min�1 with the split
ratio of 100:1 and split flow of 300 mL min�1, column flow
3 mL min�1. The initial oven temperature was held at 60 �C for
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1 min and then ramped to 85 �C and then to 180 �C at 2 �C min�1

and 100 �C min�1, respectively.

2.4. Algorithm development

The original version of TS-EMO was developed for batch-
sequential experimental protocol, suggesting a number of experi-
ments to perform which have the highest predicted hypervolume
improvement. However, this may result in repeating the same
experiment if the algorithm suggested to collect data at the same
reaction conditions, but at a different reaction time. To avoid this,
we implemented separate sampling for reaction time. Instead of
running experiments at the suggested sample points, objective
functions at these points were evaluated and the predicted values
were added back to the dataset. The algorithm was run again to
sample multiple points (with predicted hypervolume improve-
ment), but this time keeping all the reaction variables constant
except the reaction time. In other words, the algorithm was run
twice with the second sampling exclusively suggesting points for
the reaction time under the same values of the other variables. This
improved the data efficiency by allowing multiple sampling per
reaction and generating more data using the same amount of the
reagents.

3. Results and discussion

3.1. Optimisation of the acid catalysed ring opening

3.1.1. Initial exploration of the decision space
As the automated reaction optimisation requires well-defined

bounds of the optimisation variables, we conducted an initial
exploration of the variables. For this, we designed and carried
out eleven batch reactions. The final ranges of the optimisation
variables are shown in Table 1. Upper and lower bounds for the
molar fractions of single compounds in CST were chosen based
on the variability in turpentine composition depending on its geo-
graphical origin.

The starting materials were found to polymerise at elevated
temperatures, resulting in lower yields. Based on this, and to avoid
boiling off of the aqueous layer, the upper boundary for tempera-
ture was set to 110 �C. Conversion reached 100% in under 5.5 h
for the medium set of reaction conditions (middle of the ranges
of temperature and starting concentrations, rows 1–4 in Table 2).
Although sulfuric acid is the catalyst and a higher concentration
of acidic hydrogen increases conversion, it also leads to an increase
in polymerisation and to a formation of insoluble by-products.
Results of the study of the effect of the individual reaction param-
eters on the reactions outcomes are given in Table 2.

The first set of data (rows 1–4, Table 2) shows that the reaction
reaches completion within 5.5 h, depending on the adopted condi-
tions. The second set of data (rows 5–7, Table 2) shows the effect of
temperature, i.e. conversion increases with the increase in temper-
ature. For the aq./org. phase ratio, we observed higher conversion
and yield with the lower amount of the aqueous phase (rows
8,9). Since the reaction is acid catalysed, higher conversions and
yields were observed with higher concentrations of sulfuric acid

(6 vs 5 M), rows 10,11 in Table 2. In terms of time, longer duration
of the reaction gives higher conversion. However, the combination
of high temperature and high acid concentration (e.g. 6.92 M
H2SO4) leads to the decrease in yield over time due to polymerisa-
tion reactions (rows 12–14, Table 2). Thus, there exist a trade-off
between yield and conversion motivating the use of multi-
objective optimisation methods (Tibbetts and Bull, 2021a).

3.1.2. The effect of stirring rate
Several experiments were conducted to ensure that the reaction

was not mass transfer limited. Reactions were run at 0, 300, 500,
and 700 rpm with identical other reaction conditions. It was
observed that conversion and yield are independent of the stirring
rate between 500 and 700 rpm, see Fig. 1S in ESI.

3.1.3. The effect of DMS
Another factor that affects the reaction outcome is dimethyl

sulfide (DMS) concentration, which is part of the CST in the indus-
trially produced waste. Three experiments were conducted with
different quantities of DMS, whilst keeping all other reaction
parameters constant. It was found that higher amounts of DMS sig-
nificantly increase reaction rate in the investigated range 3.2 –
17.0 mol % DMS, whilst there was no significant difference in con-
version and yield at the end of the reactions with different DMS
quantities, see Fig. 2S in ESI.

3.1.4. Initial dataset collection and algorithm-guided reaction
optimisation

Following the initial exploratory experiments to set the optimi-
sation variables bounds, the next set of experiments was per-
formed using a space-filling Latin Hypercube sampling (LHS),
which provides an initial dataset to initialize the TS-EMO algo-
rithm (McKay et al., 1979; Tang, 1993). 15 reactions were carried
out, collecting an average of 6 samples at different times for each
experiment. The dataset that combines data collected in experi-
ments used for exploration of the ranges of input variables,
together with those designed by LHS, was then used to train the
TS-EMO algorithm. The number of initial data points was chosen
based on the order of magnitude reported by similar studies
(Schweidtmann et al., 2018), and the availability of experimental
resources. The optimal number of training data to select depending
on the specifics of a chemical system, or more generally – on the
shape of function to be discovered – is a research question without
a definitive answer as of today. In some cases, it may be feasible to
start optimisation with almost no training data, which would
result in the significantly larger exploration requirement and the
risk of experimental failures.

In order to speed up data collection and to run experiments in
parallel, batch-sequential sampling was implemented in the TS-
EMO algorithm. This means that the algorithm designs four new
reaction conditions in each run and these can be conducted in par-
allel (Bradford et al., 2018). Within the algorithm, individual GP
surrogate models of conversion and yield are trained on the col-
lected dataset to approximate their response surfaces (Williams
and Rasmussen, 2006). The TS-EMO algorithm then draws random
samples from these GPs using spectral sampling. Then, a multi-
objective genetic algorithm is called within TS-EMO and identifies

Table 1
Lower and upper bounds for the input variables in the optimisation. The numbers given for the starting materials indicate their mole fraction. Limonene molar fraction is kept
constant at 0.04, which is the commonly observed concentration of limonene in this bio-waste feedstock. Mole fraction ranges for the other starting materials were chosen
according to the composition of industrial produced CST waste (Helmdach et al., 2017).

Range Temp / �C H2SO4 / mol L-1 Aq./org. ratio a-pinene 3-carene b-pinene DMS Time / min

Lower 70 4.0 0.15 0.40 0.00 0.05 0.009 1
Upper 110 7.0 0.35 0.80 0.35 0.4 0.037 270
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the Pareto front of the random samples (Schweidtmann et al.,
2018). Finally, TS-EMO identifies a set of experiments from that
Pareto front (of the random GP samples), which aim to improve
the hypervolume of the actual Pareto front (of the experiments
conducted). TS-EMO algorithm is described in detail in the pro-
vided references. Briefly, after the first training of the algorithm,
at each iteration, new experimental conditions were suggested,
tested in the laboratory, and the results were fed back to the algo-
rithm, until satisfactory outputs were obtained. For better clarity
and replicability, the reader can refer to pseudocode reported in
the ESI. Selected parameters for the algorithm are: maximum num-
ber of function evaluation = 35; number of spectral sampling
points for each objective = 1000; Matern type = 1 (Bradford et al.,
2018); function evaluations by direct algorithm per input dimen-
sion for each objective = 200. At each iteration, the computational
time required for new suggestions was of the order of magnitude of
hundreds of seconds, and in any case, completely negligible com-
pared to the time required to run the experiments.

As one can see in Fig. 1, the initial training dataset includes con-
ditions with both high and low outputs for both objectives. The
algorithm suggested conditions, which start from experiment 26,
also include conditions resulting in both high and low objectives.
This illustrates the behaviour of TS-EMO algorithm, balancing the
trade-off between exploration (developing a good model, specifi-

cally targeting experiments to reduce uncertainty of the model)
and exploitation (finding conditions that give optimal objective
values – high yield and conversion in this case). The exploration
of the algorithm can be observed mainly in the beginning (experi-
ments from 26 to 54, Fig. 1), where also regions with comparable
low objective values are explored. This is the result of the intrinsic
behaviour of the adopted algorithm, aiming to maximize objectives
and, at the same time, reduce the uncertainty of GP model predic-
tions by exploring areas of the input space distant from the found
local optima. After a certain amount of exploration the algorithm
was mainly suggesting conditions that achieved high objective val-
ues. It is important to point out that the suggested conditions sig-
nificantly differ from each other in terms of the process parameters
that lead to high objectives, confirming that the algorithm is not
stuck at a local. For instance, very similar outcomes were observed
for significantly different values of temperature, e.g. 77 vs 105 �C
(rows 3, 5, Table 3). Also note that the algorithm is never relying
on pure exploration or exploitation but is always solving an
exploration–exploitation trade-off.

A commonly used rule of thumb to decide the number of exper-
iments to reach the termination criteria in an optimisation process
is to set a target for the objectives (e.g. 99% for conversion and 80%
for yield) and stop when the target is reached (McMullen et al.,
2010a). Another approach is to see if the newly achieved objectives

Table 2
The effects of the individual reaction parameters on the reaction outcomes.

T / �C H2SO4 / M Phase ratio (aq./org.) a-pinene 3-carene b-pinene DMS Time / min Conversion / % Yield / %

90 6 0.2 0.45 0.35 0.12 0.04 60 81 66
90 6 0.2 0.45 0.35 0.12 0.04 120 93 65
90 6 0.2 0.45 0.35 0.12 0.04 195 97 63
90 6 0.2 0.45 0.35 0.12 0.04 330 100 56
70 6 0.2 0.45 0.35 0.12 0.04 60 53 41
90 6 0.2 0.45 0.35 0.12 0.04 60 81 66
110 6 0.2 0.45 0.35 0.12 0.04 60 86 65
90 6 0.2 0.45 0.35 0.12 0.04 60 81 66
90 6 0.33 0.45 0.35 0.12 0.04 60 71 55
90 6 0.2 0.45 0.35 0.12 0.04 60 81 66
90 5 0.2 0.45 0.35 0.12 0.04 60 25 15
109 6.92 0.263 0.45 0.35 0.12 0.04 65 100 38
109 6.92 0.263 0.45 0.35 0.12 0.04 105 100 5
109 6.92 0.263 0.45 0.35 0.12 0.04 180 100 0

Fig. 1. Results of the optimisation driven by a statistical algorithm in the absence of a physical process model. Dataset is split in a way as human intuition vs LHS (initial
dataset) vs algorithm generated reaction conditions by TS-EMO.
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differ by less than a pre-defined values, say by 3%, from the previ-
ously obtained result (McMullen et al., 2010a). As shown in Table 3,
32 experiments were enough to surpass both of these criteria.
Loeppky et al. reported a study on choosing the sample size for a
computer experiment and used the 10 � d rule, d being the number
of variables involved in a reaction (Loeppky et al., 2009). In another
study, based on TS-EMO algorithm, 68 and 78 experiments were
performed to optimise four continuous variables in an SNAr and
N-benzylation reactions, respectively (Schweidtman et al., 2018).
In this work, we see that after 60 experiments the TS-EMO algo-
rithm suggests a dozen of consecutive optimal solutions, Fig. 1. A
further stopping criterium is to reach a stable plateau in the hyper-
volume change as a function of the number of experiments, as
highlighted in Fig. 3S in the ESI for both steps of reaction consid-
ered in this work.

In the earlier studies we have used TS-EMO to optimise auto-
mated reaction and separation systems in continuous flow (Sch-
weidtman et al., 2018; Jeraal et al., 2020) or batch experiments
with a fixed batch time (Amar et al., 2019). In this study, the batch
time is considered as a continuous degree of freedom. However,
the batch time needs to be handled individually during optimisa-
tion because it is cheap to withdraw several samples from the
same batch at different batch times. Thus, we extend the TS-EMO
algorithm accordingly to a two-step optimisation procedure: First,
we run the algorithm on the full set of optimisation variables (in-
cluding batch time). This gives us a suggested experiment, i.e.,
reaction conditions, and a suggested batch time. Second, we fix
the reaction conditions and re-run the algorithm to suggest addi-
tional batch times. This gives us a suggested experiment with a
set of batch times. The number of suggested batch times can be
adapted through a batch sequential approach that has been
described in our previous work (Bradford et al., 2018) and is avail-

able as an option in the open-source Matlab implementation
(Bradford and Schweidtmann, 2018).

The results of the optimisation of acid catalysed ring opening
step are given in Fig. 2. The results include a range of high and
low values for the objectives, which are useful to efficiently explore
the input variable space, and reduce the model uncertainty.
Although the objectives increase simultaneously for most of the
sample points, one can see that maximum conversion could be
achieved at the lowest value for yield. This indicates a non-
obvious correlation between the objectives. The blue asterisks
are experimentally identified Pareto points. One can see a cluster
of optimal solutions explored by the TS-EMO algorithm leading
up to the Pareto points. In Fig. 2 we also highlighted the Pareto
points of the initial training data set, comprising the expert-
guided experiments and the LHS points. As one can see, two of
these points can also be found in the Pareto front of the final opti-
mization (97% conversion and 82% yield, and 84% conversion and
84% yield). However, the rest of the points found at the end of
the optimization procedure were significantly higher than the ones
only based on the training dataset and, most importantly, the out-
comes were obtained under a variety of conditions, some of which
are particularly relevant from an industrial point of view, i.e. lower
temperature and lower acid concentration.

Finally, it is worth stressing that the optimized solutions given
in Table 3 are in agreement with general chemistry-based observa-
tions previously reported in the literature (Linnekoski et al., 2014;
Tibbetts and Bull, 2021a; Williams and Whittaker, 1970). In partic-
ular, low 3-carene content is crucial to obtain fast conversion and
low occurrence of polymerisation. This supports the previously
reported suggestion of blending turpentine feedstocks or distilling
carene away from pinenes mixtures to ensure good yields. Also,
with more forcing conditions, i.e. higher acid concentration and

Fig. 2. All the sample points for conversion and yield in acid catalysed ring opening reaction. Empty circles indicate the training dataset, red full circles indicate the result
from TS-EMO suggested conditions, and the blue asterisks indicate Pareto points, including top five solutions given in Table 3; empty squares indicate the Pareto point of the
original training dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Experimentally validated reaction conditions and composition for the best solutions selected from the final Pareto front.

T / �C H2SO4 / M Phase ratio (aq./org.) a-pinene 3-carene b-pinene Time / min Conversion / % Yield / %

89 6.7 0.21 0.75 0.06 0.13 61 97 82
83 6.1 0.24 0.54 0.11 0.29 134 94 82
77 5.5 0.31 0.53 0.05 0.36 140 96 81
101 5.3 0.22 0.48 0.11 0.35 102 96 81
105 6.9 0.34 0.63 0.006 0.29 30 99 80
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temperature, the reaction can be stopped sooner and still achieve
good yields compared to milder conditions which take longer
and would favour polymerisation of the alkene bonds. The best
solutions summarized in Table 3 were generally higher than the
ones previously reported for similar systems, i.e. ~ 70%. Higher iso-
lated yields were reported (~90%) for systems with no 3-carene and
higher contents of DMS, even though the results are not directly
comparable because of the different upper limit for DMS concen-
tration of 3.7% used in this work (Tibbetts and Bull, 2021a). It is
important to highlight that high outputs values were also obtained
under a variety of conditions that were previously unexplored,
with reaction times reduced down to 30 min for systems with a
volume three times larger than the one previously reported in
the literature (Tibbetts and Bull, 2021a). A final remark concerns
the attainment of high values of yield and conversion, 99% and
72%, respectively, even in the presence of high contents of 3-
carene, i.e. 0.35 M fraction (exp. 64, Table S2 in the ESI). In fact,
depending on its origin, CST can contain high amounts of 3-
carene, whose separation adds significant costs to the process.
Although yield maximization in the presence of high 3-carene con-
tent was not the aim of our optimization, the results of explorative
experiments, guided by the surrogate model-based approach, sug-
gested new interesting conditions that will be further investigated
in future research.

3.2. Optimisation of the radical dehydrogenation reaction

A similar procedure was followed for the second reaction step
in order to maximize conversion of terpinene isomers IIa-c and
the selectivity to p-cymene. However, four important differences
must be highlighted: (i) a high accuracy analytical method was
used to determine the product concentration, (ii) a sequential sam-
pling was adopted, since the experimental setup only allowed to
carry out one reaction at a time, (iii) constraints of input variables
were only based on human intuition and limitations of the exper-
imental setup, and (iv) the algorithm was only trained using a set
of experiments suggested by LHS.

Eight input variables were selected: temperature, flow rates of
the air and the liquid phases, volumetric fractions of the reactants
and the radical initiator in the liquid phase, and time. The ranges
are summarized in Table 4. The experiment was performed in a

flow system with a recirculation, effectively resulting in a batch-
like observed temporal response. However, using the compact
reactor with internal structure and embedded heat exchangers
allows to enhance mass transfer between the phases and operate
at a very broad range of temperatures, whilst not compromising
on safety. The internal packing of the reactor is an efficient radical
scavenger, whereas the micro-heat exchanger has previously been
shown to be highly efficient in elevated temperature selective oxi-
dation reactions (Bavykin et al., 2005). We hypothesised that the
addition of a radical initiator may enhance the reaction rate, espe-
cially at short residence times; this is based on our previous work
on aerobic oxidation in the liquid phase (Aworinde et al., 2018).

The results with the highest yields, and conversions above 96%
are reported in Table 5, whereas the whole sequence of experi-
ments is reported in Fig. 3.

It is worth highlighting several differences in this optimisation
with respect to the previous case. For the second step of the overall
route to p-cymene, the optimum was found in 44 experiments and
the best results were all obtained under similar conditions, e.g.
temperature and reaction time are in a relatively narrow range,
132 – 138 �C and 210 – 240 min, respectively. Any attempt of
exploration outside of this narrow area of input variables resulted
in a significant decrease in the target outputs. This indicates a
much simpler solution space with a single optimum, compared
to multiple optimal solutions in the first reaction. The entire data-
set in the output space is reported in Fig. 4, highlighting the exis-
tence of a single optimal solution, in this specific case. As for the
first step of reaction, also in this case we reported the Pareto points
of the training data set, demonstrating that the optimization proce-
dure led to a significant improvement of the desired targets.

We also show that in this case the sequential (as opposed to
batch-sequential) optimisation strategy results in a more efficient
knowledge acquisition from the algorithmic point of view. In this
case, each suggested experiment takes into account the results of
the previous ones, whereas in a batch-sequential optimisation a
certain number of experiments is suggested and some of the sug-
gested experiments may not be as informative as each of the
experiments in the sequential optimisation. Batch-sequential opti-
misation may suit better the problems where both discrete and
continuous reaction variables need to be optimised simultane-
ously, as well as when balancing algorithmic efficiency and

Fig. 3. Results of the optimisation of reaction of p-cymene synthesis driven by TS-EMO algorithm. The data is split into the experiments suggested by LHS (initial dataset), and
the algorithm-generated reaction conditions.
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experimental budget (for example, when it is cheap to realise batch
experiments).

Some of the best obtained results are in line with the observa-
tions reported elsewhere (Bi et al., 2011; Colonna et al., 2011;
Iwamuro et al., 1978; Asikainen et al., 2013). In particular, the
highest yields reported in the literature are obtained when c-
terpinene is the major component (Asikainen et al., 2013). Thus,
it could be possible to further optimise the overall reaction
sequence by modifying the feed into the second reaction step
(Scheme 1) after the first reaction. In this case direct comparison
with previously reported yields is not possible, since the investi-
gated system is substantially different for the following reasons:
(i) no DMS was used in the starting mixture, (ii) p-xylene was used
as solvent, and (iii) the experimental set-up was changed from
batch to continuous flow with recycle

3.3. Sensitivity of developed statistical models to input variables

Within the TS-EMO algorithm, Gaussian process surrogate mod-
els are trained on the experimental data. The Gaussian processes
contain a number of hyperparameters that can be used to analyse
sensitivity of model to input variables, which also implies the
relevance or significance of the specific input variables to the
objectives of the optimisation. In particular, lengthscale hyperpa-
rameters describe the influence of input variables on the reaction

output, a concept known as automatic relevance determination
(Williams and Rasmussen, 2006). A lower value of a lengthscale,
hi, indicates a greater contribution of the corresponding input vari-
able to the objective. In our study of the first step of CST conver-
sion, we can see that temperature, reaction time and acid
concentration have strong influence on conversion and yield,
Table 6. It is important to point out that the acid concentration
has a relatively stronger contribution to conversion than it does
to yield. Temperature, on the other hand, has a relatively stronger
contribution to yield than it does to conversion. This shows that a
higher acid concentration has stronger impact on formation of by-
products (e.g. polymers) than temperature. Compared to a-pinene,
3-carene and b-pinene concentrations have smaller contributions
to conversion, which matches with the reaction composition
where a-pinene exists in a larger quantity and reacts significantly
faster than 3-carene leading to a greater contribution to the objec-
tives (Table 1, ESI). Even though b-pinene is quickly consumed, its
lower quantity in the starting CST sample, compared to a-pinene,
decreases its contribution to conversion and yield.

Besides the lengthscales, hyperparameters rf and rnoise corre-
spond to the output variance and noise hyperparameter, respec-
tively. Low output variance, rf, indicates that the model is not
sensitive to small fluctuations (noise) in the input data and can
be used to make accurate predictions on a new dataset. High out-
put variance, on the other hand, implies that the model does not

Table 4
Lower and upper bounds for the input variables in the optimisation of the second reaction. The numbers given for the starting materials indicate their volumetric fraction.

Range Temp / �C Qliq / mL min�1 Qgas / mL min�1 a-terpinene c-terpinene Terpinolene Tert-butyl hydroperoxide Time / min

Lower 80 0.1 5 0.00 0.00 0.00 0.00 0
Upper 150 5.0 120 0.22 0.22 0.22 0.22 240

Table 5
Experimentally validated reaction conditions and composition for best solutions; the first line represents a single optimal solution.

Temp / �C Qliq / mL min�1 Qgas / mL min�1 a-terpinene c-terpinene Terpinolene Tert-butyl hydroperoxide Time / min Conversion (%) Yield (%)

138 2.63 98.5 0.059 0.142 0.0068 0.220 234 100 62.5
132 3.48 119.0 0.073 0.175 0.0220 0.146 240 96.6 58.3
136 2.85 105.0 0.096 0.205 0.0296 0.180 230 99.2 54.5
138 4.48 45.6 0.054 0.166 0.0198 0.119 235 97.7 51.2
136 4.70 75.6 0.106 0.165 0.0222 0.098 210 98.0 51.1

Fig. 4. All the sample points for conversion and yield in p-cymene synthesis. Empty circles indicate the training dataset, red full circles indicate the result from TS-EMO
suggested conditions, and the blue asterisk indicate the identified Pareto point; empty squares indicate the Pareto front of the initial training dataset. TS-EMO suggested
cluster of optimal solutions leading up to the Pareto point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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perform well on the dataset it is not trained on, indicating overfit-
ting of the input data. Overfitting happens when noise in the input
data interferes with the signal and causes the algorithm to model
noise when it is trained on a noisy dataset. Low values for hyper-
parameters rnoise and rf indicate the quality of the input data
and model accuracy to make good predictions on a new dataset,
respectively.

Hyperparameters for the model of the second reaction step are
listed in Table 7. In this case, the lowest hyperparameter values are
associated with reaction time for both objectives. This is in agree-
ment with the experimental data. The decrease in yield cannot be
ascribed to consecutive reactions involving the desired product,
since yield monotonously increases with reaction time. High gas
flow rates appear to be associated with the higher conversion, sug-
gesting an influence of mass transfer limitations on the reaction.
Concentration of radical initiator does not affect the rate of the
reaction significantly, but it is highly correlated with selectivity
to the product of interest.

4. Conclusions

We have demonstrated multi-objective reaction development
on previously reported crude sulphate turpentine (CST) conversion
to p-cymene (Tibbetts and Bull, 2021a; Tibbetts and Bull, 2021b),
in the absence of a prior kinetic model using an extended version
of Bayesian optimisation algorithm TS-EMO. Eight continuous vari-
ables were optimised for acid catalysed ring opening reaction (step
1) in batch, and radical dehydrogenation reaction (step 2) in flow
to maximise conversion and yield, without including any prior
physico-chemical mechanistic information. Optimisation results
showed that the algorithm suggested experimental points that
include low and high values for the objectives. This was necessary
to reduce the model uncertainty by balancing the exploration–ex
ploitation trade-off.

For step 1, the algorithm was able to suggest a group of optimal
conditions after 60 experiments. Optimal solutions were achieved
under very different range of input variables values, indicating that
the algorithm was not stuck at a local optima. However, this was
not the case for step 2, where the optimal conditions were

achieved in 44 experiments under similar values for temperature
and reaction time. The narrow range for these input variables indi-
cates simpler response surface for step 2 with a single optimum. In
both reactions, the model suggested cluster of optimal conditions
around the experimentally identified Pareto points, which revealed
the trade-off between the objectives.

The hyperparameters of the models revealed further informa-
tion about model sensitivity to input variables. For instance, in step
1, the low values for hyperparameters of temperature, acid concen-
tration, and reaction time indicated strong contribution to conver-
sion and yield than other input variables. Low values for
hyperparameters rnoise and rf indicate the quality of the input data
and model accuracy to make good predictions on a new dataset,
respectively.

In summary, Bayesian optimisation algorithms are data efficient
tools to develop accurate reaction models where a priori knowl-
edge is not available, the number of input variables is large, and
the objectives are competing. The developed models for individual
steps could be used for potential process design and scale-up.

This is particularly relevant for the development of bio-waste
routes to functional molecules, considering the chemical complex-
ity and the high number of variables usually associated with such
organic matrices. As a test case, in this paper we show that the
application of hybrid approaches for the optimisation of reactions
allows to speed up the identification of the best conditions to
obtain aromatic components of highly valuable products, like p-
cymene, from bio-based side-stream of traditional processes, rep-
resenting a further step in the de-carbonisation of the chemical
supply chain.
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Table 6
Hyperparameters of GP surrogate models for the acid catalysed ring opening reaction.

Hyperparameter GP1 (Conversion) GP2 (Yield)

htemperature 3.27 2.29
hphase ratio 11.69 10.98
hconc. H2SO4 1.46 2.23
halpha-pinene 3.85 7.00
h3-carene 22.74 14.00
hbeta-pinene 31.62 4.04
htime 1.48 2.13
rf 1.57 2.443
rnoise 6.14 � 10-6 6.14 � 10-6

Table 7
Hyperparameters of GP surrogate models for the synthesis of p-cymene.

Hyperparameter GP1 (Conversion) GP2 (Yield)

htemperature 5.11 31.49
hQliq 18.73 11.91
hQgas 2.42 7.53
halpha-terpinene 14.72 5.75
hgamma-terpinene 23.21 11.77
hterpinolene 7.05 4.37
htBuOOH 31.62 2.21
htime 2.30 3.95
rf 1.08 1.79
rnoise 1.43 � 10-2 6.80 � 10-6
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