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LEARNING EXPANDING GRAPHS FOR SIGNAL INTERPOLATION

Bishwadeep Das and Elvin Isufi

ABSTRACT

Performing signal processing over graphs requires knowledge of the
underlying fixed topology. However, graphs often grow in size with
new nodes appearing over time, whose connectivity is typically un-
known; hence, making more challenging the downstream tasks in
applications like cold start recommendation. We address such a chal-
lenge for signal interpolation at the incoming nodes blind to the topo-
logical connectivity of the specific node. Specifically, we propose a
stochastic attachment model for incoming nodes parameterized by
the attachment probabilities and edge weights. We estimate these
parameters in a data-driven fashion by relying only on the attach-
ment behaviour of earlier incoming nodes with the goal of interpo-
lating the signal value. We study the non-convexity of the problem at
hand, derive conditions when it can be marginally convexified, and
propose an alternating projected descent approach between estimat-
ing the attachment probabilities and the edge weights. Numerical
experiments with synthetic and real data dealing in cold start collab-
orative filtering corroborate our findings.

Index Terms— Incoming nodes, expanded graphs, graph signal
interpolation, cold start.

1. INTRODUCTION

Graph Signal Processing (GSP) leverages the relationships between
data points to subsequently process them for a multitude of classi-
cal applications [1, 2]. The graph is commonly considered of fixed
size and can have either a fixed [3] or a changing number of edges
[4]. However, graphs often grow in size with new nodes becom-
ing available continuously [5, 6]. A typical setting is in cold start
collaborative filtering. Here, a new item becomes available but we
have no information to connect it with the available ones, thereby
affecting the subsequent recommendation [7]. Hence, modelling the
attachment behaviour of incoming nodes is paramount to interpolate
the rating value at this new item [8, 9]. This is relevant not only
in recommender systems [7] but also in data privacy over networks
[10], which can manifest in inductive learning on graphs [11] where
unseen nodes need to be classified.

There exists a set of diverse viewpoints to approach inference of
nodal connections [12]. Topology Identification via GSP estimates
a static [3, 13] or a time varying topology [4, 14] of fixed size by
using different priors such as signal smoothness [15], realizations
from diffusion [16], or Gaussian processes [17]. Statistical methods
utilize stochastic attachment models based on the existing topology
to drive the incoming node attachment. The Erdős-Rényi (ER) [5]
and Barabasi-Albert [6] models are prime examples of this category,
although more complex models also exist [18, 19]. Link Prediction
approaches infer the existence of unobserved edges between exist-
ing nodes, given edges and/or feature information of these nodes

Faculty of Electrical Engineering, Mathematics and Computer Science,
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[20]. These include probabilistic approaches [21], similarity-based
approaches [22, 23], and classifier-based approaches [24]. Some
more recent works provide a synthesis between graphs growth mod-
els and processing signals over them. The works in [25, 26] estimate
node connectivity for graphs drawn from ER and Bollobás-Riordan
models by observing only on a subset of nodes signals that evolve
according to an autoregressive process. The works in [10, 27] solve
regression tasks over expanding graphs but require the connectivity
of the incoming nodes.

Altogether, these contributions consider settings where we have
a fixed number of nodes, available nodal features, or know the
incoming node attachment. In absence of node feature signals
and attachment information, both the GSP and the link prediction
approaches become inapplicable. We may in these cases rely on
stochastic models but they detach the connectivity modelling from
the processing task, which results in sub-optimal performance. Like-
wise, we can also adapt the approaches in [25, 26] to account for
incoming nodes but the considered growth and signal models do not
always hold.

To overcome these limitations, we propose a stochastic attach-
ment model for arbitrary graphs and utilize the information only
on the existing graph to interpolate the signal value at the incom-
ing node. The proposed model is parameterized by the attachment
probabilities and the edge weights of the incoming node. These
parameters are estimated in a data- and task-driven fashion from a
training set of earlier incoming nodes. To estimate the parameters,
we solve an empirical risk minimization problem by minimizing the
signal reconstruction mean squared error on the incoming node reg-
ularized to the connectivity pattern. We study the convexity of the
problem and provide an alternating projected descent algorithm to
solve it. Finally, we corroborate the proposed model and compare
it with baselines on synthetic and real applications dealing with the
cold start problem in collaborative filtering.

2. PROBLEM FORMULATION

Consider a graph G = (V, E) of N nodes in set V = {v1, . . . , vN}
and E edges in set E ⊆ V × V . Let A be the graph adjacency ma-
trix such that Aij 6= 0 only if (vi, vj) ∈ E . An incoming node v+
connects to G and forms a directed expanded graph G+ = (V+, E+)
with node set V+ = V ∪ v+ and edge set E+ = E ∪ (v+, vi) for
all new directed edges (v+, vi) landing at v+. We represent the at-
tachment pattern of node v+ by a+ ∈ RN where [a+]i = wi is the
weight of edge (v+, vi). The (N + 1)× (N + 1) adjacency matrix
of graph G+ is

A+ =

[
A 0+

a>+ 0

]
(1)

in which the last row and column represent the connectivity of v+.1

Node v+ connects to any existing node vi ∈ V independently with

1We consider for simplicity of exposition the attachment of a single node.
For multiple nodes, a+ becomes a matrix having a column per new node.
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probability pi. We collect the probabilities of attachment in vector
p = [p1, . . . , pN ]>. Then, the attachment pattern a+ is a random
vector with each entry being an independent Bernoulli random vari-
able weighted by scalar wi. I.e., the ith element of a+ is

[a+]i =

{
wi with probability pi
0 with probability (1− pi)

(2)

for i = 1, . . . , N . The expectation of a+ is E[a+] = p ◦ w
where vector w = [w1, . . . , wN ]> contains the weights of all edges
(v+, vi). Likewise, the variance of [a+]i is var([a+]i) = w2

i pi(1−
pi) and the respective covariance matrix is

Σ+ = diag(w◦2 ◦ p ◦ (1− p)) (3)

where a◦k = a ◦ . . . ◦ a is the Hadamard product of a with itself k
times. The expected adjacency matrix of G+ is

E[A+] =

[
A 0+

(p ◦w)> 0

]
. (4)

Let x = [x1, . . . , xN ]> be the graph signal on G with xi the sig-
nal at node vi. Processing this signal by accounting for its coupling
with G is key to several network data tasks [1]. E.g., in item-item
collaborative filtering, the signal collects the ratings a specific user
has provided to the existing items [8]. When a new item node v+
becomes available, the task is to predict the signal rating value x+ at
this node. To solve such a task without knowing the exact connec-
tivity of v+, we rely on the stochastic models governed by p and w,
which in turn are unknown.

To identify a task-specific connectivity for the incoming nodes,
we merge data-driven solutions with the above generic statistical
model. Given graph G and a training set of attachment patterns for
incoming nodes T = {(vt+, xt+,at+,bt+)}t we infer the attach-
ment probability vector p and weight vector w in an empirical risk
minimization fashion. Each element in T comprises an incoming
node vt+, the signal at this node xt+, the attachment vector at+, and
its binary attachment pattern bt+ –for a recommender system with
cold start, we build an item-item graph G and treat some items as
cold-starters whose ratings and connectivity are known – and define
a task-specific loss fT (p,w,at+,xt+) measuring the signal inter-
polation (rating) performance. Specifically, we solve the statistical
optimization problem

min.
p,w

E
[
fT (p,w,at+,xt+)

]
+ gT (p,bt+) + hT (w,at+)

subject to p ∈ [0, 1]N ,w ∈ W
(5)

where gT (p,bt+) and hT (w,at+) are regularizers and setW con-
straints the edge-weights, e.g., non-negative or finite.

3. SIGNAL INTERPOLATION ON INCOMING NODES

We measure the signal interpolation performance via the mean
square error (MSE) and use graph filters [28, 29] to diffuse the
signal over G+. Graph filters are well-established local operators
for processing graph data. They combine successive shift opera-
tions over the topology and have found applications in a variety of
domains [30] Consider the expanded graph signal x+ = [x>, 0]>,
where zero is the signal value at node v+. The output y+ of an order
L graph filter is

y+ =

L∑
l=1

hlA
l
+x+ (6)

Algorithm 1 Alternating projected gradient descent for (8).
1: Input: Graph G, training set T , graph signal x, adjacency ma-

trix A, number of iterations K, cost C, learning rates λp, λw.
2: Initialization: p = p0, w = w0 randomly, k = 0.
3: for k ≤ K do
4: p gradient: p̃k+1 = pk − λp∇pC(pk,wk);
5: Projection: pk+1 = Π

[0,1]N
(p̃k+1);

6: w gradient: wk+1 = wk − λw∇wC(pk+1,wk);
7: Projection: wk+1 = Π

W
(w̃k+1);

8: end for

where h = [h1, . . . , hL]> are the filter coefficients. Nodes up to
the L-hop neighborhood of v+ contribute to its interpolated signal.
Note that in (6), we ignore l = 0 because it does not contribute to
the output [y+]N+1 at v+. Given the percolated signal [y+]N+1,
the following proposition quantifies the signal interpolation MSE as
a function of model parameters p and w.

Proposition 1. Given G = {V, E} with adjacency matrix A and
signal x and let Ax = [x, . . . ,AL−1x]. Given also an incoming
node v+ with true signal x?+ attaching to G with probabilities p and
edge weights w, forming graph G+ with the expanded adjacency
matrix A+ [cf.(1)]. The MSE of the interpolated signal y+ at node
v+ by an order L graph filter [cf.(6)] is

MSE(p,w) = ||(w ◦ p)>Axh− x?+||22 + h>A>x Σ+Axh (7)

Proof. See appendix.
Besides quantifying the MSE, Proposition 1 provides also in-

sights on the role of parameters p and w. The first term on the RHS
of (7) captures the model bias w.r.t. the true signal x?+. The predic-
tion output is the dot product between the filtered output of x over G,
Axh with the expected attachment vector w◦p. Minimizing the bias
implies selecting a pair (p, w) that combines the signal at each v ∈
V to match x?+. The second term h>A>x Σ+Axh = ‖Axh‖2Σ+

is
the squared norm of the filtered signal weighted by the attachment
variances. Minimizing this term might give trivial solutions such as
p = 1 and p = 0. Thus, regularizers are needed for p and w. We
also remark that in (7) the Lth shift ALx+ does not contribute to the
MSE because of the structure of matrix A+ in (1).
Optimization Problem. With this in place, we can formulate prob-
lem (5) as

min.
p,w

MSET (p,w) +

|T |∑
t=1

(
µp||p− bt+||qq + µw||w − at+||qq

)
subject to p ∈ [0, 1]N ,w ∈ W

(8)

where MSET (p,w) is the empirical MSE over the training set T ,∑|T |
t=1 ||p − bt+||qq and

∑|T |
t=1 ||w − at+||qq are regularizers with

weights µw > 0, µp > 0. respectively and q ∈ {1, 2}. Problem
(8) is non-convex in w and p; it is marginally convex in w but not
always in p due to the variance term in (7). We solve (8) with alter-
nating projected gradient descent. Algorithm 1 summarizes the main
steps. The gradients of the cost C(p,w) in (8) w.r.t. p and w for
q = 2 are

∇pC(p,w) = 2

|T |∑
t=1

((w ◦ p)>Axh− xt+)(w ◦Axh)

+ |T |(Axh)◦2 ◦ (w◦2) ◦ (1− 2p) + 2µp

|T |∑
t=1

(p− bt+)

(9)
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Fig. 1. Convergence of the training cost for Algorithm 1 solving
Problem (8) being non-convex (blue) and marginally convex (red)
[cf. (11)]. (Left) ER graph model; (Right) BA graph model.

∇wC(p,w) = 2

|T |∑
t=1

((w ◦ p)>Axh− xt+)(p ◦Axh)

+ 2|T |(Axh)◦2 ◦w ◦ p ◦ (1− p) + 2µw

|T |∑
t=1

(w − at+)

. (10)

Instead, for q = 1, we replace terms 2µp(p − bt+) and 2µw(w −
at+) with sign(p− bt+) and sign(w− at+) respectively. We have
observed that norm one regularizers are more applicable to p than
to w because some weights would be zero even if a node attaches
with a high probability. While we can use Algorithm 1 to solve the
non-convex case of problem (8), the following corollary provides a
sufficient condition for problem (8) to be marginally convex also in
p. The proposed method has a complexity of order O(LE), where
L is the filter order and E the number of edges in the existing graph.

Corollary 1. The cost in Problem (8) is marginally convex in p if
the regularization weight µp > 0 satisfies

µp ≥ w2
h max
i∈{1,...,N}

([Axh]i)
2 − ||w ◦Axh||22. (11)

Proof. See appendix.
While guaranteeing convexity, condition (11) may lead to an op-

timum that is worse than the local optima of its non-convex counter-
part due to a greater focus on the training attachment patterns than
on the task-specific cost. We shall corroborate this next.

4. NUMERICAL RESULTS

In this section, we evaluate our approach on synthetic and real data.
For comparison, we consider: i) uniform attachment: the incom-
ing node attaches uniformly, i.e., prd = 1

N
1; ii) preferential at-

tachment: the incoming node attaches with probability vector ppf =
d/1>d where d is the degree vector; iii) training attachment only:
a data-driven rule where we rely only on the attachment patterns
available during training to build pg = 1

|T |
∑|T |

t=1 bt+ and wg =
1
|T |
∑|T |

t=1 at+, i.e., we ignore the MSE costs. The first two serve as
baselines to assess how the propsoed data-driven stochastic model
compares with conventional statistical models, while the latter is
considered to assess the importance of the task-specific cost.
4.1. Synthetic Data

For the synthetic experiments, we started with two undirected and
unweighted random graphs following the Erdős-Rényi and Barabasi-
Albert models each having N = 100 nodes. The respective graph
signals were formed by randomly combining the first 30 eigenvec-
tors of the corresponding graph Laplacian matrices. We then normal-
ized the signal to have zero mean. The edge formation probabilities
for these graphs and for the respective incoming nodes were set as
prd and ppf for the ER and BA graphs, respectively. We used a filter

Table 1. Averaged MSE and its standard deviation (Std) for syn-
thetic data. (Upper) comparison with the uniformly random and
preferential attachment; (Lower) joint training vs. individual train-
ing.

Erdős-Rényi Barabasi-Albert
Prop. Pref. Rand. Prop. Pref. Rand.

MSE 0.03 0.06 0.06 0.05 0.1 0.08
Std. 0.003 0.003 0.003 0.006 0.006 0.006

p,w only p only w p,w only p only w
MSE 0.03 0.07 0.039 0.05 0.11 0.05
Std. 0.003 0.003 0.003 0.006 0.005 0.006

of order L = 3 with coefficients hl = αl and α = 0.3 to diffuse the
signal. The training set comprises 1000 data-points with a 800-200
train-test split and we selected µp, µw via ten-fold cross-validation
from [10−5, 100]. The learning rates λp, λw were fixed to 10−5. We
average the reconstruction MSE over 100 realizations per test node
error and 100 train-test splits for a total of 104 runs.

First, we assess the convergence of Algorithm 1 under both the
convex and non-convex settings. For the marginally convex condi-
tion also in p we set µp = 30 to satisfy the convexity criterion in
(11). Fig. 1 shows the training costs as a function of the number of it-
erations for 50 random initializations. We observe that the proposed
approach converges always to local minima and it reaches a lower
value for the non-convex case (blue) compared with the convex one
(red) for all initialization. This is because a higher weight µp on the
regularizer results in p adapting more to fit the training attachments
bt+ rather than interpolating the signal, ultimately underfitting.

Next, we compare the interpolation MSE with the baselines for
the ER (µp = 1, µw = 1) and BA (µp = 1, µw = 0.1). In the
upper part of Table 1, we see the proposed approach outperforms al-
ternatives in both settings. To further investigate the role of p and
w, we also train the proposed method for each of p and w while
keeping the other fixed. The lower half of Table 1 suggests train-
ing only w provides a performance comparable to the joint training,
which shows that the proposed approach still reaches the optimal
value even without knowing the true attachment. However, training
only p degrades the performance appreciably. This is because when
p is known, we train on w with a convex cost and reach the global
minima, as opposed to training only for p over a non-convex cost.

4.2. Cold start Collaborative Filtering

We now use the proposed method for rating prediction in cold
start item-item collaborative filtering. We considered the Movie-
lens 100K data-set [31] and removed all entities having less than
10 ratings leading to 943 users and 1152 items. For the cold start
experiment, we start with a set of items with known ratings and use
those to predict the ratings for unseen items for each user.

We built an item-item 35 nearest neighbour directed graph com-
prising 50 node items following [8]. The remaining items are di-
vided into 700 for training and 402 for testing. To predict the ratings
we used an order five graph filter, which coefficients are estimated
to predict the ratings on the initial user-item set as in [8]. For our
problem, we imposed a sparsity constraint on p and an `2−norm
on w. Algorithm 1 is run for 2000 iterations with learning rates
λp, λw = 10−4. We predict ratings on the test items for each user
individually. We considered the Mean Absolute Error (MAE) as the
evaluation criterion averaged over 100 samples drawn from p.

In Fig. 2 we show the obtained results, where in addition to the
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Fig. 2. Mean absolute error (MAE) violin plots for different methods and different rating densities. (Left) low ratings - proposed does best
(0.75± 0.24), followed by mean (0.81± 0.24); (Centre) medium ratings - proposed and mean (0.79± 0.16) are tied; (Right) high ratings -
mean does best (0.79± 0.15), followed by proposed (0.81± 0.17).

former baselines we also considered the user-based mean prediction.
To better interpret the results, we divided users into three categories:
i) low containing users with less than 100 interactions; ii) medium
containing users with 100 to 200 interactions, and iii) high contain-
ing users with more than 200 interactions. We observe that for users
with low interactions the proposed approach achieves the lowest me-
dian error and personalizes the recommendations. For the medium
and high interactions available, the proposed method performs bet-
ter than the other attachment metrics. This shows the benefits of
learning a graph and data-specific attachment pattern suited to a task.
Second, for high rating users, the three starting baselines have a long
tail in the MAE, whereas ours is more robust. The mean predic-
tion method performs equally well in the high setting because in this
case we have more ratings available and the cold start problem is
less relevant. Instead, the proposed approach yield benefits in more
data scarcity settings which pose the real challenge in recommender
systems.

5. CONCLUSION

We proposed a data-driven attachment model for signal interpola-
tion at the incoming nodes. The proposed model is characterized
by probabilities of attachment and weights which we used training
data to estimate for signal interpolation. We formulated a stochas-
tic optimization problem w.r.t. the attachment parameters and used
an alternating projected descent to solve it. We provided condi-
tions when we can relax our interpolation requirements to make
the convex marginally convex in both variables. The proposed ap-
proach outperforms related statistical models for interpolation over
both synthetic and real experiments on cold start collaborative filter-
ing. Future work will consider extending this approach to handle a
sequence of nodes.

6. APPENDIX

Proof of Proposition 1: The interpolation MSE is E[([y+]N+1 −
x?+)2] with the output at the incoming node. To express [y+]N+1

in the model parameters, we consider the lth power of the adjacency
matrix

Al
+ =

[
Al 0

a>+Al−1 0

]
(12)

and substitute it in the output y+ =
∑L

l=1 Al
+x+ [cf. (6)]. The

output at the incoming node is thus [y+]N+1 = a>+
∑L

l=1 Al−1
+ x =

a>+Axh where Ax = [x, . . . ,AL−1x] and h = [h1, . . . , hL]>.

The MSE is thus

MSE(p,w) = E[(a>+Axh− x?+)2]. (13)

We add and subtract (w ◦ p)>Axh within the expectation and get

MSE(p,w) = E[((a+ −w ◦ p)>Axh + (w ◦ p)>Axh− x?+)2]
(14)

where the RHS upon expanding becomes

E[(a>+Axh− (w ◦ p)>Axh)2] + E[(w ◦ p)>Axh− x?+)2]

+ 2E[(a>+Axh− (w ◦ p)>Axh)((w ◦ p)>Axh− x?+)].

(15)

In the first term, we expand the square, factor Axh, and take the ex-
pectation inside to get (Axh)>E[(a+−w◦p)(a+−w◦p)>]Axh
which writes as (Axh)>Σ+Axh [cf. (3)]. The second term is de-
terministic, thus we can drop the expectation. The third term instead
is zero because E[a+] = w ◦ p. Combining these, we get (7).
Proof of Corollary 1: To get marginal convexity, we check when the
Hessian of the cost in (8) is positive semi-definite. The derivative of
(8) w.r.t. p is shown in (9). The Hessian in p is

∇2
pC(p,w)=2(w◦Axh)(w◦Axh)>−2diag((w◦Axh)◦2)+2µpIN .

(16)

The first term (w ◦ Axh)(w ◦ Axh)> is a rank-one matrix with
the only non-zero eigenvalue 2||w ◦Axh||2. The second matrix is
a diagonal matrix with eigenvalues {−2(w1[Axh]1)2, . . . ,
− 2(wN [Axh]N )2}. The third matrix is also diagonal but with
eigenvalues 2µp. The Hessian is the sum of a rank one matrix and
two diagonal matrices. Its eigenvalues are the sum of the eigenval-
ues of the these matrices. By the semi-definite convexity condition
[32], each of these eigenvalues now must be greater than or equal to
zero. The condition in (11) is sufficient since all wi ≤ wh from the
constraint set in (8).
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