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MUSIC IDENTIFICATION USING BRAIN RESPONSES TO INITIAL SNIPPETS

Pankaj Pandey1, Gulshan Sharma2, Krishna. P. Miyapuram1, Ramanathan Subramanian3, Derek Lomas 4

1 IIT Gandhinagar, 2 IIT Ropar, 3 U Canberra, 4 TU Delft

ABSTRACT

Naturalistic music typically contains repetitive musical pat-
terns that are present throughout the song. These patterns
form a signature, enabling effortless song recognition. We
investigate whether neural responses corresponding to these
repetitive patterns also serve as a signature, enabling recogni-
tion of later song segments on learning initial segments. We
examine EEG encoding of naturalistic musical patterns em-
ploying the NMED-T and MUSIN-G datasets. Experiments
reveal that (a) training machine learning classifiers on the ini-
tial 20s song segment enables accurate prediction of the song
from the remaining segments; (b) β and γ band power spectra
achieve optimal song classification, and (c) listener-specific
EEG responses are observed for the same stimulus, charac-
terizing individual differences in music perception.

Index Terms— Neural signatures, repetitive musical pat-
terns, music perception, song identification

1. INTRODUCTION

Music perception triggers multiple neural processes, con-
tributing to individual similarities and differences in music
perception and appreciation. Activation of specific brain
networks is dependent on idiosyncratic determinants includ-
ing familiarity, musical training, musical engagement and
sentiment. E.g., familiarity influences the cortical response
to musical beat. Prior research has found that the neural
response magnitude is limited for familiar as compared to
unfamiliar, absurd music [1, 2]. Neural responses and cog-
nitive performance of expert adult musical performers and
non-experts differ significantly [3, 4, 5].

Repetition is a fundamental property of music, and re-
peating musical elements are typical of naturalistic music [6].
Naturalistic songs are easily identifiable because of these per-
ceptible periodical patterns varying at a basic level. The repet-
itive property of music enables the human brain to easily cor-
relate later song segments upon processing only the initial few
seconds. However, depending upon individual idiosyncrasies,
one might perceive the music uniquely. It is therefore tempt-
ing to understand the neural mechanism underlying musical
stimulus processing. Over the last decade, several studies
have sought to comprehend perceptual similarities and dif-
ferences in audio-visual stimulus processing [7, 8, 9, 10].

Musical engagement can be comprehended through vari-
ous ways such as listener states and mediums of listening. A
recent study [11] shows varying levels of inter-subject corre-
lation (ISC) across time to a shared real-world musical stim-
ulus. Several studies on EEG-ISC suggest potential measures
for explaining brain states related to engagement [12, 13].
There is also substantial literature discussing the impact of
music on emotion-processing neural pathways [14, 15]. Over-
all, these findings motivate the need to examine the process-
ing of inter-stimulus and inter-subject differences in music
perception. Accordingly, we attempt to answer the follow-
ing research questions in this work: (1) Are there significant
correlations among an individual’s neural responses across
the length of a song? If strong correlations exist, it should
be possible to recognize later portions of a song from neu-
ral (EEG) signals upon learning the initial responses. (2) Is
the neural signature rooted in the initial segments preserved
throughout the song? The extent of preservation would im-
pact song recognition accuracy. (3) Is the neural signature
associated with a song listener-specific or independent? This
would determine whether a single model or multiple models
would be required for EEG-based song recognition.

EEG data can be challenging to interpret based on simple
visualisation because of their complex associations. However,
there are multiple techniques that enable multivariate analysis
and salient feature selection for a given task. EEG-based mu-
sic research has shown promising results employing machine
learning (ML) techniques; Stober and colleagues [16, 17] em-
ploy deep learning for song classification, and their primary
objective is to maximize performance with convolutional
neural networks. Foster and colleagues [18] correlate fea-
tures extracted from the musical clips with corresponding
EEG recordings. They employ the Librosa audio process-
ing library to extract several features including Root Mean
Square Error (RMSE), spectral roll-off, spectral centroid,
chroma Short-Time Fourier Transform (STFT) and MFCCs.
This is followed by pairwise correlation tests via represen-
tational similarity analysis and linear models. MFCCs and
tempogram features are shown to correlate highly with EEG
recordings, and a logistic regressor acheives accuracy of more
than 20% to the chance level.

Differently, our study examines temporal consistencies in
song-induced neural EEG signatures, and attempts intra- and
inter-subject song classification utilizing only a few initial
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Fig. 1. Proposed Approach: (A) Segmentation of EEG Encodings. Train set contains initial segment of neural responses while
the remaining segments constitute the test set. Segments are chunked into 1-second samples for analysis. (B) EEG signal
decomposition and PSD feature computation. Followed by intra-subject and inter-subject song prediction models.

seconds of EEG recordings, and the importance of the afore-
mentioned frequency bands to this end. Intra-subject refers to
training and testing with the data of the same listener, whereas
inter-subject refers to training a model on the data from one
listener x, and testing on listener y’s data. The main obser-
vations from our study are that: (a) Models trained on brain
signals corresponding to initial few seconds of the song stim-
ulus can reliably predict the EEG episodes for later song seg-
ments; (b) Different songs generate discriminative EEG sig-
natures within the same listener (c) The β band contributes
most to song recognition (d) Different brains generate varying
signatures for an identical song, and (f) The random forest and
LDA classifiers achieve maximum recognition performance.

2. EEG DATASETS (NMED-T AND MUSIN-G)

We analyzed two public naturalistic music EEG datasets.
The Naturalistic Music EEG Dataset–Tempo (NMED-T)
comprises EEG responses to ten songs whose lengths range
between 4.5–5 minutes. Twenty participants (mean age 23)
had their EEG recordings recorded with 128 electrodes. We
used the preprocessed version comprising sampling rate to
125 Hz and 125 channels. Interested readers may refer to [19]
about NMED-T acquisition and pre-processing.

Musing Listening-Genre EEG dataset (MUSIN-G) com-
prises EEG recordings for 12 musical stimuli with diverse
genres [20]. Twenty participants were enrolled (mean age
23.5 years), aged 22-28 years. Song duration was two min-
utes. We preprocessed publicly available raw EEG data in
MATLAB using EEGLAB [21]. Highpass linear FIR filter-
ing at 0.3 Hz was performed, followed by the elimination of
50 Hz line noise using clean line method. A 250 Hz down-
sampling was applied. Upon removing bad channels, multiple
Artifact Rejection Algorithm (MARA) was used to compute
independent components and remove noisy components [22].
We interpolated removed channels via the spherical func-
tion of EEGLAB and an average reference was then applied.
Cumulatively, this study examined EEG responses compiled
from 40 subjects for 22 musical stimuli.

3. METHODS

3.1. Data Segmentation and Feature Extraction

Brain recordings are divided into train and test data. Train
data contain only the initial seconds of music listening with
window sizes of 3,5, 10, and 20s, and the remaining EEG
recording used for testing. Data are segmented into 1s chunks
to prepare input samples for feature extraction. These sam-
ples are of dimensions channels × time points (1s). E.g.,
the sample size is 128 × 250 (sampling rate) for MUSIN-
G, and 125 × 125 for NMED-T. Oscillatory cortical activi-
ties in EEG time series are primarily present in the frequency
bands (δ, θ, α, β and γ), power spectrum estimates of these
frequency bands are computed across all channels. Time se-
ries signals are fed through Butterworth bandpass filters, and
then Fast Fourier Transform (FFT) is performed on these time
series for each epoch (1s EEG segment). Finally, sum of
squared FFT coefficients are computed across each band to
form a feature vector. Our approach is presented in Fig. 1.

3.2. Prediction Methods

We opted for classification methods, namely, Gaussian Naive
Bayes, Linear Discriminant Analysis, linear Support Vector
Machine and Random forest, for EEG-based song prediction.
We performed 10 repetitions of 3-fold cross-validation on the
data. As there is no class imbalance, accuracy is chosen as
the performance metric. We trained models using windows
of initial 3, 5, 10, and 20s EEG segments and evaluated clas-
sifiers on the later segments. In the MUSIN-G dataset, each
participant listened to 12 songs. We evaluated the 12 song-
classifier and report the average accuracy across participants,
and likewise for NMED-T.

4. RESULTS

We examined intra and inter-subject song prediction perfor-
mance, and the impact of the δ (1-4 Hz), θ (4-8 Hz), α (8-12
Hz), β (12-30 Hz), and γ (30-45 Hz) EEG frequency bands.
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Fig. 2. Mean accuracy across participants for four training
windows. Initial seconds are used for training and remaining
for testing for each participant in NMED-T and MUSIN-G.

Band RF GNB LDA SVM MLP
δ (1-4 Hz) 0.3 0.23 0.34 0.34 0.26
θ (4-8 Hz) 0.29 0.22 0.38 0.36 0.26
α (8-12 Hz) 0.25 0.18 0.37 0.34 0.24
β (12-30 Hz) 0.52 0.39 0.61 0.58 0.44
γ (30-40 Hz) 0.59 0.47 0.65 0.59 0.47
ALL-Bands 0.6 0.41 0.6 0.52 0.38

Table 1. NMED-T classifier performance with initial 40s for
training. Bold font denotes two maximum accuracies.

Effect of varying window size: Initial EEG encodings of
musical stimuli should preserve patterns to classify later EEG
segments. In Fig. 2, we observed a significant improvement
with an increase in training segment length. Interestingly, the
initial 3s EEG recording can predict better than chance level.
We obtained a maximum accuracy of 54%, and 84% utilizing
initial EEG recordings of 20 sec in NMED-T, and MUSIN-
G respectively. Lower accuracy for NMED-T could be due
to the longer song length, and the initial 20s of EEG record-
ing might not be sufficient for predicting later patterns. We
further examined NMED-T using 40 seconds of training time
and achieved maximum accuracy of 65% with the LDA clas-
sifier as shown in Table 1.

Same brain listens to different songs differently: We
hypothesized that each song generates unique neural re-
sponses, and initial segments of these responses can predict
the later segments. We rigorously tested our models and
observed discriminating features within-subjects, with maxi-
mum accuracy of 97% and 71% in MUSIN-G and NMED-T,
respectively. As shown in Fig.3, there is significant variabil-
ity among subjects, which suggests that neural responses to
different songs are different across individuals.

Significance of frequency bands for prediction: The β
band showed the highest performance in MUSIN-G whereas
γ performed slightly better for NMED-T. In the 1–12 Hz
frequency range, θ band was dominant across all datasets.
We also examined band combinations using three iterations
of sequential forward feature selection [23]. Maximally dis-
criminating bands were paired sequentially and evaluated

Fig. 3. Subject-wise performance on 20s of training data.

Fig. 4. Subject-independent song identification. Training on
initial 20s of hold-out subject, and testing on other subjects.

(see Fig. 5). Role of β-band has been discussed widely in
sensorimotor synchronization, which is associated with pre-
dicting new rhythms [24]. Shahin and colleagues find that
music training promotes timbre-specific gamma-band activ-
ity [25]. γ band also correlates with perceptual and cognitive
phenomena like template matching, feature binding, learning
and memory formation.

Different brains listen to same song differently: To ex-
amine if neural signatures noted for the same song are subject-
independent, we trained ML models on a single participant
and evaluated them on the others. Compared with ML per-
formance on individual data, the above approach produced
significantly lower accuracies. We achieved a mean/max test
accuracy of 12.9%/22.8% and 12.5%/24.5% on NMED-T and
MUSIN-G respectively, as shown in Fig. 4. Inter-subject ac-
curacies were higher in some cases, and very low in others.
This finding implies that the same song generates varied neu-
ral patterns across listeners, and motivate the need to investi-
gate EEG responses to musical features like timbre and beat,
which may be more generic.
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Fig. 5. Performance of frequency bands and combinations on
20s snippets with feature selection.

Fig. 6. ML-based intra-subject song prediction.

Fig. 7. (MUSIN-G) Prediction across frequency bands.

4.1. Classifier Performance

We observed that Random Forest and LDA outperformed
other classifiers when utilizing all the frequency bands. As
shown in Fig. 6, we observed at least 10% of increase in
accuracy on LDA across varying window sizes in all the
datasets . We also found that SVM performance increases
when training on individual bands, as shown in Fig. 7. We
achieved a maximum intra-subject accuracy of 65% using
the γ band features in NMED-T, and accuracies of 88% for
MUSIN-G using β band features.

5. CONCLUSION

Musically induced neural signals were examined in this re-
search with three primary objectives: (1) EEG responses
should capture repetitive characteristics of music that could
be present throughout the length of the song, (2) An individ-
ual’s brain signals should be discriminative of the different
songs that are listened by an individual, and (3) Different
individuals should generate different neural signatures cor-

responding to the same music. We carried out this research
using two music datasets employing a variety of machine
learning techniques. We find that small segments captur-
ing initial brain responses enable sufficient learning of EEG
signatures in the spectral domain. Higher frequency bands,
namely β and γ neural oscillations provide the most dis-
criminating features. For intra-subject song prediction, we
achieve a maximum accuracy of 65% using γ features in
NMED-T. The β band achieves 88% accuracy for MUSIN-
G. Prediction accuracy drops significantly in inter-subject
song classification, suggesting a weak correlation in brain re-
sponses among subjects. Given that studies on cognitive load
assessment [26] and EEG-based fake-video detection [27]
have shown subject-independent correlations between neural
responses and stimulus patterns, future work would focus on
identifying neural correlates underlying naturalistic musical
perception irrespective of individual experiences.
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