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ABSTRACT

We present a voice conversion framework that converts normal
speech into dysarthric speech while preserving the speaker identity.
Such a framework is essential for (1) clinical decision making pro-
cesses and alleviation of patient stress, (2) data augmentation for
dysarthric speech recognition. This is an especially challenging task
since the converted samples should capture the severity of dysarthric
speech while being highly natural and possessing the speaker iden-
tity of the normal speaker. To this end, we adopted a two-stage
framework, which consists of a sequence-to-sequence model and a
nonparallel frame-wise model. Objective and subjective evaluations
were conducted on the UASpeech dataset, and results showed that
the method was able to yield reasonable naturalness and capture
severity aspects of the pathological speech. On the other hand,
the similarity to the normal source speaker’s voice was limited and
requires further improvements.

Index Terms— voice conversion, pathological speech, dysarthric
speech, sequence-to-sequence modeling, autoencoder

1. INTRODUCTION

Neural voice conversion (VC) has substantially improved the natu-
ralness of synthesized speech in a wide range of tasks, including read
speech [1], emotional speech [2] and whispered speech [3]. How-
ever, pathological VC (and TTS too) is a largely unexplored area,
which has several interesting applications. In this work, we focus on
normal-to-dysarthric (N2D) VC, which refers to the task of convert-
ing normal speech to dysarthric speech. N2D VC could be applied
in informed decision making related to the medical conditions at the
root of the speech pathology. For instance, an oral cancer surgery re-
sults in changes to a speaker’s voice. The availability of a VC model
that can generate how the voice could sound after surgery could
help the patients and clinicians make informed decisions about the
surgery and alleviate the stress of the patients. Another application
is the improvement of automatic speech recognition (ASR) by aug-
menting the training dataset with additional pathological data. Such
augmentation could ease the low-resource constraints of a patholog-
ical ASR task.

In addition to the requirements for conventional VC, N2D VC
has its own unique requirements, each corresponding to one research
question:
RQ1: Do the converted samples sound as natural as real
dysarthric samples? Naturalness is a basic requirement in all
speech synthesis tasks, but it becomes challenging under the con-

*Equal contribution.

(a) Previous works. Left: [5]. Right: [4]

(b) Proposed two-stage approach.

Fig. 1: Illustration of previous work and the proposed method for
N2D VC.

text of N2D VC because listeners seem to confuse naturalness and
severity [4].
RQ2: Is the VC model able to retain the speaker identity of the
source normal speaker? Since it is often impossible to collect
ground truth pathological speech data of a normal source speaker,
training a VC model that directly maps a normal source speech to
its pathological counterpart is infeasible. Thus, specific techniques
need to be developed to tackle this issue. In addition, evaluation of
similarity is hard because listeners have to determine the similarity
of a converted pathological speech to the source speaker while hav-
ing access to only a normal speech of him/her.
RQ3: Is the VC model able to model severity characteristics in
a linear way, so that expert listeners perceive more severe sam-
ples as more severe? As the condition of patients deteriorates, the
severity of the patient’s voice will increase. To capture the progress,
it is essential to correctly model the severity of the converted speech.
This requires modifying specific attributes of speech, such as speak-
ing rate and insertion of pauses.

In this work, we aim to create an identity preserving N2D VC
system. The key advantage of this approach is that it allows arbitrary
inputs from the source normal speaker, while preserving its identity.
The aim of this work is to evaluate the model in a more practical
setting than [4] by taking normal speech as input, which alleviates
the need of maintaining a pathological voice bank described there.
Inspired by [6], the proposed method is a two-stage approach, as
depicted in Figure 1b. In the first stage, to capture the unique tem-
poral structure of dysarthric speech, we adopt the Voice Transformer
Network (VTN) [1, 7], a sequence-to-sequence (seq2seq) VC model
based on the Transformer [8] architecture. The converted speech at
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this stage has the characteristics of dysarthric speech, with an un-
wanted speaker identity of the reference dysarthric speaker. Then,
the normal source speaker identity is restored through a frame-by-
frame autoencoder-based VC model [9], which is assumed to be able
to preserve local speech attributes related to dysarthria. We evaluated
the proposed method on UASpeech [10], and the method achieves
good naturalness results, is able to mimic the severity of patholog-
ical speech according to three speech language pathologists, while
having limited ability to preserve the source speaker’s characteris-
tics.

2. RELATED WORKS

2.1. Normal-to-dysarthric VC for data augmentation in ASR

Previous research on data augmentation for dysarthric speech has
shown promising improvements in ASR word error rates. The main-
stream is to use frame-wise models such as deep convolutional gen-
eral adversarial networks (DCGANs) [11] or Transformer Encoders
[12] to convert the speech timbre. As these models do not change
the length, extra procedures are needed to change the speaking rate,
including speed perturbation [11] or dynamic time warping [12].

There are several downsides to this line of work. As ASR only
requires the various dysarthric features to be modeled, the speaker
identity of the normal speaker is not retained after conversion. Also,
no evaluation methods were conducted to measure the severity of
the samples, which means that it was not verified whether the pro-
posed methods were truly able to model the dysarthric features well.
In this work, we use a seq2seq model to jointly convert the timbre
and speaking rate, which was shown to be more effective than con-
verting them separately in conventional VC [13]. We also address
the identity preservation issue with the proposed two-stage approach
and conduct subjective evaluations to verify if the severity is indeed
modeled.

2.2. Normal-to-dysarthric VC for clinical usage

There are two previous works that focus on VC for clinical usage.
The diagram on the left of Figure 1a depicts an N2D VC system
presented in [5], which was a combination of a CycleGAN-based
frame-wise VC model and a PSOLA-based speech rate modifica-
tion process. This method suffers from the same issues as those in
Section 2.1, including audible vocoder artifacts brought by the extra
PSOLA operation, and the inability to preserve the speaker identity
of the control speaker.

A different work [4] is depicted on the righthand side of Fig-
ure 1a. The authors focused on dysarthric-to-dysarthric VC, by us-
ing a frame-wise VC model called HL-VQ-VAE [14]. However, the
setup was not flexible in that (1) a severity-matched VC setup was re-
quired to avoid the need of varying speech rates, and (2) the method
required a pathological source utterance, wherein real-world appli-
cations we might want to synthesize an arbitrary utterance from the
normal source speaker.

3. PROPOSED FRAMEWORK

Given a speech sample from a normal speaker, N2D VC aims to
change the characteristics into that of a dysarthric speech, while pre-
serving the speaker identity of the source normal speaker. In the
following subsections, we describe the two components, the parallel
seq2seq model and the nonparallel frame-wise model, of our pro-
posed two-stage approach for N2D VC in detail.

3.1. Many-to-one seq2seq modeling

The goal in the first stage is to completely capture the characteristics
of the dysarthric speech. Following [6], we adopted the VTN [1,
7], a Transformer-based [8] seq2seq model tailored for VC. When a
parallel corpus is available, seq2seq modeling is considered state-of-
the-art due to its ability to convert the prosodic structures in speech,
which is critical in N2D VC. However, collecting a parallel corpus
is especially difficult in our case since it is impractical (almost not
feasible) to collect a large amount of data from dysarthric patients.
To solve the data scarcity problem, we applied two techniques, as
described below.

First, a TTS pretraining technique is applied which facilitates the
core ability of a seq2seq VC model, i.e., encode linguistic-rich hid-
den representations by pretraining using a large-scale TTS dataset [1,
7]. This technique is flexible in that the VC corpus and the pretrain-
ing TTS dataset can be completely different in terms of speaker and
content, even when trained between normal and dysarthric speakers.
In [6], it was shown that training using only 15 minutes of speech
from each speaker can yield good results.

Second, we trained the VTN in a many-to-one (referred to as
M2O) fashion. Considering that it is easier to collect data from nor-
mal speakers rather than patients, we assume that apart from the data
of the source normal speaker, we also have access to a set of parallel
training set from multiple normal speakers. Given a training utter-
ance from any of the normal speakers, the VTN model is trained
to convert to the predefined target dysarthric speaker. M2O train-
ing was also used in [15], except they used an auxiliary phoneme
recognition regularization loss.

3.2. Nonparallel frame-wise model

In the second stage, given the converted dysarthric speech, the goal
is to restore the identity of the source normal speaker while pre-
serving the dysarthric attributes. We adopted the same assumption
as in [6]: a nonparallel frame-wise VC model changes only time-
invariant characteristics such as the speaker identity, while preserv-
ing time-variant characteristics, such as the pronunciation. As in [6],
we used crank [9], an open-source VC software that combines re-
cent advances in VQVAE [16]-based VC methods, including the use
of hierarchical architectures, cyclic loss and adversarial training, to
carry out the conversion of the speaker identity step. For the remain-
der of this paper, we refer to this model as VAE for short.

4. EXPERIMENTAL SETUP

4.1. Dataset

We used the UASpeech dataset [10], which contains parallel word
recordings of 15 dysarthric speakers and 13 normal control speakers.
The training and test set consist of 510 and 255 utterances, respec-
tively. Each dysarthric speaker is categorized to one of three intelli-
gibility groups: low, mid, and high, which correspond to 0 − 25%,
25− 75%, and 75− 100% subjective human transcription error rate
(STER). The intelligibility of each speaker was judged by 5 non-
expert American English native speakers. We chose two dysarthric
speakers from each intelligibility group (high: M08, M10; mid:
M05, M11; low: M04, M12) as test speakers for VC. For each
dysarthric speaker, a separate VTN was trained using the data of that
speaker and all control speakers. For the VAE model, in our prelim-
inary experiments, we found that it was crucial to train with only the
normal data rather than training with a mix of dysarthric and normal
datasets. We thus used data from the 13 control speakers only.
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4.2. Implementation

The implementation of the VTN (the left rounded rectangle in Fig-
ure 1b) was based on the open-source toolkit ESPnet [17, 18]. The
detailed configuration can be found online1. The TTS pretraining
was conducted with M-AILABS judy [19], which was 31 hr long.
crank, which we base our implementation of VAE on (the right
rounded rectangle in Figure 1b), is also open-sourced and can be
accessed freely2. Parallel WaveGAN (PWG) [20] was used as the
neural vocoder. We followed an open-source implementation3. The
training data of PWG contained the audio recordings of all control
speakers in UASpeech.

4.3. Objective evaluation metrics

The speech sample outputs of the two stages (VTN, VTN-VAE)
are separately evaluated using the metrics described in this section,
whenever the evaluation does not require ground truth. In this evalu-
ation, we considered conversion pairs between all 13 normal source
speakers and the 6 dysarthric speakers mentioned in Section 4.1.

4.3.1. P-ESTOI/P-STOI

P-ESTOI/P-STOI were previously demonstrated to work well for
the objective evaluation of dysarthric speech [21]. These methods
focus on quantifying distortion in the time-frequency structure of
the speech signal, which is related to severity and naturalness (RQ1
and RQ3). In short, we used multiple gender-specific ground truth
control utterances to form a reference utterance. By calculating the
frame-level cross-correlation of each pathological utterance with the
reference utterance, we obtain an utterance-level P-ESTOI/P-STOI
score. Taking the mean of each utterance-level score, we obtain a
speaker-level score, which is correlated with the STER scores for
the six speakers to obtain r. This is repeated with the ground truth
speakers to obtain rGT

4.3.2. Phoneme error rate

The phoneme error rate (PER) calculated with a phoneme recog-
nizer evaluates the intelligibility, which is also related to severity
and naturalness (RQ1 and RQ3). We use a pre-trained Kaldi ASR
model with the same specifications as the one used in [22] for
phoneme recognition. The ASR was trained with the TIMIT dataset
and used an HMM acoustic model. The TIMIT corpus is an En-
glish read speech corpus specifically designed for acoustic-phonetic
studies [23]. To measure the PER, we require phonemic transcrip-
tions of the UASpeech utterances (reference). We used g2p-en4 for
grapheme-to-phoneme conversion. The reference is compared to the
VC utterances transcribed by the trained ASR.

4.4. Subjective evaluation protocols

Subjective evaluation was carried out by naive listeners to assess the
naturalness and similarity of samples (RQ1, RQ2). An additional
evaluation was done by expert listeners to assess severity (RQ3).
Contrary to the objective evaluations, we did not consider all con-
version pairs (due to constraints in time and budget). Audio samples

1https://github.com/espnet/espnet/tree/master/
egs/arctic/vc1

2https://github.com/k2kobayashi/crank
3https://github.com/kan-bayashi/ParallelWaveGAN
4https://github.com/Kyubyong/g2p

can be found online5.

4.4.1. Severity

We designed an AB evaluation study for evaluating severity (RQ3).
In the study, 3 trained speech-language pathologists (SLPs) were
asked to listen to two different synthesized utterances from two un-
known speakers whom have different speech severity and select the
synthesized speech sample that they perceived as being more patho-
logical. We used four speaker pairs (see Table 4), two for each sever-
ity level. For each speaker pair, 20 utterances were rated. After
rating the synthesized pathological speech samples, the experiment
was repeated with the ground truth samples – as a control for cases
where we observe a reversal in the expected severity judgment in
the VC speech samples. So, in total, each SLP was asked to rate 80
utterances. A binomial test is performed to calculate significance.

4.4.2. Naturalness

In order to evaluate naturalness (RQ1), we followed the setup in [4]
with a few modifications based on our previous findings. In our pre-
vious study, listeners rated the severity of the speech samples (in-
stead of the naturalness) on a 5-point mean opinion score (MOS)
scale. The results showed a flooring effect. Therefore, in this ex-
periment, we increase the resolution of the MOS-scale to have in-
crements of 0.5. The questionnaire starts with an explanation of
what we mean with naturalness, followed by an example of natu-
ral, normal and pathological (low severity) speech. The respondents
were instructed to rate these both as 5 (highly natural). The stim-
uli consisted of 13 utterances for both pathological speakers of each
severity (low, high, mid), leading to a total of 78 utterances. Subse-
quently, the experiment was repeated with the ground truth samples.
The utterances were rated by 30 native American English listeners.
A Wilcoxon signed-rank test is performed to calculate significance.

4.4.3. Similarity of the voice with the source normal speaker

For the similarity (RQ2) evaluation, we follow the protocol in [4].
Listeners are presented a converted sample and a reference sample,
and are asked to judge whether the two samples are uttered by the
same speaker. In short, the evaluation is AB similarity study where
the source speaker is a pathological speaker, the target speaker is
the control speaker. The reference speech is either from the source
(Similarity to source) or the target (Similarity to target). We selected
three pathological speakers (M04, M11, M10) which have deemed
to have recognisable characteristics in our previous study [4]. Fur-
thermore, we randomly sampled (without replacement) two control
speakers for each pathological speaker. The test were done by 5
naive American English listeners. A binomial test is performed to
calculate significance.

5. EVALUATION RESULTS

5.1. Objective evaluations

5.1.1. P-STOI/P-ESTOI

The second block of Table 1 summarizes the results of the P-STOI/P-
ESTOI analyses. In the VTN stage, the obtained correlation be-
tween the P-STOI/P-ESTOI and the STER are similar to the ones

5https://unilight.github.io/Publication-Demos/
publications/n2d-vc
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Table 1: Objective evaluation results.

High Mid Low

M08 M10 M05 M11 M04 M12 r rGT

P-STOI VTN 0.73 0.75 0.62 0.60 0.58 0.45 0.88 0.89
P-ESTOI VTN 0.37 0.37 0.20 0.16 0.09 0.08 0.93 0.90
P-STOI VTN-VAE 0.73 0.75 0.62 0.63 0.61 0.45 0.84 0.89
P-ESTOI VTN-VAE 0.37 0.35 0.21 0.19 0.12 0.06 0.94 0.90

PER VTN 58.7 55.1 84.1 71.8 79.6 103.4 0.83 0.70
PER VTN-VAE 62.9 59.3 106.3 76.2 81.2 120.0 0.68 0.70
STER 7.0 7.0 42.0 38.0 98.0 92.6 1.0 –

Table 2: Mean opinion score results of the naturalness test with 95%
confidence intervals. Columns correspond to the intelligibility level,
and rows correspond to ground truth (GT) and synthetic (VC) results.
Higher is better.

Normal High Mid Low

GT 3.93 ± .54 3.92 ± .54 2.86 ± .89 2.32 ± 1.16
VC - 2.70 ± .95 2.28 ± 1.03 1.94 ± 1.21

one would obtain with the GT (rGT ). Therefore, in the VTN stage
the severity is well captured. In the VTN-VAE stage, the P-STOI
correlation decreases from 0.88 to 0.84, while the P-ESTOI slightly
increases from 0.93 to 0.94, which is a bit higher than (rGT ). This
latter change can be explained as follows: the frame-based VAE
model does not change the temporal aspects of the signal but rather
the spectral aspects, for which the P-ESTOI has a higher sensitivity.

5.1.2. Phoneme error rate

The VTN PER results in Table 1 show higher correlation with the
STER than the GT, which indicates that we can mimic the severity
aspects of the pathological speech in the first stage. However, PER
VTN-VAE results are decreased compared to the PER VTN. This is
probably because the VAE stage causes a naturalness degradation.

5.2. Subjective evaluations

5.2.1. Naturalness

Table 2 shows the MOS results. First, similar to our previous study
[4], we observe that with decreasing intelligibility, naive listeners
perceive the heard speech increasingly unnatural – even in the case
of ground truth samples. Second, the ground truth samples are con-
sistently rated as more natural then the converted ones (p < 0.001).
Although, these results are not directly comparable to [4], we note
that we’ve observed overall higher MOS values. We suggest that the
use of seq2seq models contributed to this improvement, and such
quality is sufficient for further investigation.

5.2.2. Similarity

Table 3 describes the identity preservation ability of the VC frame-
work. We can see that the Similarity to source column has less than
50% similarity for all speaker pairs, therefore we can conclude that
the VC can successfully ignore the pathological source speaker’s
characteristics. However, we can also see from the Similarity to
Target column that (except from the M10→CF03) none of the VC
samples have more than 50% similarity to the target. Such results
emphasize the “unobtainable ground truth ”difficulty faced by the
model, as described in Section 1. Meanwhile, this also points out

Table 3: Results of the similarity AB experiments with 95% confi-
dence intervals.

Similarity to target Similarity to source

M04→CM05 20% ± 10% 32% ± 12%
M11→CM09 37% ± 13% 43% ± 13%
M10→CF03 55% ± 13% 8% ± 7%
M04→CM04 33% ± 12% 27% ± 12%
M11→CM10 23% ± 11% 32% ± 12%
M10→CF02 48% ± 13% 10% ± 8%

Ideal 100% 0%

Table 4: Percentage of “correct” answers in the AB severity tests for
the ground truth samples and the different stages of the architecture.
*** is p < 0.001; * p < 0.05

Speaker pairs Ground truth VTN VTN-VAE Severity

M04 vs M05 95% *** 85% *** 53% Low Mid
M05 vs M08 90% *** 95% *** 80% *** Mid High
M12 vs M11 93% *** 85% *** 75% * Low Mid
M11 vs M10 98% *** 95% *** 68% * Mid High

that improving speaker similarity is an important future work, as this
problem was also present in [6].

5.2.3. Severity

Table 4 lists the percentage of “correct” answers in the AB severity
test done with the SLPs. On average, the SLPs always perceived the
more severe speakers as more severe (each entry in Table 4 is over
50%). In the first VTN stage, no more than 10% decrease in ”cor-
rect” answers is observed in the severity recognition compared to the
ground truth. Furthermore, the ratio of ”correct” severity decisions
slightly increased in the case of the VTN M05 vs M08 pair. This
indicates that the VTN simulates the severity aspects well. After
the second VTN-VAE step, we see a decrease in “correct” answers,
which means that in the case of speaker-specific samples, the SLPs
made more errors in indicating which of the two samples had a worse
severity, possibly because the severity difference is less perceivable
for the SLPs due to the additional distortion caused by the VAE.

6. CONCLUSIONS

In this paper, we proposed a novel two-stage framework for N2D
VC. We evaluated the proposed method on UASpeech [10], and the
method achieved good naturalness results, was able to mimic the
severity characteristics in a linear way according to three speech lan-
guage pathologists, while being able to convert away from the patho-
logical source speaker’s characteristic. In the future, we will focus
on improving the preservation of the normal source speaker identity.
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