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Abstract—Distributed streaming dataflow systems have evolved
into scalable and fault-tolerant production-grade systems. Their
applicability has departed from the mere analysis of stream-
ing windows and complex-event processing, and now includes
cloud applications and machine learning inference. Although the
advancements in the state management of streaming systems
have contributed significantly to their maturity, the internal state
of streaming operators has been so far hidden from external
applications. However, that internal state can be seen as a
materialized view that can be used for analytics, monitoring,
and debugging.

In this paper we argue that exposing the internal state of
streaming systems to outside applications by making it queryable,
opens the road for novel use cases. To this end, we introduce
S-QUERY: an approach and reference architecture where the
state of stream processors can be queried - either live or through
snapshots, achieving different isolation levels. We show how
this new capability can be implemented in an existing open-
source stream processor, and how queryable state can affect
the performance of such a system. Our experimental evaluation
suggests that the snapshot configuration adds only up to 8ms
latency in the 99.99th percentile and negligible increase in 0-90th

percentiles.

I. INTRODUCTION

Over the last decade stream processing systems have

evolved from experimental engines producing approximate

results, to production-ready sophisticated platforms providing

consistent execution of long-running jobs on hundreds of

nodes, even in face of failures [1]. State management in

particular, enabled important advancements in fault tolerance

and scalability by partitioning state and enforcing global

coordinated checkpoints [2], [3]. Now that streaming systems

can reason about their state and keep it consistent, exposing

their internal state to applications can pave the way for new

capabilities, such as auditing and debugging.

At the same time streaming systems are no longer used just

to serve analytics use cases, but they are increasingly preferred

for executing new types of workloads such as serving machine

learning models [4] and running cloud applications based

on microservices and stateful functions [5]–[7]. Especially

for operational use cases such as the execution of cloud

applications, the ability to query the distributed state of a

streaming system in one shot offers a database view of its

processing state, similar to what query interfaces offer in

traditional database systems. For instance, an e-commerce

application running on top of a streaming system would be

able to join user accounts with purchases to determine sales

grouped by user characteristics, such as age and gender.

The problem of querying the state of distributed streaming

systems externally presents important challenges in terms of

overhead to the operation of the streaming system, correctness

of query results, and scalable management of state sizes. First,

streaming systems are susceptible to operational overhead

given that they are designed and used for low-latency high-

throughput processing. In fact, the processing they perform

is continuous and it triggers continuous state updates. Thus,

it is important that state access for answering an external

query induces minimal overhead. Second, the correctness

of query results under continuous processing also poses a

challenge especially for queries that combine different parts of

a streaming system’s distributed state, which typically reside

in remote hosts. Capturing a consistent view of the involved

parts of the state requires aligning them in some way. The

third challenge regards the size of the accumulated state over

time, which can become considerably difficult to manage. The

state size affects both query performance and the amount of

space required for holding the state.

Surprisingly, external queries to the internal state of stream-

ing systems have received almost no attention in the literature.

Systems such as TSpoon [8] and Apache Flink [9] are able

to query the system’s state, but they are limited to key-value

lookups over the live state. Thus, they do not expose the state

in a way that can support more sophisticated operations such as

joins, filters and aggregates of aggregating state values, which

would be valuable to external applications.

In this paper we propose S-QUERY, an approach for

querying the internal distributed state of a stream processing

system. S-QUERY exposes the live state of a streaming system

to external systems in a safe manner, thereby providing a

fresh view of its live state. In addition, S-QUERY supports

queries over the system’s snapshot state produced by periodic

checkpoints, without obstructing the normal processing of the

system. These two querying capabilities are complementary

and can be very beneficial to external applications: live state

queries offer a realtime view with no correctness guarantees,

while snapshot queries produce consistent results over past

states but may be slightly outdated.

We implement S-QUERY in Hazelcast Jet [10], a distributed

streaming system that optimizes low-latency performance. Our

experimental evaluation suggests that the snapshot configura-

tion adds only up to 8ms latency in the 99.99th percentile and

negligible increase in 0-90th percentiles. In addition, S-QUERY

scales horizontally, allowing for sustainable throughput to
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Fig. 1: S-QUERY’s architecture. Stream processors store state

in the state store which is in turn queried by the query system.

The query system only queries snapshot 8, as snapshot 9 is

still in progress.

scale linearly with nodes in the cluster. S-QUERY is available

as open source software.1

With this paper we make the following contributions:

• We present the design and implementation of S-QUERY,

the first approach that enables high-level interfaces, such

as SQL, to query the state of distributed streaming

systems.

• We provide different isolation levels on state queries (read

committed, repeatable read, and serializable) alongside

use-cases where those can be used.

• We make a thorough performance evaluation with queries

of the NEXMark benchmark highlighting the tradeoffs

between state size, checkpoint frequency, isolation levels,

performance, and scalability.

• We describe a real-world application of S-QUERY for

real-time order-delivery monitoring in Delivery Hero SE,

a global company offering Q-commerce services.

II. APPROACH OVERVIEW

S-QUERY is an approach for querying the state of a dis-

tributed stream processing system where the state is dispersed

over the system’s operators. S-QUERY distinguishes between

two modes of state: live state and snapshot state. Live state is

the actual running state of an operator at any given moment of

execution. Snapshot state is a past version of state captured by

a checkpoint. Each checkpoint records a version of the state

back at the time when the checkpoint was taken. S-QUERY can

query both live state and snapshot state, as required depending

on the use-case. Finally, since a streaming system stores past

snapshots of its state, S-QUERY can query that state as it

evolves with time.

Architecture. Figure 1 depicts the high level architecture of

S-QUERY. The architecture consists of two separate but tightly

coupled systems: the stream processor which comprises a

Directed Acyclic Graph (DAG) of stateful operators and the

state store which is a partitioned database system, such as an

in-memory key-value store. Any change in the stateful operator

1https://github.com/delftdata/s-query

state is directly reflected in the state store by S-QUERY

and updates the live state stored there. At the same time,

the state store holds the snapshots that are triggered by the

checkpointing mechanism [3], [11] of the stream processor.

The query subsystem of the state store, computes queries

on the snapshot state or the live state. The live state can

be accessed directly, whereas queries to the snapshot state

require a specific snapshot id. By default, the latest snapshot

id is implied when querying the snapshot state, but users

are free to pinpoint any valid snapshot id. In the case of

Figure 1, snapshot with id 9 is still being processed, so 8 is the

latest snapshot id which corresponds to the latest completed

checkpoint.

Requirements. S-QUERY imposes two requirements to a

host streaming system: i) a checkpoint-based approach that

produces consistent state snapshots and ii) queryable state

storage. S-QUERY enables queries to the streaming system’s

live and snapshot state in a number of ways. First, by provid-

ing, protecting, and optimizing access to the live state. Second,

by managing multiple versions of snapshot state consistently

across the distributed system, and finally by optimizing the

memory or disk space utilized by state snapshots through the

support of incremental state snapshots.

Colocating State & Compute. Note that in Figure 1 we can

see that both the live state of each operator as well as the

respective snapshots are colocated with the compute layer.

This is one of the main design decisions enabling an important

optimization introduced by S-QUERY: in order to guarantee

local updates to the state without going through the network

for each state update, the state store and the stream processor

share the same partitioning function and, thus, the system’s

scheduler enforces that the state and compute of the same

partition are colocated.

III. THE CASE FOR QUERYABLE STATE

The capability of exposing and querying the distributed state

of a streaming system, which in short we refer to as queryable

state throughout the paper, introduces novel and important

advancements and use cases that we highlight in this section.

Substituting Caching and Static Views. For half a century

people have been using databases for application state man-

agement. With the advent of the web and mobile devices,

user experience requirements have increased sharply, putting

pressure to the database layer. In order to provide a satisfying

experience to end users, a level of indirection, caching, has

been added to make the desired data available faster.

Caches provide the expected performance, but they intro-

duce a difficult problem. Being a level of indirection, caches

have to be in sync with the database in order to provide

consistent results, not just fast. Keeping a cache consistent

in a distributed setting, that is the norm for many real-world

web applications, is challenging and adds significant overhead.

Moreover, an application has to retrieve the cached data and

compute views over the data at the application side. The

views are most probably computed on stale data, since the
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Fig. 2: Stream processing pipeline with stateful ‘average’

operator. Input items are 10, 30, and 5 respectively. Output

items corresponding to the input items have the same colors

(and same order as in the input stage). Internal state of the

operator is in the rectangle inside the operator.

data may have changed in the database in the meantime.

Finally, this extra work that is irrelevant to the application

logic, burdens application developers who suddenly have to

deal with memory space overheads and efficient computation

of views.

Instead of constantly transferring data from the database to

the cache in order to maintain the consistency between the

two different levels of state management, continuous queries

on data flowing in a streaming system and ad-hoc queries

on the system operators’ state obviate the need for different

levels of state management and relieve applications from the

programming and processing overhead of view computation

in a scalable and fault tolerant fashion.

Reducing Complexity. It is quite common for streaming

systems to update an external database with intermediate

results. That database is then used to answer application

queries. However, using queryable state, this extra database

layer can be removed and the application can directly query the

state of the streaming system. Additionally, since traditional

relational database management systems (RDBMS) are hard to

scale out, they can become bottlenecks in high throughput data

workloads, which are well met by streaming systems. Thus,

queryable state reduces database dependencies and potential

bottlenecks from a streaming topology.

Auditing and Compliance. Queryable state makes streaming

systems auditable. The processing of personal data is one

important case. According to article 4 of EU’s GDPR, ‘pro-

cessing’ means any operation that operates on personal data

[12], therefore streaming systems used to process personal data

need to comply with GDPR. In addition, individuals also have

the right to request their personal data as defined in article

15 of the GDPR [12]. Thus, organizations using streaming

systems need to provide even their internal state on request.

Therefore, the ability to query the internal state of a streaming

system strongly facilitates regulation compliance.

Debugging. Currently, debugging stateful streaming topolo-

gies is a daunting process. With state being internal, only

the streaming system’s input and output are observable. With

queryable state, however, it is possible to have a complete view

of this state, or to isolate part of it. This makes debugging

stateful operators easy, as one can access their internal state

just like usual data stored in a database. Furthermore, if there

is also the option of switching between specific versions of the

state, one would also be able to see how the state mutates over

time. This is an invaluable capability for debugging complex

streaming systems.

Simplifying Streaming Topologies. Often developers need

to include new computations on a streaming job for ad-hoc

analytics, auditing, and other use cases. Currently, these ad-

hoc computations are adapted to existing jobs making them

more complex, which also leads to reduced maintainability

and higher resource consumption.

Let us consider the example of a simple streaming job

depicted in Figure 2. The internal state of the job is a counter

and the total sum of all items, which are used to calculate the

average. Now imagine if, besides the average, there is a need to

know the amount of items that have come in so far. A new job

can be created that also takes in the same items, and outputs

the amount of numbers that it received. With queryable state

though it is possible to query the amount of numbers directly

from the state of the existing averaging operator. By querying

the operator’s state, the need for an extra (or more complex)

streaming job is eliminated.

IV. PRELIMINARIES: STATE MANAGEMENT IN STREAMING

This section provides background knowledge on the stream-

ing model assumed in this paper, state management and fault

tolerance fundamentals, and the pertinent role of key-value

stores in stream processing.

Streaming Model. We consider a typical stream processing

model in which stream processing jobs are modeled as a

directed acyclic graph (DAG) of operators [11], [13], [14].

The edges on the DAG represent the data streams and the

vertices represent the operations on the (incoming) data edges.

An output edge points to downstream operator(s). In order to

distribute a streaming job over a cluster, stream processing

systems typically perform data partitioning and deploy one or

more instances of a partitioned operator on each cluster node

(or CPU core) and connect upstream with downstream opera-

tors across nodes when downstream operators are partitioned

by key range.

State Management & Fault Tolerance. In short, the most

common state management approach in stream processing

involves periodic coordinated checkpoints, which are per-

formed when special markers that flow through the topology

of a dataflow graph, instruct the operators to snapshot their

state. Checkpoint markers are a specific instance of punctua-

tions [15], metadata annotations embedded in data streams for

communicating information orderly across the dataflow graph.

The state of operators is typically stored in stable storage in

order to survive node failures. In order to achieve exactly-once

processing guarantees, a marker alignment phase ensures that

operators with multiple input channels will not process inputs

following a marker until all markers are received by all input

channels and the checkpoint is performed. During recovery,

all operators of the system roll back to the latest checkpoint

and start processing input from that point onwards ensuring
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Stream
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Fig. 3: Marker alignment phase on checkpoint for operator

with two input channels. Red squares are checkpoint markers,

circles are records belonging to different checkpoints.

that the processing of each input record will be recorded to

an operator’s state exactly-once.

Figure 3 depicts this process. First, Figure 3a depicts an

operator with two input channels. The top channel is at marker

9, while the bottom channel still needs to process some input

records. The operator will only start taking a snapshot of its

state when all markers arrive, as shown in Figure 3b. After the

snapshot is complete, the operator will forward the marker to

the output channel(s) and continue processing the records from

the input channels, as is shown in Figure 3c. S-QUERY takes

advantage of such a checkpointing mechanism found in many

streaming systems in order to make the stream processor’s

state available for querying.

Key-Value Stores & Relation to Stream Processors. Many

streaming systems, such as Apache Spark [16], Apache

Flink [9], Facebook Puma [17], IBM Streams [13], and

Hazelcast Jet [10], opt for a key-value store as a state backend.

This design decision aligns well with the data-parallel shared-

nothing architecture of modern streaming systems where data

streams are split into a number of partitions based on a key

and are typically processed by an equal number of parallel

instances of each operator. Thus, each operator instance in the

course of its processing maintains the state of a particular data

partition.

In similar spirit, modern key-value (KV) stores such as

Cassandra [18] and DynamoDB [19] implement a distributed

map data structure, comprising a key and value. Like stream

processors partition streams, KV stores partition their key

space on multiple machines with a partitioning function, e.g.,

based on hashing. Consequently, KV stores are a perfect

match for streaming systems’ state backend. Finally, KV stores

typically support a dialect of SQL, which allows external

applications to query the KV store.

V. EXPOSING INTERNAL STATE TO EXTERNAL SYSTEMS

In this section we detail how S-QUERY utilizes a KV store

in order to make the state of a stream operator externally

visible and queryable.

average

snapshot live

count
total

snapshot_average average

key ssid count total
1 8 2 30
1 9 3 45
2 8 1 5
2 9 2 20

key count total
1 3 30
2 2 20

SELECT count, total
FROM average
WHERE key=1

SELECT count, total 
FROM snapshot_average 
WHERE ssid=9 AND key=2

Fig. 4: S-QUERY stream operator state representation for both

live and snapshot state including queries.

A. Storing Operator State in a KV Store

A distinguishing feature of S-QUERY is that it stores both

its live state and its snapshots in a KV store, using the same

partitioning key as the key of the operator holding that state

as seen in Figure 1. This way, instead of performing remote

calls for each change to the operator state that resides in

the KV store, the change remains local, allowing for high

throughput processing of events. The same holds for snap-

shots: each snapshot is first written locally and the KV store

can replicate it according to its internal replication strategy,

typically implementing Paxos [20] or Raft [21]. Again, at first

the snapshots are only written locally speeding up both the

checkpointing mechanism but also the recovery process. If a

node fails, the respective operator can be scheduled on the

node holding that snapshot’s replica.

B. Modeling & Storing State Externally

S-QUERY uses two KV data structures per stateful operator

in the dataflow graph: one for live state, and one for snapshot

state as depicted in Figure 4. It is important to note here that

we assume that the state of an operator is in the form of a map

data structure, i.e., it holds a key and an associated value to it.

Finally, note that the value can be any object (e.g., complex

objects in Java, Python, etc.).

Storing Live State. The schema for storing live state in a

KV data structure is shown in Table I. The key of the table

simply corresponds to the key of the actual operator state and

it is stored along with the corresponding state object, which

becomes the value object in the KV store. Each KV data

structure is named after the operator whose live state it holds.

Finally, the name of a KV data structure is used to address

TABLE I: Live state structure

Key Value
Key State object

TABLE II: Snapshot state structure

Key Value
Key Snapshot ID State object
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SQL queries to the live state of the corresponding operator.

As seen in Figure 4, the operator is called average and

that matches the name of the KV data structure. Note that

if the average operator has multiple instances i.e., it runs

partitioned in multiple nodes, the distributed KV data structure

called average will contain all the KV pairs of the state of

all these operators across the cluster.

Storing Snapshots. The way that snapshot state is stored, can

be seen in Table II. Storing snapshots differs slightly from stor-

ing live state in that the table is now formed by two elements:

the key of the keyed state (determining the partition), and the

snapshot ID. Again the value is the actual state object. This

makes it possible to store different snapshots of the same keyed

state independently. This is useful for the cases when different

versions of the state need to be kept, either for auditing reasons

or for historical queries. The name of the table holding the

snapshot state is -by convention- snapshot_<operator
name>, where <operator name> is the name of the

stateful operator in the DAG for which the snapshot state

is stored. For example, if the operator name is stateful
map, then the table containing the live state is also identified

by statefulmap, and the table storing the snapshot state

is called snapshot_statefulmap. Using this mechanism

each stateful stream operator has its own live/snapshot state

KV data structure, which stores the complete state of the

operator that is distributed across its partitioned instances in

different nodes. In addition, it is also possible in S-QUERY

to enable/disable the live/snapshot state mechanism. In case

only snapshot state is needed, the live state can be disabled

for better performance.

C. Querying Live & Snapshot State

The KV data structures storing the state can now serve

as the connection point between the streaming system and

applications or other external systems that want to query the

state of a stream processing job. As seen in Figure 4, an SQL

query can be used to query the state of a running operator, or

the state at different moments in time captured by snapshots

during the lifetime of the streaming job.

VI. S-QUERY IN STREAMING SYSTEMS

As we briefly mentioned in Section II, the ideas behind

S-QUERY can be implemented in different systems given

that they satisfy two main requirements. The first is that the

host streaming system offers a checkpointing mechanism that

produces consistent snapshots and the second is a queryable

state backend. In this section we detail how this applies to

different streaming systems and state-store combinations and

present our implementation in detail.

Many modern stream processing systems, including Apache

Flink [9], Apache Spark [16], Jet [10], and IBM Streams [13]

have converged to a variant of Chandy-Lamport’s seminal

distributed snapshots protocol [22], which has been adapted

to stream processing [3], [11] leveraging also transactional

queues, such as Apache Kafka [23]. At the same time

stream processors use a state storage backend, typically

a Log-Structured Merge Tree [24] implementation such as

RocksDB [25] or FASTER [26]. In order to query the state,

S-QUERY requires a query engine that can query both the

snapshot state and the live state of operators. It is S-QUERY’s

job to provide safe, queryable access to the two types of state.

In the following, we first detail how S-QUERY achieves this

with Hazelcast Jet and IMDG, and how a similar implemen-

tation would work with Apache Flink and Cassandra.

A. S-QUERY on Hazelcast Jet with IMDG

We implement S-QUERY on top of Hazelcast Jet [10]

since Jet fulfills the requirements of S-QUERY: it features a

checkpoint-based state management approach and a KV state

backend with an SQL interface,2 Hazelcast’s distributed in-

memory data grid (IMDG). Jet leverages the IMDG as a low-

latency backend for storing state snapshots.

S-QUERY enables external queries to the distributed state of

Jet operators by exposing the live and snapshot state of each

operator individually as first class key-value structures in the

KV store. Table I and Table II depict the key-value structures

storing an operator’s live state and snapshot state respectively.

Specifically, S-QUERY propagates updates on the live state of

each operator to the designated data structure (Table I) in the

KV store and performs access synchronization between live

state updates and query processing.

In addition, S-QUERY accommodates snapshot state in the

KV store in a queryable way by exposing the key-value pairs

contained in the snapshot. Formerly, snapshot state in the KV

store was a mere blob structure. Furthermore, S-QUERY en-

sures that that the latest snapshot is atomically acknowledged

across the distributed system in order to guarantee that a query

is answered from the most recent snapshot at the time the

query is issued.

Snapshot Versions. By default, S-QUERY keeps the two most

recent state snapshot versions, a design that results in constant

memory usage and ensures that there is at least one version

available for querying. A new snapshot overwrites the oldest

of the two snapshots. If maintaining more versions of the

snapshot state is important to an application, S-QUERY can be

configured to preserve many versions. In this case S-QUERY

accommodates snapshots by version so that a result set can

integrate the state of multiple snapshot versions with explicit

mention of each key-value pair’s snapshot version.

Incremental Snapshots. As an optimization, S-QUERY per-

forms incremental snapshots and supports queries to them

in order to relieve the state backend from holding complete

state snapshots. Instead, after each checkpoint only the latest

changes are recorded while S-QUERY retains versions of the

incremental snapshots and executes queries on them starting

from the latest snapshot of interest, which contains the most

recent state updates for a set of keys, and going backwards

to supplement the query results with the latest state updates

for other keys. A downside of incremental snapshots is that as

they increase, the overhead of this differential query process

2https://docs.hazelcast.com/imdg/4.2/sql/expressions.html
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increases as well. For this reason, S-QUERY prunes obsolete

states, thereby providing for better query performance and less

memory/disk space allocated to snapshots.
Finally, S-QUERY extends the SQL interface exposed by

Hazelcast IMDG with join operations, thereby enriching sig-

nificantly the expressiveness of queries that can be conveyed.

B. S-QUERY on Apache Flink and Cassandra
Although S-QUERY is implemented in Jet and IMDG, the

very same principles can also be implemented with Apache

Flink and an external distributed database, such as Cassandra.

Normally, Apache Flink’s operators use RocksDB as their state

backend, and each checkpoint is stored on stable storage (e.g.,

HDFS or blob store such as AWS S3). If RocksDB, which is

not distributed, were to be used, a distributed query engine that

can perform joins on the local states of each of the partitioned

streaming operators would also be required. On the other hand,

RocksDB supports incremental snapshots out of the box and

handles compaction of states transparently and optimally. For

instance, level-based compaction bounds read amplification

and would reduce the search time for historic changes per

key, which now limits the performance of S-QUERY. With

Cassandra S-QUERY can match Cassandra’s key-range par-

titioning to the operator key-range partitioning in Flink like

with Jet and IMDG. Contrary to IMDG, since Cassandra is

disk-persistent, it is cheap to keep multiple snapshots at the

same time. Finally, an alternative approach would be to import

live and snapshot state updates in a database like MySQL.

VII. ISOLATION LEVELS

S-QUERY exposes the internal state of a distributed stream-

ing system to external applications. The offered capabilities

of querying either the live or the snapshot state of the system

provide diverse performance characteristics and isolation and

consistency guarantees. In this section, we discuss the different

isolation levels [27]–[29] and elaborate on the isolation levels

that S-QUERY offers as well as how S-QUERY could achieve

higher isolation levels.

A. Use-cases for different isolation levels
The ability to cover different isolation levels in S-QUERY

opens the road for different use-cases. For instance, for de-

bugging purposes, one may want to read uncommitted state,

as observed in the state of the system while it is running.

As we detail in the next subsection, this can be covered by

the “read uncommitted” isolation level. Now, let us consider

the case where an operator stores the state of a shopping cart

checkout function that needs to update the inventory/stock of

items in an online shop, while another operator holds the state

of the current stock. In that case, one would want to wait until

the markers of the system’s checkpointing mechanism have

traversed the whole topology. In that case, the shopping cart

would only be observed to be in the “checked out” state, only

after the stock has been updated. This would be the “read

committed” isolation level. In the following we detail how

different isolation levels are implemented in S-QUERY and

what that entails for the performance of the system.

Snapshot (id=1)
Counter: 4

Count operator
Counter: 4

(a) Initial state is
4 and snapshot is
made with id 1

Query
Counter: 5

Count operator
Counter: 5

Snapshot (id=1)
Counter: 4

(b) Live state is up-
dated to 5, query re-
sult is 5

Query
Counter: 5

Count operator
Counter: 4

Snapshot (id=1)
Counter: 4

(c) Snapshot 1 re-
stored, query result
is a dirty read

Fig. 5: Live state isolation level example.

B. Isolation Levels in S-QUERY

Read uncommitted. The most relaxed isolation level in the

database literature is read uncommitted, which allows uncom-

mitted state updates to be observed by concurrently executing

queries. This is true for updates and queries performed on

the live state by S-QUERY, since a failure will force the

streaming system to roll back its state to the latest checkpoint

and reprocess input from that point onward. Then queries on

the live state issued while the system is recovering will observe

past state compared to the observed state prior to failure.

Notably, in case of processing nondeterministic computations,

the state that evolves after fault recovery can also diverge from

the state that existed prior to failure. To avoid this effect,

nondeterministic computations can be captured and handled

in a way that produces deterministic results [11], [30], [31].

In summary, live state updates are considered uncommitted

until the next checkpoint takes effect and, consequently, live

state queries read dirty data resulting in the read uncommitted

isolation level.

Take, for instance, the following example where the state

of a stream processor that counts incoming records is 4. At

that point a checkpoint is taken that creates a snapshot with id

1 (Figure 5a). Following the checkpoint the state becomes 5.

Then, a query on the live state returns 5 (Figure 5b). However,

before the state could be committed to a new snapshot, the job

fails. Now, according to the query, the state is still 5, but in

reality the state is 4 after the new processor recovered its state

from the latest snapshot (Figure 5c).

Read committed. At the read committed isolation level

concurrently executing state updates and queries will only

read committed (i.e., checkpointed) values. S-QUERY could

raise the isolation level it offers for live state queries to read

committed by providing a high availability setup using active

replication [32] where hot standby operators maintain a replica

of the state by processing synchronously the same updates as

the primary operator. This setup ensures that if the primary

operator fails, the standby can substitute it immediately and

continue to process updates and queries moving forward from

the point of failure. A roll back of the state will never be
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Snapshot (id=1)
Counter: 2

Count operator
Counter: 2

(a) Initial state is
2 and snapshot is
made with id 1

Snapshot (id=1)
Counter: 2

Count operator
Counter: 3

Query
snapshot 1
Counter: 2

(b) State is updated
to 3, query result for
snapshot 1 is 2

Snapshot (id=1)
Counter: 2

Count operator
Counter: 2

Query
snapshot 1
Counter: 2

(c) Snapshot 1 re-
stored, query result
is still correct

Fig. 6: Snapshot state isolation level example.

required. In fact, standby operators can also process queries,

thereby helping to balance the query load. Combining the

high availability setup with S-QUERY’s key-level locking

in order to perform an update, reliably results in the read

committed isolation level. Another approach would be to use

a transactional state backend where every update to the state

is persisted reliably like Google’s Millwheel [33] does with

Spanner [34]. Interestingly, the read committed isolation level

is offered by S-QUERY for live state queries if we assume no

failures. This is because if the system does not fail, there is

no event that can cause state updates to become unstable and

S-QUERY protects state updates from read actions via key-

level locking for the duration of access to each key-value pair.

Repeatable read. The repeatable read isolation level entails

that all of the state that is read or written in the course

of an update or query is completely protected from read,

update, and delete actions on the same state attempted by

other transactions. To abide to the repeatable read isolation

level for live state queries, S-QUERY could hold the locks for

the whole duration of query processing instead of releasing the

locks after each individual read or write action to a key-value

pair. On the downside, this design decision would severely

affect both the streaming system’s performance, as well as the

performance of the state querying.

Snapshot isolation guarantees that each transaction operates

on a snapshot of the state that is completely isolated from

operations carried out by other transactions. It permits con-

current operations on different snapshots of the state thereby

offering better performance at the working stage of transac-

tional processing. However, in case the updates performed by a

transaction intersect with updates made by another transaction

on the same state, conflicts arise at commit time, which cause

the transaction to be aborted. S-QUERY’s snapshot state query

configuration guarantees snapshot isolation since queries are

executed on the latest committed snapshot of the state and they

are unaffected by uncommitted changes to the live state. When

a new snapshot is created it becomes atomically available

to the distributed system, and is immediately used in query

processing thereby evading phantom reads, which would be

Fig. 7: Traditional caching architecture

possible if the snapshot update process was not atomic.

Serializable isolation. The handling of write conflicts is what

separates snapshot isolation from the serializable isolation

level where the workings of transactions produce a schedule

that is always equivalent to a serial schedule of execution.

Serializability is enforced by using locks, including range

locks on selected data, or multi-version concurrency control.

However, in S-QUERY there is no notion of concurrent updates

that can create write conflicts neither in live state operations

nor in the way that snapshot state is created. Live state

updates are performed by parallel instances of single-threaded

operators in disjoint state partitions. This is a fundamental

architecture decision adopted by many streaming systems like

Flink and Jet. Thus, state updates are serialized by design and

concurrent updates on the same state are impossible. Finally,

a state snapshot is produced periodically by crystallizing

the distributed state of the systems’ operators into a single

snapshot. By deduction snapshot state queries in S-QUERY

provide serializable isolation.

Let us consider an example that highlights the aforemen-

tioned situation. At some point the state of a stream operator

is 2. Then a snapshot with id 1 is created (Figure 6a). After the

checkpoint, the state is updated to 3. A query to the snapshot

state is issued with the latest snapshot id, which is 1, so the

result will be 2 (Figure 6b). Even if the stream operator were

to fail and recover, the query result will always be 2 as the

query specifically targets snapshot 1 (Figure 6c).

VIII. USE CASE: Q COMMERCE IN DELIVERY HERO

Delivery Hero SE is a global company enabling Q-

commerce in more than 50 countries. Q-commerce is an

advancement of e-commerce offering fast, on-demand delivery

with innovations at the last mile of delivery. To serve its

customers, the company relies on a sophisticated large-scale

software infrastructure where fast access to consistent data is

of outmost importance. Therefore, databases hosting daily data

about points of sales, orders, purchases, and rider locations are

supported by caches in order to respond fast to user requests
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sent via web browsers and mobile applications according to

the architecture in Figure 7.

Caching as a pattern is used in application development to

avoid the load of complex operations by storing results from

expensive database queries to intermediate memory-based

layers like Redis [35] or Memcache [36]. With this common

pattern, application programmers can develop scalable and

low-latency web services. At the same time, however, they

are forced to adopt the following issues that arise with it.

• The engineering team has to implement the caching

mechanism, dealing with sophisticated issues, such as

throttling and invalidation, since caching is implemented

at the application layer.

• A time-to-live is a common functional requirement for

each data source that is being cached, resulting to stale

data for a period of time.

• Out-of-the-box systems such as Redis, do not support

queries to the data thereby pushing the manipulation to

the application level.

The aforementioned issues increase the complexity of the

services and rely on the expertise of the engineering team to

implement them properly for use in production. In addition,

the caching pattern promotes duplication of development effort

across the organization, since each engineering team should

develop its own caching solution.

Instead S-QUERY can substitute caching along with its

inefficiencies leading to a more scalable and efficient system as

depicted in Figure 1. In this paper we demonstrate S-QUERY’s

effectiveness and efficiency by applying it to a real workload

composed of order delivery events ingested by a Jet job,

which accumulates state for rider locations, order statuses, and

order information in each of the job’s operators respectively.

We use four real queries to evaluate the expressiveness and

performance of S-QUERY, Query 1, Query 2, Query 3 and

Query 4. Each of the queries captures the need for a real-time

ad-hoc view on the state of orders in the system that can guide

on-the-spot business decisions and improve customer service.

The data stream workload consists of the following events.

Rider location includes the coordinates of the delivery rider

with latest update timestamp.

Order status contains the state of an order, that is from

ORDER_RECEIVED to PICKED UP to DELIVERED (and

several other states omitted for space savings). It also includes

a deadline when it should have transitioned to the next state.

Order info is a one-time event per order containing general

information about an order such as customer location, vendor

location, and vendor category.

IX. EVALUATION

We evaluate S-QUERY on a) a real query workload captur-

ing real-time views of actual, anonymized, online Q-commerce

order and delivery data provided by Delivery Hero SE and b)

NEXMark [37], the de facto benchmark in stream processing.

The real anonymized data provided by Delivery Hero SE have

been enriched with data generated based on the real data in

SELECT COUNT(*), deliveryZone FROM
"snapshot_orderinfo" JOIN "snapshot_orderstate"
USING(partitionKey) WHERE
(orderState='VENDOR_ACCEPTED' AND
lateTimestamp<LOCALTIMESTAMP) GROUP BY
deliveryZone;

↪→
↪→
↪→
↪→
↪→

Query 1: How many orders are late (in preparation by the

vendor for too long) per area?

SELECT COUNT(*), vendorCategory FROM
"snapshot_orderinfo" JOIN "snapshot_orderstate"
USING(partitionKey) WHERE (orderState='NOTIFIED'
OR orderState='ACCEPTED') GROUP BY
vendorCategory;

↪→
↪→
↪→
↪→

Query 2: How many deliveries are ready for pickup per shop

category?

order to achieve the throughput required for the duration and

scale of the experiments. We focus on four different dimen-

sions of S-QUERY’s operation. First, we measure S-QUERY’s

overhead to Jet in terms of latency (Section IX-B. Second, we

analyze the overhead of S-QUERY to Jet’s snapshot mecha-

nism with and without query execution(Section IX-C). Third,

we present S-QUERY’s performance using four real queries

on a workload of online order and delivery events that is

central to the everyday business of Delivery Hero SE (Sec-

tion IX-D). We also compare S-QUERY’s query performance

against TSpoon [8]. We chose TSpoon because it was the

only approach that could run part of our target workload in a

distributed setting with isolation guarantees.

Finally, we study the scalability of S-QUERY by mea-

suring the system’s throughput with different cluster sizes

(Section IX-E).

A. Experimental Setup

Two clusters of 7 nodes in Amazon AWS, one of them

provided by Delivery Hero SE, were used in the experiments.

The hardware specification of the cluster nodes used in the

experiments is detailed in Table III. Per cluster node, 12 CPUs

are used for processing data in Jet while the other 4 are used

for garbage collection. The same configuration was chosen by

Jet’s development team for evaluating Jet [10]. In this work,

the 4 CPUs used for garbage collection are also used to process

S-QUERY queries.

SELECT COUNT(*), deliveryZone FROM
"snapshot_orderinfo" JOIN "snapshot_orderstate"
USING(partitionKey) WHERE
(orderState='VENDOR_ACCEPTED') GROUP BY
deliveryZone;

↪→
↪→
↪→
↪→

Query 3: How many deliveries are being prepared per area?

SELECT COUNT(*), deliveryZone FROM
"snapshot_orderinfo" JOIN "snapshot_orderstate"
USING(partitionKey) WHERE orderState='PICKED_UP'
OR orderState='LEFT_PICKUP' OR
orderState='NEAR_CUSTOMER' GROUP BY
deliveryZone;

↪→
↪→
↪→
↪→
↪→

Query 4: How many deliveries are in transit per area?
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TABLE III: c5.4xlarge node properties

CPU 16 vCPUs
Memory 32 GB
Network 10 Gbit/s
OS Ubuntu 20.04.2 LTS
Java AdoptOpenJDK (build 15.0.2+7)

Overhead experiments measure the latency from source to

sink, that is, how long it takes for the effects of an input

record to reach a sink. The experiments are executed on a

three-node cluster with a warmup period of 20 seconds and

a measurement period of 240 seconds. The streaming job

executed by Jet in the overhead experiments is query 6 of

Apache Beam’s Nexmark benchmark implementation.34 The

job computes the average selling price for each seller in an

auction from a bid and auction stream. It accumulates state

for 10K auction sellers and checkpoints state snapshots every

second. The average selling price is taken over the last 10

auctions per seller.

The snapshot performance experiments are performed on

the Delivery Hero SE workload (Section VIII) demonstrating

that S-QUERY is capable of supporting real world applications.

For the snapshot experiments, 1K, 10K and 100K unique keys,

representing the number of orders in Jet’s state, provide a

variable and significant workload for the snapshot management

system, with a snapshot interval of 1 second. The snapshot

latency is measured at three points in the node that controls the

2PC process, before phase 1 begins, after phase 1 completes,

and after phase 2 completes. Two concurrent threads run

queries on the state in parallel at full speed to create a

significant workload on the system. Each configuration was

run for at least 20 minutes, with the first minute used as a

warmup period.

For the query experiments there are two setups, the SQL

query experiment, which shares the same setup as the snapshot

performance experiment and the direct object access exper-

iment, which uses a 3 node cluster totalling 48 vCPUs to

compare to related work, TSpoon [8].

Finally, the scalability experiment is performed on NEX-

Mark query 6 while varying the cluster size between 3, 5, and

7 nodes. The number of unique keys that represent the number

of auctions is 10K, same as in the overhead experiments. In

parallel to the job execution of query 6, S-QUERY is used to

input and process 10 SQL queries per second that select the

list of the 10 latest auction prices.

B. Overhead Experiments

The experiment results for query 6 of NEXMark are shown

in Figure 8. The experiment consists of four configurations,

a) S-QUERY with both live and snapshot state enabled, b)

S-QUERY with only live state enabled, c) S-QUERY with only

snapshot state enabled, and d) Jet. Live state incurs significant

overhead, which is to be expected, since it amounts to commu-

nicating every single state change that happens at each operator

3https://beam.apache.org/documentation/sdks/java/testing/nexmark/
4https://github.com/hazelcast/big-data-benchmark
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Fig. 8: Latency distribution of S-QUERY’s live and snapshot

state configurations vs Jet for NEXMark query 6 in 3-node

cluster at 1M events/s. X-axis shows percentiles on an inverted

log scale; y-axis shows the latency in milliseconds.
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Fig. 9: Latency distribution of S-QUERY vs Jet on NEXMark

query 6 in 3-node cluster at 1M, 5M, 9M events/s. X-axis

shows percentiles on an inverted log scale; y-axis shows the

latency in milliseconds.

of the system to the respective live state representation in

IMDG. The latency distribution of S-QUERY’s snapshot state

configuration is almost identical to Jet’s configuration. For

the rest of the experiments, we focus our evaluation on the

snapshot state configuration.

Figure 9 compares S-QUERY’s snapshot state configuration

to Jet at three input throughput levels, 1M/5M/9M events/s.

Naturally, higher throughput results in higher latency. At 1M

events/s throughput, S-QUERY’s overhead is unnoticeable.

For throughput at 5M events/s, S-QUERY achieves virtu-

ally equal latency as Jet until around the 90th percentile.

In higher percentiles S-QUERY becomes marginally slower

by 4ms at most. At 9M events/s throughput, S-QUERY’s

overhead is minor reaching up to 8ms more latency at the

99.99th percentile. In conclusion, S-QUERY achieves similar

low latency performance as Jet demonstrating that the state

snapshot configuration of S-QUERY has very little impact on

the system’s latency and throughput.
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Fig. 10: Latency distribution of snapshot mechanism between

S-QUERY and Jet for 1K/10K/100K unique keys across a 7

node cluster. X-axis shows the percentiles on an inverted log

scale; y-axis shows the latency in milliseconds.

C. Effect of Snapshotting Mechanism on System Performance

Because S-QUERY introduces changes to the snapshot cre-

ation process of Jet, it is important to measure the effect of

the snapshotting mechanism on the system’s performance with

and without query execution on the state. For each of the

two configurations we compare the time it takes to commit

a snapshot with exactly-once processing guarantees between

S-QUERY and Jet considering different snapshot state sizes.

The measured snapshot latency determines how much time an

operator spends in processing records as opposed to taking

snapshots.

S-QUERY Operation Without Queries. Figure 10 shows

the snapshot creation time for both S-QUERY and Jet when

varying the number of unique keys in the snapshot state.

S-QUERY achieves virtually equal latency performance to

Jet for 1K keys and is only 2-4ms slower than Jet for 10K

keys throughout the distribution. Even for 100K keys of state,

S-QUERY is merely 19-27ms slower than Jet. While the

difference might seem considerable, the overhead would be

unnoticeable to most applications. To further illustrate the

impact, the snapshot interval is set at 1 second, which is

already very low. The 50th percentile of the worst case, i.e.

100K keys, has a snapshot latency of 44ms for S-QUERY

and 23ms for Jet. The implication is that S-QUERY would

support a mere 2% lower sustainable throughput than Jet

at the worst case, i.e. for 100K unique keys and 1 second

snapshot interval. For a smaller number of keys the difference

is almost negligible. Consequently, S-QUERY’s impact on the

performance of the streaming system is minimal.

Query Execution. The execution of S-QUERY queries

can affect the snapshot creation mechanism. We measure the

latency distribution of the snapshot mechanism as before with

and without queries being executed on the snapshot state.

For the experiments we use Query 1, which is a relatively

expensive query including both a JOIN and GROUP BY

clause. Figure 11 shows the impact of queries on the snapshot
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Fig. 11: Latency distribution of snapshot mechanism on 7 node

cluster with and without S-QUERY queries for different num-

ber of unique keys. X-axis shows percentiles on an inverted

log scale; y-axis shows the latency in milliseconds.
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Fig. 12: Latency distribution of incremental/full snapshots on

7 node cluster with 100k unique keys for different snapshot

delta ratios. x-axis shows percentiles on an inverted log scale,

y-axis shows the latency in milliseconds.

2PC latency. For 1K and 10K keys the impact is negligible

until the 70th percentile. For 10K keys a small difference

appears from the 80th percentile onwards, which increases up

to 20ms, while for 100k there is a similar difference throughout

the distribution. In general, the impact is up to 14ms across

all unique key configurations. Notably, the time it takes to

commit a snapshot is much smaller than the snapshot interval

itself. Thus, consecutive queries from multiple threads do not

affect the performance of a streaming job significantly.

Incremental snapshots. Figure 12 presents the perfor-

mance of creating incremental snapshots of varying size by

tweaking the amount of changes introduced. As expected, the

performance of incremental snapshots depends significantly

on the snapshot change/delta ratio: for a modest delta ratio,

incremental snapshots are considerably more efficient, but

when the delta ratio is high they incur non-trivial overhead

compared to full snapshots due to the housekeeping involved.
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Fig. 13: Query execution latencies on a 7 node cluster for

incremental and full snapshots with 1K/10K/100K unique

keys. X-axis shows percentiles on inverted log scale; y-axis

shows latency in milliseconds.

D. Query Performance

We measure the query execution performance of S-QUERY

through the SQL and direct object interfaces.

SQL Interface. In Figure 13 we measure query perfor-

mance for varying state sizes in terms of latency, which

is quantified as the time it takes to execute a query and

retrieve the complete result set. We use Query 1 in this

experiment. As expected, the query execution latency increases

with larger state size as a query has to process more state

entries. Surprisingly, the performance of queries executed on

incremental snapshots is identical to that of full snapshots for

1K and 10K unique keys even though S-QUERY has to join all

the incremental snapshots involved. That said, for 100K unique

keys, queries on incremental snapshots manifest almost five

times additional latency. In summary, incremental snapshots

present a tradeoff between savings in snapshot state size and

overhead in query execution, and their use should be judged

based on application requirements and the amount of state

changes introduced across keys.

Finally, the latency distributions remain relatively flat even

in the higher percentiles providing the opportunity for reliable

SLA agreements. The snapshot ID retrieval times (not shown

in the plot) have a median of around 1-2ms and go up to 40ms.

They increase proportionally with state size, but this can also

be attributed to the increased system load owed to the larger

state size. The performance of the queries is reasonable given

that latency is measured end-to-end, from query submission

to result reception, including network delays. To illustrate, the

query on 100K keys works on a dataset of size 22.4MB. Over

a 10 Gbit/s network connection it takes 18ms at best to execute

the query without taking into account network overhead.

Direct Object Interface. We compare the performance of

S-QUERY to TSpoon [8], a system offering simple state

queries. S-QUERY queries the rider location operator from

the Delivery Hero SE use case from Section VIII, whose state

consists of two doubles (coordinates) and the time it was last
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Fig. 14: Throughput of direct object queries between

S-QUERY and TSpoon. X-axis shows the number of keys

selected in a query at log scale; y-axis shows the throughput

measured in queries/s at log scale.

updated. An external query from the direct object interface

retrieves the total state of the rider location operator. The

experiment is executed on a 3-node cluster (48 vCPUs). On

a fourth identical node, 180 threads are used to send queries

to the 3-node cluster in parallel. On the other hand, TSpoon

used a double value denoting an account balance as state in

their experiment [8] which was performed on a cluster of 50

vCPUs. Figure 14 plots the query throughput of direct object

access queries when selecting 1, 10, 100, and 1000 keys out

of 100K unique keys for both S-QUERY and TSpoon.

The plot suggests a power law trendline, which fits the

data points with an R2 of 0.993 and 0.97, indicating that

the query throughput follows a power law distribution indeed.

A power law distribution is reasonable since selecting more

keys takes proportional time thereby resulting in proportionally

less throughput. Compared to the equivalent experiment from

TSpoon [8], S-QUERY outperforms TSpoon by a factor of two

when querying 1 key while performing similarly for the other

key selections even though S-QUERY is slightly disadvantaged

in terms of state size per key and number of vCPUs available

for query processing.

E. Scalability

Since modern streaming systems are typically horizontally

scalable, it is important to test S-QUERY’s scalability. For

this purpose, we identify the sustainable throughput for each

experiment configuration, which is the throughput at which

the system achieves the highest sustainable performance with

steady latency. We define different experiment configurations

by varying the degree of parallelism and the snapshot interval.

The snapshot interval affects the amount of time available for

processing and, consequently, S-QUERY’s scalability. For the

experiment we use query 6 of the NEXMark benchmark as the

streaming job and execute 10 JOIN queries per second on the

state of the job’s operators. This setting simulates a realistic

query workload.

The results of the scalability experiment are shown in

Figure 15. The existing horizontal scalability of Jet [10] is
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Fig. 15: Scalability experiment results, DOP (degrees of paral-

lelism) on x-axis, max. throughput on left y-axis, normalized

throughput on right y-axis. Bars from left to right correspond

to 0.5s, 1s, and 2s snapshot intervals respectively.

clearly replicated in our experiment. The R2 of the trendlines

are always higher than 0.96, which means that the sustainable

throughput follows a linear relationship with the degree of par-

allelism conveyed as number of Jet threads. Thus, S-QUERY

is horizontally scalable.

The experiment also shows that the snapshot interval has

a small but measurable effect on the sustainable throughput.

The reason for this is that a smaller snapshot interval results

in more time being spent on taking a state snapshot vs. actual

processing, which in turn results in decreased sustainable

throughput.

X. RELATED WORK

Existing pieces of work focus on state access across oper-

ators within a stream processing system, often referred to as

transactional stream processing [8], [38]–[42], while others

support state queries from external sources [8], [9], [14],

[41], [42]. We compare and contrast these pieces of work to

S-QUERY.

A. Transactional Stream Processing

The Unified Transaction Model (UTM) [38] is one of

the first systems supporting transactions in a stateful stream

processing system. Using a transaction manager with a strict

2-phase locking mechanism, it provides in-order access to stor-

age resources and rollback functionality, resulting in consistent

histories. S-Store [39] supports transactional stream processing

by controlling shared state access inside the system with ACID

guarantees and exactly-once processing. In contrast, S-QUERY

focuses on exposing the live uncommitted state and past

consistent state with serializable isolation of a shared-nothing

distributed streaming system to external applications. In such

systems, shared state access is only possible between live state

updates and queries. Transactional streaming workflows over

shared state can be a lot more complex and require a full-

blown transactional database engine to support. Thus, the clear

distinction of use cases drives also a clear separation of con-

cerns. Finally, TStream [40] improves S-Store by dynamically

restructuring transactions into operation chains, which can be

processed in parallel eliminating lock contention [40].

B. Queryable State

TSpoon [8], FlowDB [41], Apache Flink [9], and Apache

Samza [14] provide key-value lookup queries to the state of

one or more operators of a distributed streming system pro-

grammatically while PipeFabric [42] provides ad-hoc queries

on the live state of a single-node system.

Queries in TSpoon [8], which is based on FlowDB [41],

are treated as read-only transactions. They access transactional

parts of the dataflow graph following a transaction commit or

abort ensuring sequential execution. Apache Flink [9] provides

a simple key-based API for state queries where state has to be

explicitly defined as queryable in the code and queries need to

specify data types upfront. No synchronization or consistency

guarantee is provided and queries may unexpectedly fail.

Apache Samza [14] allows streaming jobs to access the state

of other jobs using the programmatic Table API in order to

enrich streams especially via joins. The Table API supports an

in-memory store, RocksDB, and other custom remote tables.

Remote tables can allow external applications to query the

state programmatically. Finally, PipeFabric [42] uses multi-

version concurrency control that guarantees snapshot isolation

using commit timestamps for read and write operations.

S-QUERY exposes safe access to the live state and consistent

access to past states of a distributed streaming system in a way

that higher level query interfaces, such as SQL, can trans-

parently leverage to provide rich ad-hoc queries to external

applications. In addition, S-QUERY optimizes snapshot sizes

via incremental snapshot support and the access path to the

state via co-partitioning of the compute and state layers.

XI. CONCLUSIONS

In this paper we present S-QUERY, a novel approach sup-

porting queries to the distributed state of a stream processing

system. S-QUERY is able to query both the live and the snap-

shot state of a streaming system providing complementary iso-

lation levels, including serializable isolation, and performance

characteristics. We evaluate the performance of S-QUERY on

the NEXMark benchmark as well as on a real workload from

Delivery Hero SE, a global company offering Q-commerce

services. We find that S-QUERY adds little overhead to a

streaming system when querying the snapshot state, it is

horizontally scalable, and is able to perform tens to thousands

of queries per second depending on query selectivity. Most

importantly, S-QUERY paves the way for novel capabilities

by substituting caching layers and intermediate databases

commonly used by applications. It also introduces new use

cases in the streaming domain, such as auditing and advanced

debugging.
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