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Abstract. In this paper we consider the train unit shunting problem extended with service
task scheduling. This problem originates from Dutch Railways, which is the main railway
operator in the Netherlands. Its urgency stems from the upcoming expansion of the rolling
stock fleet needed to handle the ever-increasing number of passengers. The problem consists
of matching train units arriving on a shunting yard to departing trains, scheduling service
tasks such as cleaning and maintenance on the available resources, and parking the trains
on the available tracks such that the shunting yard can operate conflict-free. These different
aspects lead to a computationally extremely difficult problem, which combines several well-
known NP-hard problems. In this paper, we present the first solution method covering all
aspects of the shunting and scheduling problem.We describe a partial order schedule repre-
sentation that captures the full problem, andwe present a local search algorithm that utilizes
the partial ordering. The proposed solution method is compared with an existing mixed
integer linear program in a computational study on realistic instances provided by Dutch
Railways. We show that our local search algorithm is the first method to solve real-world
problem instances of the complete shunting and scheduling problem. It even outperforms
current algorithms when the train unit shunting problem is considered in isolation, that is,
without service tasks. Although our method was developed for the case of the Dutch
Railways, it is applicable to any shunting yard or service location, irrespective of its layout,
that uses self-propelling train units and that does not have to handle passing trains.

Funding: This research was funded by a grant from Dutch Railways.

Keywords: shunting • local search • scheduling

1. Introduction
The Nederlandse Spoorwegen (NS), or Dutch Rail-
ways, is the largest passenger railway operator in the
Netherlands. The number of passengers on the Dutch
railway network typically reaches its peak in the
morning and evening. During these rush hours, most
of the rolling stock of NS is on the way to accommo-
date the flux of commuters. Outside the peak hours,
fewer trains are needed to serve all the passengers.
The resulting surplus of rolling stock is parked off the
main railway network at shunting yards such as the
example shown in Figure 1.

Due to the proximity of shunting yards in the
Netherlands to major stations, located in urban areas,
their size, and thus their parking capacity, is limited,
reaching occupancies of up to 90%. Dense shunting
yard layouts are used to exploit the available space
efficiently, resulting in highly constrained train move-
ments on the infrastructure.

The process of operating a shunting yard is called
shunting and has the following three components:
matching, parking, and routing. In the matching part,

we have to assign arriving train units to departing
trains such that the required train composition—an or-
dered sequence of train unit types—is satisfied; here it
does not matter which train unit we use, as long as it
is of the correct type. The problem of finding a feasible
shunting plan for the combined parking, routing, and
matching problem, in which every train departs on
time from the shunting yard, is commonly known as
the train unit shunting problem (TUSP).

While solving the shunting problem is in itself al-
ready a considerable challenge (Lentink et al. (2006)),
it is even more difficult for shunting yards that pro-
vide additional services. To achieve high passenger
satisfaction, regular maintenance and cleaning of
trains is crucial. However, due to the dense timetable
and the high utilization of both railway lines and roll-
ing stock, NS cannot afford to take trains out of ser-
vice frequently. Therefore, smaller service activities,
such as cleaning the interior, washing, and mainte-
nance inspections, are carried out during off-peak
breaks of the trains. This is done at specialized shunt-
ing yards, called service sites. The service activities are
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constrained by the availability of resources, such as
maintenance crews or cleaning installations, and have
to be completed before the train departs from the ser-
vice site. Moreover, they have to take place at specific
locations at the service site, which requires additional
shunting moves. Shunting plans for service sites have
to include a feasible service activity schedule, detail-
ing for each service task when, and by which resource
it will be processed. We will refer to the resulting
planning problem as the train unit shunting problem
with service scheduling (TUSPwSS).

The objective in the TUSPwSS is to find a feasible
solution, which is a shunting and service schedule
that can be executed as planned without violating any
physical or safety constraints on the railway yard. In
this paper, we assume that the input to the TUSPwSS
is deterministic. That is, all incoming trains will arrive
on schedule and there is no uncertainty in the dura-
tions of service tasks and train movements.

Constructing a conflict-free shunting and service
schedule by hand is a time-consuming task, even for
the experienced planners at NS. To handle the increas-
ing number of passengers, the fleet of rolling stock of
NS will be extended in the coming years. This makes
this task even more complicated. Therefore, automat-
ed decision support tools need to be developed to
help the human planners cope with the complex plan-
ning and scheduling problems at the service sites.

From a computational point of view, finding feasi-
ble solutions for the TUSPwSS is an extremely difficult
problem. It combines several well-known NP-hard
problems. The service task scheduling can be viewed
as an open shop scheduling problem with machine
flexibility (multiple identical resources), buffer and
blocking constraints (shunting), and release dates and
deadlines (based on the timetable). To determine
whether all trains can be parked, a bin packing prob-
lem has to be solved. Furthermore, a parked train is al-
lowed to be reallocated to a different track if, for exam-
ple, it is blocking another train’s movement. Hence, the

routing in the shunting plan strongly resembles sliding
block puzzles such as the rush hour problem (see Flake
and Baum 2002). Mathematical programming techni-
ques have been thoroughly investigated for the basic
shunting problem (see, e.g., Lentink et al. 2006) with
varying success, but typically do not generalize well to
the resource-constrained scheduling problems that we
have here because of the planning of washing and
cleaning; furthermore, these cannot deal with the addi-
tion of relocating parked trains. Kamenga et al. (2019)
recently developed a mathematical programming for-
mulation for the integrated version of the parking and
maintenance problem, which results in a huge ILP
even for small instances.

As challenging as these individual problems are,
the algorithmic complexity of constructing shunting
and service plans arises mainly from the strong de-
pendencies between the components. This interaction
between the different elements makes it practically
impossible to effectively decompose the problem into
multiple smaller, largely independent problems.
Therefore, decomposition approaches, which have
successfully been applied to many similar complex
problems, do not seem very promising here.

1.1. Our Contribution
The main contribution of this paper is that we present
the first algorithm capable of solving the complete
TUSPwSS problem for real-world instances. It is based
on a new partial ordering schedule of the shunting
and service plan, as well as a local search algorithm
that exploits the partial ordering to find solutions for
the TUSPwSS efficiently. The proposed solution meth-
od is currently utilized by NS to estimate the capacity
of their service sites. Moreover, pilot runs for testing
its usability in daily-life operation take place at Eind-
hoven. Furthermore, even in comparison with a state-
of-the-art mixed integer programming (MIP) heuristic
developed with NS specifically for the restricted case
of shunting yards without service facilities (based on

Figure 1. The Kleine Binckhorst Shunting Yard Is Operated by NS

Notes. The yard contains a washing installation at track 63, a cleaning platform between tracks 61 and 62, and an inspection pit at track 64. Tracks
52 to 59 are used to park trains. The lengths of these parking tracks range from 202 to 480meters, and each track can contain multiple train units.
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the work of Lentink (2006)), our local search algorithm
outperforms the MIP on realistic test instances. There-
fore, NS has decided to use our approach for solving
the shunting problems at its yards.

In the remainder of this paper, we first provide an
overview of recent literature on shunting problems in
Section 2. Then, we give a problem description of the
train unit shunting problem with service scheduling
in Section 3. In Section 4, we outline our algorithm by
formulating a partial ordering schedule of the shunt-
ing and service plan that captures the entire planning
problem, and we propose local search neighborhoods
that operate on this partial ordering. In Section 5, the
solution method is tested on realistic problem instan-
ces based on the service sites operated by NS. Finally,
in Section 6, we present our conclusions and indicate
some directions for future research.

2. Literature Overview
The train unit shunting problem with service schedul-
ing combines train shunting with a resource-
constrained scheduling problem. As the shunting
problem is the main component of the TUSPwSS, we
will focus primarily on literature related to passenger
train shunting. Resource-constrained scheduling
problems have been studied extensively over the past
decades, and we will therefore only highlight litera-
ture on variants of the job shop and open shop prob-
lems that resemble the scheduling part of TUSPwSS.

In the literature, several types of shunting are dis-
tinguished. The most common one is freight train
scheduling. Here, shunting yards are used as a hub:
freight trains come in from several originations at the
shunting yard, where they are split and recombined
such that cars with the same destination can be trans-
ported efficiently. The goal here in general is to mini-
mize the number of cars that miss their connection
and to minimize the number of movements needed to
compose the trains. If we compare this to our shunting
problem, then we notice several major differences.
First of all, the freight train scheduling problem is
mainly a sorting problem, where in contrast to our
problem for each individual car the destination is giv-
en and the order of the cars in the departing trains
does not matter, which implies that the matching
problem does not play a role. Next, our train units can
move independently, which makes it possible to
move them during the night to undergo service or to
get them out of the way when they block the way for
other units, whereas freight cars need a locomotive to
drive (or are pushed off a hump) and are usually not
moved between classification and departure. Finally,
shunting yards used for freight trains have a standard
layout with several parallel classification tracks,
whereas in our case, the tracks on the shunting yard

are more interconnected (see Figure 1). Therefore, in
the remainder of this section, we do not discuss the
freight yard shunting problems. We refer the interest-
ed reader to the surveys by Gatto et al. (2009) and
Boysen et al. (2012) and to the classification scheme by
Hansmann and Zimmermann (2008).

2.1. Passenger Train Shunting
The train unit shunting problem (TUSP) was first in-
troduced by Freling et al. (2005) and consists of match-
ing train units in arriving trains to positions in the de-
parting trains and parking these train units on a track
at the shunting yard. These train units are self-
propelled and can be coupled to form a single, longer
train. The authors use a decomposition approach in
which a train unit matching is constructed first. In the
matching problem, every train unit in each arriving
train is assigned to exactly one position in a departing
train, such that the departing trains consist of the cor-
rect train types, and the number of times arriving
trains have to be split into smaller trains is minimized.
The corresponding mathematical model is solved us-
ing the standard MIP solver CPLEX. For the parking
problem, the authors assume that the arriving trains
are split based on the matching on the arrival track
and that departing trains are combined on the depar-
ture track. Between arrival and departure, the trains
are parked on a track at the shunting yard. A column
generation approach, with sets of trains that can be
parked on the same track as columns, is used to find a
feasible parking plan. The authors propose a dynamic
programming algorithm to solve the pricing problem.
The routing of the trains on the shunting yard is not
taken into account. They generated a shunting plan
for a typical weekday at the shunting yard in Zwolle,
consisting of 80 train units to be parked in roughly
half an hour.

In Lentink et al. (2006), the train unit shunting prob-
lem is extended with the subproblem of finding a
route over the shunting yard for each train movement.
They propose a four-stage approach to construct solu-
tions for this variant of the TUSP. First, a matching of
train units is determined using the algorithm pro-
posed by Freling et al. (2005). Second, they present a
graph representation of the physical layout of a shunt-
ing yard to estimate the duration of moving a train
from its arrival track to some parking track and back
to its departure track. In the third step, these estimates
are included in the objective of the column generation
approach proposed by Freling et al. (2005) to prefer
parking assignments with low travel times. Finally,
the actual routes are computed by a heuristic using
the graph representation and the track occupation re-
sulting from the previous step. The authors have
shown that the time needed to generate a feasible
shunting plan, including routing, for the shunting
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yard in Zwolle was around 20 minutes with their
approach.

Instead of solving all components of the TUSP se-
quentially, Kroon, Lentink, and Schrijver (2006) con-
struct solutions for the matching and parking sub-
problem simultaneously. This greatly increases the
complexity of the problem, resulting in a mathemati-
cal formulation for the integrated approach that con-
tains a large number of train collision constraints.
Testing the model on a realistic case at the shunting
yard in Zwolle revealed that there were over 400,000
constraints, which was too much for the CPLEX solver
to find a feasible solution in a reasonable amount of
time. To reduce the number of train collision con-
straints, the authors grouped these in clique con-
straints. This allowed them to find feasible solutions
for their test case. Unfortunately, even with the reduc-
tion in constraints, the computation time increases
rapidly for larger problems, taking several hours to
complete.

Several alternative solution methods to solve the
TUSP have been proposed by Haahr, Lusby, and
Wagenaar (2015). They compared constraint program-
ming, column generation and two-staged MIP models
with a greedy construction heuristic and a reference
MIP formulation on TUSP instances with LIFO tracks.
Their results showed that exact techniques are outper-
formed by the greedy and two-staged heuristics due
to excessive memory and computation time
requirements.

In all these approaches, the flexibility of a shunting
yard is not used to its full extent: parked trains will re-
main on the same track for the entire duration of their
stay at the shunting yard. That is, a train is not al-
lowed to be moved to another location once it has
been parked. In contrast, we propose a heuristic that
allows trains to be relocated to a different track if that
is beneficial to the shunting plan, thus increasing the
planning flexibility.

An integrated approach with parking reallocation
has been studied by van den Akker et al. (2008) as
well. They propose a greedy heuristic and a dynamic
programming algorithm to solve the combined match-
ing and parking problem. The heuristic uses track as-
signment and matching rules that select the locally
best action on arrival and departure such that train
units are parked in the correct order for the departing
trains. The dynamic programming approach looks at
all possible shunting track or matching assignments at
each event on the shunting yard and relies heavily on
pruning nodes in the dynamic programming network
that are unlikely to lead to the optimal solution as a
way to reduce its computation time. In contrast to the
model formulated by Kroon, Lentink, and Schrijver
(2006), both algorithms allow arriving or departing
trains to wait at the platform to avoid conflicts at the

shunting yard. Furthermore, the dynamic program-
ming algorithm is also capable of shunting a parked
train unit to a different track, resulting in much more
flexibility in the shunting plans. This property is diffi-
cult to include in the linear programming approaches
proposed by other authors, due to the exponential in-
crease in variables and constraints, even when allow-
ing each parking interval to be split only once. The
greedy heuristic is quite fast, but it is not capable of
finding feasible solutions for complex problems. Even
with the pruning rules, the exact algorithm requires
more than 10 minutes to find a plan for a dozen train
units, making it hard to use in practice.

Lentink (2006) studies a practical extension to the
TUSP. Besides matching, parking, and routing, the
train units on a service site have to be cleaned as well.
The cleaning subproblem is a crew scheduling prob-
lem, in which each train unit should be cleaned by a
crew before it departs from the site. The first three
steps are solved using the methods proposed in Len-
tink et al. (2006). The schedule for the cleaning crews
is constructed last. The cleaning problem is modeled
as a single machine scheduling problem without pre-
emption, where each cleaning job needs to be finished
in a time window, and the speed of the machine
varies over time to reflect the size of the cleaning crew
in each shift. A mathematical model based on this for-
mulation, in which the planning horizon is discretized
into one-minute blocks, is solved using CPLEX. In-
stead of viewing the cleaning as a single machine
scheduling problem, we formulate it, together with
additional service tasks, as a resource-constrained
scheduling problem, where the resources are only ac-
cessible from a subset of the tracks. In our approach,
we do not solve it as an isolated subproblem in a se-
quential heuristic, as the task schedule heavily affects
the parking intervals and the movements of the trains
in the shunting plan.

An integral approach is used by Jacobsen and
Pisinger (2011) to solve a train parking and mainte-
nance problem. Each train has to be maintained at one
facility or workshop located on the service site and
parked before and after the service task. Using three
metaheuristics—guided local search, guided fast local
search, and simulated annealing—the authors attempt
to construct schedules such that no trains are blocked
by other trains, no departure delays occur, and the
makespan of the service tasks is minimized. Their re-
sults show that the local search approaches provide
results close to shunting plans constructed by the MIP
model, while taking only seconds of computation
time compared with the 12 hours needed by the MIP
solver. However, the largest instances contain no
more than 10 trains, with one maintenance task per
train, which is not representative of real-world scenar-
ios. In contrast to our work, the scope of their study
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was limited to task scheduling and parking. The ab-
sence of matching and routing makes it difficult to di-
rectly translate their heuristics to the TUSP with ser-
vice scheduling.

In a recent paper, Kamenga et al. (2019) present a
mixed integer linear programming formulation to
solve the integrated version of the parking and main-
tenance problem. The objective is to minimize a
weighted function of the cost incurred by cancellation
of maintenance operations, delayed departures, cou-
pling and uncoupling, routing of the train units, and
the number and duration of shunting movements.
The authors work with three different sets of trains:
arriving trains, intermediate trains, and departing
trains; a combination of these corresponds to the route
of a train unit. Incoming trains are split, if necessary,
to form intermediate trains. The shunting of the trains
is modeled in the trajectories of the intermediate
trains; it is possible to relocate a train by connecting
two or more intermediate trains. Finally, the coupling
of the trains is modeled by the departing trains. Since
all these possible trains have to enumerated, the
size of the mixed ILP becomes huge: modeling an in-
stance of 10 trains requires approximately 2.5 million
binary variables and 4.5 million constraints. The au-
thors have tested their approach on a set of six real-
life instances from the Metz-Ville station in France
with up to 10 trains that must be shunted and some 25
passing trains; since there are no less than 16 tracks
available, it is never necessary to park two trains on
the same track. Due to the large size of the mixed
ILPs, CPLEX is not able to solve any of these six in-
stances in one hour; the remaining integrality gap
varies between 7% and 24%.

2.2. Resource-Constrained Scheduling
The service scheduling component of the TUSPwSS
can be viewed as an open shop problem, where jobs,
each consisting of an unordered set of operations,
have to be completed to minimize an objective such as
the makespan or the tardiness. Each operation has to
be executed on a machine from a given set, and opera-
tions of the same job or on the same machine are not
allowed to be processed simultaneously. The open
shop problem, as well as the closely related job shop
problem, in which the operations of a job are ordered,
are often represented as a disjunctive graph, intro-
duced by Roy and Sussmann (1964). In the disjunctive
graph model, each vertex corresponds to an operation,
and precedence relations are expressed by arcs. Undi-
rected edges are used to indicate that two operations
cannot be processed at the same time. A feasible solu-
tion for the scheduling problem can be obtained by di-
recting all the edges such that the graph becomes
acyclic.

Even large instances of the job shop and open shop
problems, as well as their numerous variants, can of-
ten be solved to near optimality in reasonable time by
combining the disjunctive graph representation with a
local search approach. The local search relies on flip-
ping the direction of arcs to swap the order of opera-
tions on the same machine (Dell’Amico and Trubian
1993), and, in the case of the open shop problem, oper-
ations in the same job (Liaw 1999), under problem-
specific conditions that safeguard the acyclic property
of the disjunctive graph.

One interesting variant of the job shop and open
shop problems that relates to the service scheduling
problem at the shunting yards is to include machine
flexibility and blocking constraints in the problem. An
open (or job) shop problem is flexible if alternative
machines are available for the operations, whereas in
a blocking open (or job) shop problem, operations
block their machine until the job is moved to another
machine. Examples of the former property in the
TUSPwSS are service sites with multiple cleaning or
maintenance crews, whereas the latter occurs when a
train has to wait at some service facility until another
train moves out of the way. Bürgy, Gröflin, and Pham
(2011) proposed local search operators that preserve
the acyclic property of the disjunctive graph for the
flexible and blocking job shop problems and showed
that these operators can be used to find good solutions
for medium-sized problem instances of this complex
scheduling problem.

3. Problem Description
The problem we consider in this paper, the train unit
shunting problem with service scheduling
(TUSPwSS), is an extension of the train unit shunting
problem (TUSP) formulated by Kroon, Lentink, and
Schrijver (2006).

The main input of the TUSP is a timetable detailing
the arrivals and departures of trains and a description
of the infrastructural layout of the shunting yard. To
include the service scheduling component at the ser-
vice sites, the input of the TUSPwSS is supplemented
with a set of resources as well as the service activities
of each train unit that need to be completed before it
leaves the service site.

All arrivals and departures of trains at the shunting
yard are described by the timetable, and the shunting
yard is assumed to be empty before the first arrival
and after the last departure. Note that a surplus of
rolling stock at the start or end of the planning hori-
zon can be modeled as early arrivals or late depar-
tures, respectively. The entries in the timetable consist
of the scheduled time of the arrival or departure, the
track by which the train will enter or exit the shunting
yard, and a specification of the train. The rolling stock
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of NS consists of bidirectional and self-propelling rail-
way vehicles that move without a dedicated locomo-
tive. Train units are classified according to train type
and train subtype. Train units of the same type can be
coupled to form longer combinations; a train is a cou-
pled sequence of one or more train units. The subtype
indicates the number of carriages—and thus the
length—of the train unit. For example, Figure 2 shows
two train units of the same train type, ICM, but differ-
ent subtypes. The ICM-3 and ICM-4 subtypes contain
three and four carriages, respectively. In TUSPwSS,
the level of detail of a train specification depends on
whether the entry corresponds to an arrival or a de-
parture. The timetable specifies the exact sequence of
physical train units in an arrival, whereas for a depart-
ing train, it only indicates the train composition,
which is a sequence of train subtypes. This provides
the flexibility to the planners at the shunting yard to
assign a train unit to any position with a matching
train subtype in the departing compositions. The
scheduled arrival times in the timetable are assumed
to be deterministic, that is, we assume that all trains
will arrive on time.

The service sites operated by NS consist of a set of
tracks connected by switches. Tracks can either be
dead-end (LIFO tracks) or accessible from both sides
(free tracks). The length of each track indicates the
maximum total length of trains that can be parked si-
multaneously on that track. The duration of train
movements is a function of the paths taken by the
trains over the shunting yard. This function is part of
the input as well. A service site also includes a set of
resources, such as cleaning equipment or maintenance
crews. Each resource can only operate on trains
parked on specific tracks.

Each train unit t at the service site has a set of ser-
vice activities that have to be completed before t
leaves the site. Each service activity s for train t has a
given processing time ps,t and requires one resource of
a specific type for its entire duration. Preemption of
activities is not allowed, and each resource can only
process a single activity at a time. Furthermore, differ-
ent service activities of the same train unit or different
coupled train units cannot be performed simulta-
neously. We assume in this study that there are no
predetermined precedence relations between the ser-
vice activities.

The objective of the TUSPwSS is to decide
whether there exists a feasible shunting and service
plan. TUSPwSS consists of the following five
components:

1. Matching: Arriving train units must be assigned to
distinct positions in departing trains such that the train
unit type matches the required type in the train compo-
sition. All departing trains should leave the shunting
yard on time; shunting plans with delayed departures
are not feasible.

2. Combining and splitting: As a result of the arrival-
departure matching, arriving trains might have to be
split and reassembled to form the departure composi-
tion. Splitting and combining train units takes time, up
to several minutes in practice.

3. Parking: During its stay on the shunting yard,
whenever a train is not moving, it is parked on some
track on the shunting yard. The length of a track should
not be exceeded by the total length of trains that are
parked simultaneously on it. A train can only depart
from the track it is positioned on if it is not blocked by
other trains on at least one accessible side of the track.
Trains are allowed to relocate during their stay at the
shunting yard. Relocating a train requires an additional
train movement.

4. Routing: For each train movement, the shunting
plan should contain a path over the infrastructure.
Following the notation of Gallo and Di Miele (2001),
a train collision or crossing occurs whenever the
movement of a train is obstructed by another train.
Shunting plans containing crossings are not feasible.
The duration of a train movement is determined by
its path as well as the driving characteristics of the
shunting yard.

5. Service scheduling: All service activities of the
train units should be scheduled such that they are com-
pleted before their corresponding train unit departs
from the service site, and each resource can only pro-
cess one task at the same time.

3.1. An Illustration of the TUSPwSS
To illustrate the complexity of the train unit shunting
problem with service scheduling, let us consider a
simple scenario of three train units at the service site
depicted in Figure 3. There are two arriving and two
departing trains in this example, which are scheduled
according to the timetable in Table 1. Note that that

Figure 2. (Color online) Examples of Train Units Used by NS, Both of the Type ICM

Note. The subtypes ICM-3 and ICM-4 indicate the number of carriages in the train.
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the sequences of train units in this table are from left
to right. When a train moves to the left side of the
shunting yard, the left-most train unit in the sequence
is at the head of the train.

The train units are of the ICM type depicted in
Figure 2 and described in Table 2. Two train units are
scheduled for internal cleaning, as can be seen in
Table 2. In this example, we assume that every train
movement takes five minutes. Furthermore, the com-
bining and splitting of trains requires 10 minutes.

Recall that to construct a shunting plan, we have to
decide on the following:

• the assignment of incoming train units to positions
in outgoing trains,

• howwe are splitting and combining the trains,
• the order of service activities such as cleaning,
•which tracks to move the trains to, and
• the order of the train movements.
In our example, it follows from the timetable that

the arriving train (1, 2) has to be split into two parts,
and that one of the two has to be coupled with train
unit 3 to satisfy the requirements of the departing
train compositions. Furthermore, with only one clean-
ing platform, we have to decide in which order we
will clean train units 1 and 2.

Let us start the construction of a feasible shunting
and service plan by matching incoming to outgoing
trains. We assign train unit 2 to the train departing at
13:00; the other two train units will be part of the de-
parting train at 14:00. As train unit 2 is the first to de-
part, we schedule it to be cleaned first as well, before

train unit 1. The scheduled train activities in our
shunting plan are listed in chronological order in Ta-
ble 3 and illustrated in Figure 4. In this shunting and
service plan, train (1, 2) arrives at track 0 and moves
to track 2 to be split. Then train unit 2 heads to the
cleaning platform for its service task, and train unit 1
is moved to track 4 to clear track 2 for the arrival of
the second train. After its arrival on track 2, train unit
3 moves to track 1 to avoid blocking the departure of
train unit 2. When train unit 2 has departed, train unit
1 goes to the cleaning platform. Both train units 3 and
1 move to track 2 to be combined. Finally, the combi-
nation (3, 1) departs from the service site.

This example illustrates the main complexity of the
train unit shunting problem with service scheduling.
Although the individual shunting subproblems—
matching, combining and splitting, servicing, parking,
and routing—are seemingly easy to solve, the interac-
tion between these components will make most shunt-
ing plans infeasible. Although parking on track 2 is
possible, it blocks virtually all routes on the service
site. Furthermore, poorly parked trains might require
multiple reversals of direction to avoid crossings,
which can easily cause departures to be delayed. The
service task schedule is determined entirely by the
matching, as there is not enough time to clean both
train units of the first arriving train before one of them
has to depart. The matching is dependent on the park-
ing and routing as well; switching the order in which
train units 1 and 2 depart will result in an infeasible

Table 1. Arrivals and Departures in the Example Scenario

Arriving train Time Departing train Time

(1, 2) 12:00 (ICM-3) 13:00
(3) 12:45 (ICM-4, ICM-3) 14:00

Notes. The departure trains specify the composition of subtypes
instead of the train units since the assignment is part of the matching
problem. The ordering of the train units or subtypes indicates from
left to right the order of the train units or subtypes in the train on the
service site.

Table 2. Train Units in the Example Scenario

Train units Type Service tasks

1 ICM-3 (82 m) Cleaning (30 minutes)
2 ICM-3 (82 m) Cleaning (30 minutes)
3 ICM-4 (107 m) None

Table 3. Train Activities in a Shunting Plan for the
Example Scenario Provided in Tables 1 and 2

Start End Train Activity Tracks

12:00 12:05 (1,2) Arrival 0 → 2
12:05 12:15 (1,2) Splitting 2
12:15 12:20 (2) Movement 2 → 3
12:20 12:50 (2) Cleaning 3
12:20 12:25 (1) Movement 2 → 4
12:45 12:50 (3) Arrival 0 → 2
12:50 12:55 (3) Movement 2 → 1
12:55 13:00 (2) Departure 2 → 0
13:00 13:05 (1) Movement 4 → 2
13:05 13:10 (1) Movement 2 → 3
13:10 13:40 (1) Cleaning 3
13:10 13:15 (3) Movement 1 → 2
13:40 13:45 (1) Movement 3 → 2
13:45 13:55 (3) Combining 2
13:55 14:00 (3,1) Departure 2 → 0

Figure 3. Example of a Service Site

120m

2

3

4

1

0

120m

120m

240m

Notes. Trains enter and exit the site over track 0 and can only be
parked on tracks 1 to 4. The tracks are connected by two switches.
The length of the parking tracks is displayed in meters (m). A clean-
ing platform allows internal cleaning tasks to be performed on trains
positioned on track 3.
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solution due to the small time window between the
first arrival and departure.

4. Local Search Heuristic
To find feasible solutions for the train unit shunting
problem with service scheduling, we propose a local
search approach that includes the full problem, that is, it
integrates the matching, combining and splitting, park-
ing, service scheduling, and train movement compo-
nents of the planning into a singlemodel. Local search al-
gorithms gradually improve some candidate solution, a
shunting service plan in case of the TUSPwSS, by mak-
ing small changes to it, andhave been applied in thefield
of operations research with great success. Methods to
create these changes are called (local search) operators, and
the set of solutions attainable from the current candidate
solution of the local search by the same operator is
known as the neighborhood.

Essential to any local search algorithm is a solution
representation that properly captures all important as-
pects of the solution, while simultaneously allowing for
easymodification through the local search operators and
efficient evaluation of the objective. This is especially im-
portant as well as challenging for the TUSPwSS, because
of the complex structure of its solutions and its tightly

intertwined subproblems.Wewillmodel each activity in
the shunting plan as a node in a precedence graph. We
will refer to the resulting directed acyclic graph as the
activity graph, which is a partial order schedule of the ac-
tivities. The main challenge is that the graph should be
updated efficiently and must remain acyclic after apply-
ing an operator.

When solving TUSPwSS, we face the decision prob-
lem of finding feasible shunting and service plans,
where feasibility is difficult to achieve because of the
high utilization factor of the yard. To alleviate this dif-
ficulty, we transform the decision problem of finding
feasible shunting and service plans into an optimiza-
tion problem by relaxing some of the feasibility con-
straints and apply local search on the resulting
problem. Instead of enforcing that these relaxed con-
straints are respected in all solutions explored by the
local search, we penalize violations of the constraints
in the objective function. A shunting and service plan
constructed by the local search is then feasible if and
only if none of the relaxed problem constraints are
violated.

We have based our algorithm on the simulated an-
nealing framework by Kirkpatrick, Gelatt, and Vecchi
(1983) and Černỳ (1985), which is a stochastic local

Figure 4. Overview of the Positions of Trains over Time in the Shunting Plan Listed in Table 3

Note. Dotted lines represent trainmovements.
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search technique that has seen many successful appli-
cations to other combinatorial optimization problems.
A simulated annealing algorithm randomly selects a
neighbor and accepts it immediately as the candidate
solution for the next iteration if it is an improvement
over the current solution. If the selected solution is
worse, it is accepted with a certain probability de-
pending on the difference in solution quality and the
state of the search process. Let b be the selected neigh-
bor of the current solution a, and cost be the objective
function that we are minimizing. If cost(b) > cost(a),
then the probability of acceptance P is

P � e
cost(a)−cost(b)

T , (1)

where T is a control parameter that will be decreased
during the search to accept less deterioration in solu-
tion quality later on in the process. See Section 5 for
an overview of other parameters of the simulated an-
nealing relevant to the computational experiments.

In the following, we will first explain the constraint
relaxation decisions that we have made in our model
as well as the general structure of the objective func-
tion, which is related to the constraint relaxation.
Then we present the representation of the solution by
an activity graph together with the evaluation of the
solution. After that we discuss the local search opera-
tors. Finally, we describe the construction of an initial
solution.

4.1. Optimization Objective and Constraints
Recall that we transform the decision problem of find-
ing feasible shunting and service plans into an optimi-
zation problem by relaxing some of the constraints
and penalizing violations of these constraints in the
objective function. The relaxation of constraints is a
trade-off between the size of the solution space and
the ease of exploration of the solutions in the local
search. Therefore, the decision on which constraints to
relax largely defines the structure of the solution space
that the local search will explore. In the remainder of
this subsection, we start by providing a summary of
the problem constraints. Then we motivate the relaxa-
tion choices that we make in our proposed method,
and we conclude with a conceptual overview of the
objective function. We will discuss the computational
details of the objective in Section 4.2, as these depend
heavily on the solution representation.

We categorize the constraints of the shunting and
service problem in four groups, as follows:

• Matching: Assign incoming train units to outgoing
trains, splitting and combining the trains if necessary.

• Sequencing: Find an order for the activities that share
the same service resource ormovement infrastructure.

• Temporal: Ensure that trains can enter the yard di-
rectly upon arrival and depart on time.

• Parking: Park the trains without exceeding the
track capacity or blocking train movements.

Constructing an assignment of arriving train units
to departing trains that satisfies the matching con-
straints is not a difficult problem in itself. Moreover,
any mutation of the matching—regardless of the feasi-
bility of the resulting assignment—will likely have a
large impact on the entire shunting and service plan,
as it affects the parking, movement, and maybe also
servicing components of the solution. Therefore, we
keep the matching constraints strict, guaranteeing that
any solution will have a feasible matching.

Imposing both the sequencing constraints of the ser-
vice tasks and the temporal constraints on the train
departures as hard constraints makes it difficult to
find a feasible schedule for the service tasks. This im-
plies that this combination of constraints severely re-
stricts the number of candidate solutions that can be
reached efficiently during the search and hence relax-
ing some of the constraints will be beneficial to the
search process. In our approach, we maintain the se-
quencing constraints as hard constraints, and relax the
temporal constraints. That is, we allow the local search
to construct shunting plans with delayed trains as in-
termediate solutions at the cost of a penalty.

Similarly, imposing the combination of sequencing
and parking constraints on the train movements cre-
ates a subproblem similar to computationally difficult
sliding block problems such as rush hour. Further-
more, the parking constraints on the track capacity
alone imply that a bin packing problem has to be
solved in each iteration, which becomes difficult in
instances with a large degree of utilization of the
shunting yard. Therefore, we have chosen to relax the
parking constraints.

Violations of the relaxed temporal and parking con-
straints are penalized in the objective function.

For a shunting and service plan, define Delay(p) as
the number of delayed entering and departing trains,
Crossing(p) as the number of crossings (i.e., collisions),
and TrackCapacity(p) as the number of occasions in
which the combined train length of trains parked on a
track τ exceeds the capacity lτ. An arrival delay will
occur when an arriving train cannot move immediate-
ly from the arrival track to its parking location due to
a movement of another train. These characteristics are
used to quantify the weighted number of constraint
violations, denoted by violations(p), of the shunting
and service plan as

violations(p) � wdelay ·Delay(p) +wcrossing ·Crossings(p)
+wtrack ·TrackCapacity(p),

(2)

where each type of violation is multiplied by its
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corresponding weight w > 0, and p is feasible only if
violations(p) � 0.

Although the expression in (2) can be used directly
as the objective of the local search, we extend the ob-
jective function with several additional terms to guide
the local search to more promising regions in the solu-
tion space. The cost function minimized in the objec-
tive of our approach is

cost(p) � violations(p) + wtime · TotalDelayTime(p)
+ wmovement ·NumberOfMovements(p),

(3)

which penalizes the severity of a delay in addition to
the occurrence of violations. Furthermore, shunting
plans with fewer movements are both preferred by the
planners at NS and easier to improve by the local
search. Therefore, we include the number of move-
ments in the objective with weight wmovement, which is
chosen small enough to never prefer a reduction in the
number of movements over the resolution of a conflict.

4.2. Solution Representation and Evaluation
Our representation of a shunting plan in the local
search procedure consists of a set A of train activities
and a set POS of precedence relations that defines a
partial order schedule on the train activities. See Table 4
for an overview of the notation used in this section.

The activity set consists of four types of activities:
arrival, departure, service, and movement. The prece-
dence relations arise from the sequencing constraints.
These constraints enforce that activities of the same
train or on the same service resource do not overlap.
Moreover, they forbid conflicts between two moving
trains. Making sure that a solution satisfies these con-
straint boils down to sequencing activities, that is, im-
posing precedence relations. Now we obtain the activ-
ity graph, which is a directed graph whose nodes are
the activities and arcs are the precedence relations.

Each activity a ∈A is associated with a train ta, which
is an ordered list of train units. We will refer to the set
of all train movement, arrival, and departure activities
as the movement activity set M ⊆A, with for each a ∈M
an origin oa and a destination da. Note that an arrival or

departure activity represents a train movement from or
to the main railway network, respectively. Each service
activity s is associated with a resource rs; its location is
the destination da of its predecessor movement. The
splitting and combining of trains are modeled implicit-
ly in the data structure by a difference in the train com-
position of the trains associated with subsequent activi-
ties. The representation of the example shunting plan
described in Section 3.1 is shown in Figure 5.

In the activity graph, the paths taken by the train
movements and the start time of the activities are not
included explicitly. To keep the routing computation
tractable, the local search generates activity graphs
with a total ordering on the activities in the movement
activity set M, such that two movements never over-
lap in time. Consequently, we can compute routing
and time assignment in two steps, respectively. In the
first step, we strictly enforce the total ordering of the
movements. We relax this restriction in the second
step to allow trains to move simultaneously as long as
this does not result in conflicts.

In the first step of a solution evaluation, we com-
pute a path for each movement activity separately
and determine the number of crossings and track ca-
pacity violations. To achieve this, we iterate over the
movement activities according to the total order in the
activity graph. For each movement activity a, we re-
move the train ta from the origin track oa, storing the
number of crossings caused by this train. Then, we
compute the minimum cost path of train ta from oa to
destination da. Note that, due to the restriction of the
movement ordering in the partial order schedule to a
total ordering, all movements occur sequentially.
Therefore, we can formulate the routing problem of a
single train movement as a single-source shortest path
problem in a graph representation of the shunting
yard similar to the approach taken by Lentink (2006).
The cost of a path in this graph is equal to the time it
takes for train ta to move over the path, plus the num-
ber of crossings that occur along the path times a
weight λ, where λ is sufficiently large to ensure that
the number of crossings is minimized. To find the
shortest path we apply the A∗ algorithm (Hart, Nilsson,
and Raphael 1968), where we use the path durations in
the static case without parked trains as the lower-
bound heuristic on the true path cost. After computing
the path of the movement, we add train ta to the desti-
nation track da and update the track capacity violation
count if necessary.

In the second step, we assign start times to all activi-
ties in the activity set. Due to our restriction on the
partial order schedules described earlier, all train
movements would be scheduled sequentially, which
could result in many delayed departures in the shunt-
ing plan. To decrease unnecessary delays, we relax
the precedence relations between pairs of train

Table 4. Overview of the Notation Used to Describe the
Shunting Plans

Notation Description

A Set of train activities in a shunting plan
POS Partial order schedule
M Set of movement activities, M ⊆A
ta Train associated with activity a ∈A
oa Start location of activity a ∈A
da Final location of activity a ∈A
ra Resource required by activity a ∈A
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movements. Then, for each activity a ∈A, we compute
its start time as the maximum over its release date (if
it is an arrival) and the completion time of all its direct
predecessors in the activity graph. More specifically,
when we consider movement activity a, we compute
the earliest possible starting time of a such that

• a starts after the completion times of all scheduled ac-
tivities, that is, activities that have already been assigned a
time stamp, that have a train unit in commonwith train ta;

• the path of a does not intersect with the path of any
scheduled movement a′ that happens at the same time;
and

• a does not cause additional collisions or track ca-
pacity violations.

Many shortest path problems have to be solved in
each candidate solution evaluated by the local search,
as even small, local changes to the shunting plan can
affect multiple train movements. In our approach, we
only recomputed the paths of movements that might
have been affected by the application of an operator
in the iteration.

After assigning the paths and the start and completion
times to the activities, we compute the objective value of
the solution. To determine the number of delayed depar-
tures, Delay, we compare the completion time of each de-
parture activity with its scheduled departure time in the
timetable. The TrackCapacity violations are computed by
tracking the total length of trains parked on each track af-
ter every movement and incrementing TrackCapacity
whenever a train moves to a track with insufficient park-
ing capacity. The number of train collisions is determined
in a similar way by checking for each movement if there
are trains parked on the path of the train movement.

4.3. Search Neighborhoods
In the local search framework, new candidate solutions
are selected from search neighborhoods centered around

the current solution. To address the different aspects of
the train unit shunting problemwith service scheduling,
we propose several search neighborhoods that are tai-
lored to the different components of the planning. The
corresponding operators either change the location of a
train in the plan or alter the activity graph directly by
adding and removing vertices or arcs.

To avoid deadlocks, the application of an operator
to the current solution must preserve the acyclicity of
the partial order schedule. As a result of the depen-
dencies between the problem components, this means
that when we change the shunting and service plan in
one dimension, we also need to modify the plan in
other dimensions. For example, if we change the ser-
vice schedule, then the train movements have to be
adapted accordingly.

We will now provide an overview of the proposed
local search neighborhoods for the parking, routing,
service scheduling, and matching components. The
splitting and combining activities follow implicitly
from the other activities, and therefore have no dedi-
cated local search neighborhoods. For each of the pro-
posed neighborhoods that might contain solutions
with cyclic precedence relations, we will show the
methods implemented to restrict the neighborhood to
acyclic solutions. An overview of the neighborhoods
is shown in Figure 6.

4.3.1. Parking. Conflicts in the shunting plan such as
crossings and track capacity violations can often be
solved through changes in the parking location of
trains. The track assignment neighborhood consists of
all shunting plans that can be constructed by changing
the track on which a train is parked. To change the lo-
cation of a train, we select two consecutive move-
ments, m1 and m2, of the train, and assign both the
destination of m1 and the origin of m2 to a different

Figure 5. The Partial Order Schedule of the Shunting Plan Described in Section 3.1

Notes. The nodes represent train activities, with the corresponding train between parentheses, and the arcs indicate precedence relations of activ-
ities that require the same train unit (solid arcs), service resource (dotted), or movement infrastructure (dashed). The i→ j notation below a node
indicates a movement from track i to track j.
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track, as shown in Figure 6(a). If the train is split into
several smaller trains after m1, then the next train
movements of all the parts have to be updated. Simi-
larly, if m2 is preceded by a combine activity, then all
predecessor train movements of the different train
parts need to be updated as well.

4.3.2. Train Movement. The paths taken by the trains
are recomputed whenever the track occupancy
changes, and as such, no local search operator is need-
ed for the path-finding component of the routing
problem. However, as we maintain a linear ordering
of the movements in the partial order schedule, we

Figure 6. Overview of Neighborhoods in the Proposed Local SearchMethod

Notes. In the figure, ti denotes train i and τj → τk indicates a train movement from track τj to track τk. (a) Change the parking location. (b) Insert
a train movement. (c) Remove a train movement. (d) Change the train movement ordering by shifting one of the movements. (e) Change the
schedule of the service activities by either assigning a service activity to a different compatible resource or changing the activity ordering within
a resource. (f) In the matching, swap the assignment of two incoming trains to outgoing train compositions.

van den Broek et al.: Train Unit Shunting with Service Scheduling
152 Transportation Science, 2022, vol. 56, no. 1, pp. 141–161, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
1.

18
0.

13
0.

18
] 

on
 3

0 
Ja

nu
ar

y 
20

23
, a

t 0
3:

43
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



can attempt to improve a shunting plan by reordering
the movements. Suppose that train a is parked on a
LIFO-track. If train b arrives on the same track just be-
fore train a departs, a crossing will occur. In this case,
it is beneficial to let a depart before b arrives. The
search neighborhood of rearranging movements is de-
noted as the shift movement neighborhood. The corre-
sponding local search operation, depicted in Figure
6(d), consists of selecting a movement activity and
shifting it earlier or later in the linear ordering im-
posed on the train movements. To ensure that the re-
sulting shunting plan is valid, only shifts that preserve
the acyclic property of the partial ordering are includ-
ed in the search neighborhood.

In some cases, we want to move a train temporarily
to a different track. For example, if train a has to move
over track τ while train b is parked there, then one ap-
proach to resolve the planning conflict is to move train
b to a different track just before the movement of a. In
the partial order schedule, this operation corresponds
to inserting an additional movement activity for train
b, visualized in Figure 6(b). The insert movement
neighborhood consists of all solutions obtainable by
adding a movement activity.

Conversely, it can also be beneficial to remove redun-
dant train movements. Suppose that a train in the
shunting plan has a service activity on track τ1, then
moves to track τ2 for parking, before continuing to
track τ3 for another service activity. If we could skip
the parking and move straight from track τ1 to τ3 with-
out conflicts, then we have eliminated a movement ac-
tivity, resulting in more temporal flexibility for other
train movements. Solutions in the remove movement
neighborhood are constructed by removing a train
movement from the solution, see Figure 6(c).

4.3.3. Service Scheduling. The local search operators
that adjust the resource assignment and order of the
service tasks are based on operators proposed in the
literature on similar problems such as the job shop
problem (Dell’Amico and Trubian 1993), the open
shop problem (Liaw 1999), and their generalized
counterparts (Bürgy, Gröflin, and Pham 2011). All
valid solutions that can be constructed by swapping
the order of two consecutive service tasks that are
either assigned to the same resource or involve the
same train are part of the service order swap neigh-
borhood, see Figure 6(e). Furthermore, the resource
assignment neighborhood contains the solutions ob-
tained by assigning a single service activity to a val-
id position in the activity schedule of a different
suitable resource. Observe that rescheduling service
activities often requires adjusting the precedence
relations of movements from and to these service
activities.

4.3.4. Matching. The matching swap operator, shown
in Figure 6(f), changes the matching of incoming
trains to outgoing departure compositions. It selects
two trains, t1 and t2, in the shunting plan of identical
train composition and swaps their assignment to the
departing trains.

4.4. Initial Solution
To construct a starting point for the local search, we
propose a simple sequential algorithm for the
TUSPwSS. We start with the matching subproblem. A
perfect matching between the incoming and outgoing
train units is constructed such that no arriving unit is
matched to a position on a train that departs before all
service tasks of the unit can be finished. Note that we
can immediately abort the search for a feasible shunt-
ing plan if no perfect matching is found, as the exis-
tence of such a matching is a necessary condition for
plan feasibility.

From the train unit matching, we can derive the
minimum number of splits and combines that have to
be performed to transform the incoming trains into
the desired departure compositions. Train units cou-
pled on arrival can only remain together if

1. all units are assigned in the same order to consecu-
tive positions on a departing train,

2. their arrival time plus the sum of the durations of
their service tasks is no more than the departure time,
and

3. for each service task there is a track adjacent to the
required facility that is long enough to harbor all train
units at once.

Based on this information, we initialize the partial
order schedule:

1. The arrival and departure nodes are added to the
solution.

2. For each arrival activity, we add a movement to
the graph and connect it to the corresponding arrival
node. Similarly, movements are added to each depar-
ture node.

3. The movements from arrivals and to departures
are connected by arcs to reflect the matching, splitting,
and combining computed earlier.

In the next step, we construct a service schedule.
The service activities of a train will be scheduled after
it has been split, and before it will be combined in the
current plan. The service tasks are scheduled by a list-
scheduling strategy. Trains are sorted on increasing
departure time. Service tasks of the same train are as-
signed to the resource that becomes available at the
earliest time. If a task can be assigned to multiple re-
sources, the resource with the currently smallest total
workload is selected. Ties in the train task order are
broken randomly. The service activities are then in-
serted into the partial order schedule and connected
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with arcs based on the precedence relations in the ser-
vice schedule.

Next, we add movement activities to and from each
service activity to the graph, as trains have to be able
to reach the service facilities. The linear order of
movement activities is constructed by sorting the
movements by earliest starting time, based on the ser-
vice task schedule.

Finally, the parking locations of the trains are as-
signed. For every train, we select a random track long
enough to store the train for each parking time win-
dow between consecutive movements, without taking
the track occupation into account.

5. Computational Results
In this section, we study the performance of the pro-
posed local search approach on generated test cases as
well as a real-world problem instance. These instances
are based on two shunting yards that are considered
difficult by the planners of NS due to the high degree
of utilization of the yards in practice.

Preliminary tests were conducted to obtain good
parameters for our local search. In all the experiments
we have conducted, the local search continued search-
ing until either a feasible solution was found, or a
maximum computation time of five minutes was
reached. The maximum computation time is based on
preferences of NS. The control parameter T of the sim-
ulated annealing decreased exponentially in those five
minutes, starting at 1 and dropping to 0.01 after 300
seconds. The weights of the objective function used in
the experiments are summarized in Table 5. Delays
are penalized more than the other conflicts, as these
were observed to be more difficult to resolve by the
local search. Furthermore, the weight of train move-
ments is small with respect to the weights of the con-
flicts to ensure that conflict resolution is prioritized
over the reduction of the number of train movements.
Table 9 shows some results of experiments with dif-
ferent parameter values. The local search procedure
randomly selects a candidate solution in a neighbor-
hood and either accepts or rejects it based on its accep-
tance criterion. The computations were performed on
a computer with an Intel Xeon E5 3.0 GHz processor.

We will compare our simulated annealing approach
with a mixed integer programming heuristic devel-
oped by NS for TUSP, that is, only the matching, park-
ing, and routing subproblems. This tool, called the
OPG, first computes the routing duration of shunting

from one track to another, similar to the approach tak-
en by Lentink et al. (2006). Second, the matching and
parking subproblems are solved simultaneously, us-
ing the cost estimates of the routes to find track as-
signments that simplify the subsequent routing prob-
lem. To find a matching and a parking assignment, a
problem formulation based on the mathematical mod-
el introduced by Kroon, Lentink, and Schrijver (2006)
is solved in CPLEX. In the final step of the OPG, a
MIP model is solved to assign starting times to all the
train movements. The mathematical models in the
OPG lack the flexibility of the local search algorithm
to schedule service tasks or insert additional parking
activities. That is, the OPG keeps a train at the same
location during the entire interval between the arrival
and departure of the train. As with the solution meth-
od proposed in this paper, we limit the maximum
computation time of the OPG to five minutes. The
OPG finished its computations within the maximum
time for almost all the tested instances.

5.1. Real-World Scenario
We have tested our solution method on one of the
real-world instances currently planned manually at
NS. The test scenario is a normal weekday of 24 hours
at the Kleine Binckhorst, shown earlier in Figure 1.
The Kleine Binckhorst is a medium-sized service site
situated near The Hague Central Station and consists
mostly of tracks accessible from both sides. Tracks
906a and 104a connect the Kleine Binckhorst to the
main railway network; parking, reversing, splitting,
and combining on these tracks are not allowed due to
safety regulations. Tracks 52 to 63, with lengths in the
range of 192 to 473 meters, are available for parking.
There are two dedicated service facilities: a washing
machine on track 63, and a platform for internal clean-
ing between tracks 61 and 62. Only a single train can
be cleaned externally at the washing machine. There
are two crews at the cleaning platform, allowing a
train to be cleaned at each track adjacent to the plat-
form. The maintenance checks that are carried out by
service crews at Kleine Binckhorst can take place on
any track that is not part of some facility. The reversal
duration of trains and the average service task dura-
tion are listed in Tables 6 and 7. The duration of a
movement is computed using Equation (4):

ddriving � Ntracks + 1
2
Nswitches, (4)

where Ntracks and Nswitches are the number of tracks
and the number of switches on the path of the move-
ment, respectively.

The instance that we considered consists of 32 train
units, arriving and departing in 23 and 21 trains, re-
spectively. Due to the timetable, themaximumnumber
of train units simultaneously present on the service site

Table 5. Weights of the Components of the Objective
Function in Equation (3) Used in Our Experiments

Weight wdelay wcrossing wtrack wtime wmovement

Value 2 1 1 0.00025 0.01
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is 25; these train units occupy 77% of the total track
length available for parking. There are 59 service tasks
that must be completed: 27 internal cleanings, 25 main-
tenance checks, and seven trainwashes. Constructing a
shunting and service plan for this instance by hand
usually takes more than an hour, even for an experi-
enced planner.

We have used the simulated annealing approach
described earlier to search for a feasible plan for the
test case, which was found after four minutes of com-
putation time. In this solution, the 23 arriving trains
are split into 27 trains. The shunt plan contains 88
shunting movements, of which 32 contain a reversal.
The large number of reversals results in an average
movement duration of 10 minutes. This means that al-
most 15 hours of train movements are needed in this
24-hour shunting plan. In 14 cases, a parked train is
shunted to a different track to make room for another
train.

Planners have evaluated the plans produced by the
local search algorithm. Although they noted several
differences with their manually created plan, the plan-
ners confirmed that the local search solutions could be
implemented in practice.

The solution of the planners shows a high-level
strategy of first doing the maintenance checks on
tracks 56 to 59, followed by internal cleaning and
washing, before parking the trains on tracks 52 to 55
until their departure. In contrast, the plan produced
by the simulated annealing utilizes the tracks and re-
sources of the shunting yard more evenly. The plan-
ners would prefer more fixed patterns in the local
search plans. However, they note that deviations from
their high-level strategies are becoming more common
in their own planning process due to the increased
utilization of the railway yards in the past few years.

Furthermore, the planners prefer to park trains of
the same type on the same track. Although the plans
produced by the local search do not have the train
type grouping, we can add this preference to the ob-
jective function of the local search to improve the ac-
ceptance of the plans by the planners.

Despite these two comments, the overall outcome
of the evaluation was positive. The planners conclud-
ed that the local search algorithm would help them to
create shunting plans more efficiently. The positive
feedback of the planners resulted in a project within

the railway operator company to implement the local
search algorithm proposed in this paper on all major
passenger shunting yards in the Netherlands. We dis-
cuss this project in more detail in Section 6.

5.2. Generated Instances
To evaluate the performance of the proposed solution
method more thoroughly, we generated problem in-
stances for two service sites operated by NS. These in-
stances vary in the number of train units that arrive
but resemble real-world scenarios at the service sites
in all other aspects. For example, the train composi-
tions and timetable of arrivals and departures, as well
as the required service activities of train units, are
drawn from distributions fitted to historical data of
the two service sites. The planning interval of the in-
stances is limited to the night shift, from 6 p.m. to
8 a.m., as most activities at a service site take place
during the night. Furthermore, all nightly arrivals oc-
cur before the first departure in the morning, which
means that the maximum number of train units simul-
taneously present at the service site in a problem in-
stance is precisely the total number of arriving train
units. The train type and service task distributions
used to generate the instances are shown in Table 8.
The train lengths and the service durations are as in
Table 7. The maximum length of composite trains in
our test cases is three train units, and approximately
half the arriving and departing trains are composed of
two or more train units.

One of the two tested service sites is the Kleine
Binckhorst. For every k ∈ {4, 6, : : : , 32}, we generated
50 instances for the Kleine Binckhorst with k train
units. These instances are not necessarily all feasible,
particularly the instances with many train units are
likely to be impossible to solve. When all train units
have to be cleaned internally, the planners at NS esti-
mate the capacity of Kleine Binckhorst at roughly 20
train units during the night shift.

Since we want to compare with the OPG, which
does not contain parking relocation, we investigate
the impact of the parking relocation neighborhood on
the performance of the local search approach. We ran
the simulated annealing algorithm with and without
the parking relocation neighborhood on all instances.

Table 6. Reversal Duration of the Train Types in Minutes

Train type Reversal base duration Reversal duration per carriage

SLT 2 1/3
VIRM 4 1/2
DDZ 4 1/2

Note. The duration consists of a base time required to transfer control
and additional walking time per carriage.

Table 7. Train Length in Meters and Service Task Duration
in Minutes for Each Train Subtype

Subtype Length Cleaning Washing Maintenance check

SLT-4 70 15 23 23
SLT-6 101 20 24 27
VIRM-4 109 37 24 11
VIRM-6 162 56 26 14
DDZ-6 154 56 26 18

van den Broek et al.: Train Unit Shunting with Service Scheduling
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Both variants of the local search method were run
with the settings described at the start of the section.

The results of the experiments are shown in Figures
7 and 8. The proposed solution method is able to plan
up to 18 train units reliably and fails to solve instances
with more than 22 train units. Removing the parking
relocation operator from the local search does not re-
sult in significant deterioration of performance. Both
simulated annealing approaches show a gradual rise
in computation time, requiring less than half the allot-
ted time of five minutes to solve instances with at
most 20 train units.

The similarity of the performances of the two local
search variants is likely caused by the number of ser-
vice activities, as these activities force the trains to
move to or from service facilities, allowing the local

search to solve conflicts in the parking component by
changing the service schedule. To test this hypothesis,
we generated similar instances without service tasks.
Since only the matching, combining and splitting,
parking, and routing problem components remain,
these instances are essentially TUSP instances. We
performed the same experiments with the two simu-
lated annealing variants as previously; the results can
be found in Figure 9.

In a pure TUSP instance, the simulated annealing
variant without the parking relocation neighborhood
performs significantly worse. Without the additional
movements needed to reach the service facilities,
trains will be parked on a single track for their entire
stay at the shunting yard, making it difficult to resolve
some conflicts. For example, suppose we have an in-
stance with the arriving train (a, b), where
sub-type(a)≠ subtype(b), and a departing train com-
position (subtype(b), subtype(a)). Then, without addi-
tional movements, it is not possible on the Kleine
Binckhorst to split and combine train (a, b) into the
proper departure composition, as splitting or combin-
ing is not allowed on the arrival track. In instances
with a sufficient number of train units of each type,
this type of conflict is often easily resolved by chang-
ing the matching. However, smaller instances are
more likely to be impossible to solve without the
parking relocation neighborhood, as can be seen in
Figure 9.

Table 8. Train Subtype and Service Task Distributions
Used to Generate the Instances

Subtype Arrival Cleaning Washing Maintenance check

SLT-4 0.28 1.00 0.16 1.0
SLT-6 0.17 1.00 0.16 1.0
VIRM-4 0.41 1.00 0.16 0.58
VIRM-6 0.10 1.00 0.16 0.58
DDZ-6 0.04 1.00 0.16 0.58

Notes. The arrival column shows the distribution of the train
subtypes over the arriving trains. The probability that a task has to be
performed on a certain train unit is shown in the last three columns.

Figure 7. (Color online) Number of Feasible Shunting Plans Found for Each Set of 50 Night-Shift Instances of the Kleine
Binckhorst

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26

S
o
lv

ed
 i

n
st

an
ce

s

Train units

LS LS without relocation

Note. Results of the simulated annealing with the relocation operator (LS) and without (LS without relocation).

van den Broek et al.: Train Unit Shunting with Service Scheduling
156 Transportation Science, 2022, vol. 56, no. 1, pp. 141–161, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
1.

18
0.

13
0.

18
] 

on
 3

0 
Ja

nu
ar

y 
20

23
, a

t 0
3:

43
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



In general, by removing the service tasks—using the
service site only as a shunting yard—the proposed so-
lution method is capable of finding feasible shunting

plans for more train units, reaching an 85% utilization
of the parking capacity of the service site in some
cases. This suggests that service scheduling and the

Figure 8. (Color online) Average Computation Time in Seconds of SolvedNight-Shift Instances of the Kleine Binckhorst.
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Note. Results of the simulated annealing with the relocation operator (LS) and without (LS without relocation).

Figure 9. (Color online) Number of Feasible Shunting Plans Found for Each Set of 50 Night-Shift Instances of the Kleine
Binckhorst Without Service Tasks
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train movements to and from the facilities are a major
bottleneck in the earlier experiments.

Another set of instances for the Kleine Binckhorst
was generated to compare the local search algorithm
with the OPG, the ILP-tool developed by NS. Similar to
the previous experiment, the instances do not contain
service activities. However, instead of only modeling
the night shift, the instances in this set span an entire
day, where trains arrive in the evening and at the end
of the morning, and departures occur mostly before the
morning and evening rush hours. The performance of
the solution methods is shown in Figure 10.

The differences between the two local search var-
iants are similar to the results shown in Figure 9. The
OPG shows results resembling those of the local
search without the parking relocation neighborhood
and is outperformed by the local search with reloca-
tion. So, our algorithm outperforms the OPG for
TUSP. The similarity between the results of the OPG
and the local search without relocation can be ex-
plained by the mathematical model in OPG, which
does not have the flexibility provided by the parking
relocation neighborhood.

To test the proposed solution method for other ser-
vice site layouts, we conducted similar experiments

with instances generated for service site OZ, located
near Utrecht Central Station. In contrast to the Kleine
Binckhorst, most parking tracks of OZ are last-in,
first-out tracks, see Figure 11. Trains will arrive and
depart via track 117. The connection of track 117 to
the main railway network prohibits parking, revers-
ing, splitting, and combining of trains on it. Parking is
possible on all other tracks visible in Figure 11. The
cleaning platform is accessible from tracks 104 and
105b. Instances for the night shift are generated using
the same parameters as for the Kleine Binckhorst,
with the number of train units ranging from four to
22. The same service tasks are assigned to the train
units, with the exception of washing activities due to
the absence of a washing installation. The results,
shown in Figure 12, confirm those of the experiments
with the Kleine Binckhorst, as for TUSPwSS the local
search with relocation performs slightly better than
without the relocation operator.

In addition to the relocation neighborhood experi-
ments, we investigated the impact of the values of the
local search parameters described in Table 5. We ran
the local search with seven different parameter set-
tings on a subset of the instances used in the experi-
ments in Figure 7. The results are listed in Table 9.

Figure 10. (Color online) Number of Feasible Shunting Plans Found for Each Set of Full-Day InstancesWithout Service Tasks of
the Kleine Binckhorst
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Note. Results of the simulated annealing variants with the relocation operator (LS), without relocation (LS without relocation), and the ILP-based
OPG.

Table 9. Percentage of Solved Instances and Average Computation Time for Different Parameter Values of the Local Search
Algorithm

Setting
Weights Results

wdelay wcrossing wtrack wtime wmovement Feasible (%) Computation time (s)

1 2 1 1 0.00025 0.01 92 94
2 2 1 1 0.00025 0 36 182
3 2 1 1 0.00025 0.1 84 69
4 1 1 1 0 0 40 109
5 1 1 1 0 0.01 54 165
6 1 1 1 0.00025 0.01 48 160
7 3 1 1 0.001 0.01 66 98
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Parameter setting 1 describes the parameter values
used in the other experiments in this section.

The experiments show that penalizing the move-
ments is necessary to solve the majority of the instan-
ces, as the parameter settings without movement pen-
alties (settings 2 and 4) perform significantly worse
than the other settings. Furthermore, a small incentive
to prefer the resolution of delays over other conflicts

increases the likelihood that the local search finds a
feasible solutions.

6. Conclusion and Further Research
In this paper, we have studied the problem of plan-
ning the parking and servicing train units at service
sites operated by NS. The research is conducted with

Figure 11. (Color online) The Service Site OZ Operated by NS

Figure 12. (Color online) Number of Feasible Shunting Plans Found for Each Set of 50 Instances of Service Site OZ
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Note. Results of the simulated annealing with the relocation operator (SA) andwithout (SA without relocation).
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two purposes: first, to support human planners with
the construction of feasible shunting plans for the ser-
vice sites, and second, to improve capacity estimates
by the NS management.

We have introduced the train unit shunting prob-
lem with service scheduling (TUSPwSS). Although
the train unit shunting problem has been studied,
there are no practical algorithms that include the
resource-constrained scheduling of service tasks.

We have presented a local search approach to find
feasible plans for TUSPwSS. This is the first algorithm
capable of constructing feasible plans for real-world
instances of the full shunting and service scheduling
problem. The solution method consists of a plan rep-
resentation that models the precedence relations be-
tween the scheduled activities, as well as local search
neighborhoods exploiting the partial ordering. We
have benchmarked our approach on both generated
and real-world instances of service sites operated by
NS. The experiments showed that our solution meth-
od is capable of solving shunting problems on service
sites with varying infrastructural layouts within a few
minutes.

Moreover, we compared our algorithm to the OPG,
a decision support tool based on state-of-the-art math-
ematical programming models that was developed by
NS. In the solutions of the OPG, trains are parked at a
fixed place during their stay at the yard. The OPG
does not include service scheduling. Therefore, we in-
cluded instances without service scheduling in our
experiments.

Comparison with the OPG showed that our local
search algorithm is capable of solving harder instances
than the ILP-based OPG. Since an important difference
is the possibility for relocation, we decided to investi-
gate this aspect further by also running our algorithm
without relocation. These experiments demonstrated
that the flexibility to move a train to a different track
during parking is essential to finding feasible plans.
Note that in TUSPwSS, the possibility for relocation is
obtained partly from the service schedule, which
forces trains to move to service facilities.

The real-world scenario illustrated that the local
search approach is a valuable tool in the planning pro-
cess at NS. It provides human planners with feasible
solutions, drastically reducing the time needed to con-
struct good plans for service sites. The local search
method is currently being used by NS to obtain a
good estimate of the capacity of their service sites by
generating realistic problem instances for varying
numbers of train units, and checking for which num-
ber the local search algorithm can still consistently
find feasible solutions.

For the sake of brevity, we have limited the scope of
this paper to shunting yards. However, NS is current-
ly performing a pilot for application of the local search

in the daily operation at the railway node Eindhoven.
This node encompasses both the major station Eind-
hoven and two nearby shunting yards. The goal of the
pilot is to create an integrated shunting plan of the
complete node. To model the railway traffic properly,
we have to include through trains, which are trains
that move through the station without going to a
yard. As the schedule of the through trains is prede-
termined by the timetable, we model them as train
movement activities with fixed routes, release dates,
and deadlines in our shunting plans. Furthermore, we
have to adapt the local search to more sophisticated
movement constraints, such as minimum headway
between movements over a track or switch, and non-
empty shunting yards at the start and end of the plan-
ning horizon.

Preliminary results from the pilot show that in most
cases we are able to find feasible shunting plans for
real-world problem instances on these large and com-
plex locations. Even when the local search fails to find
a feasible solution, the number of conflicts in the final
solution is reduced to such an extent that human plan-
ners can resolve the remaining conflicts in a fraction
of the time that it would take them to construct a
shunting plan from scratch. Although the required
computation time on these instances ranges from 15
minutes to an hour, we hope to reduce this by further
tuning the parameters of the local search.

The pilot shows that the main strength of our local
search approach lies in its flexibility, as it is easily
adaptable to the often-complex constraints that arise
in real-world problems. This is especially appreciated
by the practitioners at NS, as we are able to quickly in-
corporate their planning preferences as well.

Opportunities for further research present them-
selves both in extending the scope of the model and in
coping with the complications arising from the actual
operation. With respect to the first, a major compo-
nent of the planning process that we have thus far ig-
nored in this paper is personnel planning, that is, as-
signing activities such as train movements and
maintenance checks to drivers and mechanics, respec-
tively. The physical size of shunting yards often neces-
sitates the inclusion of walking durations between dif-
ferent locations, especially for the train drivers. To
further support human planners, we proposed several
methods that construct feasible service schedules for
the personnel in van den Broek, Hoogeveen, and van
den Akker (2020).

As to the latter, a shunting plan can only be imple-
mented if it is robust to the everyday disturbances in
operations. Both the arrival times of trains and the du-
rations of service tasks will often vary in practice, and
the service site operators have to adapt to these
events. This means that they occasionally have to de-
viate from the shunting and service plan constructed
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by the planners. Ideally, the plan should be able to ab-
sorb most disturbances and require only small adjust-
ments otherwise.

To address this issue, we have started research to
improve the robustness of shunting plans. As a first
step, we focus on minimizing the likelihood of de-
layed departures in the shunting and service plans
when the arrival time of trains and the processing
time of service tasks are uncertain. In van den Broek,
Hoogeveen, and van den Akker (2018), we investigate
the predictive power of robustness measures, that is,
functions that can be computed efficiently from the
schedule and are designed to represent properties of
robust schedules. We focus on measures that repre-
sent the likelihood of delays in shunting plans. For the
robustness measures that are strongly correlated with
the delay likelihood, we show in van den Broek, Hoo-
geveen, and van den Akker (2019) that our local
search finds more robust shunting and service plans
with only little computational overhead by including
the robustness measures in the objective function.

When a shunting and service plan becomes infeasi-
ble during the course of the day due to disturbances,
the service site operator has to adapt the plan to the
new situation. Preferably, the new solution would
closely resemble the original shunting plan to avoid
rescheduling many of the tasks of drivers and service
crews. A variant of the local search algorithm pre-
sented in this paper could be useful to cope with this
kind of problem, as it can start from the original
shunting plan and iteratively improve it to regain
plan feasibility. Penalties can be assigned to solutions
that deviate too much from the original plan. Addi-
tional research has to be conducted to find a proper
plan-similarity measure and other online strategies
such as scheduling policies for service operators.

Another venue for future research is the develop-
ment of lower bounds for the train unit shunting
problem with service scheduling. Although finding
strong lower bounds of the complete problem is chal-
lenging, subproblems such as the matching problem
and multiagent path-finding problems can be studied
to derive better bounds.
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RailNorrköping 2019. 8th Internat. Conf. Railway Oper. Model.
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