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Summary

Automated Mobility-on-Demand (AMoD) systems are expected to 

revolutionize urban mobility systems. However, there are uncertainties in 

the planning and operations of AMoD systems. We deem the agent-based 

approach as being well suited for modeling new phenomena in future 

AMoD systems and therefore shed some light on the uncertainties about the 

operation and the impacts of such systems. Recommendations to various 

stakeholders are provided through the different contributions.

About the Author

Senlei Wang received his MSc. Degree in System Engineering from the School 

of Traffic and Transportation, Beijing Jiaotong University. In September 2016, 

he started his Ph.D. research at Delft University of Technology on exploring 

the impacts of shared automated vehicle services using an agent-based 

approach.

TRAIL Research School ISBN 978-90-5584-322-0



 

 

 

 

Modeling Urban Automated Mobility on-Demand 

Systems: an Agent-Based Approach 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Modeling Urban Automated Mobility on-Demand 

Systems: an Agent-based Approach  

 

 

 

 

 

 

Dissertation 

for the purpose of obtaining the degree of doctor 

at Delft University of Technology 

by the authority of the Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen, 

chair of the Board for Doctorates 

to be defended publicly on 

Tuesday 31 January 2023 at 10:00 o’clock 

 

by 

 

Senlei WANG 

Master of System Engineering, 

Beijing Jiaotong University, China 

Born in Shandong, China. 

 



This dissertation has been approved by the promotors. 

 

 

Composition of the doctoral committee: 

Rector Magnificus Chairperson 

Prof.dr.ir. Hai Xiang Lin Delft University of Technology, promotor 

Dr.ir. G.H.A. Correia Delft University of Technology, promotor 

 

Independent members: 

Prof.dr.ir.B. van Arem Delft University of Technology 

Prof.dr. F.M. Brazier Delft University of Technology 

Prof.dr. J. Wu Tsinghua University, China 

Prof.dr. M. Wang Technical University Dresden, Germany 

Dr. M. Coelho The University of Aveiro, Portugal 

 
 
This project is funded by China Scholarship Council 

 

 

TRAIL Thesis Series no. T2023/1 

The Netherlands Research School TRAIL 

 

TRAIL 

P.O. Box 5017 

2600 GA Delft 

The Netherlands 

E-mail: info@rsTRAIL.nl 

 

 

ISBN: 978-90-5584-322-0 

 

Copyright © 2023 by Senlei Wang 

 

All rights reserved. No part of the material protected by this copyright notice may be 

reproduced or utilized in any form or by any means, electronic or mechanical, including 

photocopying, recording or by any information storage and retrieval system, without written 

permission from the author. 

 

Printed in the Netherlands 



 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents. 





 

i 

Preface 

I would like to thank my promotor, Hai Xiang Lin, for giving me the opportunity to conduct 

my Ph.D. research and for allowing me to dance with my spirit and reach for the stars. I am 

also very grateful for your patience and support for my research, career development, and 

personal life. 

I would like to thank my promotor, Gonçalo, for your time and many efforts in setting out the 

standards in every aspect for a qualified researcher and professional who are capable of 

working with industry partners. Your inspiration, encouragement, suggestions, and support 

are much appreciated. 

I appreciated working with industrial partners for future mobility concepts. First, I would like 

to express my appreciation for collaborating with Continental AG at TU Delft. There were 

many exciting and productive discussions with Dr.-Ing. Frederik Rühl and Hans Schroth from 

Continental AG and Yihong Wang from our hEAT lab. Gonçalo has been an encouraging and 

supportive leader. Second, working with Toyota Motor Europe has been an unforgettable 

memory. Thank you, Bart van Arem, for your guidance in research and your leadership. 

Gonçalo continued to contribute to my professional growth and guide me in Research and 

Development. As many lockdowns were implemented, many factors influenced the progress. 

I wish to express my gratitude to Hideki Takamatsu, Georgeta-Madalina Oprea, and Dorothee 

Lahaussois for their immense help and support. 

I am grateful to my colleagues in the department of Applied Mathematics. Evelyn Sharabi, 

Dorothée Engering, and Kees Lemmens were always very patient and professional in helping 

me sort things out. QiaoChu Fan, Xiaohui Wang, Jianbing Jin, Kaihua Xi, Guangliang Fu, 

Sha Lu, Xiangrong Wang, Jie Liu, Xiao Deng, Amey, Andres, Luis, Cong Xiao, Xiao Li, 

Yuan Chen, Luyu Wang, Jiao Chen, Shuaiqiang Liu, Linlin Bu. We'd have a great time. Many 



ii 

thanks to colleagues in the department of Transport and Planning for the talks during the 

pandemic: Na Chen, Narayana, Xiao Liang, and also transport fellow students and close 

friends both in China and overseas: Tanli Tang, Zhenyu Yang, Tao Liu, and Jihui Ma. Many 

thanks to Conchita van der Stelt at TRAIL Research School for the time and effort in helping 

to publish this dissertation. 

I would like to thank my friends in TU Delft, Haopeng Wang, Baozhou Zhu, Yande Jiang, 

Zhaojie Sun, Na Li, Yunlong Guo, Pan Zhang, Li Wang, Xiu Xiu Zhan, Bowen Fan, Jian 

Zhang, Yong Zhang, Bing Huang and Niels, for organizing different activities to enrich my 

Ph.D. life. In summer 2017, I encountered basketball players at the outdoor basketball court 

near the TU library; then, I joined, and we started our weekly basketball routine. Thank my 

basketball friends, Chao-Chun Hsu, Chung-Chi Kuan, JB Tsai, Jerry Kuo, Joe Kao, Maciej 

Kraczla, Thej Kiran, for our jokes, laughter, happiness, and love. I miss you all and our usual 

Grolsch and Hertog Jan beers.  

I would like to express my gratitude to my parents for their unconditional love and support.  

Many thanks to the future that endlessly brings hope into my life and keeps me motivated. My 

TU Ph.D. work and life are rewarded with increased knowledge and experience, friendship, 

and colleague companionship. 

 

Senlei Wang 

Delft, the Netherlands, 2022 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

Summary 

Automated Mobility-on-Demand (AMoD) systems, where a fleet of automated vehicles (AV) 

provides on-demand service, are expected to revolutionize urban mobility systems. Yet we are 

at a fork on the road to the emerging autonomous future. The expectation is that AMoD 

systems could transform urban personal transportation into sustainable, efficient, and 

accessible transportation services. However, there are considerable uncertainties in the 

planning and operations of the AMoD systems, which are not yet known and may even lead 

to negative results on urban mobility performance.  

Research on AMoD systems and field trials of this technology are underway. Agent-based 

modeling, which describes a system at the level of its constituent entities, could provide a 

high level of detail in realistically representing the interaction between system entities and 

allow for changes to model assumptions, given the flexibility of this modeling approach. This 

is very important in the context of the uncertainty around the AMoD systems. Thus, in this 

thesis, we deem agent-based modeling as being well suited for investigating future AMoD 

systems with multiple interacting entities (e.g., travelers, shared AVs, and AMoD operators) 

and therefore shed some light on the uncertainties about the operations and the effects of such 

systems. 

To begin with, one of the possible AMoD application scenarios is that many micro AVs will 

function as taxi systems to provide direct on-demand mobility solutions to travelers (e.g., 

morning commuters) in urban areas. In this thesis, service schemes are designed according to 

what is best for the service providers and travelers. With the help of a new agent-based 

modeling framework, simulation experiments are conducted in an urban area to explore the 

potential of different AMoD service schemes (e.g., door-to-door service, station-to-station 

service, simultaneous operation of two services). 
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Along with emerging AMoD services, micro AVs equipped with automated driving systems 

can be coordinated in platoons through connectivity and automated driving functions. Platoon 

operations provide an innovative way of operating vehicles. Briefly, we can envision a future 

urban mobility system in the 2030s or 2040s whereby individual micro AVs could carry 

commuters from one place to another, while swarms (platoons) of micro AVs could transport 

many commuters together with potential energy savings. Platoon-enabled AMoD systems 

could provide a solution to create a futuristic mobility system with better service quality, 

traffic efficiency, and energy efficiency. We have extended our modeling framework by 

allowing platoon operations to take place when AVs circulate across the urban road network. 

We delve into how the formation of platoons in AMoD systems may affect people's traveling 

but also system-wide performance indicators such as energy consumption of the fleet, which 

will most likely be constituted by electric vehicles. 

Moreover, with the rapid development of AMoD systems, it will be natural to see fleets of 

micro AVs operated by multiple companies (e.g., Waymo, Baidu, Mercedes-Benz), which 

may drive a new urban mobility ecosystem. Motivated by the rapid development of AMoD 

solutions delivered by self-driving car companies, we have again extended our agent-based 

framework for allowing a multiple-operator AMoD system. We study the future scenarios of 

multiple-operator AMoD systems with exogenous demand to explore the potential effects of 

operating strategies (e.g., relocation strategies) in a competitive market. Furthermore, the 

decision-making mechanism of the travelers is considered by incorporating a mode choice 

component into the agent-based framework. The extended modeling framework is used to 

study the coexistence phenomena of multiple AMoD operators competing for customers. The 

modeling framework has been implemented and tested in a case study city. 

Overall, with advanced agent-based models applied to emerging AMoD systems and 

developed algorithms, this thesis aims to advance the understanding of AMoD technologies 

and address uncertainties in future urban AMoD applications. It is critical for stakeholders to 

know exactly how AMoD systems should be operated in urban or regional mobility systems. 

Recommendations to various stakeholders (e.g., city government, original equipment 

manufacturers, service providers) are provided through the different contributions.  

A significant commitment across agent-based modelers, analytical modelers, urban planners, 

and transport researchers is still needed in further research to answer the questions that arise 

regarding future AMoD systems. Pioneering investigations should continue to infuse 

sustainability and operating efficiency into the planning and operating AMoD systems to aid a 

smooth transition to a future transportation system. 
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Chapter 1 

Introduction 

This introductory chapter introduces the background information on the future application of 

AMoD systems, briefly describes the current state of knowledge on modeling AMoD systems, 

and discusses the research challenges in planning and operating future AMoD systems that 

have been tackled in this thesis. 

The chapter is organized as follows. In section 1.1, we give background information about 

AMoD systems. Section 1.2 presents the research challenges that need to be addressed in 

planning and operating AMoD systems. Section 1.3 formulates the research questions of the 

Ph.D. project. The main scientific and practical contributions of this thesis are summarized in 

Section 1.4. The outline of the thesis is presented in Section 1.5. 

 

 

 

 

 

 



2 Modeling Urban Automated Mobility on-Demand Systems: an Agent-based Approach 

1.1 Background  

As the urbanization process continues, the world population keeps concentrating more and 

more in the main cities. One of the biggest challenges for many cities worldwide is to provide 

transport infrastructure and mobility services to serve an increasing number of travelers.  

Three-quarters of the population in Europe live in cities but still the number of people in most 

cities is expected to increase by more than 10% in the next 30 years (https://ec.europa.eu/).  

The growing number of inhabitants is putting extra pressure on transit supply and road 

infrastructure. Continuously, road traffic is increasing, and demand for public transit systems 

is growing. City authorities face the challenge of providing citizens affordable and efficient 

mobility options and are urgently seeking smart and innovative solutions for sustainable, 

efficient, economic, and inclusive transport.  

With changes in mobility behavior and lifestyles, advances in urban mobility technology are 

opening up new opportunities for a sustainable and efficient urban transport system.  AVs 

bring a unique opportunity for changing urban mobility, leading to significantly better 

mobility services with reduced costs of negative road transport externalities (accidents, 

congestions, emissions and oil dependence). 

As we continue to witness the accelerating roll-out of AVs, transportation is experiencing the 

fastest and most far-reaching disruption in the new era of automation. The automotive 

industry is on an accelerating change curve with AVs and leads the transformative trend 

towards driverless mobility.  

The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation, 

from Level zero (fully manual) to Level 5 (full automation). The term AVs used in this thesis 

refers to vehicles equipped with SAE-level 5 automated driving systems: AVs (SAE-level 5), 

known as self-driving cars or driverless cars, are capable of driving everywhere in all 

conditions with no need for any human intervention.  

Combining AVs with ride-hailing services is steering the paradigm shift of urban mobility 

systems. The transition towards AMoD or automated ride-hailing systems for both people and 

goods is already underway. Urban commuters may relinquish POV ownership and access the 

AMoD service in the foreseeable future.  

Given the great potential of AMoD systems and the expected disruptive transformations of 

the urban transport system, there has been great interest in exploring the impacts of AV 

operations in passenger transport systems over the last few years.  

A broad spectrum of research focuses on investigating the potential of operating AMoD 

systems on operational cost, transport levels of service offered to travelers, environment, 

traffic congestion, energy consumption, pricing, and parking. Some studies provided an 

assessment of operating AMoD systems when combining public transportation options. 

Several studies focused on deploying control or optimal strategies to manage AMoD systems 

(Hörl et al., 2019; Hyland & Mahmassani, 2018; Oh et al., 2020a). Existing studies 

https://ec.europa.eu/info/index_en
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demonstrated that the convergence of vehicle automation, electrification, and shared mobility 

in AMoD systems could provide sustainable, economical, and efficient transportation options 

(Hensher et al., 2021; Milakis et al., 2017). However, there are considerable uncertainties 

about achieving these benefits (Anania et al., 2018; Paddeu et al., 2020).  

1.2 Research challenges raised in urban AMoD systems 

As vehicle automation technology advances, new transportation use cases will emerge that are 

primarily driven by factors such as vehicle types (e.g., different vehicle sizes and automation 

levels), service schemes, and the organization of AMoD services (e.g., single operators or 

multiple operators). Planning and operations of AMoD systems require the establishment of 

guidelines to be prepared to meet the mobility needs of travelers in urban areas. However, in 

the future application of AMoD systems, there are still many uncertainties as to how AMoD 

systems are operated and organized to provide significant benefits to system users, fleet 

operators, and cities. Therefore, there is an urgent need to explore the potential impact of 

innovative operations in various forms of AMoD systems on serving urban travel demand in 

response to driverless disruption, which has great potential to transform the existing urban 

passenger transport system. Below, we describe four areas that require further research.  

First, little attention has been paid to exploring the implementation of efficient AMoD 

systems in terms of the different service schemes in which they might be operated and the 

potential synergies between them. For example, services provided to travelers can be switched 

between a door-to-door service and a station-to-station service; two services could be 

operated simultaneously to provide services in the same urban area according to what is best 

for service providers and travelers. Flexible service schemes enabled by vehicle automation 

need to be designed and compared; at the time of the start of this thesis, little was known in 

the literature. 

Second, the impact of platoon operations on urban and highway traffic has been studied, 

assuming that AVs are already in platoons. Some studies investigated the problem of 

coordinating vehicles in platoons on highways. However, the impact of the creation and 

operations of such platoons on urban passenger AMoD systems has not been the subject of 

much research. Hence, there is a lack of evidence on how the creation and operations of such 

platoons affect people’s travel and energy usage in urban passenger AMoD systems.  

Third, existing studies focus on examining the impact of a single-operator AMoD system with 

and without consideration of public transportation options. With the rapid development of 

emerging AMoD services, it will be natural to see fleets of AVs operated by multiple 

independent companies. Existing models and tools lag behind the rapid developments in 

urban multiple-operator AMoD systems. So, there is a need to develop a new modeling 

framework to simulate emerging AMoD systems with multiple independent operators and fill 

the knowledge gap of multiple-operator AMoD systems by exploring the potential of 

operations (e.g., relocations) in the competitive market.  
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Fourth, current research has focused primarily on the impact of introducing the urban AMoD 

service that is provided by a single AMoD operator into urban mobility systems while 

considering supply and demand interactions. However, the phenomena associated with the 

coexistence of multiple AMoD operators competing for customers in a situation where 

information is completely shared is overlooked. There is no modeling framework to study this 

complex phenomenon, and insights into how to develop effective strategies by AMoD 

operators competing for customers are lacking.  

The thesis addresses these research needs by developing a new agent-based modeling 

framework. The impacts of innovative operations in different urban AMoD systems can be 

quantified within the modeling framework; recommendations for different stakeholders can 

be presented through scenarios and case studies. 

1.3 Research questions 

AMoD systems are envisaged for the future, probably in operation between 2030 to 2040 

when vehicle automation technology has matured enough and AVs have become affordable. 

We may see a situation in the foreseeable future where hundreds and even thousands of micro 

AVs will function as taxis or MoD systems to provide on-demand service to serve clients in 

urban areas. The main objective of this thesis is to study new phenomena of providing 

different service schemes, forming platoons, transporting travelers in multiple-operator 

settings with and without relocations, and competing for travelers in urban AMoD systems 

comprised of different AV operators. More specifically, this thesis addresses the following 

main research questions and associated sub-research questions. 

Question 1: What are efficient ways of operating SAVs under different on-demand service 

schemes within the urban service area? 

Sub-question 1: Which service schemes in terms of pickup points and doorstep service should 

be provided when serving demand in urban areas? 

Sub-question 2: How can available vehicles and passengers be effectively matched? 

Sub-question 3: How does ride-sharing operation affect the service offered to customers and 

fleet efficiency? 

 These questions are answered in Chapter 3. 

Question 2: What are the impacts of forming platoons in AMoD systems on travelling and 

energy efficiency?  

Sub-question 1: What are the impacts of the formation and operation of urban platoons on the 

service quality offered to travelers and traffic efficiency related to road network travel times?  

Sub-question 2: How do changes in traffic conditions by platoon operations affect the travel-

related energy consumption of traffic participants across the urban road network? 

These questions are answered in Chapter 4. 
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Question 3: What are effective operating strategies for independent operators to gain a 

competitive edge in a situation without information sharing? 

Sub-question 1: How do changes in supply (vehicle fleet) affect the performance (e.g., service 

levels, fleet efficiency, and profit) of an operator and its competitors coexisting in the same 

urban area? 

Sub-question 2: How do relocation strategies of an operator affect the operator’s 

performance? 

These questions are answered in Chapter 5. 

Question 4: How do operators compete for clients in multiple-operator AMoD systems 

where information (travel requests, vehicle fleet, prices) are completely shared within a 

platform? 

Sub-question 1: How do changes in pricing strategies affect travelers' choice of AMoD 

services and the operating performance of competing operators? 

Sub-question 2: How do changes in assignment methods affect travelers' choice of AMoD 

services and the operating performance of competitors? 

Sub-question 3: How do changes in fleet sizes affect travelers' choice of AMoD services and 

the operating performance of competitors? 

These questions are answered in Chapter 6. 

To answer these questions, a new modeling framework was developed for different forms of 

emerging AMoD systems proposed in Chapters 3 through 6. 

1.4 Thesis contributions 

This thesis has made contributions to the literature by developing an agent-based modeling 

framework to answer specific questions raised in future AMoD systems. We examine the 

practical effects of operating such systems from different perspectives (e.g., service operators, 

travelers). This section highlights the main contributions of this thesis to the literature and 

practice.  

1.4.1 Contributions to the literature 

In Chapter 3,  we propose four different AMoD service schemes, and a simulation framework 

has been developed to evaluate the performance of  AMoD services under different service 

schemes. We examine the potential of the AMoD systems and compare their performance. 

Moreover, a ridesharing mechanism and two different optimal assignment methods are 

developed and implemented. We demonstrate the effectiveness of the ridesharing operations 

for different AMoD services. 
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Our study in Chapter 4 is the first to assess the potential of the strategic formation and 

operations of such platoons in future urban AMoD systems. For such a study, we develop an 

advanced modeling framework to tackle the challenges raised in the formation of urban 

platoons by detailing the behavior of travelers and vehicles as well as their interactions. 

Through the novel framework, in which the platoon-formation operations are modeled at 

different levels of detail, we can delve into how the formation of platoons in AMoD systems 

may affect people's traveling but also system-wide performance indicators such as energy 

consumption of the electric AMoD fleet. The findings of this study contribute to the growing 

body of literature on the study of SAVs planning and operations by assessing the travel 

impact of forming platoons in urban AMoD systems. Furthermore, we shed light on the 

energy aspect of innovative platoon operations in urban AMoD systems to complement the 

existing studies on the fuel consumption of platoons on highways. 

Chapter 5 first models multiple independent operators coexisting in the same urban area to 

complement state-of-the-art literature relevant to a single urban AMoD operator. Notably, we 

have studied relocation operations and evaluated the potential of relocating vehicles for an 

operator compared to their competitors in a multiple-operator AMoD system. It adds to a 

growing body of studies related to relocation operations in the multiple-operator carsharing 

system, which differs from multiple-operator AMoD systems in terms of the system 

operations (optimal assignment and relocation mechanism) and operating costs. Performance 

is evaluated within the new modeling framework to provide insights into the competitive 

dynamics through a set of key performance indicators in terms of service quality offered to 

travelers, system efficiency, and the operators' profits. 

Chapter 6 is the simulation study to investigate the problem of competing for customers 

between multiple AMoD operators. One of the main contributions is that a customer decision-

making mechanism is designed as part of the modeling framework to allocate customers to 

different AMoD services. Using the agent-based modeling framework, we dig into travelers' 

considerations of when to choose the services offered by which competing AMoD operators 

under different operating strategies (fleet sizes, pricing, assignment strategies). 

1.4.2 Contributions to practice 

The framework presented in the thesis provides a risk-free, time- and cost-saving virtual 

environment. This reduces the cost, takes less time, and improves safety compared to field 

trials. Simulation studies of different AMoD systems can be performed for service providers 

to test different realistic scenarios with the objective of finding an efficient way to provide 

their services. For example, the effectiveness of the vehicle-to-passenger assignment 

algorithms in Chapter 3, the platoon formation algorithm in Chapter 4, the relocation 

algorithm in Chapter 5, and the pricing structures in Chapter 6 are tested. The performance 

evaluation can help service providers avoid the risk of failure and assist them in developing 

effective strategies to improve the transport level of service, fleet efficiency, and profit. The 
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operations that have been demonstrated to be effective can be incorporated into AMoD 

system design as key functionalities of management systems. 

Introducing AMoD systems in urban areas can pose challenges for policy-making. Policy 

recommendations are formulated from different perspectives. Based on the quantitative 

analysis of the findings of simulating platoon formations, Chapter 4 discusses the policy 

recommendation regarding whether to coordinate vehicles in platoons and the energy aspect 

of platoon operations. Also, simulation results allow policymakers  (e.g., city authorities) to 

understand the impact of forming platoons in urban AMoD systems. Fostering an 

understanding of the potential can help them gain a deeper insight into how to take advantage 

of AMoD technology with a view to achieving mobility and energy goals.  

As a case study, we apply the urban multiple-operator AMoD systems to the city of The 

Hague, the Netherlands. In Chapter 5, simulation experiments are performed to generate a 

spectrum of possible outcomes. Based on insights gained from simulation outcomes, we 

provide recommendations for city authorities on how to regulate the emerging AMoD market 

and for service providers on how to gain a competitive edge over their counterparts.  

Through the simulation experiment in Chapter 6, we explore a variety of possible future 

application scenarios around the core issues of the competition for customers between AMoD 

operators. We gain insights into how the operating strategies affect people’s travel (e.g., travel 

times and choices to go to different AMoD services) in a competitive market that gives 

customers multiple AMoD options. In this way, we inform policymakers (e.g., city authorities 

and service providers) about the decision-making process to prepare for the arrival of AMoD 

services in cities. 

1.5 Outline 

This thesis consists of seven chapters. 

Chapter 2 discusses the methods used to address the challenges in planning and operating 

AMoD systems. We divided the methods into two categories: analytical methods and 

simulation methods. Notably, we show the suitability of agent-based modeling in tackling the 

urgent problems of operating AMoD systems characterized by multiple entities and 

complicated interactions. 

As a first attempt to study the impacts of AMoD operations under different service schemes,  

Chapter 3 simulates the on-demand operations of SAVs in the proposed urban AMoD 

systems. Simulation experiments are conducted in a hypothetical urban area (roughly the size 

of Delft in the Netherlands) to demonstrate the potential of different AMoD service schemes. 

In the continuation of the research, new functionalities related to platoon formations, energy 

consumption, and mixed traffic simulation are developed in Chapter 4. A novel study was 
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performed on the real-size urban road network of The Hague, The Netherlands, to assess the 

travel and energy impact of forming platoons in urban AMoD systems. 

Chapter 5 presents a study of multiple independent AMoD operators without sharing 

information, which may drive a new mobility ecosystem. Operating strategies (e.g., vehicle 

relocation) in the future multiple-operator AMoD systems with exogenous demand are 

investigated.  

In Chapter 6, an urban AMoD system formed by multiple AMoD operators is defined. A 

sophisticated modeling framework for multiple-operator AMoD systems with endogenous 

demand in urban areas has been developed to evaluate individual operators' performance in a 

competitive market in which an AMoD operator changes service prices and fleet sizes. 

Chapter 7 concludes with the main findings and provides recommendations for future 

research.
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Chapter 2 

Research Methodology 

This chapter explains the research methodology that has been followed in this thesis with an 

emphasis on the agent-based modeling technique; in particular, the strengths and limitations 

of agent-based modeling are discussed. 

This chapter is organized as follows. In section 2.1, we describe the agent-based technique as 

a modeling approach. Section 2.2 provides a summary of existing agent-based model 

development software. Conclusions are drawn in Section 2.3. 
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2.1 Agent-based modeling 

The three most widely used simulation-based modeling techniques are system dynamics, 

agent-based, and discrete event modeling (Birta & Arbez, 2019). Each method serves a 

particular range of abstraction levels. System dynamics, typically used for strategic modeling, 

require a very high level of abstraction. Discrete event modeling supports an intermediate 

level of abstraction. System dynamics and discrete event modeling use a top-down view of 

system functions, while agent-based modeling is a bottom-up approach.  

This thesis uses the agent-based modeling technique to answer the research questions. Agent-

based modeling is a modeling paradigm that describes a system at the level of its constituent 

units (entities) (Bonabeau, 2002; Macal & North, 2015). In agent-based modeling, a system is 

modeled as a collection of agents. In order for the agent to interact, the interaction mechanism 

(a set of specified rules or equations) must be designed. The global or collective behavior of 

the modeled system emerges as a result of the interactions of individuals.  

2.2.1 Strengths and limitations of agent-based modeling 

Agent-based modeling is becoming a popular modeling method and is used in various 

disciplines, from social sciences, biology, political science, and transportation. The strengths 

of agent-based modeling are summarized as follows:  

First, agent-based models can be populated with data that are being collected. Agent-based 

models can have a high level of detail whereby attributes of agents are initiated based on the 

data. In particular, the approach can model both travel demand and transport supply with the 

same level of detail. The more detail that is included in the simulation, the higher the 

resolution. 

Second, the systems that we need to analyze and model are complex in terms of their 

interdependencies. There is a desire to gain deeper insights into systems. Agent-based 

modeling can explicitly model the entities and their interactions that occur in a real-world 

situation. With realistically represented interactions, the model structure can reflect the 

system structure. Therefore, agent-based modeling can provide a realistic view of systems. 

Third, the development process is scalable, incremental, and modular. This results in the 

flexibility of the agent-based approach. One dimension of flexibility means that the modeling 

approach can provide different levels of description of the target system to be modeled. (e.g., 

vehicles and platoons formed by vehicles; relocation vehicles and relocation decision by 

operators) to evaluate different aspects of the system. Another dimension is that it is easy to 

make changes to assumptions (e.g., formation policies) and strategies (relocations, platoon 

formations, vehicle-to-passenger assignment, pricing) for different scenarios, given the 

flexibility of this modeling approach. 

Fourth, agent-based models have the ability to be represented in a visual animation. Model 

animation is very useful for model demonstration, verification, validation, and debugging. 
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Modelers can measure variables and track entities, and add measurements and statistical 

analysis at any time. Overall, the main advantages of agent-based modeling are higher 

resolution, fidelity (model matches reality), flexibility, visualization, and traceable results. 

There are some limitations associated with the application of the agent-based approach in the 

field of transport planning. One general limit is that simulating individual agents requires 

significant computational power, especially when individual agents have complex 

characteristics and decisions, as in the case of humans. Rapid advances in computing power 

and memory make large-scale simulations (thousands of AVs in AMoD systems in case-study 

cities) plausible. Large-scale agent-based simulations can be performed for different scenarios 

to simulate the operations and interactions of a group of entities. 

Another limitation has to do with the nature of the system being modeled. Agent-based 

models often require behavioral data, which can be difficult and costly to obtain. It is also 

difficult to validate such a model, especially if the goal is to predict the behavior of an 

untested system. Moreover, building agent-based models requires a lot of programming and 

verifications to assure the functional components work as intended. Hence, building an agent-

based model takes time. 

2.2.2 Agent-based modeling and simulation 

In this section, we briefly explain modeling and simulation in general and the connection 

between agent-based modeling and simulation in particular. The general development process 

in modeling and simulation goes through five phases of a cycle: 1) system definition (defining 

a system under investigation), 2) a model, 3) simulation (execute a model on a computer for 

experimentation), 4) analyzing the simulation results, and 5) making inferences about the 

modeled system. The modeling and simulation development process in Figure 2.1 will require 

a number of iterations of the development cycle. 

 

 
Figure 2.1 Model and simulation development process 
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The system definition refers to defining the subject being investigated. To develop a model, 

data and knowledge about the system are required. Modelers must study the system and 

collect the data for model development with a clear statement of the identified problem. A 

conceptual model is required to give descriptions of modeling objectives, model assumptions 

and simplifications, model input and output, and model specifications (e.g., functionalities, 

entities). The conceptual model aims to abstract the model from the system based on the 

understanding of the problem situation. The result of this conceptualization process is a non-

software description of the model to be developed. A conceptual model could be a textual or 

graphical representation of a real-world system. 

At the heart of the development process are models. A model is a representation of real-world 

(actual or proposed) systems with abstractions and simplifications. A model is not intended to 

represent all aspects of the system being studied; however, the model should be created, 

capturing the essential aspects that affect the performance of the system under investigation. 

More broadly, simulation can be considered a method for studying systems. In this thesis, 

modeling and simulation, including the simulation step, are considered comprehensive 

methods for studying a system. Therefore, simulation refers to the software implementation of 

a model that allows the model to be run on a computer. For example, numerical simulation 

refers to a calculation running on a computer following a program that implements a 

mathematical model (Sommariva et al., 2021). Simulation is the process of executing a model 

to develop data or produce outputs regarding the behavior of the modeled system in order to 

make informed decisions. An agent-based model is a computer executable model. Therefore 

after the agent-based model is developed, simulation experiments can be designed to evaluate 

the system performance according to the modeling objective.  

The system performance can be measured by defined indicators that are suitable to answer the 

questions. When obtaining the simulation results, the modeler can perform an analysis of the 

model output. These indicators are often called key performance indicators. 

The objective of the modeling and simulation study is to generate insights by interpreting the 

evaluation results and applying the knowledge to the real-world system. Then, we can better 

understand the complexity of the system and improvements to the system. By utilizing the 

obtained knowledge, useful information can be provided for refining and modifying the 

model to bring it in line with the modeling objective.  

2.2 Agent-based model development software and toolkits 

Agent-based modeling can be performed using general-purpose software, proprietary software, 

and programming languages. ABM development environments such as Netlogo, MATLAB, 

and Mathematica can be used to learn the agent-based approach and perform basic analysis. 

General-purpose languages (Python, Java, C++) can be used directly. However, modelers will 

spend a lot of time developing templates of fundamental building blocks (e.g., for creating 

agents or defining agent states). Large-scale agent development toolkits are more efficient in 
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developing an agent-based model. Repast, Swarm, Mason, and Anylogic are the most 

commonly used development toolkits. 

This thesis developed the agent-based modeling framework from scratch in the Anylogic 

proprietary platform (Borshchev et al., 2002). AnyLogic is a flexible simulation software and 

provides several options for developing simulation models. The creation of AnyLogic was 

strongly inspired by Java, which is an efficient language for modelers. Java is a high-level 

language where you do not have to care about memory allocation, distinguishing between 

objects and references, etc. Moreover, Java is a full-featured object-oriented programming 

language with high performance. Furthermore, Java is more straightforward and easier to use 

than C++, especially for beginners. Finally, Java is supported by industry leaders, and 

as Java gets better AnyLogic modelers automatically benefit. 

2.3 Conclusions 

This chapter gives a detailed explanation of agent-based modeling and shows the advantages 

of the agent-based modeling technique. Notably, agent-based modeling can model a system 

with a high level of detail, leading to a high model resolution. Moreover, an agent-based 

model can realistically represent the interactions of system entities and their dynamic 

dependencies. Furthermore, it is flexible to make changes to the model (e.g., assumptions and 

specifications). Agent-based modeling is well suited to our study on modeling urban AMoD 

systems characterized by multiple entities and complicated interactions between entities. 

Many agent-based development software toolkits have been designed to support agent-based 

model development. Modelers can choose the development environment depending on their 

background knowledge, project time, and available resources (e.g., computing clusters or 

funding).  

The agent-based model development cycle provides the steps of developing models to answer 

specific questions. Generally speaking, modelers need to build and refine models until models 

are good enough (e.g., appropriate levels of detail, realistically represented interactions) to 

answer the specific questions. 
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Chapter 3 

Modeling Different Service Schemes in Single-

Operator AMoD Systems 

The developed ABM aims to simulate the on-demand operations of AVs in a parallel transit 

service (PTS) and a tailored time-varying transit service (TVTS). The proposed TVTS system 

can switch service schemes between a door-to-door service (DDS) and a station-to-station 

service (SSS) according to what is best for service providers and travelers. In addition, the 

proposed PTS system that allows DDS and SSS to operate simultaneously is simulated. To 

test the conceptual design of the proposed AMoD system, simulation experiments are 

performed in a hypothetical urban area to show the potential of different AMoD systems. The 

impact of ride-sharing on operational efficiency is examined according to the designed 

operational rules. We provide an analysis of how different vehicle assignment methods impact 

system performance related to the level of service and fleet efficiency. 1 

 
1
This chapter is based on the published paper: Wang, S., Correia, G.H.D.A., Lin, H.X. (2019). Exploring the 

Performance of Different On-Demand Transit Services Provided by a Fleet of Shared Automated Vehicles: An 

Agent-Based Model. J. Adv. Transp. https://doi.org/10.1155/2019/7878042 
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3.1 Introduction 

It is being said that we are at the dawn of the next mobility revolution with the introduction of 

automated driving. However, there are aspects of automated vehicles (AVs) that still need to 

be understood. For example, there are many legal, regulatory, and technical problems that are 

delaying the deployment of AVs. A fleet of shared automated vehicles (SAV), which 

functions as a centralized taxi service system, will probably bring the most disruptive changes 

in urban mobility. The real potential of SAVs is that they make the implementation of an 

entirely new public transportation system possible. That is, SAVs might have the power to 

transform transportation mobility fundamentally and revolutionize the transport system, given 

the added degrees of freedom of operating shared taxi systems (Bösch et al., 2018b; 

Greenblatt & Saxena, 2015; Jager et al., 2018).  

A fleet of SAVs operated in a centralized way in AMoD systems could function as an 

efficient taxi system to provide demand-responsive service for travel demand during a day, 

especially in urbanized areas. The AMoD system could be used to provide station-to-station 

service (SSS) (services between pickup points) to transport as many people as possible in 

busy routes in a demand-responsive fashion. However, the AMoD system could also be 

operated as a door-to-door service (DDS), giving great convenience to travelers as of today's 

Transport Network Companies such as Uber, Lyft and Didi Chuxing. In this chapter, we aim 

to take into consideration these two ways of operating urban automated transport systems, 

both in parallel and in sequence, and propose a simulation tool to assess their impact on an 

urban network.  

Building upon the on-demand DDS and on-demand SSS, two extra on-demand transit service 

systems are proposed and simulated. Time-varying transit service (TVTS) that can switch 

service schemes between DDS and SSS depending on the time of day (peak hours and off-

peak hours, for example), and the simultaneous operation of DDS and SSS, allowing both of 

them to operate in parallel (designated as parallel transit service: PTS).  

In addition, AMoD systems could facilitate the implementation of dynamic ride-sharing, 

which aims to pool multiple travelers with similar origins, destinations, and departure times in 

the same vehicle. Dynamic ride-sharing has the potential to improve the performance of 

proposed AMoD systems in terms of energy-saving, waiting time reduction, VKT reduction, 

etc (Alonso-Mora et al., 2017; Farhan & Chen, 2018; Furuhata et al., 2013). More importantly, 

the dynamic ride-sharing could enable the AMoD system to accommodate more travel 

demand with the same number of vehicles. The proposed AMoD systems offering various 

service schemes with dynamic ride-sharing could eliminate the problems in past attempts to 

provide demand-responsive transit services (Daganzo, 1984). 

Few studies have explored the operation of variations in the service schemes of AMoD 

systems in which they could be operated and the potential synergies among those. This 

chapter attempts to fill that gap through a simulation study in a hypothetical city as a first 

approach to the problem. The ABM describes the AMoD system with its details and 
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complexity by modeling the travel requests and vehicle movements, and especially 

interactions between vehicles and travelers. With the help of ABM, conceptual design and a 

preliminary study are presented for different AMoD systems as defined above: SSS system, 

DDS system, TVTS system, and four PTS systems. The ABM is used to explore the trade-offs 

in different AMoD systems between the service levels, captured by the waiting time and 

service time (in-vehicle travel time) and the system efficiency in terms of VKT, system 

capacity, and served trips. 

The model allows us to understand how the system components of the AMoD system behave 

over time and find the potential of AMoD systems by studying the most efficient ways of 

operating them under different service schemes. Therefore, the preliminary look at the 

performance of AMoD systems could provide useful information for transport operators when 

deciding to adopt an AMoD system in the future. Nevertheless, it also provides support for 

future more detailed simulation studies whereby these schemes might be important to test. 

The remainder of the chapter is organized as follows. Section 3.2 presents the model 

specifications. Section 3.3 gives a detailed description of the experiments that have been run. 

Section 3.4 provides an analysis of the simulation results. Conclusions are drawn in section 

3.5. 

3.2 Model Specifications  

The ABM is intended to simulate the operations of SAVs and their interactions with travelers' 

real-time requests within a hypothetical city area. We simulate tailored AMoD systems with 

various service schemes as already described. In this study, the fleet operator has no 

information about the travel requests in advance. In other words, the fleet operator has no 

information about travelers before they request service. After a traveler requests a vehicle, the 

fleet operator knows the information of the traveler. The fleet operator only assigns the idle 

vehicles to serve the travelers in a real-time fashion, and therefore scheduled assignment in a 

pre-booking fashion is not possible. As shown in Figure 3.1, the fleet operator is responsible 

for real-time vehicle assignment, dynamic ride-sharing, and managing and monitoring 

information of travel requests and vehicles. In addition, the central operator is designed for 

route assignments for SAVs. Vehicle assignment means that the fleet operator finds idle 

vehicles to serve real-time travel requests. The route assignment is to find a route either for 

en-route pickup vehicles or en-route drop-off vehicles. We distinguish the functions between 

the fleet management center and the central routing center, enabling the designed system to 

keep an expanded capability for multiple operators. 

The interactions of system components between SAVs and time-dependent travel requests are 

shown in Figure 3.1. The fleet management center controls the assignment of SAVs to serve 

real-time travel requests. After the assignment of SAVs, communications will take place 

between travel requests and SAVs until travelers arrive at their destination. After SAVs 

receive the essential information (origin, destination, identification) of travel requests, each  
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 SAV will communicate with targeted travel requests for pickups and drop-offs. The dynamic 

ride-sharing module in the fleet operator aims to group travelers according to the matching 

rules. The routing module is responsible for the route calculation for real-time vehicle routing. 

The central operator will transit routing information to the in-service vehicles. The model 

contents include dynamic generation of time-dependent requests, real-time vehicle assignment, 

and dynamic ride-sharing. To deal with the lack of some essential information, we give the 

detailed description of model assumptions: 

• No induced travel demand is taken into account; 

• All the travelers are willing to share rides with strangers; 

• The battery capacity can support full-day operations for each SAV; 

• The parking spaces are enough for all the SAVs in each station. 

For easier model implementation, we simplify the following model specifications: 

• SAV speed is predefined on road segments and updated for peak hours and off-peak 

hours, respectively; 

• Cancellation of assigned SAV is not allowed; 

• Travelers will give up a request when the waiting time for being assigned a vehicle 

exceeds a specific time threshold; 

 

Figure 3.1 Interaction between system components 

 



Chapter 3 – Modeling Different Service Schemes in Single-Operator AMoD Systems 19 

 

• Travelers' choices between door-to-door service and station-based service are based on 

a fixed willingness to use a certain service, which is an experimental parameter (20%, 

40%, 60%, and 80%). 

3.2.1 Real-time SAV assignment 

In this model, two assignment methods are designed.  The first vehicle assignment method is 

to assign the nearest idle vehicles to serve the real-time travel requests according to the first-

come, first-served (FCFS) principle. We define the first vehicle assignment method as the 

FCFS vehicle assignment method. The second is an optimal assignment method that assigns a 

group of idle vehicles to bundled travel requests with the objective of minimizing the total 

empty travel distance for the pickups. 

3.2.1.1 FCFS vehicle assignment method 

We design a fleet operator to assign the idle and nearest SAVs to serve real-time travel 

requests. The rules of the design are as follows: 

 The fleet operator will find an idle and nearest SAV in the same sub-region as the request 

departure location based on the FCFS principle; 

• If there is no available SAV close to the request, the fleet operator will find an idle 

SAV from the whole study area to serve it;  

• The fleet operator only gives top priority to shared riders. That is, the travelers who 

will share their rides are sorted from the waiting list and assigned an idle and nearest 

SAV as soon as possible. 

3.2.1.2 Optimal vehicle assignment method 

The optimal vehicle method can assign a group of idle vehicles 𝑉 = {𝑣1,… , 𝑣𝑛} to bundled 

travel requests  𝑅 = {𝑟𝑡1,… , 𝑟𝑡𝑛}. That means that the fleet operators can bundle a certain 

number of travel requests, each of which is specified with a timestamp, and assign a group of 

available vehicles to them with the objective of minimizing the total empty travel distance of 

the assignment.  The size of bundled travel requests varies along the day according to the 

demand that coincides with the same time interval. The collection of idle vehicles 

participating in the optimal assignment is found by searching the nearest vehicles for each 

travel request in the set 𝑅. The assignment problem can be formulated as a bipartite matching 

problem between bundled travel requests and selected idle vehicles in every dispatching time 

interval. The Hungarian algorithm (Kuhn, 2010) is used to solve the problem.  

Nevertheless, a travel request can be assigned a vehicle by the FCFS principle without calling 

the Hungarian algorithm only when the fleet operator failed to find adequate idle vehicles as 

input for the Hungarian algorithm or when there is only one request for vehicle assignment in 

a certain dispatching time interval.  
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After the SAV assignment, the vehicle will have the essential information about requests 

(location, requested service, ride-sharing status) and communicate with travelers by sending 

an assignment message. After that, the traveler waits for the SAV's arrival. Therefore, the 

waiting time can be composed of waiting time for vehicle assignment (due to the 

unavailability of a SAV) and waiting for the SAV' arrival while it is en-route for picking up 

the traveler. 

 
Figure 3.2 The state of individual travel requests 

 

3.2.2 Dynamic generation of time-dependent travel requests 

Based on the aggregate travel demand, individual travel requests are generated with spatial-

temporal characteristics. In this study, the demand generation process can be divided into the 

following two steps. 

• Generating a fixed number of time-dependent travel requests for each zone over each 

time interval 

Total production of travel requests for each zone is calculated based on an origin-destination 

(OD) matrix, and then demand production per one-hour interval for each zone is estimated by 
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using the departure time distribution and total demand production per zone for 24 hours. At 

the beginning of each time interval, a fixed number of travel requests are generated, and then 

the generated travel requests are distributed within this time interval by following a discrete 

uniform distribution. As a result, all the generated requests for each time interval will be 

associated with a specified time. 

• Finding a destination zone for each travel request 

It is assumed that observations of travel requests in each zone over other traffic analysis zones 

in the whole study area are known in the OD matrix table. That is to say, the number of 

requests ending in every other zone is known. Based on these observations of travel requests 

over traffic analysis zones in the OD matrix table, the destination zone of each travel request 

will be drawn by using the Monte Carlo simulation process. In the end, each request will have 

a destination zone. We give a detailed overview of departure time distribution and total travel 

requests for each zone in the section of detailed travel demand. 

As shown in Figure 3.2, the statechart diagram, one of the five Unified Modeling Language 

diagrams, is used to model the dynamic nature of travelers. The statechart diagram can define 

different states of a traveler during a lifetime and these states are changed by events. By using 

statecharts, traveler behavior can be visually shown.  The statechart has states and transitions. 

Transitions may be triggered by user-defined conditions (timeouts or rates, agent's arrival, 

messages received by the statechart, and Boolean conditions). For example, After the SAV 

assignment, the vehicle will have the essential information about requests (location, requested 

service, ride-sharing status) and communicate with the clients by sending an assignment 

message (state transition by receiving a message). After that, the traveler waits for the SAV's 

arrival (state transition by vehicle arrival). The travel request will give up waiting for vehicle 

assignment when waiting assignment time exceeds a time threshold (state transition by 

timeout event).  

3.2.3 Fleet size 

The fleet size is an experimental parameter in the ABM. We simulate the operations of 

AMoD systems with different fleet sizes. In addition, in order to illustrate the relations 

between multiple system characteristics, we estimate a small fleet size for keeping an 

acceptable service quality for AMoD systems. 

3.2.4 Dynamic ride-sharing 

The SAV can facilitate the implementation of dynamic ride-sharing. Dynamic ride-sharing 

aims to pool multiple travelers with similar temporal and spatial characteristics. 

In this model, we design a set of rules for the implementation of dynamic ride-sharing. 

Travelers who have common OD zones are allowed to share a SAV. Note that the grouped 

travelers with a common OD zone may have different departing and arriving specific 
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locations within each zone. The travel requests can be served at a service station or at their 

doorstep. 

From the service scheme point of view, we design a set of rules for dynamic ride-sharing. 

• If both of the shared rides need to be served at a station, the assigned SAV will pick 

them up at the origin station and then drop them off at the destination station.  

• If both of the shared rides need to be served in a door-to-door fashion, the assigned 

SAV will first pick up the passenger who is closer to it and then pick up another one. 

Based on the trip distance of the passengers, the SAV will first drop off the passenger 

who has a shorter trip distance, and then it will drop off the second passenger at its 

specific destination of the same zone. If the assigned SAV has the same estimated 

travel distance from the two passengers in two different locations, the SAV will first 

pick up the passenger who sent the request earlier and then pick up the second 

passenger at his or her doorstep. After reaching the first passenger's destination, the 

second passenger will be dropped off. 

• If one of the shared rides needs to be served at a station and the other one is to be 

served at the doorstep, the SAV will first pick up the passenger who is closer to it and 

then pick up the other passenger. Based on the trip distance of the passengers, the 

SAV will first drop off the passenger who has a shorter trip distance, and then it will 

drop off the second passenger at its destination (designated station or specific location) 

of the same zone. If the assigned SAV has the same estimated travel distance from the 

two passengers in two different locations, the SAV will first pick up the passenger 

who sent the request earlier and then pick up the second passenger at his or her 

doorstep. After reaching the first passenger's destination, the second passenger will be 

dropped off. 

In this ABM, a ride-sharing agent type is introduced to delegate the grouped travel requests. 

That is, once the ride-sharing agent is created, it is responsible for the interaction with an 

assigned vehicle. Each ride-sharing agent records the information of grouped travelers, the 

OD of the travelers, and the assigned vehicles for grouped travelers. According to the 

designed rules for dynamic ride-sharing, the fleet operator dynamically adds and removes 

ride-sharing agents in the simulation process. 

3.2.5 Service scheme 

We have defined four types of on-demand AMoD systems in terms of variations of service 

schemes as described above: DDS system, SSS system, TVTS system, and PTS system.  In all 

AMoD systems, we did not simulate user choices for different services based on attributes 

such as price or travel distance; however, we assume that individual requests have various 

levels of willingness to use the station-to-station service in the proposed PTS systems. 

According to the different willingness to choose the station-to-station service, the PTS system 

can be divided into PTS-20%, PTS-40%, PTS-60%, and PTS-80%. This would result from 



Chapter 3 – Modeling Different Service Schemes in Single-Operator AMoD Systems 23 

 

the prices of both services; otherwise, travelers would naturally prefer to use the door-to-door 

system only because it is more convenient. 

3.3 Model Application  

The simulation model was developed from scratch in Anylogic proprietary ABM platform 

with Java programming language. In this study, AMoD systems with different service 

schemes are tested in a hypothetical urban road network.  

3.3.1 Urban road network 

The road network of a city in a scale of 5 Km × 5 Km (roughly the size of Delft in the 

Netherlands) is used for testing the operations of different AMoD systems. The network is 

taken from the UDES (Urban Dynamics Educational Simulator) model. The road network 

topology includes 78 links and 77 nodes (see Figure 3.3). Stations for the drop-off and pickup 

service in AMoD systems are uniformly distributed among the traffic analysis zones (TAZs) 

in the whole study area. The scale is graphically defined in the agent simulation environment 

as: one pixel corresponds to ten meters. The SAVs shortest routes are computed using the 

Dijkstra algorithm. 

 
Figure 3.3 The road network 
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3.3.2 Detailed travel Demand 

The AMoD systems will serve a total demand of 110 000 trips in a full day. Figure 3.4 depicts 

the departure time distribution of the demand and the total production of travel requests for 

each zone that are used as input in the simulation model, as explained in section 3. 

 
(a) Demand production for each zone 

 
(b) Departure time distribution 

Figure 3.4 The departure time distribution and total demand for each zone 

 

To mimic the commuting patterns, OD matrices with different assumed observations are used: 

one in the first half of the day and the other for the rest of the day. The destination zones are 

found by using the Monte Carlo simulation process. Therefore, heterogeneous observations in 

the trip table enable the simulation to generate different results. 

Travel demand is not only generated and attracted in the centroid of each TAZ but specific 

points inside the zones are used, in order to simulate the operation of different service 

schemes. That means that travelers would walk from/to the station when using the station-

based service or waiting for their pickup at their places of residence if there is a door-to-door 

service. 
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3.3.3 Simulation parameters 

Table 3.1 shows basic input parameters for the SAV simulation. The vehicle speed is 

predetermined in all AMoD systems in peak hours and off-peak hours, respectively. Based on 

the research conducted by Wang et al. (X. Wang et al., 2016) in terms of speeds during the 

different times of the day, the reduction of the speed in peak hours ranges between 10% to 

30%. Therefore, we assume that the speed of the SAV is 20% lower than that in off-peak 

hours. In this ABM, we assume the SAV speed in off-peak hours is 36 km/h. The energy 

efficiency of different electrical vehicles roughly ranges from 1 kWh per 7.16 km to 1 kWh 

per 4.82 km (https://pushevs.com/electric-car-range-efficiency-nedc/). Therefore, for energy 

consumption, we adopt a rate of electricity consumption of 1 kWh per 7 kilometers that is 

reasonable for a two-seat, light-weight vehicle. We assume that travelers will give up 

requesting a SAV when the waiting time for a vehicle assignment exceeds 5 minutes. We 

assume that the maximum number of travelers in a shared car is two. The time interval being 

used for the assignment is 5 seconds. 

Table 3.1 Input parameters 

Category Value 

City scale 5 Km × 5 Km 

Road links 78 

Road nodes 77 

Travel requests 110 000 

Vehicle off-peak speed 36 km/h 

Vehicle peak-hour speed 28.8 km/h 

Vehicle capacity 2 persons 

Time threshold for client drop-out 5 minutes 

Time interval for optimal assignment  5 seconds 

Operation hours Around the Clock 

AM peak 7 AM-9 AM 

PM peak 4 PM-6 PM 

Fleet size [2000,4500] 

Fleet size step 500 

3.4 Results and Discussion 

3.4.1 Analysis of the impact of vehicle assignment methods 

To look at how the optimal vehicle assignment method impacts the performance of different 

SAVs systems. Seventy scenarios for different AMoD systems with variations in fleet size are 

simulated (see Table 3.2).  

Table 3.2 Combinatorial scenarios for the simulation of optimal vehicle assignment 

Assignment method     Optimal assignment method and FCFS assignment method 

AMoD systems DDS      SSS       TVS        PTS-20         PTS-40          PTS-60             PTS-80 

Fleet size          2000                2500                 3000                   3500                       4000 

 

The simulation results in Figure 3.5 indicate that the optimal vehicle assignment algorithm 

can reduce empty VKT. The fleet operator can optimally assign idle vehicles to serve the 

travelers while minimizing the total empty travel distance for the pickups.  The degree of 

file:///C:/Users/swang/Desktop/Journal/JoAT/IEEE_ITS_Magazine.docx
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reduction of empty VKT greatly depends on the fleet size. In Figure 3.5(a), the optimal 

assignment can reduce the empty VKT for all the AMoD systems in about 40 %, while there 

is almost of the same empty VKT for both assignment methods with a 4000-SAV fleet size in 

Figure 3.5 (e). Moreover, we found that the trend of the generated empty VKT over different 

AMoD systems for both vehicle assignment methods is similar to each other. That means that 

although the optimal assignment method can reduce the generation of empty VKT, the 

difference of generated empty VKT across AMoD systems remains the same to some extent. 

 

(a) Comparisons of VKT with the 2000-SAV fleet size 

(b) Comparisons of VKT with the 2500-SAV fleet size 

 
(c) Comparisons of VKT with the 3000-SAV fleet size 
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(d) Comparisons of VKT with the 3500-SAV fleet size 
 

 
(e) Comparisons of VKT with the 4000-SAV fleet size 

Figure 3.5 Comparisons of empty VKT for different assignment methods with variations in fleet sizes 

Considering the number of drop-outs (unsatisfied trips), it is possible to see the simulation 

results in Figure 3.6 and Figure 3.7 for the total number of drop-outs with both vehicle 

assignment methods and for all tested systems. Results indicate that the optimal vehicle 

assignment can enable the AMoD systems to transport considerably more travelers. This can 

be explained because of a reduction in the waiting time due to the higher efficiency of the 

optimal vehicle assignment method. 

 

 
Figure 3.6 Unsatisfied requests for AMoD systems with variations of fleet sizes by the optimal assignment 
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Figure 3.7 Unsatisfied requests for AMoD systems with variations of fleet sizes by the FCFS assignment 

 

3.4.2 Analysis of fleet size variations 

We provide a performance analysis of the AMoD system for different fleet sizes. In addition, 

a small fleet size for the base scenario to keep an acceptable level of service quality is 

determined to analyze the other characteristics of different AMoD systems. As shown in 

Table 3.3 and Table 3.4, the average peak-hour waiting time in all systems with dynamic ride-

sharing ranges from 8.68 minutes to 13.17 minutes when we adopt the 2000-SAV fleet size.  

For smaller fleet sizes, the service quality would be lower. Furthermore, there is little 

difference in the average waiting time in the four-PTS system when the fleet size is reduced 

from 3500 to 2000, as shown in Figure 3.7. Therefore, we could analyze the AMoD systems' 

performance starting from the estimated 2000-SAV fleet size.  

 

Table 3.3 Performance indicators for DDS, SSS, and TVTS systems with a 2000-SAV fleet size 

AMoD system DDS  SSS  TVTS 

Ridesharing NO            YES NO           YES NO            YES 

Avg. waiting time (min)  14.79  7.21  9.84  4.41  12.87  6.43  

Avg. peak-hour waiting time (min) 20.53 11.22 16.82 8.68 19.68 9.08 

waiting time > 10 minutes (trips) 47 849 29 766 42 962 16 624 48 188 23 773 

Avg. service time (min) 26.76 19.01 19.15 11.95 23.67 15.311 

Avg. peak-hour service time (min) 33.65 24.34 26.94 16.99 28.56 16.22 

Total VKT (km) 769 099 681 432 673 892 600 751 661 443 617 767 

Energy consumption (Kwh) 109 871 97 347 96 270 85 821 94 491 88 252 

Total SAV trips 131 355 117 999 141 076 125 544 138 487 131 901 

Request dropouts 24 328 24 554 12 358 12 027 19 066 16 322 

Percentage of dropouts (%) 22.1% 22.3% 11.2% 10.9% 17.3% 14.8% 

Percentage of shared rides (%) 0% 34.4% 0% 15.6% 0% 20.1% 

3.4.3 Analysis of the impact of dynamic ride-sharing 

AMoD systems allow travelers to share their rides according to the designed rules. In this 

analysis, we analyze the impact of dynamic ride-sharing in the AMoD system. Compared 

with a non-ridesharing system in   
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Table 3.3 and Table 3.4, AMoD systems with ride-sharing significantly reduce at least 50% of 

the average waiting time, 6.0 % of VKT and 4.7% of total SAV trips. The dynamic ride-

sharing could improve the performance of all proposed systems. 

The DDS system reaches a peak of approximately 34.4% of shared rides, while the SSS 

system has the lowest percentage of shared rides (around 15.6%). Four-PTS systems have 

slightly high percentages of shared rides from 18.7% to 25.9%. Especially, the TVTS system 

is about the same as the PTS-60% for the percentage of shared rides with a 2000-SAV fleet 

size, reaching 20.1% of total serviced trips.  The PTS systems and TVTS system, providing 

two service schemes, can achieve a relatively high sharing rate of trips. Although the 

simulation results for dynamic ride-sharing may not give conclusive evidence under designed 

matching rules to group travelers, the preliminary investigations of the impact of dynamic 

ride-sharing on different AMoD systems provide useful insights into the deployment of 

different AMoD systems. 

Table 3.4 Performance indicators for four-PTS systems with a 2000-SAV fleet size 

AMoD system PTS-20% PTS-40% PTS-60% PTS-80% 

Ridesharing NO          YES NO       YES NO      YES NO       YES 

Avg. waiting time (min)  15.07 6.61 14.33 5.78 13.53 5.06 12.06 4.71 

Avg. peak-hour waiting 

time (min) 

22.48 13.20 21.79 11.92 21.08 11.11 19.54 9.77 

waiting time > 10 minutes 

(trips) 

5 108 2 408 5 078 2 331 5 129 2 123 4 820 1 921 

Avg. service time (minute) 26.49 16.32 25.22 15.11 23.88 14.01 21.85 13.12 

Avg. peak-hour service time 

(min) 

34.88 23.11 33.58 22.14 32.35 20.67 30.18 18.77 

Total VKT (km) 651 

423 

568 

632 

659 

864 

564 

712 

674 

841 

565 

322 

675 

645 

589 

666 

Energy consumption (Kwh) 93 060 81 233 94 266 80 673 96 405 82 022 96 520 84 238 

Total SAV trips 136 

548 

118 

441 

138 

086 

118 

301 

141 

295 

119 

849 

141 

729 

121 

721 

Request dropouts 22 130 21 095 20 083 19 290 17 842 17 085 15 103 14 233 

Percentage of dropouts (%) 20.1% 19.2% 18.3% 17.5% 16.2% 15.5% 13.7% 12.9% 

Percentage of shared rides 

(%) 

0% 18.7% 0% 19.6% 0% 20.1% 0% 25.9% 

3.4.4 Analysis of waiting time and service time 

Simulation results in Figure 3.7 (a) indicate that the average waiting time in the four PTS 

systems with dynamic ride-sharing has little difference, approximately 40% to 42% of 

average service time (in-vehicle travel time) in case of the 2000-SAV fleet size. TVTS system 

has a similar performance in terms of average waiting time and service time with the PTS-20% 

and PTS-40% system. We can infer that the AMoD systems, e.g., PTS-20% and PTS-40% 

system, that allows two service schemes to operate in parallel with a degree of restricted 

access to the door-to-door service, could provide a similar system performance than the TVTS 

system which only offers station-based service in peak hours.  
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When a total fleet size of 3500 SAVs is adopted (Figure 3.7 (d)), the average waiting time in 

the PTS systems with 80% willingness to request station-based services could achieve a 

similar value with that of the TVTS system with approximately 22.8% of average service time. 

This means the system performance in terms of average waiting time and average service time 

achieved by the sequential operational rules in the TVTS system can be obtained by the 

proposed parallel modes of service schemes in the PTS-80% system. 

 

 
(a) 2000-SAV fleet size 

 
(b) 2500-SAV fleet size 

 
(c) 3000-SAV fleet size 
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(d) 3500-SAV fleet size 

Figure 3.7 Avg. waiting time and Avg. service time with variations of fleet sizes for seven AMoD systems 

 

3.4.5 Analysis of VKT and energy consumption 

The DDS system has more VKT and energy consumption than other AMoD systems, as can 

be seen in Figure 3.8 (c) and Figure 3.8 (d). Except for the DDS system, other proposed 

systems converge to the same amount both in VKT and energy consumption respectively, 

when fleet size approaches 4000 vehicles. Both VKT and energy consumption experience a 

growing trend in four PTS systems with an increase in fleet size from 2000 to 2500, while the 

TVTS system has a high level of energy consumption and VKT. Nevertheless, with the 

continued growth of fleet size to 4000, the TVTS system decreases the energy consumption 

and VKT to a relatively low level compared to the energy consumption on the PTS systems. 

TVTS system could operate a relatively large fleet size to provide quality service while 

consuming less energy. 

Figure 3.8 (a) showing the number of total SAV trips indicates that total SAV trips rise first, 

then fall for each system with an increment of fleet sizes for each AMoD system. One of the 

possible explanations is that with the increase of the SAV fleet size, fewer travel requests 

drop out of the AMoD system. Therefore, the AMoD system satisfies many more trips that 

result in an increase in the total number of SAV trips. On the other hand, the gradually 

increased fleet size will potentially reduce the empty SAV trips for pickup. The decline of 

empty (unoccupied) SAV trips for en-route pickups appears to reduce the total SAV trips. As 

a result, the total SAV trips rise first and decline for each AMoD system. The peak number of 

total SAV trips is about 131342 trips in the TVTS system, while the DDS, PTS-20% and 

PTS-40% systems only reach about 118000 trips with the 2000-SAV fleet size. 

Results in Figure 3.8 (b) indicate that the empty trips with a 2000-SAV fleet size for each 

AMoD system occupy 30% to 40% of the total trips served. The percentage of empty trips in 

the SSS system has a minimum of 28.1% of the total served 97973 trips with 2000-SAV fleet 

size, while the DDS reaches a peak of 42.0% with a total of 83480 trips. The percentage of 

extra empty trips in the TVTS system is the second-largest percentage (40.6%). With a total 

fleet size of 2000 SAVs, AMoD systems seem to generate a higher percentage of empty trips. 
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The high percentage of empty vehicle trips in DDS and TVTS has the potential to cause 

heavy traffic congestion. 
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(c) Total VKT 

 
(d) Energy consumption 

Figure 3.8 VKT, SAV trips, empty trips of SAVs and energy consumption for seven AMoD systems 
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system with a 2000-SAV fleet size, reaching 15% of the total number of requests (110000).  

The PTS-80% system has the lowest number of drop-outs. It is evident that the PTS system 
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is between 29493 trips and 16624 trips, going down from 35.3% to 16.9% of system capacity 

40

45

50

55

60

65

70

75

80

2000 2500 3000 3500 4000 4500

x
 1

0
0

0
0

DDS SSS TVS PTS-20%

PTS-40% PTS-60% PTS-80%

T
o

ta
l 

  
 V

K
T

SAV fleet size

0 1 2 3 4 5 6 7 8

DDS

SSS

TVS

PT-20%

PT-40%

PT-60%

PT-80%

Energy Consumption (Kwh) x 100000

4500-SAV

4000-SAV

3500-SAV

3000-SAV

2500-SAV

2000-SAV



34 Modeling Urban Automated Mobility on-Demand Systems: an Agent-based Approach 

(total number of served trips) with a 2000-SAV fleet size. The percentage of trips whose 

waiting time exceeds 10 minutes is about 25% in both PTS-40% and TVTS system, which are 

slightly larger than that of PTS-60% and PTS-80%. Both the TVTS system and PTS system 

with a relatively smaller fleet size can roughly keep 75% of the travelers waiting 10 minutes 

or less.  With the shifts of SAV fleet size to 3500, DDS system still has a peak of 14.1% 

requests whose waiting time is larger than 10 minutes.  Results indicate that PTS-20% still 

maintains a high percentage of travelers whose waiting time exceeds 10 minutes with a 3000-

SAV fleet size (21%). Therefore, we can infer that the PTS system with a low willingness to 

choose the station service will lead to a long wait. 
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(c) 3000-SAV fleet size 

 
3500-SAV fleet size 

Figure 3.9 system capacity and waiting time>10 minutes trip number 
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(2015)'s study. Their study indicates that the AMoD system considering ride-sharing can 

serve 56324 person-trips with 1715-SAV fleet size within a network in the scale of 12 miles × 

24 miles. That is, each SAV can approximately serve 32.8 trips. The served trips per SAV are 

relatively lower than ours. One reason is that the road network in Fagnant's study is relatively 

larger than that of this study. Another reason is that a relatively large number of vehicles are 

deployed in Fagnant’s study that leads to a relatively small average waiting time.  The 

average waiting times ranges from 4.41 to 7.70 minutes with a 2000-SAV fleet size that are 

relatively larger than the 1.18-minute average waiting time in Fagnant’s study.  

 

Figure 3.10 The number of served trips per SAV for different AMoD systems 
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systems with dynamic ride-sharing generate relatively fewer empty trips than that of the 

TVTS system.  

 
Figure 3.11 The percentage of empty trips with dynamic ride-sharing for a 2000-SAV fleet size 

 

Simulation results in Figure 3.12 indicate the generation of empty trips with dynamic ride-

sharing is sensitive to the fleet size. As the fleet size increases, the percentage of empty trips 

experiences a downward trend.  The percentage of empty in all AMoD systems drops below 5% 

when the fleet size is 4500. In addition, it depicts that the SSS system, TVTS system, and 

PTS-80% system have low numbers of empty trips by SAV, compared with other systems.   

 

 
Figure 3.12 The percentage of empty trips with the variations of fleet size 
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assignment methods) influence the service quality of AMoD systems. Our study shows that 

the promotion of ride-sharing can significantly improve the performance of proposed AMoD 

systems in terms of reducing the average waiting time, VKT and empty trips. Moreover, 

compared to the FCFS vehicle assignment method, the optimal assignment can reduce the 

generation of empty VKT for all tested systems and enable the AMoD systems to transport 

considerably more travelers.  

Although the DDS system brings great convenience of doorstep service for real-time requests; 

it is evident that DDS generates extra almost 13% of VKT than that of the PTS system with a 

fleet size of 2000 SAVs. In addition, the DDS system generates approximately 42% 

additional empty trips. The percentage of drop-out requests takes up 22.0% of the total 

110000 person-trips. That is, the DDS system cannot transport many more travelers as the 

other AMoD systems do. Compared to the DDS system, the TVTS system and PTS systems 

can reduce at least 14.6% and 14.8% of the average waiting time respectively. The empty 

trips in TVTS and PTS systems system with dynamic ride-sharing account for 41.0% and 33.3% 

of total served trips respectively. The TVTS and PTS system provides a significant gain in 

terms of system capacity, waiting time and additional trips by empty SAVs. In other words, 

the AMoD systems that include two different on-demand services have the most significant 

improvements in system performance above.  

DDS system ranks the highest in total energy consumption and VKT. Compared to the VKT 

in the DDS system, the TVTS system and PTS system can reduce at least 7.6% and 14.0% of 

the VKT with 2000-SAV fleet size. On the other hand, the DDD system transports a relatively 

small amount of travel requests and reduces vehicle utilization that is the average number of 

served trips per day per vehicle. Based on the analysis of proposed AMoD systems, TVTS 

and PTS systems are a promising alternative to be implemented to satisfy the intra-city 

transportation needs. In both systems, a SAV can serve many more trips per day with 

relatively less waiting time. The PTS systems with a relatively high percentage of choosing 

station-to-station service show a high level of service that could transport many more requests 

with less waiting time and empty trips. Although the TVTS system could generate many more 

VKT and consume much more energy, this system still has a relatively small waiting time and 

fewer drop-outs with providing doorstep convenience. In the future deployment of AMoD 

systems, the station-based service combing with the door-to-door service paralleling in time 

and space is of importance since blended service could make the system operating in a 

relatively high degree of service quality without inconvenient access.  
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Chapter 4 

Modeling the Strategic Formation of Urban Platoons 

in a Single-Operator AMoD System 

This chapter addresses the problem of studying the impacts of the strategic formation of 

platoons in AMoD systems in future cities. Forming platoons has the potential to improve 

traffic efficiency, resulting in reduced travel times and energy consumption. However, in the 

platoon formation phase, coordinating the vehicles at formation locations for forming a 

platoon may delay travelers. In order to assess these effects, an agent-based model has been 

developed to simulate an urban AMoD system in which vehicles travel between service points 

transporting passengers either forming or not forming platoons. A simulation study was 

performed on the road network of the city of The Hague, The Netherlands, to assess the 

impact on traveling and energy usage by the strategic formation of platoons. Results show 

that forming platoons could save up to 9.6% of the system-wide energy consumption for the 

most efficient car model. However, this effect can vary significantly with the vehicle types 

and strategies used to form platoons. Findings suggest that, on average, forming platoons 

reduces the travel times for travelers, even if they experience delays while waiting for a 

platoon to be formed. However, delays lead to longer travel times for the travelers in the 

platoon leaders, similar to what people experience traveling in highly congested networks 

when platoon formation does not happen. Moreover, the platoon delay increases as the 

volume of AMoD requests decreases; in the case of an AMoD system serving only 20% of the 

commuter trips (by private cars in the case study city), the average platoon delays experienced 
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by these trips increase by 25%. We conclude that it is beneficial to form platoons to achieve 

energy and travel efficiency goals when the volume of AMoD requests is high.2 

4.1 Introduction 

A primary research priority is studying different operational aspects of urban passenger 

AMoD systems in future cities. Recent advances in vehicle automation have enabled vehicles 

to drive and connect without human intervention. With the help of connectivity and 

automation technology, AVs can exchange information for coordinated movements in 

platoons at closer following distances.  

Vehicle platooning has been a popular research theme in recent applications of intelligent 

transportation systems. The impact of platoon operations on urban traffic has been studied, 

assuming that AVs are already in platoons. However, the impact of the creation and 

operations of such platoons on the future urban AMoD system is not researched. To fill this 

gap, an agent-based model has been developed to provide performance evaluations of forming 

platoons in urban passenger AMoD systems of the future. 

The chapter is organized as follows. In Section 4.2, we summarize the existing literature on 

platoon operations and the formation of platoons, identify the challenges of forming platoons 

in urban AMoD systems, and present the main contributions of this chapter. Section 4.3 gives 

an overview of the modeling framework and discusses the model specifications. A detailed 

description of the model implementation and its application are provided in Section 4.4. 

Section 4.5 analyzes the simulation results. The main conclusions and policy implications are 

presented in Section 4.6, and Section 4.7 recommends future work directions. 

4.2 Background 

Platooning systems have attracted increasing attention with the rapid progress in automated 

and connected vehicle technologies. Much work has been done to investigate platoon 

communication technologies and platoon control strategies (Kavathekar & Chen, 2011). 

Recent literature has focused on platoon planning: at a low level (e.g., trajectory level), 

detailed platoon maneuvers (e.g., merging and splitting) are designed and simulated (Hao et 

al., 2022); at a high level, planning and optimization of routes and schedules in the platoon 

formation are studied(Bhoopalam et al., 2018). Moreover, vehicles with synchronized 

movement in platoons can have faster reaction times to dangerous situations and fewer human 

errors, reducing rear-end crashes. For a detailed analysis of platoon safety issues, the reader is 

 

2This chapter is based on the published paper: Wang, S., Correia, G. H. de A., & Lin, H. X. (2022). Assessing the 

Potential of the Strategic Formation of Urban Platoons for Shared Automated Vehicle Fleets. Journal of 

Advanced Transportation, vol. 2022, Article ID 1005979, 20 pages, 2022. https://doi.org/10.1155/2022/1005979 
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referred to the literature review research by Axelsson (2017) and Wang et al. (2020). In this 

study, we address the problems of forming platoons and assessing the travel and energy 

impact on a future urban mobility system. We herein provide background information about 

the potential implications of platoon operations on energy consumption and traffic efficiency. 

Besides, we review the literature on the strategic formation of platoons. 

4.2.1 Energy impact of platoon operations on highways 

Platoons of vehicles provide significant potential for energy savings on highway driving. The 

close-following mechanism can considerably reduce the energy consumed by platoon vehicles 

to overcome the adverse aerodynamic effect (Alam et al., 2015). Several field experiments in 

research projects, such as the COMPANION project, the PATH platoon research, the 

SARTRE project, and the Energy ITS project, have been conducted to investigate the 

potential of platoon operations in reducing energy consumption (Bergenhem et al., 2012). 

4.2.2 Impact of platoon operations on highway and urban traffic 

Platoon operations can improve highway throughput due to the shorter headways between 

platoon vehicles (van Arem et al., 2006). Using communication technologies (e.g., vehicle-to-

vehicle or vehicle-to-infrastructure technologies), platoons of vehicles can also smooth out the 

vehicle-following dynamics on highways (Shladover, 2018). Besides, platoon operations can 

improve urban road capacity and reduce delays when crossing signalized intersections 

(Santana et al., 2021). 

4.2.3 The platoon formation on highways 

In the above literature, the energy and traffic studies on platooning systems considered 

vehicles that are already in platoons and used platoon operations to increase road throughput 

and reduce energy consumption. Some studies investigated the problem of coordinating 

vehicles in platoons on highways. Hall and Chin (2005) developed different platoon 

formation strategies to divide vehicles waiting at highway entrance ramps into different 

groups according to their destinations. Once formed at the highway entrance ramp, platoons 

remain intact to maximize the platoon driving distance. Saeednia and Menendez (2016) 

studied slow-down and catch-up strategies for merging trucks into a platoon under free-flow 

traffic. Larsson et al. (2015) defined the platoon formation problem as a vehicle routing 

problem to maximize the fuel savings of platoon vehicles. Studies by Liang et al. (2016) and 

van de Hoef (2016) investigated the problem of coordinating many trucks in platoons to 

maximize fuel savings. In the formation of platoons, trucks can adjust their speed without 

regard to traffic conditions. Larson et al. (2013) developed a distributed control system in 

which trucks can adjust speed to form platoons to save fuels. Johansson et al.(2021) 

developed two game-theoretic models to study the platoon coordination problem where 

vehicles can wait at network nodes to form platoons. In Table 4.1, we compare the newly 
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developed functional components and the performance analysis of the AMoD system with the 

new components in our modeling framework with the referred studies in the literature. 

Table 4.1 Comparison of the strategic platoon formation studies at the route level 

Studies Modeling components Impact analysis 

 
Many 

vehicles 

Road 

network 

level 

Demand  

and supply 

interaction 

Mixed 

traffic 

Platoon policies 

 

Coordination strategies 

Platoon 

vehicles 

 

Traffic 

throughput 

Energy consumption Service 

levels 

(waiting 

and 

travel 

times) 
Platoon 

sizes 

Formation 

time 
constraints 

Speed 

adjustment 

(Slow down 

or catch up) 

Hold-on 

strategy  

Traffic     Aerodynamics  

Hall and 

Chin 

(2005) 
✓     ✓ ✓  ✓ 

✓ 

 
✓    

Larson et 

al., (2013) ✓ ✓    ✓ ✓  ✓   ✓  

Saeednia 

and 

Menendez 
(2016) 

     ✓ ✓  
✓ 

 
    

 Larsson 
et al. 

(2015) 
✓ ✓    ✓   

✓ 

 
  ✓  

Liang et 

al. (2016)      ✓ ✓  ✓   ✓  

van de 

Hoef 
(2016) 

✓ ✓    ✓ ✓  ✓   ✓  

Johansson 

et 

al.(2021) 
✓ ✓    ✓  ✓ ✓     

Our 

approach ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  ✓ 

4.2.4 Urban AMoD system characteristics in future cities 

The AMoD systems envisaged for the future will probably be available in the 2030s to 2040s 

when SAEV fleets have become common and affordable (Nieuwenhuijsen et al., 2018a). 

SAEVs, in this chapter considered to be purpose-built micro-vehicles, are intended to cover 

the whole trips of commuters. While providing on-demand services for morning commuters 

in lieu of private cars, SAEVs can be coordinated in platoons at service points. Although 

purpose-built SAEVs could occupy less space, SAEVs cannot form platoons anywhere 

because of urban driving conditions characterized by narrow streets and traffic congestion. 

One idea is to define what in this chapter is designated as service points which are platoon 

formation locations across the service area. Examples of service points for the platoon 

formation in today's urban transportation systems could include public parking garages, public 

charging service points, petrol service points, and some parking spaces along the canals in 

cities. The AMoD systems envisaged for the future will probably be available in the 2030s to 

2040s, when SAEV fleets have become common and affordable (Nieuwenhuijsen et al., 

2018b; Puylaert et al., 2018b). SAEVs, in this chapter considered to be purpose-built micro-

vehicles, are intended to cover the whole trips of commuters. While providing on-demand 

services for morning commuters in lieu of private cars, SAEVs can be coordinated in platoons 
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at service points. Although purpose-built SAEVs could occupy less space, SAEVs cannot 

form platoons anywhere because of urban driving conditions characterized by narrow streets 

and traffic congestion. One idea is to define what in this chapter is designated as "service 

points": platoon formation and dissolution (platoon is disassembled) locations across the 

service area. Examples of service points for the platoon formation in today's urban 

transportation systems could include public parking garages, public charging service points, 

petrol service points, empty bus stops, and some parking spaces along the canals in cities. 

4.2.5 Challenges for the platoon formation in urban AMoD systems 

The formation of platoons in urban AMoD systems poses challenges. First, the current state-

of-the-art models consider the traffic demand for the platoon formation in an oversimplified 

way. Travel demand is generated according to trip lengths, destination distributions, and 

vehicle arrival patterns. Different distributions could be used to generate travel demand while 

capturing its uncertainty. However, in AMoD systems, the zero-occupancy vehicle trips of 

picking up the assigned travelers introduce uncertainty in the traffic demand on the road 

network. This uncertainty, therefore, requires explicit modeling of the interaction between 

SAEVs and travelers. 

Second, existing studies overlook the effect of forming platoons on travelers in the platoon 

vehicles. In the future AMoD system that we are studying, a fleet of SAEVs directly provides 

on-demand services to travelers between service points. The formation of platoons requires 

the synchronization of different vehicles in the same coordinates. In the formation of platoons, 

vehicles may wait for other vehicles to form platoons, causing delays for travelers. The 

impact of forming platoons on the travelers in the platoon vehicles must be captured. 

Third, existing studies investigate the effect of reduced aerodynamic drag via platooning on 

energy consumption in highway driving. However, due to higher traffic demand on the urban 

transport network, the potential for energy efficiency is primarily influenced by traffic 

conditions rather than by reducing air resistance. Coordinated movements of platoon vehicles 

could improve traffic throughput. As a result, the energy consumption of traffic participants 

(SAEVs) will be affected by platoon operations. Moreover, current studies aimed to 

investigate the traffic impact of platoon vehicles using predefined platoons. Therefore, the 

impact of forming platoons on travel conditions and energy consumption of SAEVs in urban 

driving needs to be assessed for future scenarios.  

Fourth, platoon sizes (the maximum number of vehicles in a platoon) and the maximum time 

spent forming platoons are not restricted. This relaxation can lead to overestimation of the 

platoon driving distances and energy savings by forming long platoons. In AMoD systems, 

forming a long platoon may cost travelers more time in a situation where vehicles wait for 

other vehicles. Setting limits on platoon sizes and time spent in the formation can prevent 

long platoons from disrupting urban traffic and causing long delays for travelers. Therefore, 

the platoon size restriction and maximum time spent in the formation of platoons need to be 

taken into account when coordinating SAEVs in platoons. The impact of the time and platoon 
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size restrictions on the formation of platoons, the level of service offered to travelers and on 

energy consumed needs to be studied. 

4.2.6 Research contributions  

This chapter aims to develop an agent-based model to study the impact of forming platoons in 

future urban AMoD systems on people's travel and energy usage. Agent-Based Modeling is 

suitable for our research questions. The agent-based modeling has the advantage of 

representing entities at a high resolution; the interaction of entities (e.g., vehicles and travelers) 

can be captured realistically; it is flexible to model a system at different description levels 

(e.g., vehicles and platoons formed by vehicles) to evaluate different aspects of the system 

and to make changes to assumptions (e.g., formation policies) for different scenarios. Taking 

into consideration the limitations of current studies identified above, we summarize the main 

contributions of this chapter as follows: 

First, the ABM originally developed in this chapter includes a high level of detail. The 

individual travelers are modeled, and their attributes are initiated according to the regional 

travel demand data and the realistic departure time data. The interaction between SAEVs and 

travel requests is explicitly modeled by developing a vehicle-to-travelers assignment 

component, in which SAEV pickup trips and drop-off trips are represented. The modeled 

interaction between vehicles and travelers captures the uncertainty of traffic demand between 

areas of origin and destination. 

Second, the formation behavior of waiting at service points, defined as the hold-on strategy, is 

explicitly simulated for platoon leaders and their followers. The platoon formation policies 

that determine when a group of vehicles leaves a service point as a platoon are: the maximum 

elapsed time of the platoon leader and the maximum platoon size. Either one of the two 

policies can trigger a release of a platoon. The AMB simulates platoon formation operations 

of vehicles, which allows us to measure the impact of forming platoons on travelers. 

Moreover, the formed platoons are flexibly represented with specified information (e.g., the 

platoon route, the vehicle sequences, the speed) at an aggregate level to model platoon driving 

and its impact on traffic conditions. 

Third, a mesoscopic traffic simulation model is used to represent the traffic dynamics 

throughout the road network. The mesoscopic traffic simulation model can simulate each 

vehicle's movement, while a macroscopic speed-density relationship is used to govern 

congestion effects. The traffic simulation model can incorporate the impact of all SAEV trips, 

including unoccupied pickup trips and occupied drop-off trips, on the traffic over the road 

network. Furthermore, the relationship established between road capacity and platoon 

characteristics is used to assess the impact of formed platoons on traffic conditions. 

Fourth, an energy consumption model is linked with the mesoscopic traffic model to 

efficiently calculate the energy consumed by individual SAEVs for travelers' trips. It can also 

produce the energy estimate of intended trips, thus ensuring that the assigned SAEVs have 

sufficient power to complete their journeys.  
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The travel and energy potential of forming platoons under different formation policies and 

demand levels in AMoD systems is assessed using the urban road network of the case-study 

city, The Hague, the Netherlands, through a set of defined key performance indicators (KPIs). 

4.3 Model Specifications 

For building the ABM, we introduce the following main assumptions regarding the platoon 

formation of SAEVs in AMoD systems: 

• All travel demand is produced and attracted between what have been designated as 

service points that are connected to the network nodes. Service points are thus 

locations where travelers can be picked up or dropped off by a vehicle. This is 

reasonable for the situation where many service points are designated in a service area. 

• We assume that vehicles wait at service points to form platoons instead of using slow-

down and catch-up strategies. The major drawbacks of slow-down and speed-up 

strategies are that urban traffic flow can be disrupted when driving slowly, and 

accelerating vehicles may violate urban road speed limits. Moreover, slow-down and 

speed-up strategies are very difficult for urban driving, which is characterized by one 

or two lanes for each direction and traffic congestion. 

• We assume that there are enough parking places for SAEVs to form a platoon at the 

service points. SAEVs are purposely designed to be space-saving micro-vehicles 

(Renault Twizy for the reference model). Moreover, there are size restrictions on the 

platoon size. 

The framework presented in Figure 4.1 includes a fleet management center and a traffic 

management center. The fleet management center mainly matches vehicles with travelers and 

coordinates the formation of platoons. The traffic management center primarily represents the 

network traffic dynamics and finds the time-dependent shortest routes for vehicles based on 

the current network traffic conditions. The fleet management and traffic management 

components capture different aspects of the system components' interactions. The modeling 

framework can evaluate system performance with regard to defined KPIs based on the 

realistic travel demand data and the existing road network.  

The model assumes that OD trip demand and aggregated departure times are given. The 

demand generator in the simulation model will generate individual travel requests with an 

origin location, destination location, and request time according to the given OD matrix and 

departure time distribution. According to real-time information about the travel requests, the 

vehicle assignment component matches the available vehicles with incoming travel requests. 

Once the assignment has been done, the information on travelers' locations is sent to the 

assigned vehicles, and travelers are notified about the vehicle details. The assigned vehicle 

will be dispatched to pick up the traveler—the state of the assigned vehicle transition from 

idle to in-service state. 
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Figure 4.1 Platoon formation modeling framework 

 

The traffic management center provides the time-varying traffic conditions, forming a basis 

for subsequent route calculations. A mesoscopic traffic simulation model is used to represent 

traffic patterns over the road network, which can be captured by simulating the movement of 

SAEVs along their routes as they carry out the travelers' journeys. The traffic simulation 

model manages static and dynamic information to determine the current network traffic 

conditions. The static inputs to the traffic simulation model are the traffic network 

representation, including links and nodes, traffic capacity, free-flow speed, and road length, 

while the dynamic information concerns the information about which road segments 

individual vehicles and/or platoon vehicles are traveling on. Based on the current network 

traffic conditions provided by the traffic simulation component, the time-dependent shortest 

routes between points are computed, which is a string of ordered road segments to be 

traversed. 

The energy consumption model estimates the energy consumption of individual vehicles over 

the road network. The energy consumption of individual vehicles is computed as a function of 

the link travel speed. The charging component is responsible for finding charging points for 

low battery vehicles. Vehicles can be charged at every service point after completing the 

journey of a traveler. The time delay due to the charging operations is considered. 

The platoon formation component in the fleet management center coordinates vehicles in an 

existing platoon at designated service points according to their destinations. Also, a new 

platoon can be initiated when one of the grouped vehicles arrives at the formation location. 

Once the platoon agent type is created, the platoon agents manage the information about the 

platoon plan, including platoon routes, the number of platoon vehicles, platoon speed, and the 
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assigned leader and its followers with the determined vehicle sequence. The platoon followers 

adjust their shortest routes to the route of the platoon leader. The traffic simulation model in 

the traffic management center can account for the impact of the operations of formed platoons 

on traffic dynamics. Figure 4.2 illustrates the platoon formation and its potential. The detailed 

descriptions of the functionalities are explained in the following sections.  

                     

 
Figure 4.2 An illustration of the platoon formation and potential impacts 

 

 

4.3.1 Energy consumption of the SAEVs 

Existing studies (Bauer et al., 2018; Hu et al., 2019) estimate the energy consumption of 

electric vehicles on the network level as a function of travel distance, which means translating 

the kilometers driven into an estimate of energy consumed. However, the strong correlation 

between energy consumption and vehicle speed is not considered. We attempt to estimate the 

energy consumption of SAEVs and account for traffic congestion by making it a function of 

experienced travel speed. It is linked to a mesoscopic traffic simulation model in which the 

effect of forming platoons on traffic conditions is considered. The energy consumption model 

is thus capable of accounting for the effect of platoon driving. 

The energy consumption model contains a set of regression models for different vehicle types. 

These regression models can be used to calculate the energy consumption associated with one 

vehicle traversing each road segment based on the speed of the vehicle and the length of the 

road segment. The calculation method is explained as follows. 

First, the average speed for individual SAEVs traversing the corresponding road segment is 

calculated. Second, the energy consumed by the SAEVs per unit distance is estimated using 

the regression model in Equation 4.1, which describes the relationship between energy 

consumption and travel speed. Third, the total energy consumption on the route between the 

origin and destination is calculated as the sum of energy consumed by the individual SAEV in 



48 Modeling Urban Automated Mobility on-Demand Systems: an Agent-based Approach 

each road segment. The formula for calculating total energy consumption is shown in 

Equation 2. 

𝐸 = α + β ∗ Si + γ ∗ 𝑆i
2 (4.1) 

 

Where: 

α, β and  γ are coefficients; 

Si is the travel speed of an individual SAEV traversing road segment 𝑖; 

𝐸 is the energy consumption per unit distance. 

The total energy consumption of each SAEV to complete the pickup trip or drop-off trip can 

thus be calculated as: 

     Et =∑Ei ∗

n

i=1

Li (4.2) 

 

Where:  

𝑛  is the total number of road segments between the locations (e.g., the locations of the 

assigned vehicle and the origin of the travelers, or the locations between the origin of the 

traveler and his/her destination; 

 𝐿𝑖 is the length of each road segment 𝑖.  

  𝐸𝑡 is the total energy consumption of an SAEV to complete the pickup trip or drop-off trip. 

We estimate the energy consumption of different types of vehicles. Each vehicle type 

corresponds to a regression model derived from the laboratory dynamometer tests (Galvin, 

2017). The coefficient for different vehicle types is given in Table 4.2 in Section 4, where the 

application of the model is presented. 

4.3.2 Real-time vehicle assignment 

The vehicle assignment component assigns available vehicles to serve travelers as travel 

requests come in, which are generated according to the aggregate travel demand (explained in 

Section 4.2). The vehicle assignment component will assign the nearest available SAEV with 

enough battery power to serve a traveler to his/her destination. For that to happen, there must 

be a real-time estimation of how much energy is needed if that traveler is satisfied, and this is 

estimated for each candidate vehicle based on its particular vehicle type. 

The process of finding available vehicles for travel requests goes as follows. Firstly, the 

energy consumption of an individual vehicle to complete the intended trip is estimated based 
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on the energy function. The estimate of energy spent on transporting the intended traveler can 

be calculated using Equation 4.3. Secondly, based on the estimated energy consumption of the 

intended traveler, available vehicles with sufficient remaining battery capacity that can 

undertake the traveler's journey are filtered from the group of idle vehicles; Finally, a vehicle 

located at the shortest Euclidean distance within the search radius is chosen from the filtered 

pool of available vehicles. 

     E𝑒 = η ∗  Et (4.3) 

Where: 

 𝜂 are coefficients; 𝜂 is a safety coefficient used to ensure that the estimated energy for a 

traveler's intended trip is not less than the actual energy consumed by individual vehicles to 

complete the trip that might happen if traffic changes. 

 𝐸𝑒 is the estimated energy required by an individual vehicle to complete the trip of a traveler. 

The function in Equation 4.3 estimates the energy needed to complete travelers' trips based on 

the link travel speeds the moment when a traveler calls the service, while the actual energy 

consumed uses the experienced speeds of vehicles in Equation 4.2 to calculate the energy 

spent after completing the traveler's trip. The proper estimate of energy spent to complete the 

trip of an intended traveler ensures that the assigned vehicle has sufficient battery capacity to 

reach the traveler's destination.  

Once an available vehicle with sufficient remaining energy is assigned to a traveler, the time-

dependent shortest route (lowest duration) from the current vehicle location to the traveler's 

location is computed. After the vehicle arrives at the pickup location, the time-dependent 

shortest route from the traveler's location to its destination will be determined. The 

computation of time-dependent shortest routes is based on the Dijkstra algorithm. 

4.3.3 Mesoscopic traffic simulation  

A mesoscopic traffic simulation model that includes link movement and node transfer is 

incorporated into the agent-based modeling framework. The mesoscopic traffic simulation 

model combines a microscopic level representation of individual vehicles with a macroscopic 

description of the traffic patterns (Mahmassani, 2001; Zhou & Taylor, 2014). In the link 

movement, vehicular movements are simulated. Vehicle speed on the road segments is 

updated according to the established macroscopic speed-density relationship. A modified 

Smulders speed-density relationship (Equation 4.4) is used to update the vehicle speed based 

on the link density.  

𝑣(𝑘) =

{
 
 

 
 𝑣0(1 −

𝑘

𝑘𝑗
), 𝑘 < 𝑘𝑐

𝛾(
1

𝑘
−
1

𝑘𝑗
), 𝑘 ≥ 𝑘𝑐

 (4.4) 
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Where: 

 k is the link traffic density. 

 𝑣(𝑘) is the speed that is determined by the traffic density 𝑘; 𝑣0 is the free-flow speed. 

 kc is the link critical density; 𝑘𝑗 is the link jam density. 

𝛾 is a parameter. The value of the parameter can be derived as γ = v0kc.  

Node transfer means that vehicles transfer between adjacent road segments. A vehicle moving 

from an upstream link (road segment) to a downstream link will follow the defined rules:  

• The vehicle is at the head of the upstream link queue. In other words, there are no 

preceding vehicles stacking in the waiting queue.  

• The number of outflow vehicles has been checked to determine whether a vehicle can 

leave the road segment it is traversing. 

• The number of storage vehicles has been checked to determine whether the 

downstream link has enough storage units to accommodate the upcoming vehicle. 

The mesoscopic traffic simulation model, including link movement and node transfer, can 

provide the required level of detail in estimating the speeds of individual vehicles on the 

network while balancing the trade-off between computational cost and traffic model realism. 

4.3.4 Traffic simulation for platoon vehicles 

In the literature, strategic platoon formation was studied while ignoring the traffic. We fill this 

gap by developing a simulation component for mixed operations of platoon AVs and non-

platoon AVs on top of a mesoscopic traffic simulation. The functional component for the 

mixed operation of platoon AVs and non-platoon AVs can capture the traffic impact of 

forming platoons across the road network. The relationship between road capacity and 

different proportions of platoon vehicles is established to assess the impact of platoon 

formation on traffic conditions. Chen et al. (2017) proposed a formulation to describe the 

correlation between platoon characteristics, including the proportion of platoon vehicles, 

inter-vehicle spacing levels, and macroscopic capacity. The formulation reveals how the 

single-lane capacity changes for different proportions of platoon vehicles. The derived 

macroscopic capacity formulation for mixed traffic solves the problem of determining the 

macroscopic traffic variables based on platoon characteristics. Therefore, it is very suitable to 

be combined in the mesoscopic traffic simulation that applies the macroscopic speed-density 

function to govern the movement of the vehicles that we use in the simulation methodology. 

The single-lane capacity is expressed as: 

𝐶𝑐 =
𝐶𝑎

1 −
𝑁

𝑀 +𝑁 ∗
(1 − 𝛼) (1 −

𝐿
𝑁)

 
(4.5) 
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Where 

𝐶𝑎 denotes the lane capacity for all vehicles traveling regularly.  

𝐿 is the number of leaders. 

𝑁 is the total number of platoon vehicles. 

𝑀 is the total number of regular driving vehicles. 

𝛼 is the ratio of platoon spacing to regular spacing. 

As shown in Equation 4.5, the capacity 𝐶𝑐 depends on the penetration rate of platoon vehicles 

𝜑 =
𝑁

𝑀+𝑁
 and the number of leaders (𝐿). A smaller distance spacing between platoon vehicles 

allows an increase in lane capacity. The lane capacity increases as the penetration rate of 

platoon vehicles 𝜑. Moreover, for the same number of platoon vehicles 𝑁, the more leaders 𝐿 

are created, the fewer capacity increases. We use the following definitions of different critical 

spacing types according to the operational characteristics of vehicle platooning. The critical 

spacing when vehicles travel regularly (e.g., AVs that are not in platoons) is defined as 𝑑𝑎. 

We define 𝑑𝑝 = 𝛼𝑑𝑎 , where 0 < 𝛼 < 1 . We assume that the critical spacing between a 

platoon vehicle and a regular driving vehicle that is not in a platoon is also 𝑑𝑎.  

Notice that regular driving AVs that are not in platoons follow the regular driving distances of 

conventional vehicles, while platoon vehicles move at a reduced spacing. 

The formulation of the capacity of one lane (for one direction) shows how it can be improved 

by increasing the penetration rate of platoon vehicles and the number of leaders or platoons 

(Each platoon has one leader). In order not to impede the narrative flow, the detailed 

derivations of Equation 4.5 can be given in Appendix A.   

4.3.5 Platoon formation mechanism 

Spontaneous or on-the-fly platoon formation without proper prior planning can cause a high 

frequency of joining and leaving operations by the vehicles, which might disrupt traffic and 

decrease safety (Gerrits, 2019). This type of platoon might not ensure a high rate of in-platoon 

driving. In AMoD systems, many SAEVs are assigned to take travelers from place to place in 

urban areas; therefore, they will be continuously routed to different destinations. The platoon 

formation for a fleet of vehicles that provide on-demand transport is more effective if done in 

a coordinated way. SAEVs can be coordinated in a platoon using the hold-on strategy while 

providing direct on-demand service between service points designated as the platoon 

formation locations over the AMoD network.  

The formation behaviors of platoon participating vehicles are realistically represented. In 

relation to coordinating vehicles in the platoon formation, a vehicle can be assigned to an 

existing platoon as a follower vehicle. A vehicle can be connected to other vehicles to initiate 

a new platoon, either as a platoon leader or as a follower. In the first case, arriving vehicles at 
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a service point are assigned to an existing platoon according to the destinations of travelers 

assigned to them.  

There are no existing platoons at a service point in the second case, or the arriving vehicles 

cannot be assigned to an existing platoon. Arriving vehicles at the service point are divided 

into different groups. For vehicles in each group at a service point, the first vehicle to arrive is 

designated as the platoon leader. Once a platoon leader is assigned, the platoon is initiated. 

Algorithm 4.1. Pseudocode for the formation of platoons  

INPUT: information about a list of arriving vehicles A= {𝑎0, 𝑎1, … , 𝑎𝑚}. The information 𝑍𝑎𝑖  for vehicle 𝑎𝑖 can 

be represented by a set {𝑎𝑖 , 𝑟𝑖  𝑜𝑖 , 𝑑𝑖}. Origin 𝑜𝑖  is the service point that vehicle 𝑎𝑖  is moving towards and 

destination 𝑑𝑖 represents the next service point. 𝑟𝑖 is the shortest route between 𝑜𝑖  and 𝑑𝑖. 

FOR each arriving vehicle 𝑎𝑖 in the set 𝐴 

      Compare information {𝑎𝑖 , 𝑜𝑖 , 𝑑𝑖} (𝑖 = 1,2, . . , 𝑚) to the information 𝑍𝑝𝑗 = {𝑝𝑗 , 𝑟𝑝𝑗 , 𝑜𝑝𝑗 , 𝑑𝑝𝑗} (𝑗 = 1,2, … , 𝑛) 

of existing platoons' leaders 𝑃 = {𝑝0, 𝑝1, … , 𝑝𝑛}   
        IF (𝑍𝑎𝑖(𝑜𝑖 , 𝑑𝑖) == 𝑍𝑝𝑗(𝑜𝑝𝑗 , 𝑑𝑝𝑗)) AND platoon size 𝑠𝑗 of the platoon 𝑝𝑗  is not reached) 

            Add vehicles 𝑎𝑖 to the platoon 𝑝𝑗 as a follower; 

            Adjust the vehicle's shortest route 𝑟𝑖 to the platoon shortest route 𝑟𝑝𝑗; 

            Remove vehicle 𝑎𝑖 from the set 𝐴; 

        ENDIF 

        Continue 

        FOR each arriving vehicle 𝑎𝑋 in the set 𝐴     

                  IF((𝑎𝑖  is not connected to 𝑎𝑋)  AND  (𝑎𝑖 ≠ 𝑎𝑋 )𝐴𝑁𝐷(𝑍𝑎𝑖(𝑜𝑖 , 𝑑𝑖) == 𝑍𝑎𝑥(𝑜𝑥, 𝑑𝑥))𝐴𝑁𝐷 (the number 

of connected vehicles for 𝑎𝑖 < platoon size 𝑉)) 
                          𝑎𝑖   and 𝑎𝑋 are paired, and the connection between 𝑎𝑖   and 𝑎𝑋 is established; 

                          IF 𝑎𝑋 is not in the destination group 𝑑 of vehicle 𝑎𝑖 
                               Let the vehicle 𝑎𝑋 join the destination group 𝑑 ; 

                           ENDIF   

                   ENDIF 

       ENDFOR 

      Remove vehicle 𝑎𝑖 from the set 𝐴; 

      Vehicles that are not paired move as individual vehicles; 

ENDFOR  

OUTPUT: Platoons of vehicles and regular driving vehicles that are not in platoons 

The hold-on strategy of the platoon leader is used to organize vehicles into platoons at a 

service point according to their destinations. The hold-on time of a platoon leader is the time 

from when the leader starts to wait for other vehicles until the moment the platoon is formed 

and starts to move. The release of a platoon (the moment when it departs) depends not only on 

the number of vehicles that it has (there is a maximum number of vehicles in a platoon) but 

also on the time that the platoon leader has been waiting. That is, the release of a platoon can 

be triggered by reaching the maximum vehicle size or the maximum hold-on (waiting) time of 

the platoon leader, as explained before. We denote the time threshold of platoon leaders as  𝑇 

and the maximum number of platoon vehicles as 𝑉. The physical constraints of road segments 

directly set a threshold for the number of vehicles in a platoon. Algorithm 4.1 explains the 

platoon formation mechanism. 

The formation approach uses global knowledge about all arriving vehicles for each service 

point to assign them to an existing or newly created platoon. Vehicle sequence in a platoon is 

determined based on the arrival time of a vehicle at the platoon formation location. The 
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platoon leader makes decisions on behalf of the followers to trigger the platoon release and 

split the platoon after arriving at the destinations of the travelers. Once the SAEVs are 

assigned to serve the travelers, their shortest routes are calculated using the Dijkstra algorithm. 

Platoon followers adjust their routes from their original shortest routes to the shortest route of 

the platoon leader. A plan is created for a formed platoon, including platoon ID, a leader and 

its followers, a platoon route, and the vehicle sequence in the formed platoon (see Algorithm 

4.2). 

Algorithm 4.2. Pseudocode for determining platoon plans  

INPUT: Groups of vehicles 

FOR grouped vehicles in each destination group 𝐷 

         Determine the leader for the grouped vehicles 𝑑𝑘  ∈ 𝐷; 

         Initiate a platoon 𝑝𝑘  according to the platoon leader's information (location and shortest route); 

         Assign the other vehicles in the group into the new platoon as followers; 

         Determine the vehicle sequence according to the arrival time; 

         Adjust the shortest routes of the followers in 𝑝𝑘 to the shortest route of the platoon leader 𝑟𝑝𝑘; 

ENDFOR 

OUTPUT: Platoon plans, including platoon ID, a leader and its followers, a platoon route, the vehicle sequence 

4.4 Model application to the city of The Hague 

The detailed conceptual framework is implemented in the AnyLogic multimethod simulation 

modeling platform coded with Java programming language. The data used in the simulation 

experiment is explained below. 

4.4.1 The topology of the road network in The Hague   

Figure 4.3 displays the road network of the Zuidvleugel region (around Rotterdam and The 

Hague). The blue color indicates the part of the road network that is used for the simulation 

study, which includes eight districts of The Hague and the towns of Voorburg, Rijswijk, and 

Wateringen. The dots are the centroids of the Traffic Analysis Zones (TAZs), which are the 

origins and destinations of all travel requests. The data containing the aggregated OD Matrix, 

departure time distribution, and information about the study area centroids and the road 

network are exported from OmniTRANS transport planning software. The geospatial data in 

the Shapefiles are exported from OmniTRANS, a multimodal transport planning software 

package, in which road segments are polylines with many points.  
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 We use the distance-based Douglas–Peucker algorithm to simplify each road curve (polyline) 

composed of lots of line segments into a similar road polyline with fewer points. A simplified 

polyline consists of a subset of the points defined in the original polyline. A polyline with 

fewer points represents a road with the same length, with higher resolutions than the straight 

line between nodes usually used in transport models of shared automated vehicles. 

Amersfoort/RD New (EPSG:28992) in the projected coordinate system is used for the map 

projection for locally optimized use. The coordinates in the Shapefiles must be transformed 

from Amersfoort / RD New in the projected coordinate system to WGS 84, one of the most 

widely used global geographic coordinate systems (e.g., it is standard for GPS).  

4.4.2 Detailed travel demand 

The OD trip table containing a total of 27,452 trips made by cars is used as input to generate 

time-dependent travel requests. The OD trip table specifies travel demand between TAZs in 

the AM peak hours over the study area. The departure time fractions shown in Figure 4.4 are 

used to calculate the number of trips between OD pairs per 15-minute time interval from 5:30 

am to 10:00 am. A demand generator generates time-dependent travel requests based on the 

aggregate travel demand. Individual travel requests are characterized by the origin zone, 

destination zone, and time of the request. Demand generation requires two steps. The first 

step is to generate a certain number of time-dependent travel requests for each zone over each 

time interval (i.e.,15 minutes). The total production of demand in the morning peak hours for 

each zone is calculated based on the origin-destination (OD) matrix, and the demand per time 

interval is estimated using the departure time fractions. In each time interval, a number of 

travel requests are generated, which are then distributed according to a discrete uniform 

distribution within this time interval. The generated travel requests in each time interval are 

associated with a specified time of requesting the service. The second step is to determine a 

destination zone for each demand request. Observations of destinations for the generated trips  

 
Figure 4.3 Road network of The Hague in the Zuidvleugel Road network 
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Figure 4.4 Departure time fractions for 18 time intervals from 5:30 am to 10:00 am 

 

in each zone are naturally available in the OD matrix. That is, the number of trips ending in 

every other zone is known. For each zone, a custom distribution of demand destinations is 

constructed from the observations. A destination zone for each travel request can be chosen 

using the Monte Carlo simulation process based on the destination distribution.  

4.4.3 Simulation parameters 

The attributes of free-flow speed, the link travel speed at capacity, and the traffic capacity of 

different road types such as urban roads, rural roads, and local roads are read from an external 

dataset listed in Appendix B. The traffic parameters provide information about the traffic flow 

characteristic of the regular driving vehicles (that are not in platoons). In platoon driving, 

inter-vehicle distance (𝑑𝑝) is determined based on field experiments (Browand et al., 2004; 

Lammert et al., 2014). We test different platoon formation strategies and compare their 

performance while treating the parameter 𝑑𝑝 as fixed. The vehicle models used for the energy 

estimation are these commonly sold electric vehicles: Nissan Leaf SV 2013, Kia Soul Electric 

2015, Nissan Leaf 2012, BMW i3 BEV 2014, Ford focus Electric 2013, Mitsubishi 1 MiEV 

2012, Chevrolet Spark EV 2015, and Smart EV 2014. The coefficients used in Equation (4.1) 

are adopted from the work by (Galvin, 2017) (see Table 4.2). 

Table 4.2 Coefficients in the regression model for different vehicle types 

Coefficient 𝛂 𝛃 𝛄 

NissanSV 479.1 -18.93 0.7876 
Kia 468.6 -14.63 0.6834 

Mitsubishi 840.4 -55.312 1.670 
BMW 618.4 -31.09 0.9916 
Ford 1110 -96.61 2.745 

Chevrolet 701.2 -35.55 1.007 
Smart 890.8 -43.12 1.273 

Nissan2012 715.2 -38.10 1.271 

 

We assume that SAEVs can be charged rapidly to 80% of the battery capacity in 30 minutes 

at every service point. All types of SAEVs initially have a battery level of 24 kWh. The value 

of 𝜂 used in estimating the energy consumption in Equation (4.3) is determined based on a 
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trial-and-error approach. It must be guaranteed that no travelers are stranded due to 

insufficient battery power of assigned vehicles. We repeatedly ran the simulation model by 

increasing the value of η until the estimated energy  𝐸𝑒 is sufficient for each assigned vehicle 

to complete the intended trip. SAEVs are deployed over the designated service points in 

proportion to the amount of travel demand at the corresponding service point. 49 TAZs are 

connected to the road networks using zone centroids. The 49 locations of the centroids in the 

road network are designated as service points in the urban AMoD system. Table 4.3 gives a 

summary of the main model parameters. 

Table 4.3 Summary of the main model parameters 

Category Value 

The perimeter of the study area 46 km 

The size of the study area 139 km2 

Time steps for speed update 6 seconds 

Inter-vehicle distance (𝑑𝑝) in platoons  6 meters 

Avg. fleet size per service point (vehicles) for 100% demand  170 

Service points (centroids of the zones) 49 

Road segments 836 

Road nodes 510 

Total travel demand 27452 trips 

Maximum number of platoon vehicles  {2,4,6,8} vehicles 

Time threshold for platoon leaders  {2,4,6,8} minutes 

Charging time 30 minutes 

Coefficients 𝜂 3.05 

Battery initial capacity 24 kWh 

Average travel time under light traffic 18 minutes 

4.5 Simulation results and discussion 

In this study, several scenarios are simulated for the following purposes. First, scenarios for 

platoon formation policies are simulated to investigate how the formation of platoons affects 

the level of service provided to travelers. Second, simulation experiments are conducted to 

evaluate the impact of forming platoons on energy consumption for different car models. 

Table 4.4 gives detailed explanations of the main KPIs. 

We analyze the system's performance with the platoon formation in terms of the platoon 

delays of travelers in the platoon vehicles at different demand levels. Demand for AMoD 

services (as input) is varied from 100% to 20% of the total private car trips in the study area. 

Fleet sizes at different demand levels in Table 4.5 are calculated based on the same scale 

factor as the decrease in travel demand. For every demand level, platoon formation policies (T, 

V) (T stands for the time threshold and V for the platoon size threshold)) are defined. We 

simulate the scenarios with platoon formation policies (T2, V2), (T4, V4), (T6, V6), and (T8, 

V8), where T2 means the maximum waiting time is 2 minutes and V2 represents the 

maximum platoon size equals 2. 
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Table 4.4 Description of the main KPIs 

Key Performance 

Indicator 
Description 

Delay of travelers in 

platoon vehicles 

The time delay of platoon vehicles is the average dwell time that platoon vehicles 

(platoon leaders and platoon followers) spend at formation points without moving. 

Delay of travelers in 

platoon leaders 

(platoon delay for 

leaders) 

The time delay of platoon leaders is the average dwell time that platoon leaders spend 

at formation locations without moving. 

Network travel time 

The network travel time is the in-vehicle time spent on average by all served travelers 

when vehicles are traveling from origin to destination. Platoon delays are not included 

in the network travel time for travelers in platoon vehicles. 

Platoon travel time 
The platoon travel time is calculated by the platoon delays plus the network travel time 

of travelers in platoon vehicles. 

Congestion level 

The congestion level describes how much longer, on average, vehicular trips take 

during the AM peak hours compared to the average travel time in light traffic 

conditions. The average travel time in light traffic in the case-study city is estimated 

based on the travel speed suggested by (Ligterink, 2016). 

90% quantile travel 

time 

The 90% quantile travel time indicates the travel time which is longer than 90% of the 

trips. 

The percentage of 

energy savings 

The percentage of the reduction in the energy consumption of all the vehicular trips in 

the platoon scenarios compared to the non-platoon baseline scenario. 

 

Simulation results in Table 4.5 show that the increased values of two attributes ((from (T2, 

V2) to (T8, V8)) for the platoon formation lengthen the platoon delays of travelers in platoon 

vehicles. Under the platoon formation policies (T8, V8), the platoon delay of travelers inside 

platoon vehicles is about 3.67 minutes, which is more than five times the platoon delay of 

travelers under the policy (T2, V2). Results suggest that the formation of platoons can cause 

long unexpected delays of travelers in the platoon vehicles.  

Table 4.5 Average delay of platoon vehicles for different demand levels 

Demand levels 100%  80%  60%  40%  20%  

The number of travel requests (trips) 27452  21962 16417 10980 5490 

Avg. fleet size per service point 170 136 102 68 34 

Platoon scenarios Avg. delay of platoon vehicles (minutes) 

(T2, V2) 0.66 0.66 0.66 0.66 0.66 

(T4, V4) 2.30 2.30 2.38 2.51 2.75 

(T6, V6) 3.23 3.22 3.29 3.50 3.67 

(T8, V8) 3.67 3.67 3.87 4.01 4.62 

 

Moreover, results suggest that the delay of travelers in platoon vehicles tends to increase as 

the demand level decreases. For example, the delays of travelers in platoon vehicles increases 

by 25% when demand falls from 100% to 20% of the total private car trips under the 

formation policy (T8, V8). Few travelers requesting AMoD services cause more delays for 

the travelers in platoon vehicles, while a relatively large number of AMoD users lead to 

smaller platoon delays. There tends to be an inverse relationship between the demand level 

and platoon delays.  
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In order to look into the platoon delay encountered by travelers in more detail, delays of 

travelers in platoon leaders are presented in Table 4.6. Results indicate that the delays 

experienced by the travelers in platoon leaders are approximately twice that of other platoon 

vehicles with the formation policy (V8, T8). That is, travelers in platoon leaders have to wait 

longer than travelers in other vehicles of the platoon. The platoon formation has considerably 

more impact on the level of service provided to travelers in the platoon leaders. Since vehicles 

in the formed platoon are arranged in order of arrival, the platoon leader arrived early at the 

service point and waited the longest for the other vehicles to form a platoon. The platoon 

delays are getting smaller and smaller for the followers that arrive later. 

Table 4.6 Platoon delays for platoon leaders and platoon vehicles under different operating policies 

The time threshold (minutes) Non-platoon (0) 2 4 6 8 

The platoon size threshold (vehicles) Non-platoon (1) 2 4 6 8 

Platoon scenarios No platoons (T2, V2) (T4, V4) (T6, V6) (T8, V8) 

Avg. delay of platoon leaders (minutes) 0 0.69 3.49 5.67 7.02 

Avg. delay of platoon vehicles (minutes) 0 0.66 2.30 3.23 3.67 

4.5.1 Congestion levels and network travel times 

We investigate the impact of forming platoons on network traffic performance. The indicator 

of the network congestion level (explained in Table 4.4) is defined to evaluate travel 

conditions under different platoon formation scenarios. The congestion levels in non-platoon 

scenarios are used as a baseline for comparison.  

Moreover, we measure the network travel time of all travelers (in platoons and not in platoons) 

and platoon travel times of travelers in the platoon vehicles. Note that the platoon delay is not 

included in the network travel time, while the platoon travel time is calculated by the platoon 

delay plus the network travel time. 

Results in Table 4.6 show that the platoon formation can reduce congestion levels and 

network travel times for all travelers. Compared to the non-platoon scenario, the formation 

policy (T2, V2) obtains a minimal reduction of 18% in the congestion level, resulting in a 

reduction in the network travel time of about 3 minutes. The formation policy (T8, V8) 

reduces the congestion level by up to 41.61%, which is equivalent to a reduction in the 

network travel time of about 7 minutes. This is because more vehicles are coordinated in 

platoons as the values of the two attributes (T, V) in the platoon formation policy are 

increased. As shown in Table 4.7, the total number of vehicular trips in platoons rises from 

5564 to 8056 trips. Figure 4.5 shows that the number of platoon vehicles circulating in the 

transportation network increased (from the policy ((T2, V2) to the policy (T8, V8)). The more 

the vehicles travel in platoons, the more the road capacity is increased. The increased road 

capacity leads to an improvement in the network travel time. Furthermore, as shown in Figure 

4.6, the number of vehicles circulating in the transportation network decreases as the number 

of vehicles traveling in platoons (see Figure 4.5) increases. The formation of platoons 

decreases the number of vehicles circulating in the transportation network. When the number 
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of vehicles circulating in the transportation network decrease, travel conditions are improved. 

As a result, vehicles can travel faster through the road network. 

As shown in Figure 4.6, the duration during which a high number of vehicles circulates in the 

transportation network is reduced in platoon scenarios compared to the scenario without 

forming platoons. The duration is shorter and shorter as more and more vehicles travel in 

platoons over the transportation network. The result suggests that the platoon formation could 

reduce the duration of urban road congestion.  

 

 

We compare the 90% quantile travel time in the platoon scenarios to the non-platoon scenario 

to take a closer look at how the formation of platoons affects network travel times. Shorter 90% 

quantile travel times imply reductions in network travel times. Results in Table 4.8 show that 

the formation of platoons can reduce the 90% quantile travel times. The 90% quantile travel 

times are about 44 minutes for the policies (T6, V6) and (T8, V8), which is 30 minutes less 

than that in the scenario without the formation of platoons. The results indicate that the 

network travel conditions are significantly improved by the formation of platoons.  

Overall, the formation of platoons could reduce the road congestion level and shorten the 

congestion duration. On average, travelers can travel fasters across the urban road network. 

Moreover, the number of vehicles circulating in the transportation network affects the 

(network) reliability (Mahmassani et al., 2013). Therefore, platoon formation has the potential 

to improve travel time reliability. 
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Figure 4.5 The number of vehicles traveling in platoons on the network over time 
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Figure 4.6 The number of all vehicles circulating in the network over time (in platoons and not in platoons) 

 

Table 4.7 Congestion levels, network travel times, and platoon travel times at 100% demand level 

Indicators 
Congestion 

levels 

Network 

travel time for 

all vehicles 

(minutes) 

The total 

number of 

vehicular 

trips in 

platoons 

90% 

quantile 

(network) 

travel times 

(minutes) 

Platoon 

travel time 

of travelers 

in platoon 

vehicles 

(minutes) 

Platoon 

travel time 

of travelers 

in platoon 

leaders 

(minutes) 

Non-platoon scenario  53.28% 27.59 No  70.05 No  No 

(T2, V2) 35.28% 24.35 5564 59.86 25.01 25.04 

(T4, V4) 20.39% 21.67 6899 51.12 23.97 25.16 

(T6, V6) 13.56% 20.44 7611 44.20 23.67 26.11 

(T8, V8) 11.67% 20.10 8056 43.70 23.77 27.12 
 

Table 4.8 The 90 % quantile (network) travel time at different demand levels 

Demand levels 100%  80%  60%  40%  

The number of travel requests (trips) 27452  21962 16417 10980 

Avg. fleet size per service point 170 136 102 68 

Indicator The 90% quantile (network) travel times (minutes) 

 Non-platoon scenario  70.05 31.52 15.13 13.49 

(T2, V2) 59.86 28.34 14.10 13.50 

(T4, V4) 51.12 26.37 13.95 13.17 

(T6, V6) 44.20 20.71 13.81 13.38 

(T8, V8) 43.70 19.67 13.89 13.41 

4.5.2 Platoon travel times 

The formation of platoons could cause platoon delays of travelers in the platoon vehicles 

while reducing network travel times. We found that the platoon travel time, including the 

platoon delay of travelers in platoons and network travel time, is shorter than the network 

travel time in the non-platoon scenario. Results of simulating a high-demand scenario where 

the AMoD system serves 100% of commuter trips made by private car show that formation 

policies (T6, V6) and (T8, V8) have more than 1 minute less in the platoon travel times than 

the in-vehicle travel time of travelers in the non-platoon scenario. The reason for this is that 
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the reduction in the network travel times offset the platoon delays, leading to a shorter platoon 

travel time.  

Although the platoon formation can reduce network travel times, travelers in the platoon 

leaders face longer unexpected delays. This led to a long platoon travel time (27 minutes) of 

travelers in the leaders, similar to non-platoon scenarios where high congestion is present. 

 Moreover, we found that the formation of platoons cannot improve network travel time in the 

low-demand scenario. For example, the 90% quantile (network) travel time is found at around 

13 minutes and is not reduced by the formation of platoons when the demand level is below 

60% (see Table 4.8). This suggests that platoon driving has no effect on traffic when demand 

is low, but only delays travelers in the platoon vehicles. 

4.5.3 Energy consumption analysis with the platoon formation 

We evaluate the impact of forming platoons on the system-wide energy consumption for 

different vehicle types. Results in  indicate that the formation of platoons can reduce the total 

energy consumed by all vehicles in the AMoD system. The reduction of total energy 

consumption ranges from 0.42% for the Kia Soul Electric 2015 to 9.56% for the Ford Focus 

Electric 2013. Moreover, more savings are achieved when the time threshold (𝑇) and the 

vehicle size threshold (𝑉) for platoon release are increased. The reason is that more vehicles 

are coordinated in platoons, which results in more vehicles driving in platoons. Less 

congestion occurs when traversing the transportation network, indicating improvements in 

traffic efficiency. Therefore, more energy can be saved when platoons are formed.  

 

Figure 4.7 Total energy savings of AMoD systems for different types of electric vehicles 

(T represents the time threshold of platoon leaders, and V is the maximum number of platoon vehicles.) 
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Results in Figure 4.7 show that energy savings are different from vehicle types when applying 

the same formation policy. The maximum saving of up to 9.56% is achieved for Ford Focus 

Electric 2013 in the (T8, V8) formation policy, while the Kia Soul Electric 2015 has the 

lowest energy saving of 0.62%. This is because the difference in vehicle characteristics for 

energy consumption leads to different energy savings. The energy consumption model 

contains a set of regression models corresponding to the different vehicle types. The 

regression model, derived from laboratory dynamometer tests, is used to calculate energy 

consumption as a function of travel speeds. In urban driving, the vehicles will consume more 

energy at lower speeds, while the energy consumption of individual vehicles will decline as 

the vehicle speed increases. Thus, vehicles will consume less energy per unit distance traveled 

with an increase in the travel speed. However, the modeled energy performance of different 

car types is different. The vehicle type with the sharpest gradient of modeled energy 

consumption-speed function will see the biggest reduction in energy consumption when 

having the same increase in the vehicles' speed. The Ford Focus Electric 2013 has the steepest 

decline in energy consumption-speed function; therefore, when the vehicle travel speeds 

increase, the Ford vehicle type has the most reduction in energy consumption. The energy-

saving of the Kia Soul Electric 2015, which has the least steep gradient of the energy 

consumption function, ranks at the bottom.  

We find that the degrees of energy savings strongly depend on the vehicle types as well as 

platoon formation policies. Coordinating more vehicles in platoons can significantly improve 

the energy efficiency for some vehicle types. However, the improvement in energy efficiency 

for certain vehicle types is relatively small because of the energy consumption characteristics.  

4.6 General discussion and main conclusions 

This chapter addresses the problem of studying the impacts of the strategic formation of 

platoons in urban AMoD systems by the development of an agent-based model. The 

formation of platoons in the urban AMoD system is more complicated because of the urban 

road network characteristics (narrow streets and multiple road segments between locations), 

platoon formation locations and policies, and the interaction between AMoD service users 

and SAEVs. The goal of this study is not to develop a very sophisticated method, but to show, 

through agent-based simulations, how the formation of platoons in AMoD systems affects 

people's travel and system-wide energy consumption.  

Shared AVs could lead to more traffic and longer travel times due to the additional zero-

occupancy movements. In the scenario where SAEVs replace all morning urban commuter 

trips (100% demand) made by private cars in the case-study city, without the formation of 

platoons, a high network congestion level of up to 53.28% is observed.  

However, the network travel times and congestion levels are improved in the formation of 

platoons. For example, a congestion level of 11% can be achieved under the policy (V8, T8). 

That is, for 30 minutes of travel time, 3.3 minutes of additional time must be spent during 
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rush hours. The extra time spent is far smaller than the time spent either in the non-platoon 

situation where SAEVs replace private car trips or in the current situation where private cars 

are used. In the first situation, travelers spent extra 15.98 minutes with a 53.28% congestion 

level. In the second situation, additional 10 minutes is spent in the case-study city 

(https://www.tomtom.com/en_gb/traffic-index/). In the formation of platoons, travelers are 

more likely to reach their destination on time or early with the improvement in the network 

travel times.  

We also find that the 90% quantile travel times are significantly reduced in the formation of 

platoons. This suggests that the network travel times are improved without causing extremely 

long travel times when platoons are formed, even though additional (zero-occupancy) 

movements are generated in AMoD systems. 

Simulation results demonstrate that the number of total vehicles circulating in the 

transportation network is reduced by the formation of platoons, which could lead to improved 

network travel time and reliability. Furthermore, the improved network travel time and 

reliability could improve the quality of time spent in the vehicles across the transportation 

network. In this respect, the platoon formation could improve the quality of services offered 

to all service users (in platoons and not in platoons) when they travel on the transportation 

network.  

On average, the platoon travel time, including the platoon delay and the network travel time, 

is less than the network travel time in non-platoon scenarios where all morning commuters 

use AMoD service. That implies that travelers in the platoon vehicles could reach their 

destination faster even if they experience unexpected delays in the formation of platoons, 

suggesting improved service levels. In this respect, the benefits from network travel time 

savings may outweigh the cost associated with the platoon delays. Travelers may opt for the 

AMoD service in response to service improvements in the formation of platoons.  

To be specific, we find that travelers in the platoon leaders experience longer platoon travel 

times due to longer unexpected platoon delays. In this regard, AMoD service users (morning 

commuters who were previously driving private cars) in the platoon leaders are provided with 

a low level of service. Travelers in the platoon leaders may be reluctant to use AMoD services.  

We find the existence of an inverse relationship between platoon delays and demand levels. 

The platoon delays encountered by travelers in platoon vehicles are small in a high-demand 

scenario. This implies that forming platoons when the market penetration rate of AMoD 

services is high leads to lower platoon delays. In contrast, travelers face long unexpected 

platoon delays with fewer AMoD service users. In the former case, the network travel times 

can offset the platoon delays travelers encounter in the platoon vehicles. Consequently, 

travelers in platoon vehicles have shorter platoon travel times (total travel times of travelers in 

the platoon vehicles). In the latter case, no congestion occurs in the transportation network 

when few travelers request services (this may happen during off-peak hours); coordinating 

vehicles in platoons only causes unexpected delays for travelers in the platoon vehicles. 

Forming platoons when demand is low (e.g., below 60% demand) only causes delays for 

https://www.tomtom.com/en_gb/traffic-index/
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travelers in the platoon vehicles, suggesting a lower level of service. As a result, travelers may 

not be willing to use the AMoD service. Therefore, a high penetration rate of AMoD service 

is expected to coordinate vehicles in the formation of platoons to benefit the service users in 

such vehicles in future AMoD systems. 

An important finding is that the improvement in traffic efficiency leads to system-wide 

energy savings. Forming platoons in AMoD systems can save about 9.56% of the system-

wide energy consumption for the most efficient car model studied in urban areas. However, 

energy savings strongly depend on the vehicle characteristics for energy consumption and 

platoon formation policies used. Demand for AMoD services and operating policies for 

forming platoons are important variables of interest for obtaining travel and energy benefits 

from platoon driving. Effective platoon formation strategies need to be developed for 

different car models to obtain a favorable effect on system-wide energy consumption.  

At the city scale, the formation of platoons enabled by vehicle automation could reduce travel 

times and unreliability in the modeled urban road network. This may influence their choices 

of residence with the improvement in travel times and the reliability of urban commuters. It 

can be inferred that automated mobility systems may have a detrimental impact on urban 

sprawl, leading to rapid urban expansions. Moreover, platoon operations effectively reduce 

energy computation in urban mobility systems. While energy consumption is reduced, 

emissions reductions could also be achieved in the formation of platoons. Thus, platoon 

operations could bring benefits to operators with regard to energy savings and to society in 

terms of emissions reductions.  

The findings of this study contribute to the growing body of literature on the study of shared 

AV fleets by quantifying the impact of innovative platoon-formation operations on AV 

energy consumption as well as people's travel. We shed light on the energy aspect of platoons 

in urban AMoD systems to complement the existing studies on the fuel consumption of 

platoons on highways. 

4.7 Recommendations for policy and future research 

The findings of this chapter raise challenges for policy and for research. The findings suggest 

that the formation of platoons in AMoD systems can reduce system-wide energy 

consumptions. Platoon operations can be considered as an effective energy-saving and 

decarbonization strategy to achieve the government's energy and environmental goals. 

Moreover, it is recommended that policymakers and transport operators consider the vehicle 

characteristics for energy consumption in conjunction with platoon formation policies to 

develop effective energy-saving platoon strategies in future AMoD systems.  

Developing platoon formation strategies over urban road networks is recommended aiming at 

improving traffic efficiency, leading to travel time reductions. However, we find that the 

magnitude of demand for AMoD services could influence the users' travel times and quality 

of time. Therefore, the magnitude of demand needs to be considered when deciding whether 
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to coordinate vehicles in platoons. For example, forming platoons below 60% demand over 

the urban road network only causes unexpected delays. Travelers are reluctant to use the 

AMoD service due to the long unexpected platoon delays. In this regard, we recommend not 

forming platoons in the uncongested network with fewer road users (e.g., below 60% demand 

in the study area, which is the case during off-peak hours). At the same time, vehicles can be 

coordinated in platoons when congestion occurs to reap the benefits in improving travel times 

and energy efficiency. 

Furthermore, travelers, especially those who travel in the platoon leaders, may not be willing 

to use AMoD service due to the long unexpected delay and long travel time. For policymakers 

and transport operators, careful consideration is required to reward the travelers who suffer 

long unexpected delays in the formation of platoons, which the system's benefit from energy 

savings can be distributed.  

Further research efforts are required to develop mechanisms for distributing the energy 

benefits in order to incentivize engagement to make the system more sustainable, efficient, 

and equitable. 

From the point where service users stand, the unexpected delay in the formation of platoons 

may reduce the quality of time spent in the platoon vehicles while increasing the travel times. 

Platoon driving reduces the network congestion level and improves network travel time and 

reliability, resulting in improved quality of network travel time spent. In addition to the 

changes in travel times, the valuation of travel time and valuation of travel time reliability, 

which are key variables to the appraisal of transport projects, may be influenced by platoon 

delays and reductions in network congestion levels. Therefore, research effort may be 

required to differentiate and estimate the new value of travel time and the value of reliability 

for different travel time components in the formation of platoons.  

The modeling framework presented here still has some limitations that could be improved in 

future research. The traffic simulation model can estimate the traffic impact of forming 

platoons using mesoscopic operating characteristics. It can meet the design requirements of 

determining time-dependent link flows and route travel time according to the relationship 

established between road capacity and the formed platoons. Hence, the traffic simulation 

model allows testing different strategies in forming platoons on the network level. However, 

the mesoscopic model applied to single-lane urban scenarios cannot capture the microscopic 

traffic behavior such as accelerating, overtaking, lane-changing, and traffic behaviors at 

intersections. Moreover, the relationship established between formed platoons and road 

capacity is only meant for the capacity of a single lane for each direction according to the 

platoon characteristics. This is acceptable for urban driving conditions in most (European) 

cities with narrow streets (one lane for each direction). However, the traffic simulation 

component cannot model mixed traffic conditions under multiple-lane scenarios. Operational 

capacities in multilane scenarios depend on lane policies to distribute platoon vehicles. 

Modeling multiple-lane capacity with the formation of platoons remains an unsolved 

challenge in the literature. 
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Chapter 5 

Modeling Multiple AMoD Operators with 

Exogenous Demand 

The trend in industrial development shows that private companies of shared automated 

vehicles (SAV) are unlikely to disclose information about SAV fleets and service users 

because of their business objectives. This chapter investigates the operation of Automated 

Mobility-on-Demand (AMoD) Systems in which multiple independent companies operate 

their fleets to provide direct on-demand service to their registered clients in the same urban 

area. An agent-based model was developed to study the future scenarios of multiple-operator 

AMoD systems with different fleet sizes and relocation operations. We analyze how one 

company's operations affect the performance of its competitors, with a focus on the service 

quality offered to clients, operational efficiency (e.g., trips per car), and profit. Simulation 

results show that increasing the SAV fleet of a specific company affects the service quality of 

competing companies; this may lead to an increase in average waiting and (4-minute) travel 

times due to the added traffic. Nevertheless, SAV companies may be motivated to increase 

fleet sizes for higher profit. Regulation of fleet sizes is expected to avoid deteriorating social 

welfare (e.g., congestion). Moreover, findings suggest that relocations in anticipation of future 

demand could improve profit and service levels. For example, an operator providing 

relocations improves waiting times by about 11% compared to the competing operators 

without relocating vehicles. A nearly 16 % (more than 2000 euros in the morning hours) 

increase in profit can be achieved when relocations occur. The reason is that more trips are 
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served with relocations while operating costs remain low. Developing a relocation capability 

is strongly recommended to gain an advantage in future urban mobility systems.3 

5.1 Introduction 

As we continue to witness the accelerating roll-out of AV, also known as self-driving vehicles, 

transportation is experiencing the fastest and most far-reaching disruption in the new era of 

automation.  

There are uncertainties related to AV technology, regulation, and AV mobility service 

planning in the path to making commercial applications of the driverless future (Calabrò et al., 

2022; Fan et al., 2022; T. Liu et al., 2020). Further development trends in the AV industry and 

academic literature show that combining AVs with the ride-hailing service is steering the 

paradigm shift of urban mobility systems. The transition toward AMoD systems is already 

underway for both people and goods (le Pira et al., 2021). 

No companies in the emerging AV industry have yet developed the skills and resources to 

command a significant market share. Naturally, multiple technology companies in the AV 

industry will provide mobility solutions in the same urban areas, which may drive a new 

urban mobility system. The private AV companies are unlikely to share information about 

their clients (e.g., request time and locations) and the vehicle fleet (e.g., locations) because of 

their competing business development goals. 

Previous research has investigated the pricing, relocation, fleet sizes, ridesharing strategies, 

and the strategic platoon formation either in single-operator AMoD systems or single-operator 

AMoD systems in the presence of public transportation options (Milakis et al., 2017; 

Narayanan et al., 2020; S. Wang et al., 2019). However, there is no managerial evidence to 

support the future development of urban AMoD systems in which AMoD services are 

operated by different operators.  

The multiple-operator AMoD systems may be a system of multiple independent operators 

without sharing information or distributed systems with partly shared information in which a 

third party is involved. As expected, the dream version seems to be an integrated system with 

complete information sharing in relation to travelers, vehicle fleets, and transport modes. 

However, any form of urban mobility platform is full of uncertainty in technology, privacy, 

and security 

This chapter examines the likely scenarios where multiple AMoD companies operate in the 

same urban areas without sharing information. We define and model multiple-operator AMoD 

 

3This chapter is an updated version of the manuscript that has been submitted to a journal: An Agent-Based 

Simulation Study of Shared Automated Vehicle Services of Multiple Companies without Information Sharing.  

The diagrams to present the demand data and road network are removed from this chapter. This is because they 

are also used and presented in Chapter 4. 
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systems without information sharing as a substitute for private car use. We test future 

scenarios with different operating strategies (e.g., relocation strategy) and corporate profit to 

better gauge what to expect from multiple-operator AMoD systems (in which operators are 

unlikely to disclose customers’ information). We thus contribute with an agent-based 

simulation study of future multiple-operator AMoD systems in response to technological 

disruptions. 

The remainder of the chapter is organized as follows. Section 5.2 summarizes industry actions 

and development plans for future AMoD systems and discusses state-of-the-art literature. 

Section 5.3 presents the model specifications. Section 5.4 describes the application of the 

model to the case study city of The Hague, The Netherlands. Simulation results are analyzed 

in Section 5.5. Section 5.6 provides a discussion and recommendations. The final section 

presents the main conclusions and points out future research directions. 

5.2 Background 

5.2.1  Future development trends in the automotive industry around the globe 

Despite the uncertainty and inspired by the vision of the disruptive transformation of the 

transportation system for people and goods, many car manufacturers and high-tech companies 

are investing in AV research and development. Successful field tests of operating AVs have 

been carried out in different application environments around the globe. Waymo, Google's 

original self-driving car project, announced that their self-driving cars had completed more 

than 20 million driven miles on public roads in cities across the United States by 2020 

(VentureBeat, 2020). As an AV manufacturer, Cruise plans to commercialize AVs in 

partnership with Microsoft to provide riders with automated on-demand transportation options 

(Reuters, 2021b). In 2020, Amazon unveiled its fully self-driving vehicles designed to carry 

passengers and deliver goods in the already established logistics network (Bloomberg, 2020). 

Tesla’s autopilot system is currently being developed for fully self-driving (Tesla, 2022). 

Apple plans to launch self-driving cars in 2024, aiming to build AVs to carry passengers for 

an automated ride-hailing service (The Guardian, 2020). 

In Europe, Mercedes Benz is establishing a ride-hailing joint venture with BMW to compete 

with other mobility service providers. The joint-venture mobility portfolio will allow for the 

introduction of AVs in ride-hailing services (Forbes, 2019). In Asia, Toyota partnered with 

Uber to integrate Toyota AVs into Uber's ridesharing network since 2018 (TOYOTA, 2018). 

China's largest ridesharing company DiDi Chuxing has launched AV test projects for riders 

complementing the established ride-hailing network. Meituan, a food delivery giant, start 

driverless delivery services in Beijing, China (Reuters, 2021a). Baidu's AVs have already 

logged more than 1 million driven miles in urban environments. Baidu introduced Apollo AV 

services to the public in 2019 and has established a strategic partnership with Greely, which 

has considerable expertise in intelligent vehicle manufacturing (VentureBeat, 2019).  
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The commercial actions suggest that some AV technology companies are marketing AV fleets 

to provide an emerging alternative to existing urban transportation services; several AV 

technology companies are integrating AV fleets with a logistics network for goods delivery; 

others are providing automated driving systems for intelligent vehicles. Overall, different AV 

companies have their development goals and preferences. Companies are likely to manage 

AV services - in urban mobility systems or urban logistics systems - in a competitive market 

without sharing information so that they can keep their business undisclosed to competitors. 

The actions in the automotive industry suggest that combining AVs with ride-hailing services 

is driving the paradigm shift of urban mobility systems. With the rapid entry of emerging 

AMoD systems, it will be natural to see fleets of shared AVs operated by various AV 

technology companies in the future mobility market.  

5.2.2 Future multiple-operator AMoD systems in urban areas 

According to the development trend in AV technology companies, a future AMoD system 

comprised of multiple operators is envisioned. With the shift from vehicle ownership to 

service usage, travelers in urban areas relinquish vehicle ownership and access the AMoD 

service upon request. Travelers choose the service provided by their favorable company and 

register for their services. 

Operators manage their fleet to provide direct on-demand service to travelers between service 

points without sharing information about their clients and AVs. The fleet size is not very large 

in the early stage of trials, and the registered traveler may not be served by AMoD services. 

On a typical working day, registered travelers (morning commuters) can summon AVs 

operated by a pre-registered company to their locations via a company's proprietary app 

without the intervention of human drivers. Decisions on assigning available vehicles to 

incoming requests are made on an operator’s platform with optimal assignments.  While 

routing decisions will be provided by computing the shortest routes, vehicles move to pick up 

the travelers at the travelers' locations and take them to their destinations. Once travelers are 

dropped off, vehicles may get idled and be parked at service points, be relocated to service 

points in anticipation of future demand, or continue their journey to serve subsequent requests 

of registered travelers.  

5.2.3 Existing literature 

Given the great potential of AMoD systems and the expected disruptive transformations of 

the urban transport system, there has been significant interest in exploring the impacts of 

shared AV operations in urban passenger transport systems over the last few years. We 

review the existing literature with an emphasis on modeling AMoD scenarios and system 

functionalities. 
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Burns et al. (2013) examined the performance of AMoD services in different case-study cities 

regarding operating cost, service quality, and vehicle utilization. Fagnant and Kockelman 

(2014) investigated the travel and environmental implications of a single AMoD system in an 

Austin-sized city. Hörl et al. (2019) and Hyland & Mahmassani (2018) focused on deploying 

control or optimal strategies to manage AV-traveler assignments in a single AMoD system. 

Recent studies analyzed the routing and traffic assignment of shared AVs while considering 

traffic congestion (Levin, 2017; Liang et al., 2020). Wang et al. (2022) modeled the 

operations of coordinating AV into platoon formations and explored the travel and energy 

impact of forming platoons in an urban road network. 

Studies were also conducted to integrate a future AMoD system into existing public 

transportation systems. On the one hand, an AMoD system can provide feeder services to 

complement the public transportation system (Huang et al., 2020; X. Liang et al., 2016b); on 

the other hand, door-to-door AMoD services are a competitive alternative to existing public 

transportation options (Hörl et al., 2021; Narayan et al., 2020). Notably, In modeling 

scenarios where AMoD systems are integrated into urban public transportation options, 

travelers can adjust their behaviors in response to the transport levels of service provided by 

public transit operators and a single AMoD operator- that are modeled as a two-sided 

transportation system. The creation of such mobility systems requires the integration of 

transport modes, user information, and payment methods (Hensher et al., 2021; Shaheen & 

Cohen, 2021). When private commercial AV companies (operators) enter the urban mobility 

market, the portfolio of multimodal mobility services with multiple AMoD operators may not 

be delivered. This is because operators may be reluctant to share information about AV fleets 

(e.g., locations) and service users with their business development goals and preferences. 

There is also a lack of collaborative mechanisms and entry regulations for emerging mobility 

services in the urban mobility system. 

Inspired by the phenomena of multiple transportation network companies (e.g., Uber, DiDi 

Chuxing, Bolt) and carsharing companies in urban mobility systems, multiple AMoD 

operators may drive a new mobility ecosystem. To our best knowledge, the current studies in 

the literature only consider a mobility system with a single AMoD operator. We are aware of 

studies in the literature where competition either between multiple carsharing operators or 

multiple Mobility-on-Demand (MoD) operators is investigated (Balac et al., 2019; Kondor et 

al., 2022; Pandey et al., 2019a; Séjourné et al., 2018). However, AMoD systems differ from 

the other systems (i.e., MoD systems and carsharing systems). Vehicle automation in AMoD 

systems eliminates the interference and costs of human drivers required in MoD systems. In 

AMoD systems, the operating efficiency is improved with the fully controlled functioning of 

the automated driving systems; Vehicles can be assigned for customer use in a coordinated 

manner. Compared to carsharing systems, AMoD systems do not require relocation staff to 

perform relocation operations because of automated driving features. Thus, the relocation 

operations in AMoD systems eliminate the problems of distributing relocation staff and 

reduce the high cost of staff-based relocation. In addition, travelers can engage in productive 

activities when using AMoD services compared to using carsharing services. 
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5.2.4 Research challenges 

In the literature, analogous but different multiple-operator MoD systems are studied using 

analytical methods. The analytical techniques can produce high-quality solutions while 

achieving the optimal value of the system objective. However, analytical methods have some 

weaknesses in modeling systems with multiple entities and interactions (e.g., AMoD systems).  

Existing models and tools lag behind the rapid developments in urban multiple-operator 

AMoD systems. Therefore, there is an urgent need to develop an advanced modeling 

framework to simulate the emerging AMoD system with multiple operators and explore the 

potential of operations of AMoD operators in future cities. 

5.2.5 Research contributions  

The chapter aims to bridge that gap by developing an Agent-Based Model (ABM) for AMoD 

systems with multiple AV fleet operators to test different operating strategies. Agent-Based 

Modeling is well-suited to studying multiple-operator AMoD systems while tackling the 

limitations of analytical methods. The ABM is populated with realistic data. The interaction 

between vehicles and travel requests and between vehicles is realistically represented. The 

agent-based modeling technique can describe the system at different levels: the individual 

vehicle is simulated while capturing the traffic conditions; the behavior of individual vehicles 

in relocations is represented, while relocation decisions made by operators are modeled.  

The main contributions of this chapter are the following:  

 We first define and model an urban AMoD system comprised of multiple competing 

operators, each of which manages the vehicle fleet to serve their clients (travelers) without 

information sharing. 

We model the relocation operations in anticipation of future demand in the new multiple-

operator AMoD systems. That is, we design a relocation mechanism in which the vehicle 

shortage service points are identified in anticipation of future demand to mitigate the 

imbalance between expected demand and supply of AVs. We test the effectiveness of 

proposed relocation strategies for an operator against its competitors in future scenarios. 

In the agent-based modeling framework, an optimal assignment component, enabled by 

vehicle automation technology, is implemented and tested for the case-study city. At the 

aggregate level, the ABM in which the node and link movement rules are defined replicates 

traffic conditions resulting from the circulation of in-service vehicles (with passengers inside) 

and relocation of vehicles across the transportation network.   

Fleet cost and fare structure for AMoD services are incorporated into the agent-based 

modeling framework to test how different operating strategies affect the profit of individual 

operators in the future multiple-operator AMoD system. 
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As a case study, we apply the urban multiple-operator AMoD systems to the city of The 

Hague, the Netherlands. We aim to understand how supply (vehicle fleet) changes affect the 

performance of operators coexisting in the same urban area. Therefore, supply-side simulation 

is performed to generate a spectrum of possible outcomes. Moreover, we design simulation 

experiments to explore the potential of relocation strategies in the multiple-operator AMoD 

systems. 

The performance will be evaluated to gain useful insights into the competition by defining a 

set of key performance indicators (KPIs) in terms of service quality offered to travelers, 

system efficiency, and profit. 

5.3 Model specifications 

5.3.1 Model overview 

The modeling framework includes five core functionality components (see Figure 5.1): a 

demand generator for individual fleet operators, a vehicle-to-passenger assignment 

component, a vehicle relocation component, a mesoscopic traffic simulation model, and the 

shortest route calculation component. 

The demand generator generates time-dependent travel requests for each AMoD operator 

using the existing travel demand data. The demand generator also provides an estimate of the 

expected demand for relocation operations. Individual travel requests are not generated when 

estimating expected demand, but the expected number of travel requests is calculated. 

Concerning fleet management of an independent AMoD operator, the optimal assignment 

component is responsible for matching available vehicles with their registered clients in real 

time. Moreover, we model the relocation operations of a specific operator. Relocation 

strategies are developed to address the imbalance between the supply of vehicles and expected 

demand. 

A traffic simulation model that defines the link and node movement rules is incorporated to 

capture the traffic dynamics. We classify two information types: static and dynamic 

information. The road attributes (e.g., road capacity, speed limits, and road length) initiated 

using road network data are defined as static information, while dynamic information includes 

the instantaneous vehicle speed, link density, the number of vehicles on each road segment. 

The node and link mechanism for vehicle movements can reproduce road traffic to provide 

enough realism to the ABM in estimating the travel times of vehicles across the road network. 

Based on traffic conditions determined by the traffic simulation component, the routing 

component is responsible for finding the time-dependent shortest routes between locations for 

vehicles. These routes are computed at three moments: toward picking up a client, traveling 

with a client to his/her destination, and relocating to areas with a shortage of vehicles. 
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The cost of operating three AV fleets is calculated using the simulation measurements (e.g., 

empty fleet distance and passenger travel distance and time, number of served trips, and fleet 

sizes). Profit also is estimated based on different fare structures and operating costs. 

 
Figure 5.1 Overview of the model architecture 

 

5.3.2 Behavior of clients and SAVs, and assignment Interactions 

A vehicle-to-passenger assignment component is designed to match the available vehicles to 

the requests of registered travelers. Upon receiving requests, it determines which vehicles in 

the fleet could reach the travelers according to the operating rules for assigning available 

vehicles to requests. 

Pre-assignment is done by searching the nearest available vehicles for requests, prioritizing 

earlier requests. Vehicle-to-request pairs are generated by assigning the nearest available 

vehicles. There are multiple vehicle-to-request pairs in a short time window in peak hours. 

Then, we can have the incoming requests set 𝑅 = {𝑟0, 𝑟1, … , 𝑟𝑛} and nearest idle vehicles set 

𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛}.  

For each request 𝑟𝑖 in set R, the nearest vehicles 𝑣𝑖 in the Vehicle set 𝑉 could be reassigned to 

any other request in the Request set 𝑅  (see Figure 5.2). An optimal assignment can be 

obtained if it minimizes the sum of the cost of every assignment pair. The assignment 

problem can be solved using the Hungarian method (see Figure 5.3). In doing so, a bipartite 

graph is constructed whose vertices are two independent sets (i.e., set 𝑉  and set 𝑅). The 

bipartite graph is represented by an adjacency matrix in which the horizontal row stands for 
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vehicles in the set 𝑉 and vertical columns for requests in the set 𝑅. Given 𝑛 × 𝑛 cost matrix, 

we define the entry as cost 𝑐𝑖𝑗  of assigning vehicle 𝑖  to a request 𝑗 . The cost 𝑐𝑖𝑗  can be 

measured for an assignment pair by the Euclidean distance between a vehicle 𝑖  and a request 

𝑗. In the Hungarian method, row reductions and column reductions for the cost matrix are 

performed once. Next, the solution is iteratively optimized until the minimum number of lines 

(rows or columns) covering all zeros in the matrix is equal to the dimension of the 𝑛 × 𝑛 cost 

matrix. The optimal assignment can be found for the original matrix based on the optimal 

assignment for the resulting cost matrix. 

The optimal method which we propose can obtain an optimal vehicle-to-request pairs 

assignment for grouped requests. However, the assignment method does not provide the 

routes between locations. The routing component is responsible for computing the time-

dependent shortest routes between any two given points using the Dijkstra algorithm.   

 
Figure 5.2 A real-world scenario for potential benefits of grouping requests 

 

 
Figure 5.3 Schematic diagram of the pre-assignment and optimal assignment 
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5.3.3 Movement rules of in-service and relocation vehicles for reproducing 

traffic dynamics 

Traffic conditions are considered by incorporating a mesoscopic traffic simulation model; a 

set of vehicle movement rules is defined to govern the movement of in-service vehicles and 

relocation vehicles. 

In the link (road segment) movement, in-service vehicles and relocation vehicles experience a 

speed calculated by a macroscopic speed-density relationship. Travel speeds can be calculated 

based on the established relationship between speed and density. When the density 𝑑 is less 

than the critical density 𝑑𝑐, the speed 𝑉 can be calculated using Equation 5.1: 𝑉 = 𝑣0 (1 −

𝑑

𝑑𝑗
). Where 𝑣0 is the maximum speed respecting the urban speed limit, and  𝑑𝑗  is the jam 

density. When the density 𝑑  exceeds the critical density 𝑑𝑐 , the speed is calculated using 

Equation 5.2: 𝑉 = 𝑣0 × 𝑑𝑐 (
1

𝑑
−

1

𝑑𝑗
). In modeling the movement of in-service and relocation 

vehicles, vehicles are stacked at accumulation areas (assumed places at nodes) for being 

transferred from an upstream road segment to a downstream road segment. Transferring rules 

for restricting the vehicle movement at nodes are defined (S. Wang et al., 2022a). 

5.3.4 Vehicle relocation operations: basic definitions and relocation procedures 

The AMoD system will provide on-demand services to travelers who request service at 

different locations and times in urban areas. The dynamic interaction between vehicles and 

travelers leads to an imbalance between available vehicles and future demand in some urban 

places. Relocation operations can mitigate the imbalance. We develop relocation strategies to 

distribute available vehicles (idle and not assigned to serve travelers) among different places 

in anticipation of future requests. 

5.3.5.1 Basic definitions in relocation operations 

An urban service area with high population and employment densities was divided into 

relatively smaller traffic analysis zones (TAZ). All TAZs, which correspond to origin and 

destination zones of demand, are defined as potential relocation zones from which relocation 

zones are determined. In relocation operations, expected demand is estimated using historical 

data in an O-D matrix and a departure time distribution of trips. The total number of trips 

between every pair of TAZs throughout the study period (i.e., the morning peak hours) is 

specified in the O-D matrix. The departure time distribution describes the number of trips per 

time interval (i.e., 15 minutes). We can calculate the number of trip requests for every time 

interval in advance using a fraction of the trips during that time interval.  
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To tackle the imbalance between the supply of vehicles and expected demand in TAZs, we 

classify relocation zones into two types: Supplier zones and Demander zones, depending on 

the available vehicles and expected demand. In Supplier zones, the number of available 

vehicles is much higher than the number of expected requests. In Demander zones, there is a 

significant shortage of vehicles in anticipation of future demand. 

5.3.5.2 Relocation strategies  

Vehicle relocation operations are scheduled cyclically. The relocation time interval for 

performing relocation operations is predetermined. At the beginning of each relocation time 

interval, Supplier and Demander zones are identified according to the number of available 

vehicles and the number of expected requests. Vehicles from the Supplier zones are relocated 

to the Demander zones. The specific relocation procedures (for an operator) are described 

below. 

• The number of available vehicles and the number of expected requests in each zone 

are determined at the beginning of the relocation time interval. 

• Relocation indices that are indexed to changes in the available vehicles and future 

demand (i.e., 15 minutes) in zones (TAZs) (S. Wang et al., 2022b). Accordingly, 

relocation indices are calculated using Equation 5.3 in the multiple-operator AMoD 

system.  

𝑅𝑖=𝑉𝑡 ∗ (
𝑉𝑡𝑖

𝑉𝑡
−
𝑅𝑡𝑖

𝑅𝑡
) (5.3) 

𝑅𝑖 is the relocation index for the zone 𝑖; 𝑉𝑡 is the total number of available vehicles of 

an operator in the service area; 𝑉𝑡𝑖 is the number of available vehicles of an operator in 

zone 𝑖; 𝑅𝑡  is the total number of expected requests for an operator’ service in the 

service area; 𝑅𝑡𝑖  is the number of expected requests for an operator’s service in the 

zone 𝑖. 

• Measured by the relocation index, zones with a large surplus of available vehicles are 

classified as the Supplier zones, while Demander zones have a strong shortage of 

available vehicles. 

• The vehicles in a Supplier zone will be relocated to the closest Demander zone. The 

number of vehicles for relocation in each zone is the additional number of available 

vehicles (those not needed to serve expected demand in the Supplier zone). 

• The time-dependent shortest routes between the Supplier and Demander zones are 

computed using the Dijkstra algorithm for every relocation vehicle.  

We model relocation operations between the Supplier and Demander zones while no 

relocation occurs in other zones. Compared to the Supplier and Demander zones, “no 

relocation zones” have a slight imbalance between the supply of vehicles and expected 

demand. In the AMoD system, vehicles in adjacent zones (TAZs) within the search distance 

will be assigned (dispatched) to serve clients upon requests; An additional number of 
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available vehicles in a zone can be assigned to serve clients in adjacent zones. Relocation 

between zones with a slight imbalance could reduce vehicle availability to clients while 

increasing VKT (vehicle kilometer traveled) when relocation occurs. We develop relocation 

strategies to consider relocating vehicles from identified Supplier zones to identified 

Demander zones. 

5.3.5 Fleet cost and fair structure 

5.3.6.1 Fleet cost structure 

We use a cost model based on the work by Hörl et al. (2021) to estimate the cost of AMoD 

fleets in which vehicles provide door-to-door service to single clients in urban areas. The total 

fleet cost was calculated based on the total distance traveled by the fleet (𝑑𝑓𝑙𝑒𝑒𝑡), the number 

of served trips ( 𝑛𝑡𝑟𝑖𝑝𝑠 ) and the fleet size (𝑛𝑓𝑙𝑒𝑒𝑡 ). The cost model (see Equation 5.4) is 

incorporated to estimate the operating cost of urban AMoD fleets. 

𝐶 = 𝑐𝑑 ∗ 𝑑𝑓𝑙𝑒𝑒𝑡 + 𝑐𝑡 ∗ 𝑛𝑡𝑟𝑖𝑝𝑠 + 𝑐𝑓 ∗ 𝑛𝑓𝑙𝑒𝑒𝑡                                      (5.4) 

where, 

𝑐𝑑 is the cost per vehicle kilometer; vehicle kilometers traveled include the trips with and 

without clients (the trips without clients include pickup trips and relocation trips). 

ct is the cost per trip (e.g., cleaning). 

cf is the cost per vehicle. 

5.3.6.1 Fare structure 

Fare is the out-of-pocket cost of a registered client. The fare 𝑝 is structured by a base fare, a 

distance-based fare 𝑓𝑑 and a time-based fare 𝑓𝑡 for a single ride.  

𝑝𝑑𝑡 = −𝜂 ∗ (𝑓 + 𝑓𝑑 ∗ 𝑑 + 𝑓𝑡 ∗ 𝑡)        (5.5) 

where, 

𝜂 is the saving factor for AMoD services relative to an existing MoD service (we are using 

the UberX fare structure as a reference in the case study). 

𝑓 is the base fare for MoD services.  

𝑑 is the travel distance with a client. 

𝑡 is the travel time with a client. 

In Equation (5.5), the fare paid by clients is affected by the travel times. This may lead to 

increased profit in the congested network. We also test a pricing system in which the fare is 

formulated as a function of the distance traveled.   



Chapter 5 – Modeling Multiple AMoD Operators with Exogeneous Demand 79 

 

𝑝𝑑 = −𝜂 ∗ (𝑓 + 𝑓𝑑 ∗ 𝑑) (5.6) 

5.4 Model Applications 

The simulation model was developed in the Anylogic platform using Java programming 

language. The ABM is populated with existing travel demand data and road network data 

from the case-study city of The Hague, The Netherlands. 

5.4.1 The road network and urban service area 

The model contains a realistic representation of the road network and service area in the case 

study city. The road network that we have used, which covers the main districts around the 

city of The Hague. The 49 TAZs frame the urban service area. The locations of centroids of 

the TAZs are used as the points of travel requests injection in the road network; they are 

designated as travelers' origin and destination as well as service points for SAVs. Vehicles 

from different operators circulate over the road network of road segments and nodes when 

serving travelers. Road attributes are initialized based on the existing traffic data.  

5.4.2 Travel demand data 

Individual travelers are created to simulate the behavior of requesting AMoD services. 27,452 

trips made by private car trips occur within the urban service area of The Hague. The 

temporal pattern of travel demand is shown for every 15 minutes in the morning peak period 

from 5:30 am to 10:00 am. The demand generator generates time-dependent travel requests 

using departure time fractions and an OD matrix data specifying demand between TAZs. The 

demand generator is designed to generate travel requests based on the aggregate travel 

demand available in the shape of an OD matrix. The requests on each OD pair can be split 

between operators using a custom input distribution. When the generated travel request 

cannot be satisfied, this is considered to be a rejected request, and this trip will be made with a 

private car. 

5.4.3 AMoD service configurations  

Regarding fleet deployment, we define 𝑁 as the average number of vehicles deployed for all 

operators in each service point of the model. We denote the average fleet size of each operator 

at each service point as 𝑛𝑜𝑖 where ∑ 𝑛𝑜𝑖𝑖∈{1,2,3} = 𝑁. The fleet 𝑛𝑜𝑖 is proportionally distributed 

as a function of demand for an operator’s service in each service point. The fleet size 𝑛𝑜𝑖 for 

AMoD operator 𝑜𝑖  is treated as a parameter for which simulation is repeated for various 

values. We initiate smaller fleet sizes in the baseline scenarios as   𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜3 =
𝑁0

3
(𝑁0 = 51). 𝑁0 is set to smaller values to explore the scenarios where an operator brings 
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more vehicles to the service area. 𝑧𝑜𝑖 will be used to denote the demand for operator 𝑜𝑖 and 𝑍 

as the total demand (27,452 trips) in the city for the AMoD services, thus ∑ 𝑧𝑜𝑖𝑖∈{1,2,3} = 𝑍. 

We model the 25,800 interzonal trips. 

We are using the UberX fare structure that is active in 2022 in the Netherlands. We have 𝜂 =

0.6 (60% of the existing MoD) 𝑓 = 1.4 𝑒𝑢𝑟𝑜,   𝑓𝑑 = 1.2 𝑒𝑢𝑟𝑜 𝑝𝑒𝑟 𝑘𝑚, 𝑓𝑡 =

0.26 𝑒𝑢𝑟𝑜 𝑝𝑒𝑟 𝑚𝑖𝑛  in Equation 5.5. We have  𝑐𝑑(2022) = 0.098
𝐶𝐻𝐹

𝑣𝑘𝑚
=

0.098𝐶𝐻𝐹

𝑣𝑘𝑚
∗
0.97𝑒𝑢𝑟𝑜

𝐶𝐻𝐹
=

0.095
𝑒𝑢𝑟𝑜

𝑣𝑘𝑚
,  𝑐𝑡(2022) =0.375 CHF=0.364 euro. We model the AMoD service in the 4.5 

morning peak hours (from 5:30 am to 10:00 am) and assume that the AMoD mobility service 

stay online from 5:30 am to 12: 00 midnight (maintenance is scheduled for the remaining 

hours). 𝑐𝑓(2022) =33.30 CHF (per day) * 
0.97𝑒𝑢𝑟𝑜

𝐶𝐻𝐹
∗4.5/18.5=7.857 euro. Table 5.1 summarizes 

model parameters and case study characteristics for the baseline scenario.  

Table 5.1 A Summary of the Model Parameters for the baseline scenario 

Parameter/characteristics Value 

Travel demand (Z) 25,800 interzonal trips 

Centroids (denoted by s) 49 

The number of fleet operators  𝑖 3  

Time steps for speed update 6 seconds 

Vehicle assignment Time interval ∆𝑡  15 seconds 

The search distance for vehicle assignment 5000 meters 

Vehicle seat capacity 1 person 

The average number of vehicles at the beginning of the 

simulation (𝑁0) 

51 vehicles per service point 

𝜂 saving factor for AMoD services relative to an existing MoD 

service  

0.6 

Cost per vehicle kilometer 𝑐𝑑 0.095 euro per vkt (vehicle kilometer traveled) 

Cost per trip ct 0.364 euro 

Cost per vehicle cf  7.857 euro 

Base fare 𝑓  1.4  euro 

distance-based fare 𝑓𝑑  1.2 euro per km 

Time-based fare 𝑓𝑡  0.26 euro per min 

 Vehicles increment ∆𝑔 per service point for sensitivity 

analysis 

5 vehicles  

 

5.5 Results and analysis 

Simulation is performed to explore the implications of AMoD systems with multiple 

operators. A set of performance indicators is defined to reflect the different aspects of system 

performance in terms of system efficiency and service quality offered to travelers. The main 

performance indicator is summarized in Table 5.2 and described in detail.  

  



Chapter 5 – Modeling Multiple AMoD Operators with Exogeneous Demand 81 

 

Table 5.2 Key performance indicators for performance assessment 

Indicator Explanation 

Waiting time 
Waiting time is the out-of-vehicle time a traveler spends waiting for the assigned vehicle to 

reach his/her location. 

Travel time 
Travel time is the time a traveler spends in a vehicle moving from the origin location to the 

destination location. 

Unserved 

trips 

Unserved trips are the trips of registered travelers that the AMoD operator cannot serve. 

Unserved trips occur when there is no available found.  

Total VKT 
Total VKT is measured by multiplying the total number of vehicular trips by the length of these 

trips. The length of a vehicular trip includes the distance traveled with and without passengers. 

Empty VKT 

Empty VKT is the pickup distance traveled by unoccupied vehicles. The empty VKT is 

calculated by multiplying the total number of empty trips for pickups by the lengths of these 

trips. 

Vehicle 

utilization 

Vehicle utilization means that the average number of trips served per vehicle in the simulation 

time 

Relocation 

trips 
Relocation trips are the vehicular trips made by relocation vehicles. 

Relocation 

VKT 

Relocation VKT is calculated by multiplying the relocation trips by the distance traveled by the 

relocation vehicles. 

Total Fleet 

profit 1  

This total fleet profit is the total revenue from distance-based fares minus the total operating 

costs. 

Total Fleet 

profit 2 

This total fleet profit is the total revenue from distance-and time-based fares minus the total 

operating costs. 

 

5.5.1 Simulation scenarios for evaluating changes in fleet sizes of an operator 

This section evaluates strategies for increasing the vehicle fleet for a specific operator (e.g., 

operator 1) when attempting to improve the service offered to registered travelers. The 

objective is to assess the impact that changing the fleet of operator 1 has on the service level 

for all operators  𝑜𝑖 (𝑖 =1,2,3).  

The simulation results in scenario one and scenario two indicate that the increased fleet size 

could improve the service quality of operator 1 in terms of average waiting time compared 

with the other operators. Moreover, as expected, fewer empty VKT is generated in the system 

managed by operator 1; as the fleet size increases, the empty travel distance indicated by 

empty VKT reduces from 25.45% of total VKT in the baseline scenario to 20.35% of the total 

VKT in the scenario two with an increment of 10 vehicles per service point.  

Intuitively, a larger fleet will reduce vehicle utilization. Results indicate that vehicle 

utilization decreases from 7.32 to 5.63 as the fleet size increases as measured by trips per car. 

That means that vehicle usage of an AMoD operator with the increase in the number of 

vehicles becomes lower in the morning hours compared to its competitor. Currently, 

commuters using privately-owned vehicles in our case study city may take 20-30 minutes to 

complete one trip. They are parked up to 90 percent of the time during the AM peak hours. 

Although vehicle usage of AMoD operators is reduced, they maintain higher usage rates 

compared to private vehicle use. 
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Table 5.3 shows the simulation results in the baseline scenario where the fleet is distributed 

equally (𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜2). We increase the number of vehicles used by operator 1 by ∆𝑔 (5 

vehicles) (scenario 1) and 2 ∗ ∆𝑔 (10) (scenario 2) for the 100% demand scenario (Table 5.4).  

The simulation results in scenario one and scenario two indicate that the increased fleet size 

could improve the service quality of operator 1 in terms of average waiting time compared 

with the other operators. Moreover, as expected, fewer empty VKT is generated in the system 

managed by operator 1; as the fleet size increases, the empty travel distance indicated by 

empty VKT reduces from 25.45% of total VKT in the baseline scenario to 20.35% of the total 

VKT in the scenario two with an increment of 10 vehicles per service point.  

Intuitively, a larger fleet will reduce vehicle utilization. Results indicate that vehicle 

utilization decreases from 7.32 to 5.63 as the fleet size increases as measured by trips per car. 

That means that vehicle usage of an AMoD operator with the increase in the number of 

vehicles becomes lower in the morning hours compared to its competitor. Currently, 

commuters using privately-owned vehicles in our case study city may take 20-30 minutes to 

complete one trip. They are parked up to 90 percent of the time during the AM peak hours. 

Although vehicle usage of AMoD operators is reduced, they maintain higher usage rates 

compared to private vehicle use. 

Table 5.3 Key performance indicators in the baseline scenario where the fleet is distributed equally 

Fleet operator 𝑜1 𝑜2 𝑜3 

Demand 𝑧𝑜1 = 𝑧𝑜2 = 𝑧𝑜3  

Fleet size 𝑛𝑜1=𝑛𝑜2=𝑛𝑜3  

Avg. waiting time (minute) 9.09 9.06 9.11 

Avg. travel time (minute) 20.30 20.58 20.60 

Total VKT (km) 37906 38074 37317 

Empty VKT (km) 9646 9792 9429 

The percentage of empty VKT of the total VKT 25.45% 25.72% 25.27% 

Vehicle usage (trips per car in morning hours) 7.32 7.30 7.24 

 

Table 5.4 Key performance indicators with the increase in vehicle supply of Operator 1  

Fleet operator Multiple-operator systems (scenario one) Multiple-operator systems (scenario two) 

𝑜1 𝑜2 𝑜3 𝑜1 𝑜2 𝑜3 

Demand 𝑧𝑜1 = 𝑧𝑜2 = 𝑧𝑜3  𝑧𝑜1 = 𝑧𝑜2 = 𝑧𝑜3  

Fleet size 𝒏𝒐𝟏 + ∆𝒈 𝑛𝑜2 𝑛𝑜3  𝒏𝒐𝟏 + 𝟐∆𝒈 𝑛𝑜2 𝑛𝑜3  

Avg. waiting time (minute) 8.72 9.50 9.45 9.13 9.73 9.52 

Avg. travel time (minute) 21.80 21.35 21.85 24.54 24.18 24.21 

Total VKT (km) 40414 38116 37721 43530 37400 37019 

Empty VKT (km) 8931 9563 9463 8857 9440 9293 

The percentage of empty VKT 

of the total VKT 22.10% 25.09% 25.09% 20.35% 25.24% 25.10% 

Vehicle usage (trips per car in 

morning hours) 6.34 7.45 7.36 5.63 7.36 7.31 

 

Furthermore, simulation results in Figure 5.4 show that the increase in the fleet size of 

operator 1 can improve the percentage of served trips over time. The percentage of served 
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trips of operator 1 is significantly higher than in the baseline scenario and the other operator 

without an increment of vehicles, particularly when the volume of travel requests is high from 

6:30 am (simulation time 120 minutes). This means that more registered travelers of operator 

1 are being transported during peak hours. In this regard, a larger fleet can help an operator to 

serve more clients and improve the service quality offered to them. 

However, simulation results in Table 5.4 show the average waiting time of the other fleet 

operators (𝑜2 and 𝑜3) and the average travel time of all operators is increased. For example, 

the average travel time increases from 20 minutes to 24 minutes. The reason is that increasing 

the fleet size of operator 1 leads to more requests being transported on the road network; 

operator 1 brings more vehicles to the roads (see Figure 5.5). It is demonstrated that the total 

number of busy vehicles operated by three operators circulating across the road network 

increased. The increasing number of vehicles circulating across the road network adds more 

traffic to the road network, increasing up to 4 minutes in average travel times. That means in 

the multiple-operator AMoD system, the growth of the fleet size of an operator brings an 

adverse effect on the road travel conditions, thereby degrading the service quality of its 

competitors. 

 
Figure 5.4 The percentage of served trips for AMoD operator 1 over simulation time (minute) 

 

  
(a) The total number of busy vehicles circulating across the road 

network 

 (b) The number of busy vehicles of operator 1 in different 

scenarios 

Figure 5.5 the number of vehicles circulating across the road network 
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We see (in Table 5.5) that when the fleet size of operator 1 increases, the total fleet profit of 

the operator reaches an increase of 5.87% in the total fleet profit 1 and 23.48% in the total 

profit 2 (in scenario 2). This suggests that an AMoD operator with a small fleet size in the 

early stage of the competitive market could achieve a higher profit if it increases its fleet size. 

In this respect, operators might decide to increase their fleet sizes to achieve a higher profit. 

Moreover, the fare structure significantly influences the profit of an operator. The distance- 

and time-based fare structure can produce a significant increase in the profit of an operator 

(operator 1). This is because the travel times included in the profit calculation (total fleet 

profit 2) contribute to an improvement in profit. 

Table 5.5 The total fleet profits of operator 1 in different scenarios 

Scenarios  Baseline scenarios Scenario 1 Scenario 2 

Fleet size 𝑛𝑜1 𝑛𝑜1 + ∆𝑔 𝑛𝑜1 + 2∆𝑔 

Total Fleet profit 1 (Euro) 
13202 13611 (+3.10%) 13977 (+5.87%) 

Total Fleet profit 2 (Euro) 
34398 36852 (+7.13%) 42473 (23.48%) 

 

Our main finding is that the growth of the fleet size of an operator leads to improvements in 

the average waiting times of its clients; however, it is at the cost of the loss of efficiency of its 

competitors in terms of average waiting and travel times. Increasing fleet size serves more 

trips with the increase in vehicle supply of an operator and brings more vehicles to roads. 

Hence, increasing fleet sizes add more traffic congestion on the roads. 

Besides, more trips are served with the growth of the fleet size of an operator, resulting in a 

higher profit. This may motivate an operator to increase its fleet size to obtain a higher profit 

in the competitive mobility market.  

5.5.2 Simulation scenarios for relocation operations  

We design simulation experiments to examine how relocation operations affect the operators’ 

performance in the competitive (AMoD) market. The performance of AMoD systems with 

multiple operators is assessed under the relocation operations of operator 1; In the system 

configuration of the baseline scenario, relocation operations are performed by operator 1. We 

compare the system performance of operator 1 that performs relocations with the system 

performance of other operators without relocating their vehicles.  

Results in Table 5.6 show that relocations performed by operator 1 shorten the average travel 

times, leading to 1 minute less than that of operator 2 and 3.  The reason is that vehicles are 

proactively relocated to the demanded area, and then the pickup distance is shortened. There 

is a significant reduction in empty VKT (the total pickup distance covered by vehicles) of 

operator 1 compared to the empty VKT generated by operator 2 or operator 3. 
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Table 5.6 Key performance indicators with relocation operations of Operator 1 

Fleet operator 𝑜1 𝑜2 𝑜3 

Relocation operation Yes No No 

Demand 𝑧𝑜1 = 𝑧𝑜2 = 𝑧𝑜3  

Fleet size 𝑛𝑜1=𝑛𝑜2 = 𝑛𝑜3  

Avg. waiting time (minute) 7.55 8.57 8.63 

Avg. travel time (minute) 20.48 20.66 20.68 

Total VKT (km) 39497 37679 37660 

Empty VKT (km) (pickup trips) 8318 9482 9527 

Empty VKT (km) (relocation trips) 1745 0 0 

The percentage of empty VKT of the total VKT 25.47% 25.16% 25.30% 

Vehicle usage (trips per car) 7.64 7.33 7.31 

Served trips  6367 6106 6093 

Operating costs (Euro) 12615 12347 12340 

Total fleet profit 1 (Euro) 
15182 (+2098 or +16.03% compared to operator 2; +2148 

or +16.5% compared to operator 3) 
13084 13034 

Total fleet profit 2 (Euro) 
35519 (+2758 or +8.4 % compared to operator 2; +2827 or 

+8.6% compared to operator 3) 
32761 32692 

 

We found that more registered travelers are served by the operator that performs relocation 

operations (see Table 5.6); operator 1 has a high percentage of served trips. That means 

relocating vehicles can mitigate the vehicle imbalances: Vehicles are relocated to the place 

(zones) where there is a shortage of vehicles, and the vehicle-to-traveler assignment 

component can find available vehicles for incoming requests in the demanded area. 

Furthermore, performing relocations can increase the profit of operator 1, up to 16% 

compared to the profit of other operators without relocations. The main reason for this is that 

relocating vehicles in anticipation of future demand can serve more trips. Although additional 

relocation VKT is generated, the operating cost per VKT for single-passenger AMoD vehicles 

remains low, with a slight increase of about 300 euro, while more than 2000-euro profit can 

be achieved.  

Although vehicle relocation can shorten waiting times and serve more trips with a higher 

profit, additional VKT is generated in relocations. The relocation VKT might lead to more 

road congestion. To have a closer look at the relocation operations, Figure 5.6 demonstrates 

the vehicles in relocations over the morning hours (we are studying). Relocations occur in the 

very early morning and late morning hours. No relocation occurs in the time interval ([7:30 

am, 10:00 am]) when a high volume of clients request services. The number of relocation 

vehicles between identified zones is given in Appendix C. 
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Figure 5.6 The number of vehicles in relocation states over simulation time 

 

Figure 5.7 shows that performing relocation operations bring more vehicles to the roads in the 

very early morning hours and late morning hours when the road network is uncongested. 

Hence, relocating vehicles to a more advantageous position in anticipation of future demand 

does not cause more traffic congestion during peak hours. That means relocating vehicles in 

advance can avoid congestion while obtaining relocation benefits of improving waiting times, 

serving more trips, and achieving a higher profit. 

 

 

Figure 5.8 shows vehicle shortages in Demander zones and vehicle surpluses in Supplier 

zones. Demand levels are shown as dots and are graduated by grey and black color. The red 

bar represents the vehicle shortage in a Demander zone, while the blue bar represents the 

vehicle surplus in Supplier zones. As expected, vehicle shortage occurs in places (TAZs) 

where the number of morning commuters is high. As pointed out in example 1, there are not 

enough available vehicles to serve the anticipated demand in the Demand zone (ZoneID 107 

in Appendix C) and its adjacent zones where the demand is most concentrated. Simulation 

results show a total shortage of 160 vehicles in the morning hours ([5:30 am, 12:00 am]) in 

this Demander zone. Oppositely,  In example 2,  Two zones (zoneID 87 and zoneID 86 in 

Appendix C) have lower numbers of morning commuting requests, about 298 and 513 
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requests. Vehicles in these zones can be relocated to high-demand zones in advance to 

transport more morning commuters in an on-demand fashion. 

Interestingly, in example 3, zone 89 (numbered in Appendix C) has a high number of 1310 

morning commuters for AMoD services. However, there are still available vehicles 

(21vehicles) at a specific time for relocations (i.e., 06:33 am in Appendix C). This is because 

these zones are also destinations where SAVs drop off their customers for a short time. We 

found that vehicles in high-demand zones can be relocated to places where there is are 

shortage of vehicles on short notice (we generate time-dependent requests with a high spatial 

and temporal resolution and anticipate the demand in a 15-minute time interval). Notably, In 

the AMoD system, vehicles are fully controlled, so they can be relocated to serve more 

demand at short notice to mitigate the demand and supply imbalance. As a result, high profits 

and vehicle utilizations.  

 
Figure 5.8 Vehicle shortages in Demander zones (red) and the number of relocation vehicles in Supplier zones (blue) 

 

 

In the flow map (see Figure 5.9), the arrows show the relocation direction, and the width 

illustrates the number of relocation vehicles. Simulation results show that  AMoD operators 

relocate idle vehicles from multiple Supplier zones to mitigate the vehicle shortage in a 

Demander zone. That is because in the early hours ([6:00 am,7:30 am]), travelers commute 

from home to work locations, then a number of requests for AMoD services increases. Few 

vehicles are available for performing relocation operations to serve the anticipated commuting 

demand. Moreover, we found that the relocation distance between a Demander zone and the 

Supplier zones is long. As a result, the relocation could generate a large percentage of empty 

VKT. Although additional VKT could lead to a higher operating cost, the AMoD operating 

cost is lower because of eliminating the relocation staff. Also, in future urban mobility 

systems, commercial AV companies are rolling out micro AMoD vehicles, further reducing 

operating costs. Therefore, applying relocation operation in AMoD systems is cost-effective 

while serving more demand. Moreover, relocation operations could improve service levels. 



88 Modeling Urban Automated Mobility on-Demand Systems: an Agent-based Approach 

Thus, commuters could benefit from the convenience of the on-demand services and may be 

willing to use the AMoD services with a high service level. 

 
Figure 5.9 Flow maps of relocation vehicles between the Demander (grey) and Supplier (black) zones (in FlowblueMap) 

5.6 General discussion and Recommendations 

AMoD operators are introducing a smaller AV fleet in urban areas at the early stage of trials. 

Operators may increase the size of their vehicle fleet to improve the service quality (e.g., 

waiting times) and serve more trips with a greater profit. However, increasing fleet sizes 

result in more traffic on the road network and, therefore, deteriorate its competitors' service 

quality (average waiting and travel times). Hence, policymakers (e.g., city authorities) need to 

regulate the number of vehicles operated by AMoD operators in the competitive mobility 

market. Otherwise, the growth of fleet sizes will cause negative traffic externalities (e.g., 

congestion and pollution) and have an unfavorable impact on citizens' well-being.  

Individual operators become efficient in dealing with demand when relocations occur. 

Relocations performed by an operator can increase operational efficiency (i.e., more trips are 

served for each vehicle) while providing a higher quality of service offered to travelers even if 

nothing on the supply side is done. Moreover, a higher profit can be achieved when vehicles 

are proactively relocated in anticipation of future demand. This is because vehicles are 

relocated toward a highly demanded area, resulting in more served trips. The operating costs 

for single-occupant AMoD vehicles are low compared to other systems (e.g., AMoD systems 

with large vehicles, carsharing systems, taxi systems). For example, AVs equipped with 

automated driving systems in AMoD systems eliminate the high cost of staff salary and staff 

relocation rides in carsharing systems. Compared with the relocation operations in 

competitive carsharing systems in which an unprofitable situation is estimated (Balac et al., 

2019), performing relocations by operators in competitive AMoD systems shows an increase 

in profit. Our findings of the positive financial effect suggest fleet operators should perform 
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relocations to provide better services and obtain a higher profit. It is recommended to develop 

the relocation capability for AMoD operators in their management systems. 

We also found that fare structures can significantly influence an operator's profit. When 

congestion occurs during peak hours, distance- and time-based fare structures can help 

companies achieve a higher profit. Operators should carefully consider the fare structure to 

maximize profit. A relatively low fare in this study is assumed (60% of the existing MoD that 

is active in the case-study city) to calculate the profits of operators based on the works by Oh 

et al. (2020) and Spieser et al. (2014). An optimal pricing scheme is not derived and is beyond 

the scope of this study. 

5.7 Conclusions and future directions 

AMoD systems are considered an important form of urban mobility innovations. AMoD 

systems in the presence of public transportation systems are a promising pathway to transform 

the current transportation systems. At this stage, we address the need for modeling multiple 

AMoD operators and demonstrate the effectiveness of different strategies used by AMoD 

operators. 

This chapter presented a framework for modeling the AMoD systems with multiple 

independent operators (which are entering urban mobility markets) to capture the interplay of 

operators. We model multiple independent operators coexisting in the same urban area to 

complement state-of-the-art literature relevant to a single urban AMoD operator. Notably, we 

have studied relocation operations and demonstrated the benefits of relocating vehicles, 

anticipating future demand in urban AMoD systems. We also contribute to a growing body of 

studies related to relocation operations in the multiple-operator carsharing system, which 

differs from multiple-operator AMoD systems in terms of the system operations (optimal 

assignment and relocation mechanism) and operating costs. 

Through simulation experiments, application scenarios with different fleet sizes and 

relocation operations are tested to help decision-makers (e.g., city authority, fleet operators) 

identify multiple outcomes and impacts, leading to more effective strategic planning. Findings 

suggest that an improvement in profit and service levels can be obtained with a larger fleet of 

AVs and with relocations in the competitive market. However, unregulated AMoD services in 

terms of fleet sizes could deteriorate social welfare (e.g., more congestion). Hence, there is a 

need for policies to create a regulated environment where the number of vehicles operated by 

AMoD operators is limited. Commercial companies (operators) need to develop an effective 

relocation capability enabled by vehicle automated technologies to improve their competitive 

edge over their counterparts. 

Introducing multiple operators into the AMoD systems makes the interactions and dynamism 

of system components more complicated. The developed ABM shows good promise as a 

virtual testbed for analyzing the performance of AMoD system operations with multiple 
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players. This will be particularly useful for studying cooperative mechanisms between 

operators (e.g., cooperative vehicle assignments in the decentralized system).  

We did not model the behavior of the travelers in response to service quality offered by 

different AMoD operators, either with or without consideration of public transportation 

options. Understanding why people choose a service offered by an operator over the service 

provided by another operator is crucial to making further conclusions about the performance 

of a future urban mobility system (e.g., multimodal transportation systems in which 

information is completely shared). In future studies, surveys can be done to investigate 

travelers' preferences towards emerging mobility services provided by different operators 

(e.g., Apple, Toyota, Mercedes Benz, and Waymo) since this is still difficult to find in the 

literature. Moreover, how the AMoD system is organized and operated in a multimodal 

transportation system (e.g., a centralized architecture or a distributed architecture) remains an 

interesting question for future research. 
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Chapter 6 

Modeling Multiple AMoD Operators with 

Endogenous Demand 

Motivated by the rapid development of AMoD services, an agent-based model (ABM) has 

been used to study the coexistence phenomena of multiple AMoD operators competing for 

customers. The ABM aims to investigate how pricing strategies, assignment methods, and 

fleet sizes affect travelers' choice of different AMoD services and the operating performance 

of competing operators in the case-study city of The Hague, in the Netherlands. Findings 

suggest that an optimal assignment algorithm can reduce the average waiting time by up to 

24 % compared to a naïve heuristic algorithm. We also find that a larger fleet could increase 

demand but lead to higher waiting times for its users and higher travel times for competing 

operators' users due to the added congestion. Notably, pricing strategies can significantly 

affect travelers' choice of AMoD services, but the effect depends strongly on the time of the 

day. Low-priced AMoD services can provide high service levels and effectively attract more 

demand. For example, we found that up to 64.7% of customers choose the low-priced service 

in the very early morning [5:30 AM,7:20 AM].  In the subsequent morning hours, high-priced 

AMoD services are more competitive in attracting customers as more idle vehicles are 

available. Based on the quantitative analysis, policies are recommended for city authorities 

and service operators.4 

 
4This chapter is an updated version of  the published paper: Wang, S., Correia, G. H. de A., & Lin, H. X. (2022). 

Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based 

approach. Physica A: Statistical Mechanics and Its Applications, 128033.  The diagrams to present the demand 
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6.1 Introduction  

The emerging AV industry can be described as a marketplace where no single organization 

has enough influence and resources to dominate the entire market. In a future urban mobility 

system, it will be natural that fleets of SAVs will be operated by different AMoD companies 

to meet mobility needs in urban areas. Existing research focuses on exploring the impact of 

AMoD services performed by a single operator and ignores the study of AMoD systems with 

multiple operators competing for customers in urban areas. This chapter aims to extend the 

agent-based model (ABM) to study the coexistence phenomena of multiple AMoD operators 

competing for customers. We explore the potential of operating strategies (e.g., fleet sizes, 

assignment strategies, pricing strategies) on travelers’ choices through scenarios and a case 

study. 

The remainder of the chapter is structured as follows. Section 6.2 provides the current state of 

research on modeling urban AMoD systems, emphasizing supply and demand interactions. 

Section 6.3 describes the model specifications. A detailed description of the model 

implementation and its application is presented in Section 6.4. Section 6.5 provides an 

analysis of the results of applying the model to the case study city of The Hague in The 

Netherlands. In Section 6.6, we discuss the main findings and provide recommendations for 

different stakeholders. The main conclusions are drawn in the final section, and future 

research directions are discussed. 

6.2 Background 

6.2.1 Modeling single-operator AMoD systems  

Burns et al. (2013) examined the cost and operating performance of AMoD systems to serve 

the existing travel demand satisfied by private vehicles. They found that AMoD systems are 

compelling because they could provide mobility services with shorter waiting times and low 

operating costs. Fagnant and Kockelman (2014) investigated the travel and environmental 

implications of AMoD systems using exogenous demand. Their findings indicated that Shared 

Automated Vehicles (SAV) could improve vehicle utilization and reduce negative 

environmental impacts. Several works focused on the operational efficiency of AMoD 

systems and gave insights into the operational aspects of parking, relocation, charging, 

dispatching, and routing (Liang et al., 2020; T. Liu et al., 2020; Vilaça et al., 2022; Wang et 

al., 2019; Yang and Liu, 2022). Wang et al. (2022) investigated the travel and energy impacts 

of forming platoons in an urban AMoD system. Some studies have provided an assessment of 

operating AMoD systems when combining public transportation options (X. Liang et al., 

2016a; Shen et al., 2018). Modeling frameworks in the above studies use either static demand 

 
data and road network that were used in Chapter 4 is removed from this chapter. Model specifications in Section 

6.3.3 are shortened since these building blocks are also used and explained in Section 5.3.3. 
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imposed for AMoD systems or exogenously determined modal share for the AMoD service 

and public transportation options. Therefore, the behavioral response to the level of AMoD 

services is usually not captured. 

6.2.2 Modeling single-operator AMoD systems in the presence of public 

transportation options with endogenous demand  

More recent research explicitly models the supply and demand interaction when studying 

AMoD systems in the presence of public transportation options. Attention is given to how 

travelers dynamically choose their transport mode in response to the performance of the 

different transport services. 

Chen and Kockelman (2016) have incorporated different fare schemes in the mode choice 

model to examine the impact of electric AMoD service pricing strategies on mode share and 

fleet performance. Bösch et al. (2018) provided a cost-based analysis of AMoD services. The 

study by Bösch et al. (2018) considered user-case-specific preference for modes of 

transportation. The mode choice was determined according to the operating cost of the AMoD 

service. Pinto et al. (2019) formulated a modeling framework to solve the problem of 

redesigning a bus network while introducing an AMoD service. The modal share for the 

AMoD service and the bus service was determined endogenously based on the bus service's 

frequency and the AMoD fleet's performance. Wen et al. (2018) formulated a modeling 

framework to evaluate an integrated AMoD and public transportation system in which shared-

use AVs provide a connection service to rail stations in low-density areas. The modeling 

framework captured the changes in travelers’ behavior in response to the operating policies. 

Dandl et al. (2019) proposed a new simulation framework for AMoD systems that focuses on 

asynchronous approaches to computing decisions for a fleet operator in serving demand. The 

asynchronous framework is used to address the trade-off between computational complexity 

and the policy optimality of operators.  Narayan et al. (2020) studied the problem of 

combining scheduled and fixed-route transit systems with AV fleets, where AVs provide 

either connection service to transit services or direct door-to-door services in a demand-

responsive fashion. Using the MATSim framework, the demand for transit services, exclusive 

AV services, and integrated AV-transit systems was endogenously determined. Oh et al. 

(2020) examined the impact of introducing AMoD systems into the existing transportation 

system in Singapore through SimMobility, which was an integrated agent-based and activity-

based simulation framework. The responsiveness of demand to the change in the fleet supply 

and operations was explicitly modeled. Hörl et al. (2021) simulated AMoD systems in a 

multimodal transportation system in Zurich using MATSim. The proposed modeling 

framework can model the customers' response to the level of service attributes (waiting time 

and price). In particular, their study proposed a cost-covering pricing scheme for the AMoD 

fleet. The relationship between AMoD demand (served requests) and fleet size was 

established under the constraint of providing a cost-covering AMoD service. 
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6.2.3 Modeling single-operator MoD and carsharing systems considering the 

supply-demand interaction 

The works discussed above are directly related to the application of AMoD systems. Similar 

studies have been conducted to investigate the impacts of introducing mobility-on-demand 

(MoD) and carsharing systems in urban mobility systems while considering the supply-

demand interaction. 

Vasconcelos et al. (2017) presented a cost-benefit analysis method to analyze and compare 

the performance of one-way carsharing systems with and without vehicle relocation in the 

presence of private transport (private cars and motorcycles) and public transport. To simulate 

the behavioral response to the different transport modes, a discrete choice model was 

incorporated to allocate travelers to the transport modes in the city of Lisbon. One of the 

findings suggested that the use of electric vehicles in one-way carsharing systems can achieve 

environmental benefits, while vehicle relocations can counteract the environmental benefits 

due to the additional relocation kilometers. Lu et al. (2020) proposed an optimization model 

to examine the effect of pricing and vehicle relocation strategies on the performance of one-

way carsharing systems, taking into account the competition with private cars. A logit model 

was incorporated into the optimization method to calculate the probability of the alternative 

choices. Findings suggested that combining a vehicle relocation strategy with a strategy of 

varying prices depending on vehicle stock can effectively balance the trade-off between the 

operator's profit and travelers' cost. Djavadian and Chow (2017) developed a modeling 

framework to incorporate an agent-based day-to-day adjustment process for both an MoD 

operator and travelers. In the modeled two-sided transportation market, travelers can adjust 

their behaviors of choosing a transport service, while the MoD operator can adjust the service 

offered using within-day operating policies and day-to-day fleet size policy. The modeling 

framework was applied to a first/last mile problem with an emphasis on testing the sensitivity 

of within-day operating policies and fare prices. Y. Liu et al. (2018) developed a framework 

to model the customers' choice for MoD systems in the multimodal transportation system 

aiming to optimize MoD fleet size and fare. 

6.2.4 Research limitations in the literature  

In all the above studies on AMoD, MoD, and carsharing systems, the services are assumed to 

be managed by a single operator. The phenomena associated with the competition between 

multiple AMoD operators for customers (e.g., morning commuters) are overlooked.  

With the rapid growth of the ride-hailing market, multiple commercial MoD companies (e.g., 

Uber, Lyft, and Didi Chuxing) are operating their services simultaneously with other 

companies. Séjourné et al. (2018) studied the overall system's efficiency in a situation where 

multiple MoD platforms coexist and independently manage vehicles to meet a fixed demand. 

Pandey et al. (2019) presented an optimization-based approach to study cooperative and 

competitive assignments between multiple ridesharing operators. The proposed assignment 
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method solved the coordinated assignment problems in multiple-operator situations without 

lowering the level of service compared to a fully centralized assignment. The modeling 

framework quantified the impact of customer preference on assignment results with varying 

percentages. Kondor et al. (2022) quantified the cost of adding more vehicles to serve demand 

when the market is segmented in the urban mobility system. They compared the cost of non-

coordinated urban MoD systems with multiple operators to the cost of operating the vehicle 

fleet by a single operator for different cities. Their findings suggest that the total fleet needs to 

be increased by up to 67% to serve the given demand in non-coordinated urban MoD systems.  

Despite the fact that AMoD systems are analogous to MoD systems, both of which rely on 

ride-hailing technology, underneath, the two systems differ because of the adoption of AV 

technology in AMoD systems. First, automation is expected to lengthen vehicle lifespan and 

lower maintenance requirements, leading to a reduction in operating costs (Bauer et al., 2018). 

The elimination of drivers can further reduce the operating cost in AMoD systems (Bösch et 

al., 2018a). Second, vehicles in AMoD systems can be fully controlled by the fleet 

management center and made to comply with the management’s decisions. Therefore, 

efficient operations related to vehicle dispatching and routing can be performed without 

drivers interfering (Hörl et al., 2019; Hyland and Mahmassani, 2018). 

6.2.5 Research contributions 

We will examine the potential impacts of operating strategies under various competitive 

structures of application scenarios on the operating performance of individual operators and 

the entire AMoD system and how demand responds to changes in operating strategies. To 

achieve this, we present an agent-based modeling framework with a modular architecture 

consisting of a demand component, a fleet management component, and a traffic management 

component.  

The main contributions of this chapter are summarized as follows:  

The first is that an endogenous demand model is developed to represent the behavioral 

response of travelers to the level of service of AMoD operators. That is, a multinomial logit 

(MNL) model is used to calculate the choice probability in which utility is a function of 

service attributes. The MNL model is incorporated into the agent-based modeling framework 

to determine the AMoD service choices of travelers. The behavior of individual requests is 

simulated with high-level detail, leading to a high spatial and temporal model resolution. 

The second is that in the AMoD service simulation, we explicitly model the interaction 

between vehicles operated by AMoD operators and their customers. An advanced vehicle-to-

passenger assignment algorithm is implemented to match the available vehicles of an AMoD 

operator with incoming travel requests. 

The third is that we implement a mesoscopic traffic simulation model, in which link and node 

movement rules are defined, into the multiple-operator AMoD modeling framework. In this 

respect, we do not contribute to the traffic models but formulate a framework that accounts 
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for the network congestion effects of all SAVs operated by different AMoD operators. In this 

way, the levels of services provided by different operators to all the morning commuters can 

be measured while considering the impedance on the road network. 

The last main contribution is that future service scenarios of multiple-operator AMoD systems 

are proposed and modeled for the case-study city of The Hague in The Netherlands. We 

perform simulation experiments for competition scenarios to study the impact of operating 

strategies (fleet sizes, assignment methods, and pricing schemes) on the behavioral response 

to AMoD services. Notably, we explore how behavioral choices affect the performance of 

competing AMoD operators.  

6.3 Model specifications  

We want to build a model for assessing the performance of a proposed AMoD system with 

several operators. The model should be able to capture the interaction between the clients 

(travelers) and SAVs, behavioral responses to services provided by AMoD operators, and the 

congestion effect. The model specifications and model assumptions for building the ABM are 

presented. 

The following are the main ABM assumptions:  

• The AMoD systems are studied for the morning peak commuting scenario in urban 

areas.  

• There are three operators in the case study area. Vehicles managed by their respective 

operators provide on-demand mobility solutions between service points (centroids) 

over the network. 

• In replacing all private car trips with SAVs,  travelers can remain unserved when there 

are no vehicles available. We assume that the unserved clients will use private cars. 

These private cars are considered in road traffic but are not included in the mode 

choice model. This is because private car trips affect road traffic, which may 

contribute to road congestion. Moreover, the utility of the private car mode is assumed 

to be considerably lower when compared to the AMoD services which benefit from 

the elimination of the driver, improved operating efficiency with fully controlled 

movements, and lower parking costs because of continuous operation to serve 

subsequent trips. 

• Travelers can not cancel services after they have been assigned vehicles. 

 

6.3.1 Model Overview 

The modeling framework with three main components is presented in Figure 6.1. The demand 

component includes a demand generator and a mode choice component. The demand 

generator is used to generate individual travelers with spatial and temporal attributes. The 
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decision-making mechanism for travelers is considered by incorporating the mode choice 

component into the agent-based framework; the mode choice component allocates the time-

dependent requests from the travelers to the different AMoD services according to the level of 

service attributes. Therefore, in reality, it is a service choice module since the mode is the 

same. Price with other choice attributes (i.e., out-of-vehicle waiting time and in-vehicle travel 

time) that can be measured in the simulation is incorporated into the discrete choice model in 

which travelers' preferences toward AMoD services are decided. 

The traffic management center has full knowledge of the network and traffic conditions. 

Therefore, we envision a system whereby the traffic operator will provide the routing 

information to AVs in a centralized manner independently of how many companies are 

providing AMoD services. In the fleet management center, the vehicle-to-passenger 

assignment component is responsible for matching incoming requests of travelers with the 

available vehicles of an operator. The interaction between individual vehicles and individual 

travel requests for each operator is explicitly captured in the vehicle-to-request assignment 

process; thus, the model framework has the capability of evaluating the impact of SAVs 

which can be measured with different key performance indicators such as the empty 

movements to pickups clients in a multiple-operator AMoD system. 

 
 

Figure 6.1 The conceptual simulation framework for multiple operators 
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6.3.2 Mode choice component 

Demand (travel requests) is determined endogenously for competing AMoD operators. 

Requests of the travelers are allocated to different AMoD operators by the mode choice 

component. The AMoD system studied comprises three operators, each of which operates a 

fleet of SAVs. In this section, we will use this example to further explain the mode choice. 

The three AMoD operators provide direct door-to-door service to the public. That is, 

customers can access the service offered by any operator. Naturally, the choice sets of 

individuals have three alternatives. The probability of choosing a specific AMoD alternative 

is calculated based on an MNL model. In the MNL model, the probability of an individual 𝑘 

choosing an AMoD alternative 𝑖 is assumed to increase monotonically with that alternative's 

systematic utility 𝑉𝑖.  

Important alternative-specific attributes for AMoD services are waiting time, travel time, and 

fare, all reflecting the level of service offered by the AMoD operators. The systematic utility 

is expressed as a linear function of out-of-vehicle waiting time 𝑤𝑖 , in-vehicle travel time 

(IVTT) 𝑡𝑖  and out-of-pocket cost 𝑓𝑖  associated with the service usage of operator 𝑖 . The 

expected systematic utility 𝑉𝑖 for the AMoD operator 𝑖 can be formulated as follows: 

𝑉𝑖 = 𝑉(𝑤𝑖)+𝑉(𝑡𝑖) + 𝑉( 𝑓𝑖)                                     (6.1) 

The alternative 𝑖 with the highest utility will have the highest probability of being chosen by 

customer 𝑘 relative to other travel options (the other two AMoD services in this case). The 

probability of choosing alternative 𝑖 for an MNL is described by the logit expression: 

𝑃𝑟(𝑖) =
𝑒𝑥𝑝(𝑉𝑖)

∑ (𝑒𝑥𝑝 (𝑉𝑖
3
𝑖=1 ))

                                             (6.2) 

6.2.2.1 Discomfort of the out-of-vehicle waiting for the vehicle 𝑉(𝑤𝑖) 

The first component 𝑉(𝑤𝑖) of the utility describes discomfort of the out-of-vehicle waiting for 

the vehicle of the chosen operator 𝑖. The waiting time includes the time spent in the waiting 

queue where requests are waiting for being assigned a vehicle and the time spent waiting for 

the arrival of the pickup vehicle. The former is defined as the assignment time, while the latter 

refers to the expected pickup time. In this study, the expected assignment time 𝑤𝑎 is 

formulated as a function of the number of requests on the waiting list to be assigned. The 

expected pickup time 𝑤𝑝 is estimated based on the vehicles' availability.  

𝑤𝑎 = 𝝋 ∗𝒎                                                   (6.3) 

𝑤𝑝 = 𝑡𝑚𝑎𝑥 (
𝑁𝑖−𝑛𝑖

𝑁𝑖 
)                                            (6.4) 

𝑉(𝑤𝑖) = −(𝜶 ∗ 𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷) ∗ 𝑤𝑎 − (𝜶 ∗ 𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷) ∗ 𝑤𝑝 

= −(𝜶 ∗ 𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷) ∗ (𝝋 ∗ 𝒎) − (𝜶 ∗ 𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷) ∗ (
𝑁𝑖−𝑛𝑖

𝑁𝑖 
) ∗ 𝑡𝑚𝑎𝑥              (6.5) 
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Where, 

𝑤𝑎 is the expected assignment time. 

𝑤𝑝 is the expected pickup time. 

𝝋 is the average assignment time for individual requests. The average assignment time is 

computed through multiple simulation runs. 

𝒎 is the number of requests on the waiting list. 

𝑡𝑚𝑎𝑥  is the maximum pickup time, which is computed based on the maximum searching 

distance. Idle vehicles within a searching radius are considered to be available vehicles. The 

radius is defined as the maximum distance from a request to the available vehicles. We use 

the radius to estimate the maximum pickup time. 

𝑛𝑖  is the number of idle vehicles of operator 𝑖 . Note that travelers are allocated among 

operators based on the number of idle vehicles, while travelers are only served by available 

vehicles. 

𝑁𝑖 is the total number of vehicles of operator 𝑖. 

𝜶 is the multiplier that reflects the inconvenience and discomfort of time spent outside a 

vehicle. 

𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷is the monetary value of the travel time for AMoD mode. The monetary value of 

out-of-vehicle waiting time can be estimated using the multiplier α and the monetary value of 

travel time (𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷). This should typically be a value greater than 1. 

6.2.2.2 Disutility of In-vehicle Travel Time 𝑉(𝑡𝑖) 

The second component 𝑉(𝑡𝑖)  of this utility function models the cost of IVTT in AMoD 

vehicles. The cost of IVTT depends on the IVTT and VOTT in AMoD vehicles.  

𝑉(𝑡𝑖) = −𝑠𝑖 ∗ 𝑉𝑂𝑇𝑇𝐴𝑀𝑜𝐷                                            (6.6) 

Where, 

𝑠𝑖𝑘 is the expected travel time for the OD of user 𝑘.  

6.2.2.3 Disutility of fare 𝑉(𝑓𝑖) 

The third component 𝑉(𝑓𝑖) of this utility function regards the fare for the AMoD service. Fare 

is the out-of-pocket cost of a customer 𝑘 of the chosen operator 𝑖. In this study, the fare is 

structured by a base fare, a distance-based fare, and a time-based fare for a single ride.  

𝑉(𝑓𝑖) = −ε ∗ 𝜂 ∗ (𝑐 + 𝑚 ∗ 𝑑𝑖𝑘 + 𝑛 ∗ 𝑠𝑖𝑘)                              (6.7) 

where, 
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𝜂 is the saving factor for AMoD services relative to an existing MoD service (we are using 

the UberX fare structure as a reference in the case study). 

𝑐 is the base fare for MoD services. 

𝑚 is the distance-based fare for MoD services. 

𝑛 is the time-based fare for MoD services. 

ε is the controlling factor of a pricing strategy.  

Regarding the pricing strategies, two different pricing schemes will be considered in the 

modeling framework to analyze the service uptake and operating performance of the AMoD 

fleets.  

The first pricing strategy refers to a discount pricing strategy where users can access the 

service of a specific AMoD operator at a discounted rate. A percentage-based discount is 

implemented on the service offered by the operators. A 20% discount on the fares in relation 

to the baseline AMoD pricing is tested. 

In the second pricing strategy, the fare of a specific operator is estimated according to the 

vehicle availability and future demand in an area (TAZ: Traffic Analysis Zone) where 

travelers request AMoD services. A rule-based supply-demand balancing pricing strategy 

aims to encourage travelers to use AMoD services when the vehicle supply is high and 

discourage travelers from using AMoD services when there is a vehicle shortage. The 

parameter ε follows the work suggested by Chen and Kockelman (2016). 

ε = {
0.5,              𝑝𝑎𝑣 ∗ 𝑝𝑎𝑑 < 0.1
1,     0.1 < 𝑝𝑎𝑣 ∗ 𝑝𝑎𝑑 < 10
2,      10 < 𝑝𝑎𝑣 ∗ 𝑝𝑎𝑑              

                              (6.8) 

Where 

𝑝𝑎𝑣 is the proportion of the total number of available vehicles in the study area to the number 

of available vehicles in the origin TAZ of the incoming travel request. A larger value of 𝑝𝑎𝑣 

suggests few available vehicles in the origin TAZ where a request is made compared to the 

other TAZs , while a smaller value means more vehicles available in the origin TAZ. 

𝑝𝑎𝑑  is the proportion of the anticipated demand that will be generated in a TAZ (origin) to 

the anticipated demand in the entire study area. A larger 𝑝𝑎𝑑 means a high volume of requests 

in a TAZ, while a smaller value indicates fewer requests are made in a TAZ compared to the 

other TAZs.  

It is noted that the anticipated demand is the number of travel requests in the subsequent time 

interval. Individual travel requests in the subsequent time interval are not generated, but the 

anticipated number of travel requests is calculated.   



Chapter 6 – Modeling Multiple AMoD Operators with Endogenous Demand 101 

 

6.3.3 Behaviors of vehicles and travelers, and their interactions 

In AMoD systems, decisions on assigning vehicles to serve travel requests are made 

immediately. The behavior (states) of travelers and vehicles is further depicted in Figure 6.2. 

The assignment component knows the current vehicle locations and ascertains the states of all 

of them: upon receiving a trip request, it determines which vehicles in the fleet are able to 

reach the customer. Once the assignment has been done, the information on travelers' 

locations is sent to the assigned vehicles and the traveler is notified about the vehicle details. 

The assigned vehicle will transition from the idle to the in-service state when arriving at the 

traveler's origin location, while the state of a traveler will transition from “waiting for the 

vehicle arrival” to “traveling in the assigned vehicle”. Once a traveler is assigned a vehicle, 

the AMoD service cannot be canceled. After reaching the destination location, the traveler 

switches to a served state. To avoid unrealistically long assignment times, travelers can 

remain unserved when there are no available vehicles and use a private car as referred to in 

model assumptions. 

 
 

Figure 6.2 The interaction between individual vehicles and individual travelers 

 

Vehicle-to-passenger assignment strategies could influence the AMoD system performance in 

terms of service levels (e.g., waiting and travel times), the number of served requests, and 

VKT. Therefore, we developed an optimal assignment algorithm and a simple heuristic 

algorithm and aimed to demonstrate the effectiveness of the two methods in the multiple-

operator AMoD system.  
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An optimal assignment algorithm is implemented to assign available vehicles to incoming 

travel requests. The method can assign a group of available vehicles 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛} to 

bundled travel requests 𝑅 = {𝑟0, 𝑟1, … , 𝑟𝑛}. The Hungarian assignment is used to assign one 

vehicle in 𝑉 to serve a travel request in 𝑅 with the objective of minimizing the total cost (total 

distance between vehicles and requests) (Kuhn, 2010). Moreover, a naïve heuristic algorithm 

for the request-to-vehicle assignment is also implemented in the modeling framework. In the 

simple heuristic algorithm, each fleet operator assigns the closest available vehicles within a 

search distance to serve travel requests. The real-time SAV assignment decision of fleet 

operators is based on the Euclidian distance. Priority is given to trips that request the service 

earlier.  

The vehicle-passenger assignment component that we have just explained assigns available 

vehicles to serve travel requests, but there is a need to compute routes between nodes in the 

network. The vehicle routing component is responsible for providing the shortest routes 

between two locations, such as the current vehicle location and pickup locations, the pickup 

location and the drop-off location. 

The routing component can utilize the static and dynamic information relating to the road 

lengths and traffic conditions provided by the traffic simulation component to calculate the 

time-dependent shortest route between any two given points. Upon the assignment of an SAV 

to a traveler, the routing component will compute the time-dependent shortest route from the 

current location of the assigned vehicle to the location of the traveler using the Dijkstra 

algorithm. When the vehicle arrives at the pickup location, the time-dependent shortest route 

from the traveler's location to its destination will be obtained from the central traffic 

management system.  

In the modeling framework, individual agents are being used to represent shared automated 

cars that are assigned to clients, but in order to provide realism to the travel times that they 

experience on the network, a traffic model is required. In the mesoscopic traffic simulation 

model, the rules of link movement and node transfer will govern the movement of individual 

vehicles owned by the different operators. 

6.4 Model application to the case-study city of The Hague, the Netherlands 

6.4.1 Urban Road network and demand data 

A tailored road network in the case-study city is used for the study. The total private transport 

demand in the region of Zuidvleugel (285 TAZs) is 270,050 trips by car in the morning peak 

hours (5:30 AM to 10:00 AM). 27,452 trips happen within the boundaries of the selected 

study area of The Hague. However, intrazonal trips are not modeled. Therefore, the generated 

effective requests amount to approximately 25,800. The demand is distributed over 18 

intervals in the morning peak period, each of which has a temporal step length of 15 minutes 

starting from 5:30 AM to 10:00 AM. The OD matrix contains 2401 non-zero pairs between 49 



Chapter 6 – Modeling Multiple AMoD Operators with Endogenous Demand 103 

 

TAZs. A demand generator generates individual travel requests based on aggregate travel data 

(available in the form of an OD Matrix) and departure time. Individual requests are 

characterized by origin, destination, and request time. Requests for each OD pair can be 

allocated among operators using a mode choice component. 

6.4.2 Mode choice parameters 

Table 6.1 gives a summary of model parameters and case study characteristics for the base 

scenario. Regarding the values of parameters in the MNL, the monetary value of out-of-

vehicle waiting time is larger than the monetary value of in-vehicle travel time. There is 

evidence that the out-of-vehicle waiting time multiplier is between 1.6 to 2.2 times the in-

vehicle travel time in the Dutch context (Arentze & Molin, 2013; Yap et al., 2016). In this 

study, the multiplier 𝜶 is set to 2. That means the out-of-vehicle waiting time is valued twice 

as much as the VOTT of the AMoD mode.  

The VOTT inside AMoD vehicles cannot be obtained from state-of-the-art due to the lack of 

relevant studies. In this study, the VOTT in AMoD vehicles is estimated based on VOTT in 

private cars and on the transit mode (bus, tram, and metro). In the Netherlands, the VOTT on 

private cars mode and transit mode is valued at 9.25 euros per hour and 7.75 euros per hour 

for commuting purposes (Kouwenhoven et al., 2014). Travelers in AVs can perform 

productive and leisure activities without having to drive in private cars and without standing 

on transit mode. VOTT in AMoD vehicles is supposed to be lower than those on private car 

mode and transit mode. The value of IVTT in AMoD vehicles is valued at a 35% reduction of 

VOTT in private cars (Chen & Kockelman, 2016). In this study, VOTT in AMoD vehicles is 

valued at 6.01 euros per hour. We are using the UberX fare structure that is active in the 

Netherlands. We consider a baseline pricing scenario, 60% of the existing MoD. Then, we 

have 𝜂 = 0.6 𝑐 = 1.4 𝑒𝑢𝑟𝑜𝑠, 𝑚 = 1.2 𝑒𝑢𝑟𝑜𝑠 𝑝𝑒𝑟 𝑘𝑚, 𝑛 = 0.26 𝑒𝑢𝑟𝑜𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛  in Equation 

6.7. 

Regarding the valuation of the controlling factor ε that is used in pricing strategies, we have 

ε = 1.0 in the baseline scenarios and ε = 0.8 when a 20% discount is tested. In the scenario 

where the supply-demand balancing pricing strategy is applied, the value of Epsilon is given 

through a step function in Equation 6.8. 

6.4.3 AMoD fleet 

In relation to the vehicle type used in this study, carmakers (Renault UK, Toyota) are 

producing and marketing small driving pods. The small vehicles can take up less road and 

parking space. Moreover, small-sized vehicles can save more energy with reduced weight (S. 

Wang et al., 2022a). Hence, we assume that purposely designed small SAVs are suitable for 

urban mobility applications and could be available and affordable for future large-scale 

deployment. 
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The simulation model is run with a growing fleet size and one operator to find the fleet that 

serves 80% of all the travel requests. This results in 𝑁 = 60 vehicles as shown in Table 6.1. 

The model is also run for three operators where the fleet is distributed equally (𝑛_(𝑜_1 ) =

𝑛_(𝑜_2 ) = 𝑛_(𝑜_3 ). Moreover, scenarios with vehicle increments for operator 1 are 

simulated, each of which has an increment of ∆𝑔 (10 vehicles) per service point. In our results, 

we also show the average performance of the three-operator system (named overall 

performance - OP) so that this can be easily compared to the performance of a single operator. 

Ten simulation runs (replications) are performed for each scenario yielding average results. 

In relation to the vehicle types used in this study, carmakers (Renault UK, Toyota) are 

producing and marketing small driving pods. The small vehicles can take up less road and 

parking space. Moreover, small-sized vehicles can save more energy with reduced weight. 

Hence, we assume that small-sized SAVs are purposely designed with one seat. Ten 

simulation runs are performed for each scenario yielding average results. 

Table 6.1 A Summary of the Model Parameters for the base scenario 

Parameter/characteristics Value 

The perimeter of the study area 46 km 

The size of the study area 139 km2 

Road segments 836 

Road nodes 510 

Total travel requests (Z) 25,800 trips 

Centroids (denoted by s) 49 

Fleet operators 𝐼 {operator 1, operator 2, operator 3} 

Time steps for speed update 6 seconds 

Vehicle assignment Time interval ∆𝑡  20 seconds 

The search distance for vehicle assignment 6000 meters 

The VOTT inside AMoD vehicles 6.01 euros per hour 

The multiplier 𝜶  2 

The controlling factor ε used in pricing strategies in the baseline scenario 1 

The controlling factor ε used in pricing strategies in the discount pricing 

scenario 

0.8 

𝜂 is the saving factor for AMoD services  0.6 

𝑐 is the base fare for MoD services.  1.4 𝑒𝑢𝑟𝑜𝑠 

𝑚 is the distance-based fare for MoD services. 1.2 𝑒𝑢𝑟𝑜𝑠 𝑝𝑒𝑟 𝑘𝑚 

𝑛 is the time-based fare for MoD services. 0.26 𝑒𝑢𝑟𝑜𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛 

Vehicle seat capacity 1 person 

The average number of vehicles per centroid at the beginning of the 

simulation (𝑁) 

60 vehicles  

VOTT in AMoD vehicles 6.01 euros per hour 

Vehicles increment of operator 1 per service point ∆𝑔 for sensitivity 

analysis 

10 vehicles (e.g., 2 ∗ ∆𝑔 =20 

vehicles)  

 

6.5 Results and discussion 

The fleet sizes, pricing strategies, and assignment strategies are factors that influence the level 

of service offered by AMoD operators. The mode chosen by travelers is determined based on 

the levels of service, which in turn it affects the levels of service. Therefore, we examine how 

different strategies affect the demand as well as the operating performance. 
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6.5.1 Analysis of the effect of assignment strategies on operating performance 

Two different methods of assigning vehicles to passengers (a simple heuristic algorithm and 

an optimal assignment algorithm) are implemented and compared for the base scenario. As 

shown in Table 6.2, compared to the simple heuristic algorithm, the optimal assignment 

algorithm can reduce the average waiting time by up to 2 minutes, which is a 24% reduction 

in the average waiting time of the overall AMoD system. The main reason is that the optimal 

assignment method can optimally match bundled requests with available vehicles to minimize 

the total pickup distance for bundled requests. Simulation results show that the optimal 

assignment algorithm generates fewer empty vehicle kilometers traveled (VKT), resulting in a 

significant reduction of 5511 km for the morning hours than the scenarios using the simple 

heuristic algorithm.  

We also find that with the optimal assignment algorithm, the decline in the average waiting 

time leads to a reduction in the average in-service time, including average waiting and travel 

times. Simulation results show that the average in-service time is reduced by more than 1 

minute, which is a 3% reduction. Results also show that the optimal assignment method 

slightly improves the system capacity in serving the demand (the number of served travel 

requests). There is a slight increase of 102 requests compared to the simple heuristic method. 

Therefore, the optimal assignment method is used in all scenarios in the following sections. 

Table 6.2 Operating performance for different assignment strategies 

Demand levels 100% (25,800) 

Systems Multiple-operator AMoD system with the simple 

heuristic assignment  

Multiple-operator AMoD system with the Hungarian 

assignment  

 
Operator 

1  
Operator 2  Operator 3  

Overall 
Performance 

(OP) 

Operator 1  Operator 2  Operator 3  
Overall 
Performance 

(OP) 

Fleet size  𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜3   𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜3   

Demand share 8606 8519 8675 25800 8600 8580 8620 25800 

Avg. waiting time 

(min) 

8.11 8.32 8.45 8.29 6.29 6.23 6.37 6.30 

Empty VKT (km) 11008 11216 11010 33234 9275 9244 9204 27723 

Served requests 6897 6769 6957 20623 6874 6870 6981 20725 

Unserved requests 1709 1750 1719 5177 1726 1710 1639 5075 
Avg. travel time 

(min) 

20.17 20.46 20.46 20.37 20.12 20.17 20.64 20.31 

Average in-service 
time 

28.28 28.78 28.91 28.66 26.71 26.40 27.01 26.71 

6.5.2 Analysis of the competition scenarios: effect of fleet size 

The simulation results in Table 6.3 show that travel requests shift drastically from operators 

𝑜2 and 𝑜3 to operator 𝑜1 when the number of vehicles of operator 𝑜1 increases compared to 

the base scenario of equal fleet size among operators. The increases are done as referred to in 

Table 6.1 with a value of ∆𝑔  of 10 vehicles. More demand chooses the operator 𝑜1  in 

response to the added vehicle availability. It is suggested that demand for an operator can be 

significantly affected by the fleet size of competing operators. This is because a large fleet 
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size increases the number of potentially available vehicles, that is a competitive factor in 

evaluating service levels and assigning vehicles to incoming travel requests. 

Moreover, simulation results in Table 6.3 show that the total demand served by the urban 

multiple-operator systems rises as the fleet size of operator 𝑜1 increases. This is due to the 

assumption that the urban private car demand is very high, and travelers can remain unserved 

when there are no available vehicles. A large fleet of operator 1 can increase the overall 

number of available vehicles; thus, more demand (attracted from competitors and not served 

without available vehicles) is served. 

Table 6.3 Demand for different vehicle increments 

Demand level 100% (25,800) 

Operators 𝑜1 𝑜2 (𝑛𝑜2 = 20 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) 𝑜3 (𝑛𝑜3 = 20 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) OP 

Vehicle increments of 

operator 𝒐𝟏 per service 

point 

Requests 

for the 
operator 

Served 

demand 
(requests) 

Requests for 

the operator 

Served 

demand 
(requests) 

Requests for 

the operator 

Served 

demand 
(requests) 

Total served 

demand 

Baseline: No vehicle 

increment (𝑛𝑜1 = 𝑛𝑜2 =

𝑛𝑜3 = 20) 
8565 6889 8553 6896 8682 6972 20757 

𝑛𝑜1 + 2 ∗ ∆𝑔= 40 
9759 

(+13.94%) 

8464 

(+22.86%) 

7990 

(-6.58%) 

6531 

(-5.29%) 

8051 

(-7.27%) 

6618 

(-5.08%) 

21613 

(+4.12%) 

𝑛𝑜1 + 4 ∗ ∆𝑔 =60  
10859 

(+26.78%) 

9767 

(+41.78%) 

7546 

(-11.77%) 

6335 

(-8.14%) 

7395 

(-14.82%) 

6233 

(-10.60%) 

22335 

(+7.60%) 

𝑛𝑜1 + 6 ∗ ∆𝑔 =80 
11845 

(+38.30%) 
11068 

(+60.66%) 
7031 

(-17.79%) 
6096 

(-11.60%) 
6924 

(-20.25%) 
5973 

(-14.33%) 

23137 

(+11.47%) 

𝑛𝑜1 + 8 ∗ ∆𝑔 =100 
12841 

(+49.92%) 

12277 

(+78.21%) 

6420 

(-24.94%) 

5725 

(-16.98%) 

6539 

(-24.68%) 

5782 

(-17.07%) 

23784 

(+14.58%) 

𝑛𝑜1 + 10 ∗ ∆𝑔 = 120  
13707 

(+60.04%) 

13345 

(+93.71%) 

6058 

(-29.17%) 

5538 

(-19.69%) 

6035 

(-30.49%) 

5536 

(-20.60%) 

24419 

(+17.64%) 

 

When the total demand increases, more VKT will be needed to serve increased demand, 

resulting in a more congested road network. We introduce the indicator of congestion level to 

evaluate road traffic conditions. In the baseline scenario, a 45.97% congestion level represents 

the additional 45.97% time required on average to travel from origin to destination compared 

to the uncongested travel time. Figure 6.3 illustrates the established relationship between the 

total VKT and congestion levels. We find that the total VKT in AMoD with multiple 

operators is growing as the fleet of operator 𝑜1 increases. Meanwhile, the congestion level is 

increasing with the rise in the total VKT. Compared to the baseline scenario, 17% more 

served demand (see Table 6.3) for the entire multiple-operator AMoD system leads to an 8.51% 

VKT increase, reaching 174626 km in the 10 ∗ ∆g scenario, and the congestion level soars 

from 45.97% to 88.84% (Figure 6.3).  

Figure 6.4 shows the average waiting times, the 90% quantile of the distribution of the 

waiting times and the 96% quantile of the distribution of the waiting times of different 

scenarios. Take the 90% quantile of the waiting times as an example: it is a waiting time 

where 90% of the trips are lower than that.  

Given the demand results (requests for the service of an operator) (in Table 6.3), more 

demand shifts to the operator 𝑜1 when its number of vehicles increases, while the demand for 
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the service of the other operators (operator 𝑜2 and operator 𝑜3) is reduced. Therefore, from the 

simulation results in Figure 6.4 (a), we can see that the average waiting times for travelers 

choosing the service offered by operator 𝑜2  and operator 𝑜3  fall as the demand shifts to 

operator 𝑜1. 

Figure 6.3 The relationship between total VKT and congestion levels 

 

A large fleet size leads to low waiting times. The average waiting times of operator 𝑜1 decline 

with the increase of the number of vehicles in its fleet; however, there is an increasing trend in 

average waiting times of all served requests when the vehicle increment is higher than 6 ∗ ∆𝑔 

(60 vehicles per pickup point). Generally speaking, a larger fleet size could reduce the 

average waiting times in scenarios where AMoD systems replace conventional bus services in 

a regional area or provide feeder (first-mile or last-mile) services to complement public transit 

services. However, in a high-demand urban area, a large fleet size may increase the average 

waiting time, according to our results. This is because the added demand of operator 1 is not 

just brought from the other operators but also from the demand that was not being served 

before.  We found that more VKT are needed to serve the increased demand, resulting in a 

more congested road network. When traffic moves at lower speeds on a congested urban road 

network, the travel and waiting times of served travelers increase. We found that some served 

requests experienced long waiting times as measured by an extreme value of 96% quantile 

waiting time in the waiting time distribution. Simulation results in Figure 6.4 (b) show that 

the 90% quantile of the waiting times of operator 𝑜1 decline and then level off as the vehicle 

fleet increases, while the 90% quantile of the waiting times of operators 𝑜2 and 𝑜3 have a 

declining trend. Simulation results suggest that a few served travelers have long waiting times 

with a larger fleet size (i.e., for the vehicle increment scenarios of 10 ∗ ∆𝑔) compared to 

operator 2 and operator 3. Simulation results in Figure 6.4 (c) show that the 96% quantile of 

the waiting times of operator 𝑜1 declines and then rises significantly as the number of vehicles 

increases. Surprisingly, the 96% quantile of the waiting times are found from simulation 

results at the level of 38.01 minutes, 74.30 minutes, and 96.65 minutes for the vehicle 

increment scenarios of  6 ∗ ∆𝑔, 8 ∗ ∆𝑔, and 10 ∗ ∆𝑔 . Therefore, the larger fleet can serve 

more travel requests, but this leads to extremely long waiting times for just a few travelers.  
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In the model, we assume that travelers can not cancel their services after they are assigned 

vehicles. Based on this assumption, extremely long waiting times can be observed in the 

simulation results as congestion levels become higher for some travelers. 

Moreover, simulation results show that operator 1 serves more than 2.4 times more requests 

than operator 2 and operator 3. Therefore, there are more requests served by operator 1 with 

long waiting times compared with operator 2 and operator 3. Average waiting times are easily 

affected by the extreme values of a few waiting times because they include all the waiting 

times of all served requests. 

 
(a) Average waiting times for different scenarios 

 
(b) 90 % quantile waiting times for different scenarios 

 
(c) 96 % quantile waiting times for different scenarios 

Figure 6.4 Waiting time analysis 

 

Overall, one operator's myopic increase in vehicle supply degrades everyone's system 

performance due to added traffic congestion. We find that travel times for all travelers served 

by different AMoD operators increase significantly due to worsen congestion on the road 

network as the fleet of operator 𝑜1 grows. The increase in travel times reflects the reduction in 
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the quality of service across the entire AMoD system.  Overall, the increase in the fleet size of 

an operator affects not only the choices available to the travelers and the operators’ levels of 

service in terms of average waiting and travel times but also the levels of service offered by 

the competing operators. Nevertheless, one should have in mind that more requests have been 

satisfied with the increase in the vehicle fleet of one operator which is a positive outcome for 

the travelers.  

6.5.3 Effect of pricing strategies on service uptake and operating performance 

In this section, we analyze demand changes in response to price changes using the discount 

pricing strategy and the supply-demand balancing pricing strategy. In the context of multiple-

operator AMoD systems, the two different pricing strategies are applied to operator 𝑜1, while 

the other two operators (𝑜2, 𝑜3) use the baseline pricing scheme where the fare is calculated 

based on travel time and distance. 

6.5.3.1 Discount pricing strategy 

We study the effect of the discount pricing strategy on attracting customers in the morning 

hours. A closer look at the chart in Figure 6.5 shows that the volume of requests for the 

different AMoD operators changes at different rates over time.  

In the very early morning hours ([5:30 AM, 7:20 AM]), we find that the discount pricing 

strategy used by operator 𝑜1 can significantly impact the choice made by travelers. Simulation 

results show that more travelers choose the low-price service of operator 𝑜1, it’s about triple 

the number of users of operator 𝑜2 or operator 𝑜3 at 7:20 AM.  

 
Figure 6.5 Demand share for different AMoD operators over time 
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Intuitively, a lower fare can attract more customers. However, in the morning period [7:20 

AM, 8:20 AM], we see that the increase in the number of travelers choosing the service of 

operator 𝑜1 slows down, while a large number of travelers choose the service of operator 𝑜2 

and operator 𝑜3  who offer a regular price service. This is related to the volume of travel 

requests as well as the number of available vehicles. Because more travelers choose the low-

price services offered by operator 1 in the very early morning [5:30 AM, 7:20 AM]. Hence, 

more vehicles are transporting travelers from place to place on the road network. As a result, 

fewer vehicles are available for subsequent travelers. A high volume of travel requests 

between 7:20 AM and 8:20 AM continue to request rides; accordingly, travelers choose the 

service of the competing operators (operator 𝑜2 or operator 𝑜3 ) in the early morning. 

Meanwhile, we see that the number of in-service vehicles of operator 𝑜1 declines while the 

number of in-service vehicles of operator 𝑜2 and operator 𝑜3 rises sharply. 

In the mid-morning period [8:20 AM, 10:00 AM], the same increasing rate of users is 

observed for all three operators, two of which are offering a regular-price service. Simulation 

results indicate that the number of users increases similarly for all operators, by about 3300. 

This suggests that the discount pricing strategy has no advantage in attracting more demand at 

this time of day, ceteris paribus. For the same time, simulation results in Figure 6.6 indicate 

that the total number of vehicles driving on the network is at the highest level, which could 

lead to bad traffic conditions. 

By analyzing the demand for different AMoD operators as well as the in-service vehicles over 

time, we found that more requests are served in the very early morning when fewer vehicles 

are driving on the network, while the demand for operator 𝑜2 and operator 𝑜3 is high in the 

next period, when many vehicles are driving on the road network. Hence, we infer that the 

discount pricing strategy can strongly affect service levels related to waiting and travel times. 

Regarding the service levels in terms of waiting time and travel times, the operator that offers 

the discount can provide a service with shorter waiting and travel times than the regular-price 

services of the other operators. The simulation results in Table 6.4 show that the average 

waiting and travel times of operator 𝑜2 and the operator 𝑜3 are more than double those of 

operator 𝑜1. The 96% quantile waiting time of operator 𝑜1 is located around 7.06 minutes, 

while operator 𝑜2  and operator 𝑜3  have a larger 96% quantile waiting time of about 11 

minutes. The 96% quantile travel times of operator 𝑜2 and operator 𝑜3 are significantly larger 

than that of operator 𝑜1. The reason for this is that up to 64.7% of the travel requests served 

by operator 𝑜1 are in the very early morning [5:30 AM,7:20 AM] when fewer vehicles are 

driving on the network, as shown in Figure 6.6. We also see that the number of in-service 

vehicles from operator 𝑜2 and operator 𝑜3 is much higher than that of operator 𝑜1 in the early 

morning [7:20 AM, 8:20 AM] and mid-morning hours [8:20 AM, 10:00 AM]. This indicates 

that the users of the services of operators 𝑜2 and 𝑜3 are transported at a time when the number 

of vehicles on the road is the highest. This leads to increased waiting and travel times of 

operator 𝑜2 and operator 𝑜3.  
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Figure 6.6 The number of busy (in-service) vehicles over time with discount pricing strategies 

 

Table 6.4 Operating performance for the discount pricing strategy 

Demand levels 25800 (100%) 

AMoD system 𝑜1 𝑜2 𝑜3 

Fleet size  𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜3  

Pricing strategies Discount pricing strategy  

Served demand 
The number of served requests in [5:30 AM, 10:00 AM] 7457 6769 6744 

The percentage of the number of served requests in [5:30 AM, 7:20 AM] 64.97% 21.08% 21.84% 

Service quality 

Avg. waiting times (min) of trips in [5:30 AM, 10:00 AM] 2.90 6.33 6.16 

The 96% quantile waiting times of trips in [5:30 AM, 10:00 AM] 7.06 11.01 11.57 

Average time of trips in [5:30 AM, 10:00 AM] 14.29 29.86 29.95 

The 96% quantile travel times of trips in [5:30 AM, 10:00 AM] 54.00 72.28 76.19 

VKT 
Empty VKT (km) per trip in [5:30 AM, 10:00 AM] 1.86 1.81 1.80 

Occupied VKT (km) per trip in [5:30 AM, 10:00 AM] 5.90 5.89 5.93 

 

Given the simulation results, we can infer that the discount pricing strategies should be 

dynamically changed in multiple-operator AMoD systems. It is suggested that providing low-

priced services becomes less effective in attracting more customers to use an operator's 

service when the demand is high and competing operators have fewer vehicles in use. 

Therefore, careful consideration is required when planning to apply flexible discount pricing 

strategies under certain demand scenarios. 
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6.5.3.2 Supply-demand balancing pricing strategy 

Regarding the simulation scenario related to the supply-demand balancing pricing strategy, 

the simulation results in Figure 6.7 suggest different demand shares in AMoD services offered 

by the different operators, where one of them (operator 𝑜1 ) applies the supply-demand 

balancing pricing strategy. Results show that the number of requests for the service provided 

by operator 𝑜1 levels off in two periods, namely, [7:00 AM, 7:20 AM]) and [7:35 AM, 7:50 

AM]. The supply-demand balancing pricing strategy can raise the price according to the 

relationship established between anticipated demand and available vehicles. In this situation, 

competing AMoD services become viable travel options. Instead of choosing the high-priced 

service, customers use the regular-priced service. Simulation results indicate that the number 

of travelers who use the services of another operator (𝑜2, 𝑜3), instead of the service provided 

by operator 𝑜1, increases rapidly. As shown in Figure 6.8, the number of in-service vehicles of 

operator 𝑜1  falls rapidly, while the number of the other operators' vehicles engaged in 

transporting customers increases. 

Subsequently, we find that more and more travelers choose operator 𝑜1 . Eventually, the 

number of customers choosing the services of any of the three operators is approximately the 

same. It is suggested that the high-priced service can be competitive in attracting travelers 

when a large number of subsequent travelers request rides. This is because more vehicles of 

operators 𝑜2 and 𝑜3 are in service to transport customers from place to place as the demand 

for their service grows. When more vehicles are in use, fewer vehicles of regular-priced 

service provided by operators 𝑜2  and 𝑜3  are available for subsequent trips. Therefore, 

travelers choose the high-priced service.  

On the one hand, we find that the supply-demand balancing pricing strategy can influence the 

choice of travelers by raising the price of the service provided at certain times in the morning, 

leading to a reduction in demand. In that situation, the competing AMoD services can become 

the favored services. On the other hand, the service whose price is dynamically determined by 

the supply-demand balancing pricing strategy can be equally competitive at specific times 

when all operators are busy handling a large volume of requests. 

We can also analyze the waiting times, the travel times, and the empty pickup VKT (in Table 

6.5) to evaluate the impact of the supply-demand balancing strategy on service quality. The 

simulation results show that the supply-demand balancing pricing strategy leads to a reduction 

in the total number of served requests for the service provided by operator 𝑜1 . This is 

plausible because travelers opt for the alternative service with the regular price in the morning 

[7:00 AM, 7:50 AM] (as shown in Figure 6.7) rather than the high-priced service prompted by 

the supply-demand balancing strategy.  
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Figure 6.7 The number of travel requests over time for different AMoD operators 

Moreover, we find that the empty pickup VKT of operator 𝑜2 and operator 𝑜3 is larger than 

that of operator 𝑜1 when the supply-demand balancing pricing strategy is used. It is suggested 

that this pricing strategy can be effective in attracting travelers to use the service in locations 

where there is a surplus of idle vehicles, thereby reducing the pickup distances. 

Although the pickup VKT is reduced and the number of requests for operator 𝑜1 is lower than 

for the other operators, higher average waiting times and average travel times are found for 

the operator 𝑜1. Similarly, the 96% quantile waiting time and the 96% quantile travel time are 

found slightly higher for operator 𝑜1. This is because a high percentage (63.86%) of travel 

requests are served in the morning [7:50 AM, 10:00 AM] when the number of vehicles in use 

on the road network is the highest (shown in Figure 6.8).  

 
Figure 6.8 The number of busy vehicles over time with supply-demand balancing pricing strategies 
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Applying the supply-demand balancing pricing strategies can reduce empty pickup VKT, 

which is a key performance indicator in evaluating operating costs and environmental 

emissions. Detailed analysis of when travelers choose the operator shows that fewer travelers 

use the high-priced service in the early morning, while travelers prefer the high-priced service 

in peak hours. We found that the service levels, including waiting times and travel times, 

become slightly worse. 

Table 6.5 Operating performance for the supply-demand balancing pricing strategy 

Demand levels 25800 (100%) 

AMoD system 𝑜1 𝑜2 𝑜3 

Fleet size  𝑛𝑜1 = 𝑛𝑜2 = 𝑛𝑜3  

Pricing strategies Supply-demand balancing pricing strategy  

The number of served requests in [5:30 AM, 10:00 AM] 6711 7120 7118 

The percentage of the number of served requests in [7:50 AM, 

10:00 AM] ([140 minutes,280 minutes]) 

63.86% 52.92% 52.41% 

Avg. waiting time (min) of trips in [5:30 AM, 10:00 AM] 6.26 4.76 4.61 

96% quantile waiting time of trips in [5:30 AM, 10:00 AM] 14.32 13.51 13.85 

Empty VKT (km) per trip in [5:30 AM, 10:00 AM] 1.63 1.86 1.85 

Average travel time of trips in  [5:30 AM, 10:00 AM] 22.45 20.54 20.70 

Occupied VKT (km) per trip in [5:30 AM, 10:00 AM] 5.91 5.89 5.92 

96% quantile travel time of trips in [5:30 AM, 10:00 AM] 73.26 71.37 71.40 

6.6 General discussion and Recommendations 

AMoD operators may apply different operating strategies to improve service levels and attract 

more customers in the future competitive AMoD market. Three operating strategies are tested 

through the agent-based modeling framework, demonstrating their potential effects on the 

operators, the clients, and the network. 

We compared different vehicle-to-request assignment strategies and found that the optimal 

assignment method that matches bundled travel requests with a group of fully controlled AVs 

can improve the waiting times and allow operators to serve more requests. That means AV 

operators can take advantage of vehicle automation technology to develop an effective 

assignment to compete for customers. 

Regarding fleet size, interesting findings are that a larger fleet size can attract more travelers 

to choose an operator's service in the scenario of multiple AMoD operators competing for 

customers; however, an operator's fleet size growth can lead to more congestion over the road 

network. As a result, the service levels are degraded in terms of waiting and travel times. It 

means that in the multiple-operator system, travelers faced long waiting and travel times. 

Because of the convenience and low price of AMoD services, travelers (commuters) are most 

likely to choose AMoD services provided by different operators. Similar to the evidence that 

the entrance of multiple transportation network companies into the existing urban mobility 

system can increase congestion (Diao et al., 2021), our results suggest that introducing 

multiple AMoD operators into the market without regulating fleet sizes can lead to degraded 
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travel conditions. In this regard, future cities may experience severe congestion externalities 

(e.g., emissions and traffic accidents). The city authorities need, therefore, to develop 

regulations to avoid the negative impact of an unregulated market. 

Concerning the pricing strategies, the supply-demand balancing pricing strategy incentivizes 

travelers to choose the services of the operator in the area where vehicles are oversupplied, 

and we found the empty VKT for users is reduced. However, service levels deteriorate when 

more travelers are served, and many busy vehicles in the road network are moving travelers 

from one location to another. A detailed analysis of when travelers choose operators shows 

that few travelers choose the high-priced service in the early morning; in conjunction with the 

reduction in the available vehicles from competing vehicles, a high percentage of travel 

requests are served by the operator during peak hours. This finding suggests that high-priced 

AMoD services could be more competitive than lower-priced AMoD services in attracting 

customers in the morning peak hours. AMoD operators could introduce high-priced services 

during very busy hours because of the potential benefits (e.g., more profit), while it is not 

recommended to promote a high-priced service in the early morning hours. Otherwise, 

travelers will opt for the competitor’s service. 

Different from the supply-demand balancing pricing strategy, the discount pricing strategy 

attracts more travelers to use their services in the very early morning hours while providing a 

high level of service to users. We also find that low-priced service is not always effective in 

attracting demand in a situation when a high volume of travelers continue to request rides, and 

there are more idle vehicles from competing operators. Therefore, we strongly recommend 

that flexible discount pricing strategies must be considered in alignment with the demand 

temporal characteristics. The detailed demonstration of when travelers choose which services 

provided by different AMoD operators can help the operators better understand the pricing 

strategies. In future applications, operators should decide strategies that they will use to attract 

customers. 

We consider multiple main aspects (waiting and travel time, pricing) in the utility evaluation 

for allocating travelers, which is very close to the reality of travelers in choosing 

transportation services. Notably, the utility evaluation accounts for the flexible changes in 

pricing schemes. In the absence of accurate behavioral models, transportation planners and 

platform developers could integrate the proposed mechanism into a platform where multiple 

AMoD operators coexist to deal with the problem of allocating requests with fast AMoD 

entries.  

6.7 Conclusions and future directions 

Introducing multiple operators into Automated Mobility-on-Demand (AMoD) systems makes 

the interactions and dynamics of system components more complex. Therefore, there is a 

need to create an Agent-Based Model (ABMs) that captures such complexity. This chapter 

has proposed such a framework, implemented it, and tested it for a real case-study city. 
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The ABM is used to understand how different operating strategies affect travelers' choices 

and what the resulting operating performance of competing AMoD operators is. Concerning 

travelers’ choices of operators under different operating strategies, we have implemented a 

choice model that allows estimating the relative share in the requests for each of the three 

operators in the case-study city of The Hague, The Netherlands. We provide a detailed 

analysis of the overall performance of AMoD systems with competing operators and the 

performance of individual operators as measured by waiting times, travel times, and empty 

pickup VKT. Fleet sizing, assignment methods, and pricing schemes as important decisions 

that any operator must take have been analyzed in detail.  

In a multiple-operator AMoD system, a larger fleet allows one operator to attract more 

travelers. However, we find that the larger fleet size can degrade the level of service in terms 

of waiting times and travel times for the operator using this strategy and the travel times for 

the users of competing operators. Instead of increasing fleet sizes of competing operators 

since they all have to share the same road network, cooperative mechanisms between 

operators in mobility as a service platform, especially the cooperative assignment of the SAVs 

to clients to improve fleet utilization, could be an important research direction. 

A shortcoming of this framework is that the socio-demographic attributes are not considered 

in the mode choice model. Attributes of decision-makers may create differences over different 

AMoD services in the dynamic pricing scenarios. In future research, surveys can be 

conducted to investigate travelers' preferences towards different emerging mobility service 

operators, as currently very little research can be found in the literature. Moreover, the 

developed agent-based modeling framework can be extended to consider the within-day or 

day-to-day adjustment of operating strategies in AMoD systems comprised of multiple fleet 

operators.  

The mesoscopic traffic simulation model can provide an appropriate level of detail in 

estimating average speeds on the network, which is a requirement for modeling the pickups or 

drop-offs of SAVs on the road network in a realistic way. However, the more details the 

traffic model contains, the higher the resolution of the model. A microscopic traffic 

simulation can provide a detailed representation of every vehicle movement and interaction 

between vehicles. A possible extension of the framework is to implement a microscopic 

traffic simulation model or integrate a microscopic traffic simulation platform with the 

developed agent-based modeling framework in the future. Moreover, the modeling framework 

can be extended to consider different vehicle technologies (battery electric vehicles, hydrogen 

fuel cell vehicles) and different vehicle sizes (small, medium, and large vehicles). 
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Chapter 7 

Conclusions and recommendations 

This thesis aims to model the emerging AMoD systems to answer urgent questions in the 

planning and operations of such systems. Using the agent-based approach, a modeling 

framework has been developed to address the research questions introduced in Chapter 1. 

The detailed answers to these questions were provided in Chapters 3 through 6. 

This chapter presents the conclusions of this thesis. Section 7.1 summarizes the main findings, 

followed by the overall conclusions in Section 7.2. Practical implications are discussed in 

Section 7.3. Section 7.4 provides recommendations for future research. 
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7.1 Main findings 

A new agent-based modeling framework has been proposed, implemented, and tested in a 

case-study city for emerging services and innovative operations in different forms of AMoD 

systems. Through agent-based simulation of operating emerging AMoD services,  the specific 

questions that arise in urban AMoD systems are addressed. 

The research in this thesis has been divided into four parts, each of which answers an 

important research question introduced in Section 1.3 of Chapter 1. 

Question 1: What are efficient ways of operating AMoD under different on-demand service 

schemes within the urban service area? 

To answer this question, four different AMoD systems are modeled in Chapter 3. The 

modeling framework can simulate the operations of AMoD systems within a hypothetical 

urban area on a typical day. A preliminary study is presented for different AMoD services 

as defined: station-to-station services (SSS), door-to-door services (DDS), time-varying 

transit services (TVTS), and parallel transit services (PTS).  

Sub-question 1: Which service schemes in terms of pickup points and doorstep service 

should be provided when serving demand in urban areas? 

It is found that the DDS system has more VKT and energy consumption than other AMoD 

systems, while it brings great convenience of doorstep service for real-time requests. The 

time-varying transit service (TVTS) and parallel transit service (PTS) systems provide a 

significant gain in system capacity, waiting time, and additional trips by empty SAVs. 

AMoD systems that incorporate two services have the most significant improvements in 

system performance measured by the indicators above. We compare the TVTS system, 

which has inconvenient access during peak hours, with the PTS system where door-to-

door services are available; we conclude that the latter could achieve a similar system 

performance as the former in terms of average waiting time and service time system 

capacity.  

The question of what the best service scheme remains open. We examine the AMoD 

system performance with different service schemes from the operators’ perspective. 

Through the agent-based simulation of different service schemes, the strengths and 

weaknesses of each service scheme are identified. AMoD operators should deploy their 

services into the urban mobility system depending on the application environments (e.g., 

demand levels and potential service locations). 

Sub-question 2: How can available vehicles and passengers be effectively matched? 

In Chapter 3, two assignment methods are proposed, implemented, and tested in a 

hypothetical urban area. According to the first-come, first-served principle, the first 

method assigns the nearest available vehicles to serve travel requests whilst in the second 

method, bundled travel requests are matched with a group of available vehicles to 
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minimize the total travel (pickup) distance for the bundled requests. The optimal 

assignment method can significantly reduce the total empty VKT for all tested AMoD 

systems up to about 40% and improve the system capacity in relation to the number of 

served trips. 

Sub-question 3: How do ridesharing operations affect the service offered to customers and 

fleet efficiency? 

We find that AMoD systems with dynamic ridesharing operations can significantly reduce 

average waiting time, the VKT, and empty SAV trips. It can be inferred that ridesharing 

operations can be promoted to improve the service level and fleet efficiency. We did not 

design the optimal ride-sharing rules for travelers and have limited the maximum number 

of grouped travelers to two. We assumed the type of vehicles to be small-size vehicles 

with two seats. Small-size vehicles have a competitive advantage when operating in urban 

areas. The fact that we use a synthetic network can introduce some limitations to the study; 

however, by having created realistic trip requests and realistic vehicle movements, the 

small synthetic network serves well in comparing the different scenarios with the 

assumptions that were taken. 

Question 2: What are the travel and energy impacts of forming platoons in AMoD systems? 

To answer these questions, a novel modeling framework has been developed to assess the 

impact of forming platoons in future urban AMoD systems on people's travel and energy 

usage in Chapter 4. The travel and energy potential of forming platoons under different 

formation policies and demand levels in AMoD systems is assessed using the urban road 

network and travel demand data in the case-study city of The Hague, the Netherlands.  

Sub-question 1: What are the impacts of the formation and operation of such urban 

platoons on the service quality offered to travelers and traffic efficiency related to road 

network travel times?  

Findings suggest that the formation of platoons could cause platoon delays for travelers in 

the platoon vehicles while reducing network travel times in which platoon delays are not 

included. The platoon travel time, including the platoon delay of travelers in platoons and 

network travel time, is shorter than the network travel time in the scenario without 

forming platoons. That means that the reduction in the network travel times offsets the 

platoon delays, leading to a shorter platoon travel time. However, we found that platoon 

formation can increase the platoon travel time of travelers in platoon leader vehicles. The 

reason is that travelers in the platoon leaders face longer unexpected platoon delays. 

Interestingly, results indicate that although the travel time of travelers in the leaders is 

longer, this longer travel time is still similar to that in non-platoon scenarios where higher 

congestion is present. 

Sub-question 2: How do changes in traffic conditions by platoon operations affect the 

travel-related energy consumption of traffic participants across the urban road network? 



 120 Modeling Urban Automated Mobility on-Demand Systems: an Agent-based Approach 

We evaluate the impact of forming platoons on the system-wide energy consumption for 

different vehicle types. We found that more energy can be saved when platoons are 

formed. We evaluate the impact of forming platoons on the system-wide energy 

consumption for different vehicle types. We found that more energy can be saved when 

more vehicles are coordinated in platoons formations. The reason is that forming platoons 

results in improvements in traffic efficiency. However, the degree of energy savings 

strongly depends on the vehicle types; improvements in energy efficiency for certain 

vehicle types are relatively small because of the energy consumption characteristics. 

Question 3: What are effective operating strategies to gain a competitive edge for 

independent operators in a situation without information sharing? 

To answer this question, Chapter 5 investigates the operation of AMoD systems in which 

multiple independent companies operate their fleets to provide direct on-demand service 

to their registered clients in the same urban area. We study the future scenarios of 

multiple-operator AMoD systems with relocation operations and different fleet sizes. 

Sub-question 1: How do changes in supply (vehicle fleet) affect the performance (service 

levels, fleet efficiency, and profit) of an operator and its competitors coexisting in the 

same urban area? 

We found that the growth of the fleet size of an operator leads to improvements in the 

average waiting times of its clients. However, it degrades the levels of services offered by 

its competitors in terms of average waiting and travel times. Increasing fleet size (of an 

operator) can serve more trips for the operator while bringing more vehicles to the roads. 

The increasing number of vehicles circulating across the road network adds more traffic to 

the road network, increasing the average travel and waiting times of competing operators. 

In the multiple-operator AMoD system, the growth of the fleet size of an operator brings 

an adverse effect on road travel conditions. 

Finding suggests that the vehicle usage of an AMoD operator with the increase in the 

number of vehicles decreases in the morning hours compared to its competitor. But they 

maintain higher usage rates than private vehicles, which take 20-30 minutes to complete a 

trip and are parked up to 90% of the morning hours. 

Results show that the increase in the fleet size of an operator can improve the percentage 

of served trips over the other operators, particularly when the volume of travel requests is 

high. In this regard, a larger fleet can help an operator to serve more clients. Besides, more 

trips are served with the growth of the fleet size of an operator, resulting in a higher profit. 

This may motivate an operator to increase its fleet size to obtain a higher profit in the 

competitive mobility market. 

Sub-question 2: What is the potential of relocation strategies performed by an operator in 

terms of service quality offered to travelers, fleet efficiency, and the operator's profit? 

We design simulation experiments to examine how relocation operations affect the 

operators’ performance in the competitive market of AMoD systems. We found that the 
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operator that performed relocations served more registered travelers. This is because 

vehicles are relocated to the place (zones) where there is a shortage of vehicles, and the 

vehicles are available for incoming requests. 

An important finding is that relocation operations slightly increase operating costs due to 

the extra relocation VKT; however, a higher profit can be achieved with a higher number 

of trips served when relocations occur. For example, compared with the unprofitable 

relocation operations in multiple-operator carsharing systems, performing relocations by 

operators in multiple-operator AMoD systems show an increase in profit by up to 16% in 

the case-study city because of the lower operating cost of AMoD vehicles. 

We also found that performing relocation operations brings more vehicles to the roads in 

the early morning hours and late morning hours when the road network is uncongested. 

Hence, relocating vehicles to a more advantageous position in anticipation of future 

demand does not cause more traffic congestion during peak hours. Relocating vehicles in 

advance can avoid congestion while obtaining relocation benefits of improving waiting 

times, serving more trips, and achieving a higher profit.  

Question 4: How do operators compete for clients in multiple-operator AMoD systems 

where information (travel requests, vehicle fleet, prices) are completely shared within a 

platform? 

To answer this question, the developed agent-based modeling framework in Chapter 6 is 

used to investigate how changes in different strategies (e.g., pricing strategies, assignment 

methods, and fleet sizes) affect travelers' choice of AMoD services and the operating 

performance of competing operators. The model is applied to the case-study city of The 

Hague, the Netherlands.  

Sub-question 1: How do changes in pricing strategies affect travelers' choice of AMoD 

services and the operating performance of competing operators? 

We analyze demand changes in response to price changes using a discount pricing strategy 

and a supply-demand balancing pricing strategy. We find that the discount pricing strategy 

used by an operator can significantly impact the choice made by travelers. More travelers 

choose the low-price service of the operator. However, the low-priced services have the 

advantage of attracting travelers in the very early morning. However, as the volume of 

travel requests becomes high in peak hours (e.g., between 7:20 AM and 8:20 AM), 

demand for the services of the competing operators continues to increase due to the high 

vehicle availability.  

Applying the supply-demand balancing pricing strategies can reduce empty pickup VKT, 

which is a key performance indicator in evaluating operating costs and environmental 

emissions. However, the supply-demand balancing pricing strategy leads to a reduction in 

the total number of served requests for the service provided by the operator. This is 

because travelers opt for the alternative service with the regular price in the morning 

rather than the high-priced service prompted by the supply-demand balancing strategy. 
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Moreover, a detailed analysis of when travelers choose the operator shows that fewer 

travelers use the high-priced service in the early morning, while travelers still choose the 

high-priced service in peak hours.  

Sub-question 2: How do changes in assignment methods affect travelers' choice of AMoD 

services and the operating performance of competitors? 

Two different methods of assigning vehicles to passengers: a simple heuristic algorithm 

and an optimal assignment algorithm (Hungarian algorithm), were implemented and tested 

in the case-study city that most closely matches real-world conditions. Findings suggest 

that the decline in the average waiting time with the Hungarian algorithm leads to a 

reduction in the average in-service time, including pickup and drop-off times. Also, we 

found that the Hungarian assignment method slightly improves the system capacity in 

serving the demand (the number of served travel requests) compared to the simple 

heuristic method. Operators in the competitive market need to develop the capability of 

optimal assignment to improve the service offered to travelers and increase the served 

trips. 

Sub-question 3: How do changes in fleet sizes affect travelers' choice of AMoD services 

and the operating performance of competitors? 

We use simulation to recreate the scene of varying fleet sizes by operators during morning 

rush hours in competition for customers. The finding suggests that demand is very 

sensitive to the changes in fleet size. More demand chooses the operator in response to 

fleet increases. However, as demand rises, the quality of service offered by the operator 

deteriorates. The relationship that is established between average waiting times and 

vehicle increment of an operator suggests that a larger fleet is not better for serving AMoD 

demand. Travelers are served with very long waiting times. The reason is that congestion 

occurs over the network with high traffic volumes due to SAV driving between served 

requests. The quality of service offered to the clients is reduced significantly as more 

vehicles circulate across the road network. As a result, the levels of service offered by the 

competing operators coexisting in the same urban area can be considerably affected.  

7.2 Practical implications 

This thesis has several important practical implications which are useful for future AMoD 

systems. The practical implications are discussed as follows.  

System design related to the application scenarios is the key to the success of AMoD systems. 

The use of the developed simulation tools enables the stakeholders (mobility service providers, 

government, and OEMs) to better plan the AMoD fleet service and to be better prepared for 

the future. Simulations have the advantage of providing a virtual, risk-free, time- and cost-

saving environment in which different forward-looking scenarios can be tested. Mobility 
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service providers and public transport operators can take advantage of agent-based simulation 

to plan and operate AMoD services. 

This thesis develops multiple functioning components in the simulated environment, such as 

the vehicle-to-passenger assignment, ridesharing component, relocation component, fare and 

cost component, and mode choice component. The effectiveness of different operating 

strategies has been demonstrated using the agent-based framework, which could be 

implemented in real-world systems (e.g., management systems). 

In addition, policies and operating strategies are recommended for city authorities and 

transport operators to achieve operating efficiency, energy efficiency, and social welfare. 

Important examples of policy recommendations are as follows: 

• AV companies may be motivated to increase fleet sizes to achieve a higher profit in 

the competitive market. The unlimited growth of fleet sizes will cause negative traffic 

externalities (e.g., congestion and pollution) and negatively impact citizens' well-

being. Therefore, there is a need for policies to create a regulated environment where 

the number of vehicles operated by AMoD operators is limited.  

• Platoon operations can be considered an effective energy-saving and decarbonization 

strategy to achieve energy efficiency improvement goals.  

• Careful consideration is required to reward travelers who suffer long unexpected 

delays in the formation of platoons, which the system's benefit from energy savings 

can be redistributed.  

Important examples of recommending operating strategies are as follows: 

• Developing platoon formation strategies over urban road networks is recommended 

aiming at improving traffic efficiency and reducing travel times. 

• It is recommended to consider the vehicle characteristics for energy consumption in 

conjunction with platoon formation policies to develop effective energy-saving 

platoon strategies in future AMoD systems.  

• Developing a relocation capability is strongly recommended to gain a competitive 

advantage in the future competitive market of AMoD systems. 

• Operators should carefully consider the fare structure when congestion occurs. 

Notably, distance- and time-based fare structures can help companies achieve a higher 

profit. 

• Service schemes (e.g., defined SSS, DDS, TVTS, and PTS) must be decided according 

to the application of future scenarios.  

• The discount pricing strategy attracts more travelers to use AMoD services in the very 

early morning hours while providing a high level of service to users. We also find that 

low-priced service is not always effective in attracting demand in a situation when a 

high volume of travelers continue to request rides and there are more idle vehicles 

from competing operators. Therefore, we strongly recommend that flexible discount 

pricing strategies must be considered in alignment with the demand temporal 

characteristics. 
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7.3 Recommendations for future research 

This final section aims to provide several interesting but important aspects of future research 

directions. 

Traffic assignment: platooning may lead to over synchronization of individual routes, 

creating new congestions, while system users (travelers) want to choose the shortest route. 

Therefore, the joint consideration of traffic assignment and coordinated platoon driving is 

required. The question of how to handle the trade-off between UE route assignment and route 

synchronization in platooning systems remains unsolved. That is an important challenge in 

platoon-enabled AMoD systems. 

User preference and choice behavior: AMoD services could provide important 

transportation alternatives and have the potential to alter how people move around cities; 

therefore, the new transportation service introduced into a mobility ecosystem will impact the 

subsequent travel behavior of the users. One very important shortcoming of the modeling 

framework is that we did not investigate the choice behavior of the travelers toward AMoD 

systems based on data. In particular, the impacts of platoon-enabled AMoD systems on users’ 

travel behavior and/or preferences are not studied. Given that SAVs equipped with platooning 

systems are not yet widely available, stated preference experiments can be designed to 

measure individuals’ preferences. Moreover, in the multiple-operator setting (e.g., BMW, 

Mercedes-Benz, Waymo), understanding why people choose a service offered by an operator 

over the service offered by another operator is crucial to making further conclusions about 

system performance. In future studies, surveys can be done to investigate travelers' 

preferences towards different emerging mobility service operators since this is still difficult to 

find in the literature.  

Cooperative mechanism: Chapter 5 investigated AMoD systems in which multiple 

technology companies coexist in the same urban area without sharing information. Chapter 6 

studied AMoD systems with completely shared information by incorporating a mode choice 

component to allocate travelers. However, the decentralized system with partial information 

sharing is also likely to exist in future cities because of improved privacy, safety, and 

robustness. The question that arises is how to develop cooperative operating strategies for 

competing operators. For example, independent operators can collaborate to effectively match 

supply and demand to improve the overall system performance. There is a lack of evidence to 

support the development of decentralized AMoD systems. 

Energy consumption: In Chapter 4, we estimate the energy consumption of electric AVs 

and account for traffic congestion by making it a function of experienced travel speed. An 

interesting extension would be integrating a microscopic traffic flow that can provide second-

by-second speed and acceleration measurements into an energy consumption model that 

produces a more accurate energy estimate.  

Multilane mixed traffic simulation: the developed link and node movement rules can 

reproduce the traffic dynamics at a mesoscopic level while considering the effect of mixed 
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traffic for a single lane in each direction. However, the microscopic traffic behavior is not 

modeled, such as accelerating, overtaking, lane-changing, and traffic behaviors at 

intersections. Moreover, the traffic simulation component cannot model mixed traffic under 

multiple-lane scenarios. Operational capacities in multilane scenarios depend on lane policies 

to distribute platoon vehicles. Modeling multiple-lane capacity with the formation of platoons 

remains an unsolved challenge in the literature. 

A digital twin of an automated ride-hailing system: A digital twin refers to a real-time 

digital replica of a physical entity. A digital twin concept consists of the real-world system, 

the digital counterpart, and connections between the physical entity and the digital copy. The 

corresponding part of the physical world can be synchronized with its digital representation 

through the connection. In this thesis, an agent-based simulation model that is populated with 

real-world data has been developed for different operations. The developed ABM can capture 

the complicated interaction, simulate the operational process and represent the system entities 

in a high spatial and temporal resolution. The ABM, which allows experimentation with 

improvements, is key to developing a digital twin of automated ride-hailing or automated 

mobility-on-demand systems. This is because the insights uncovered from simulation 

experiments could be transferred to the physical world to manage the system efficiently. The 

development of the digital twin of AMoD systems can be investigated.  
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Appendix 

 

A. A single-lane capacity formulation for mixed traffic 

We use the following definitions of different critical spacing types according to the 

operational characteristics of vehicle platooning. The critical spacing when vehicles travel 

regularly (e.g., AVs that are not in platoons) is defined as 𝑑𝑎. The critical spacing for platoon 

driving is defined as 𝑑𝑝. Except for the platoon leader, the platoon followers will follow the 

preceding platoon vehicles at a distance of 𝑑𝑝  when capacity 𝐶  is reached. Since platoon 

vehicles have a smaller following distance, then 𝑑𝑎> 𝑑𝑝 > 0. We define 𝑑𝑝 = 𝛼𝑑𝑎 , where 

0 < 𝛼 < 1. We assume that the critical spacing between a platoon vehicle and a regular 

driving vehicle that is not in a platoon is also 𝑑𝑎. It means that the critical spacing between a 

platoon leader and any preceding vehicle traveling regularly (that is not in a platoon) is 𝑑𝑎. 

The platoon size 𝑛𝑖 is the number of vehicles in platoon 𝑖. We denote the number of platoons 

as 𝑃 and the number of regular driving vehicles in the traffic as  𝑀 . The total number of 

vehicles in platoons 𝑁 is ∑ 𝑛𝑖
𝑝−1
𝑖=0 . We define the total number of platoon leaders 𝐿, where 

 𝐿 = 𝑃 (Each platoon has one leader). 

According to the definitions and assumptions in this study, mean critical spacing in the work 

(D. Chen et al., 2017) is formulated as follows: 

𝑑𝑐 =
(∑ 𝑛𝑖

𝑝−1
𝑖=0 −𝐿)𝛼𝑑𝑎+(𝑀+𝐿)𝑑𝑎

𝑀+𝑁
=

(𝑁−𝐿)𝛼𝑑𝑎+(𝑀+𝐿)𝑑𝑎

𝑀+𝑁
= (1 −

𝑁(1−𝛼)(1−
𝐿

𝑁
)

𝑀+𝑁
)𝑑𝑎, 

(A.1) 
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  where 𝑀 > 0,𝑁 > 0. 

Denote 𝜑 =
𝑁

𝑀+𝑁
 and 𝜔 = (1 − 𝛼)(1 −

𝐿

𝑁
) , thus 0 < 𝜑,𝜔 < 1 . Equation (A.1) can be 

rewritten as follows: 

𝑑𝑐 = (1 − 𝜑𝜔)𝑑𝑎 (A.2) 

The single-lane capacity 𝐶𝑐 is expressed as: 

𝐶𝑐 =
𝑣0
𝑑𝑐
= 

𝑣0
(1 − 𝜑𝜔)𝑑𝑎

=
𝐶𝑎

(1 − 𝜑𝜔)
 

(A.3) 

Clearly, we have 𝐶𝑐  > 𝐶𝑎 (𝑀 > 0,𝑁 > 0) . Where 𝐶𝑎  denotes the lane capacity for all 

vehicles traveling regularly. The capacity 𝐶𝑐  depends on the penetration rate of platoon 

vehicles 𝜑 and the number of leaders (𝐿) (𝜔 = (1 − 𝛼)(1 −
𝐿

𝑁
)). A smaller distance spacing 

between platoon vehicles allows an increase in the lane capacity—the lane capacity increases 

as the penetration rate of platoon vehicles 𝜑. Moreover, for the same number of platoon 

vehicles 𝑁, the more leaders 𝐿 are created, the less capacity increases. When all the vehicles 

(SAEVs) travel regularly (𝑁 = 0), we have 𝑑𝑐 = 𝑑𝑎 , then  𝐶𝑐 =
𝑣0

𝑑𝑐
=

𝑣0

𝑑𝑎
= 𝐶𝑎 . Platooned 

vehicles can move with a reduced spacing 𝑑𝑝. If all vehicles are grouped into platoons (𝑀 =

0), then 𝑑𝑐 = 𝑑𝑝  and we have 𝐶𝑐 =
𝑣0

𝑑𝑐
=

𝑣0

𝑑𝑝
= 𝐶𝑝 . 𝐶𝑝  denotes the lane capacity when all 

vehicles are driving in platoons. We get 𝑑𝑝 ≤ 𝑑𝑐 ≤ 𝑑𝑎, th𝑢𝑠 𝐶𝑎 ≤ 𝐶𝑐 ≤ 𝐶𝑃. 
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B. Road attributes 

The attributes of free-flow speed, the link travel speed at capacity, and the traffic capacity of 

different road types such as urban roads, rural roads, and local roads are read from an external 

dataset listed in Table B. 

Table B. Summary of traffic-related parameter values for different road types 

Road 

types 

Capacity 

(Vehicles per 

hour per lane) 

Free flow 

Speed 

(km/h)  

Saturation 

flow 

(Vehicles per 

hour per lane) 

Speed at 

capacity 

(km/h) 

Jam density 

(Vehicles per 

km) 

Urban 

road 1 

1200 50 1200 35 120 

Urban 

road 2 

1200 50 1200 35 120 

Urban 

road 3 

1575 50 1575 35 120 

Urban 

road 4 

1600 50 1600 35 120 

Urban 

road 5 

1633 50 1633 35 120 

Rural 

road 

1350 50 1350 35 120 

Local 

road 

900 50 900 35 120 

Local 

road 

900 30 900 25 120 
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C. Demander and Supplier zones in relocations 

Table C. Demander and Supplier zones with the number of vehicles in relocations at different 

times 

Demander zone 

(zone ID) 

Vehicle 

shortage 

(vehicles) 

Supplier zone 

(zone ID) 

The number of 

relocation 

vehicles 

Relocation time 

(simulation time: 

minutes) 

89 

41 
93 18 

48 
101 13 

52 
90 15 

108 
93 21 

92 
56 

87 15 
63 

89 21 

20 85 18 123 

100 
28 90 13 33 

22 90 16 63 

107 

21 93 14 33 

97 

86 16 

78 
93 17 

97 14 

123 13 

42 
90 18 

333 
 93 16 

112 
20 93 20 63 

20 90 16 363 

122 74 

85 18 

93 90 20 

93 14 

 

Total Vehicle 

shortage: 493 

vehicles 

 

Total number 

of vehicles in 

relocations: 346 

vehicles 

 

 

Note that AMoD systems have very high spatial and temporal dynamics of vehicle 

availability; as the travelers request services over time, available vehicles are dynamically 

assigned to serve requests from place to place. In the AMoD system, vehicles in adjacent 

zones (TAZs) within the search distance will be assigned (dispatched) to serve clients upon 

requests; We model relocation operations between Supplier and Demander zones while no 

relocation occurs in other zones. The vehicle shortage means the required number of vehicles, 

anticipating future demand in identified Demander zones. 
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Fig. C. Vehicle shortage in the Demander zone and vehicle surplus in the Supplier zone with 

zoneID 
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Summary

Automated Mobility-on-Demand (AMoD) systems are expected to 

revolutionize urban mobility systems. However, there are uncertainties in 

the planning and operations of AMoD systems. We deem the agent-based 

approach as being well suited for modeling new phenomena in future 

AMoD systems and therefore shed some light on the uncertainties about the 

operation and the impacts of such systems. Recommendations to various 

stakeholders are provided through the different contributions.
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