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A B S T R A C T   

A full understanding of the interaction mechanisms among flow-like landslides and impacted protection struc-
tures is still an open issue. Although several approaches, from experimental to numerical, have been used so far, a 
thoroughly assessment of the hydromechanical behaviour of the landslide body is achievable only through a 
multiphase and large deformation approach. 

This paper firstly proposes a conceptual model for a specific type of protection structure, namely a Deformable 
Geosynthetics-Reinforced Barrier (DGRB), i.e., an embankment made of coarse-grained soil layers reinforced by 
geogrids. In such a case, the sliding of the barrier along its base, under the impulsive action of a flow-type 
landslide, is an important landslide energy dissipation mechanism, and a key issue for the design. Then, two 
different approaches are proposed: i) an advanced hydro-mechanical numerical model based on Material Point 
Method is tested in simulating the whole complex landslide-structure interaction mechanisms, ii) an analytical 
model is set up to deal with the landslide energy dissipation and the kinematics of both the landslide and barrier. 
The calibration of the proposed analytical model is pursued based on the numerical results. Finally, the analytical 
model is successfully validated to interpret a large dataset of landslide impact field evidence, for whose inter-
pretation also five empirical methods available in the literature are tested.   

1. Background 

The impact mechanisms regulating the interaction of a flow-like 
landslide with different types of barriers have been investigated by 

different tools, which however can be grouped in empirical, numerical 
and analytical. 

The availability of direct measurements of the impact of flow-like 
masses against monitored structures has been fundamental for 

Abbreviations: aL (m/s2), liquid acceleration; aS (m/s2), solid acceleration; B (m), greater base of the barrier; b (m), smaller base of the barrier; b (kPa), body force 
vector; c′(kPa), effective cohesion; d (m), distance between landslide and barrier; DGRB, Deformable Geosynthetics-Reinforced Barrier; D (kPa), tangent stiffness 
matrix; dpL (kPa), excess pore pressure; dσ′(kPa), increment of effective stress; E (kPa), Young modulus of soil; Ek (kJ), kinetic energy of the system; Ek, 1 (kJ), kinetic 
energy of the landslide; Ek, 2 (kJ), kinetic energy of the barrier; F1 (kN/m), contact force along the base of the flow; F2 (kN/m), impact force along the side of the 
barrier; F3 (kN/m), contact force along the smaller base of the barrier; F4 (kN/m), contact force along the greater base of the barrier; Fr (− ), Froude number; fd (kPa), 
drag force vector; g (m/s2), gravity vector; k (m2), intrinsic permeability; ksat (m/s), saturated hydraulic conductivity; KL (kPa), elastic bulk modulus of the liquid; h 
(m), flow heigth; H (m), barrier heigth; LSI, Landslide-Structure Interaction; L1 (m), flow length; L2 (m), length of barrier’s lateral side; MPM, Material Point Method; 
m1 (kg), landslide mass; m2 (kg), barrier mass; n (− ), porosity; pL (kPa), liquid pressure; t (s), time; t0 (s), initial reference time; timp (s), time related to LSI beginning; tf 
(s), final time of LSI; T1 (s), time related to the peak impact force; T2 (s), final time of impact phase; V1 (m3), volume of the mixture; Vf, sx (m3), volume retained by the 
barrier; VL (m3), liquid phase volume; VS (m3), solid phase volume; vL (m/s), liquid velocity vector; vS (m/s), solid velocity vector; v1 (m/s), landslide velocity; v2 (m/ 
s), barrier velocity; s (m), geometry change length; x (m), horizontal Cartesian coordinate; y (m), vertical Cartesian coordinate; τ (− ), ratio between T1 and T2; β (

◦

), 
angle between lateral side and base of the barrier; ΔaS, contact, change in solid phase acceleration induced by the contact formulation; ΔaL, contact, change in liquid 
phase acceleration induced by the contact formulation; ΔEk(kJ), dissipated kinetic energy; Δtcr (− ), critical time step; δ (

◦

), contact friction angle between flow and 
barrier; δb (

◦

), contact friction angle between barrier and base; ε (− ), strain vector; εd(− ), cumulative deviatoric strain; κ (− ), static impact coefficient; λ (− ), geometry 
change parameter; μL (kPa • s), liquid dynamic viscosity; υ (− ), Poisson’s ratio; ρL (kg/m3), liquid density; ρm (kg/m3), density of the mixture; ρS (kg/m3), solid density; 
σ (kPa), total stress tensor of the mixture; σ̇′

(kPa/s), stress rate tensor of the solid phase; σn (kPa), normal stress tensor; φ′ (
◦

), internal friction angle; ψ (
◦

), dilatancy 
angle; Ω, spin tensor. 
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investigating the main impact mechanisms. On such a topic, the litera-
ture provides few full-scale flume experiments (De Natale et al., 1999; 
Bugnion et al., 2012) but a large variety of reduced-scale laboratory tests 
(Hübl et al., 2009; Armanini et al., 2011; Canelli et al., 2012; Ashwood 
and Hungr, 2016; Vagnon and Segalini, 2016). 

These reduced-scale laboratory tests have been used to derive and 
validate the most common empirical formulations used to assess the 
peak impact pressure in the design of protection measures against 
landslide (Scheidl et al., 2013; Scotton and Deganutti, 1997; Arattano 
and Franzi, 2003; Hübl et al., 2009; Proske et al., 2011; Bugnion et al., 
2012; Canelli et al., 2012; He et al., 2016; Song et al., 2021; Di Perna 
et al., 2022). It is true that laboratory tests are affected by scale effects 
that cannot be properly monitored (Iverson, 1997; Hübl et al., 2009), 
but this limitation is usually overcome by appropriate scale analysis. 
Nevertheless, the empirical formulations greatly depend on empirical 
coefficients which are difficult to estimate in the practical applications 
due to their wide ranges of variation. In these approaches: (i) the impact 
load is assumed to be totally transferred to the structure without any 
dissipation during the impact, and (ii) the size, stiffness and inertial 
resistance of the artificial barrier are not considered (Vagnon and 
Segalini, 2016). These assumptions lead to safe assessment of the peak 
impact force and to overestimate the barrier design. Hence, enhance-
ments will be proposed in this paper on both these topics. 

It is also remarkable that a wide set of reduced-scale laboratory ex-
periments on dry granular flows allowed Faug (2015) to propose a so- 
called phase-diagram based on: (i) Froude number (Fr) and (ii) non- 
dimensional height (H/h), i.e., the barrier height (H) relative to the 
flow depth (h). The diagram comprises four mechanisms: a) Dead zone 
(i.e., gradual accumulation of material behind the barrier): this is the 
case of relatively slow flows (Fr ≈ 1) impacting relatively small barriers 
(H/h ≈ 1); b) Airborne jet (forming downstream of the barrier): this 
stands for rapid flow (Fr ≫ 1) and small barriers; c) Standing jumps 
(propagating downstream of the barrier with steady-state conditions): 
for rapid flow (Fr ≫ 1); d) Bores (a granular jump hits the barrier and 
propagates upstream of it): in the case of a rapid flow hitting a very tall 
barrier spanning the entire height of the flow (H/h ≫ 1) with unsteady 
conditions. However, pore-water pressure largely contributes to regu-
late the landslide-structure interaction mechanisms, whose analysis 
require the use of sophisticated approaches. 

Numerical modelling is the most used alternative approach to tackle 
the analysis of Landslide-Structure Interaction (LSI). The latter has been 
afforded through Discrete Element Method (DEM) as reported by Leo-
nardi et al. (2016), Calvetti et al. (2017) and Shen et al. (2018) or 
continuum mechanics models based on Eulerian methods (Moriguchi 
et al., 2009), Lagrangian particle-based methods such as Smoothed- 
Particle Hydrodynamics (SPH) (e.g. Bui and Fukagawa, 2013), Particle 
Finite Element Method (PFEM) (e.g. Idelsohn et al., 2004), Finite 
Element Method with Lagrangian integration points (FEMLIP) (e.g., 
Cuomo et al., 2013), Material Point Method (MPM), (Ceccato et al., 
2018) or coupled Eulerian-Lagrangian methods (Qiu et al., 2011; Jeong 
and Lee, 2019). Several other numerical methods exist since years 
(Rabczuk and Belytschko, 2004, 2007, among others) and meshfree 
methods are becoming very popular. However, the solid-fluid hydro- 
mechanical coupling and the role of the interstitial fluid in the landslide- 
structure interaction have been considered only in recent times. For 
instance, the impact behaviour of saturated flows against rigid barriers 
was simulated through MPM analyses of centrifuge test results (Cuomo 
et al., 2021a). 

Recent analytical models also investigate the LSI for various cases. 
Yong et al. (2019) proposed an analytical solution for estimating the 
sliding of a barrier under the impact of a boulder. In this case, the 
colliding bodies are both assumed as rigid, and the impact is studied 
through the elastic collision principles. However, such method cannot 
be applied for instance to the case of a flow-like landslide impacting a 
Deformable Geosynthetics-Reinforced Barrier (DGRB), i.e., an embank-
ment made of coarse-grained soil layers reinforced by geogrids (Cuomo 

et al., 2020b). Li et al. (2021) proposed an analytical model to estimate 
the peak impact pressure that a debris flow exerts on a rigid barrier. Such 
model has the strength of being validated by data encompassing a wide 
range of distinct flow regimes, relative to real-scale observations of 
debris flows, small-scale experiments and recent coupled CFD-DEM 
simulations. Finally, Song et al. (2021) obtained an analytical model 
for evaluating the deflection of a flexible barrier (a net fixed to the 
ground) through the validation against experimental results of centri-
fuge tests. However, these models cannot be applied neither to estimate 
the impact pressure on a DGRB nor to determine the maximum 
displacement reached by the barrier. Hence, there is still a gap in the 
scientific literature and this paper will provide a contribution to such 
topic. 

The present work analyses the impact mechanisms of flow-like 
landslides against greened artificial barriers such as DGRB in a large 
set of full-scale realistic scenarios. A Conceptual Model of Landslide- 
Structure Interaction (LSI) is proposed and a numerical MPM model is 
used to explore the main features of the hydro-mechanical interaction of 
saturated flows with different types of barriers. Then, a novel analytical 
method is casted able to reproduce the temporal evolution of both the 
impact forces and the kinetic energy of the flow (and also of the barrier, 
if the latter is free to move along its base). The analytical method is 
calibrated based on the numerical results, and it is later validated to 
satisfactorily interpret a large dataset of field evidence. The analytical 
method is then compared to the MPM model and to five empirical 
methods available in the literature. The advantages and the limitations 
of this new analytical method are finally discussed. 

2. Exploring the landslide-structure interaction 

2.1. Conceptual model 

We assume that a flow-like landslide mass impacts against a DGRB, 
unfixed to the base ground, and free to slide over it (Fig. 2), as proposed 
by Cuomo et al. (2020b). The landslide body has the following features: 
unitary width, length L1, depth h, density of the mixture ρm, initial 
uniform velocity v1, 0, pore-water pressure pL and friction angle along 
the base ground equal to tanφb. The geometric characteristics of the 
barrier are: greater base B,smaller base b, height H, inclination of the 
impacted side β. 

The LSI problem is described through the following timelines: initial 
configuration (t0), landslide propagation (t0 < t < timp), impact of the 
landslide front (timp), time of the peak impact force (T1), start of the 
inertial stage (T2), end of LSI (tf). 

Before the landslide reaches the barrier (t0 < t < timp), i.e., during the 
propagation stage, the LSI problem is governed by the basal frictional 
force F1 (Eq. (1)), which acts along the bottom of the flow (L1) and 
controls the reduction in flow velocity, resulting into a decrease of the 
impact forces. 

When the flow interacts with the barrier (timp < t < T2), additional 
stresses (mostly orthogonal to the impacted surface, hence horizontal in 
many applications) are produced at the impacted side of the barrier. 
Many studies (e.g., Cui et al., 2015; Song et al., 2017) demonstrated that 
the total impact force-time history can be simplified as a triangular force 
impulse, usually with a rise time (T1) much shorter than the decay time 
(T2 − T1). 

For the action-reaction principle, the mutual impact forces (F2) be-
tween the landslide and the barrier are equal and opposite. Such mutual 
stress makes: (i) the flow to decelerate and (ii) the barrier to slip along its 
base and to deform itself, as shown in Fig. 2. The evaluation of the 
impact forces applied on the inclined side of the barrier (L2) is funda-
mental to design the size and the structural characteristics of the barrier 
(Eq. (2)). 

It is also worth noting that the flow may overtop the barrier during 
the impact, generating an additional force F3 on the structure (Eq. (3)), 
mainly dependent on the flow-barrier frictional contact (tanδ). 

S. Cuomo et al.                                                                                                                                                                                                                                  
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After the impulsive stage of the LSI (T2 < t < tf), then the problem is 
mostly governed by the inertial resistance force F4 (Eq. (4)), which de-
pends on the amount of friction mobilized along the base (B) of the 
barrier (tanδb). The final displacement Δx of the barrier depends on both 
the amount of energy transferred to the barrier and that dissipated by 
friction. 

F1(t) =
∫L1(t)

0

(ρm − ρL)gh(x, t)tanφbdx (1)  

F2(t) =
∫L2

0

(ρm − ρL)a(t)h(x, t)

/

cosβdx+
∫L2

0

pL(x, t)

/

cosβdx (2)  

F3(t) =
∫b

0

(ρm − ρL)gh(x, t)tanδdx (3)  

F4(t) =
1
2
ρbgH(b+B)tanδb +

∫L2

0

(ρm − ρL)a(t)h(x, t)cosβtanδbdx

+

∫b

0

(ρm − ρL)gh(x, t)tanδbdx

(4)  

2.2. MPM modelling 

To schematize the problem in a realistic way, multiple materials are 
considered such as: the flow-like landslide, the barrier, and the base soil 
(Di Perna, 2022). The latter is necessary to ensure the frictional contact 
at the base of the moving barrier (Fig. 3). In such an approach the build- 
up of excess pore pressure in the flow material during the impact is 
considered as well as the hydro-mechanical coupled behaviour and the 
yield criterion of the flow material itself. 

It is quite difficult to propose a standard landslide configuration as 
initial condition for modelling since it must represent the shape of the 
flow in a certain moment of its propagation stage. As known, this 
configuration strongly depends on the flow-path topography and on the 
geomorphological conditions that can vary from site to site. However, 
many studies have demonstrated that the front is often steeper and 
higher than the rear portion due to friction with the ground topography 
(Iverson, 1997; Thouret et al., 2020). For this reason, the chosen initial 
configuration of the landslide is characterized by a 45◦-inclined front 
and a tail of length equal to three times the flow height. To consider 
different flow volumes, an i number of squares have been placed be-
tween the head and tail portions. Given this shape, the landslide has the 
same volume of an equivalent box with the same height h and a length 
Lm = (2 + i) • h, and unitary width. 

The landslide is assumed as approaching the barrier with a fixed 
geometric configuration and constant velocity, until LSI starts. In fact, 
this manuscript solely deals with LSI. It means that the landslide trig-
gering analysis and the propagation analysis have been conducted 
before. The outcomes of such previous analyses are precisely the shape 
of the landslide (here simplified at our best as a trapezoidal shape), the 
thickness of the core part of the landslide, and the velocity (even 
assumed the same within the whole landslide body). These three factors 
once inserted in the numerical analyses are used as “initial values” from 
which their spatio-temporal evolution is computed. Such computation is 
not possible with the literature empirical methods, which only use the 
thickness and velocity to assess the peak impact action on the barrier. 

For real flows, the body will be compressed by gravity during 
propagation and thus, a constant velocity cannot be sustained. Indeed, 
the presence of very differently compressed zones inside the landslide 
body is very important inside the triggering landslide area and during 
the propagation along steep slopes. At the locations where the barriers 

could be realistically installed, i.e., in the gentle piedmont areas, these 
differences in the compression of the landslide body should be less 
evident. However, we cannot currently assess the relevance of this 
simplification, which could be investigated in the future developments. 

For the barrier it is assumed: dry material, frictional contact at base 
and rigid behaviour. This last hypothesis relates to the construction 
mode typically used for such kind of DGRBs, which involve the use of 
0.6–0.7 m thick layers of coarse materials reinforced through geo-
synthetics (usually geogrids) with high tensile strength and wrapped 
around the facing of the barrier. In fact, recent studies outlined that any 
local deformation of a DGRB or a relative horizontal shifting of its layers 
may occur under the impact of a flow (Cuomo et al., 2020b), although 
the horizontal displacement along its base is the prevailing limit state of 
the barrier. This finding combined to the fact that both the core soil and 
the geogrids are very resistant materials makes the structure experi-
encing stress levels much lower than the ultimate values in most parts of 
the structure. 

The Material Point Method (MPM) is used here. It is an enhancement 
of the Finite Element Method (FEM), and it is very well suited for large 
deformation problems. The continuum body consists of several 
Lagrangian points, named Material Points (MPs), which carry all the 
physical properties of the continuum such as stress, strain, density, 
momentum, material parameters and other state parameters. The MPs 
move across a background mesh, which covers the domain where the 
material is expected to move, and it is used to solve the governing 
equations without storing any permanent information. 

The so-called one-phase single-point formulation can be opportunely 
adopted for dry materials. Conversely, the interaction between phases, 
such as solid particles and interstitial water in a saturated soil, like a 
saturated flow-like landslide, can be tracked through the two-phase sin-
gle-point formulation (Jassim et al., 2013; Ceccato et al., 2018). In this 
case, the liquid and the solid acceleration fields (aS − aL formulation) are 
the primary unknowns (Fern et al., 2019). Here, the flow and barrier are 
modelled, respectively, through the two-phase and the one-phase MPM 
formulations, whose details are reported in the Appendix 1. It is worth 
noting that the stress update strategy chosen is the “update stress last” 
(Fern et al., 2019) and for the velocity update the scheme of Sulsky et al. 
(1995) has been used (see also Fei et al., 2021). More details are 
available in the literature (Al-Kafaji, 2013; Martinelli and Galavi, 2021, 
2022). 

For the case of a barrier unfixed to the ground, the frictional resis-
tance along the base is set equal to the 80% of the strength properties of 
the base material (Cuomo et al., 2020b). However, simulating deform-
able moving structures such as these barriers is not an easy task. In the 
current MPM code here used (Martinelli and Galavi, 2022), the mesh is 
moved during the simulation to keep the same contact nodes around the 
retaining structure. The reason is to increase the accuracy of the contact 
algorithm. This approach uses the moving-mesh concept, originally 
developed to model penetration of piles into the soil (Al-Kafaji, 2013). 
An advantage of this procedure is that the mesh can be refined around 
the structure and hence the refined area will always remain around the 
contact surface throughout the entire numerical simulation. This 
approach has been widely applied and validated in the Anura3D code, 
for quasistatic problems (see for instance the work of Ceccato et al., 
2016; Ghasemi et al., 2018; Martinelli and Galavi, 2021 for what con-
cerns CPT simulations) and for dynamic applications (see for instance 
the work of Galavi et al. (2019) for the simulation of impact-driven 
open-ended piles modelled as rigid body, and the work of Zambrano- 
Cruzatty and Yerro (2020) where the free-fall penetrometer is modelled 
both as a flexible and rigid object). Here, the barrier is assumed as rigid, 
and again the “moving mesh” has been used. 

The contact between different bodies (flow-base, flow-barrier) is 
handle with a frictional contact algorithm. An improved contact algo-
rithm was used, proposed by Martinelli and Galavi (2022), where the 
velocity of the liquid phase is corrected to prevent both inflow and 
outflow through the contact. Moreover, the computational scheme 
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proposed by Martinelli and Galavi (2022) is adopted to compute accu-
rate reaction forces along contact surfaces, especially between non- 
porous structures and soils with high liquid pressures. The readers 
may find more details in Martinelli and Galavi, 2022. 

The flow-like landslide is schematized as a saturated mixture with 
initial linear vertical distribution of pore-water pressure. The accurate 
spatial distribution of the pore-water pressure inside the landslide at the 
impact is important to consider. However, for the time being, we are 
only capable to start from a simplified distribution of pore-water pres-
sure, that is hydrostatic along each vertical. As for the previous three 
landslide factors (shape, velocity, and thickness), the distribution of 
pore-water pressure changes during the impact process, at an extent 
depending on landslide volume and velocity, as well as in relation to the 
type and features of the barrier. 

A non-associative (zero dilatancy) elasto-plastic Mohr-Coulomb 
behaviour is assumed for the saturated flow mass, whose mechanical 
properties and friction angle at the contact with the barrier are reported 
in Table 1. When the landslide impacts the barrier, it is a highly dissi-
pative and transient phenomenon, which may include porosity changes 
because of consolidation and dilation. However, Cuomo et al. (2021a) 
have shown that the high mobility of flow-like landslides prevents a 
large change in porosity inside the landslide body. In fact, the impacting 
material is more prone to runaway than to be compressed behind the 
barrier. This reasoning applies to the whole landslide body, with some 
potential compression zones limited for instance to the dead zone 
behind the barrier. 

Here, it is worth mentioning that the above MPM model has been 
formerly calibrated and validated through physical model tests, in 
particular flume and centrifuge tests, as reported by Cuomo et al. 
(2021a) and Di Perna et al. (2022). Other validations of the MPM model 
have been also proposed: for instance, Cuomo et al. (2020a) reproduced 
laboratory results of masonry walls tested under external out-of-plane 
loads; Cuomo et al. (2021b) validated the MPM model for a real land-
slide evolved into a flow. Thus, the capability for MPM-based modelling 

to reproduce the landslide-structure interaction has been ascertained 
before. Then, the same approach has been extended in this paper to the 
analysis of some of those landslide-structure interaction mechanisms to 
calibrate the proposed analytical method. 

2.3. Parametric analysis of realistic scenarios 

The complexity of the LSI has been explored through MPM (Di Perna, 
2022), with reference to the effect of the ratio H/h, the slope β of the 
impacted side of the barrier, the bottom constraint for the barrier (fixed/ 
unfixed). The geometric features of both the landslide and the barrier 
are summarized in Table 1, also considering different impact scenarios. 
Although simplified, the scheme resembles the main landslide charac-
teristics such as velocity, impact height, non-zero interstitial pressures, 
with a range of geometric cases shown in Table 2. It is worth noting that 
the case of an infinite barrier is that considered in the literature 
empirical models (Armanini et al., 2011; Cui et al., 2015). The compu-
tational unstructured mesh is made of triangular 3-noded elements (for 
instance, 20,515 in the case 1 of Table 2) with dimensions ranging from 
0.20 to 1.00 m for all the cases considered. Such mesh size was checked 
to be enough accurate to simulate the LSI mechanisms here investigated 
and it still allowed reasonable computational times for each simulation 
in the range of a few hours with a standard desktop computer. 

The so-called phase diagram proposed by Faug (2015) for flow- 
structure interaction in the case of dry granular materials is here used 
for a preliminary assessment of the expected impact mechanisms 
(Table 3). However, for the saturated flows explored in this study, it 
might be not so convincing that this diagram is used directly. And, in fact 
the numerical model is later referred to confirm such preliminary 
assessment. 

Some selected sets of the numerical results are reported to show the 
spatial distribution of pore-water pressure at different time lapses of the 
propagation stage (Figs. 4–6) for the different schemes of Table 1. 

During the impact, the initial liquid pressure (<30 kPa) changes over 
time, with the maximum value in the first instants of the impact process 
(t = 1 s) and later diminishing down to nil in some cases. However, the 
maximum of pore-water pressure (pL, max) reaches different values 
depending on the type of barrier. In fact, comparing an infinite vertical 
barrier (Fig. 4a) with a smaller (even fixed to the ground) trapezoidal 
barrier (Fig. 4b), it arises that pL, max is higher in the first case, since the 
overtopping is not allowed and so the impacted area of the barrier is 
larger than for the second case (t = 1 s). At t = 2 s, the flow overtops the 
smaller barrier (Fig. 4a) or goes beyond the barrier forming a prolonged 
jet (Fig. 4b). Liquid pressure is decreasing, indicating that we are in the 
decay zone of the impact force diagram. Subsequently (4 s < t < 6 s), the 
flow loses more and more energy and falls downwards (similarly, in both 

Table 1 
Mechanical properties.  

Flow-like landslide Barrier 

ρm 

(kg/m3) 
ρs 

(kg/m3) 
n 
(− ) 

K0(− ) φ′

(
◦

) 
c′

(kPa) 
E′

(MPa) 
ν 
(− ) 

ksat 

(m/s) 
μL 

(Pas) 
KL 

(MPa) 
ρ 
(kg/m3) 

tan(δ) 
(− ) 

tan(δb) 
(− ) 

1800 1300 0.5 0.66 20 0 2 0.25 10− 4 10− 3 30 2000 0.29 0.29  

Table 2 
Geometric features for different scenarios.  

ID L1 

(m) 
Lm 

(m) 
i 
(− ) 

h 
(m) 

V1 

(m3/m) 
v0, 1 

(m/s) 
β 
(
◦

) 
d 
(m) 

L2 

(m) 
B 
(m) 

b 
(m) 

H 
(m) 

1 21.00 15.00 3 3.00 45.00 10 60 3.00 6.95 11.00 4.00 6.00 
2 21.00 15.00 3 3.00 45.00 20 60 3.00 6.95 11.00 4.00 6.00 
3 21.00 15.00 3 3.00 45.00 10 80 3.00 6.08 8.50 6.50 6.00 
4 21.00 15.00 3 3.00 45.00 10 72 3.00 7.87 8.38 3.63 7.50 
5 21.00 15.00 3 3.00 45.00 10 90 3.00 ∞ – – ∞ 
6 47.00 45.00 43 1.00 45.00 10 60 3.00 6.95 11.00 4.00 6.00  

Table 3 
Expected impact mechanism.  

ID Fr 
(− ) 

H/h(− ) Impact mechanism* 

1–3 1.84 2.0 Standing jump 
4 1.84 2.5 Standing jump 
5 1.84 ∞ Bores 
6 2.76 6 Bores 
2 3.69 2.0 Airborne jets  

* from the application of the diagram proposed by Faug (2015) 

S. Cuomo et al.                                                                                                                                                                                                                                  



Engineering Geology 308 (2022) 106818

5

cases). The expected impact mechanism, as assessed from the diagram of 
Faug (2015), is confirmed in both the cases. For the infinite vertical 
barrier, a granular jump (named “bore”) is formed which goes upstream 
of the barrier. For the embankment barrier, the impact mechanism is the 
standing jump, which is similar to the bores regime but here a part of the 

incoming flow is able to overtop the barrier, forming a jet with very low 
energy. 

Several types of unfixed trapezoidal barriers have been considered to 
investigate different impact scenarios. Specifically, if the barrier is 
unfixed to the base ground, the maximum pore-water pressure pL, max at 
impact is of 11% lower than for a fixed barrier, because the sliding of the 
barrier hinders the building-up of water pressures inside the landslide. 
This is well captured by comparing Fig. 4b with Fig. 5a. Even if the 
impact mechanism is practically the same (standing jump), the amount 
of flow that propagates beyond the barrier is less for an unfixed barrier. 

This outcome confirms previous research results showing that an 
increase in pore-water pressure favours the overtopping of a barrier 
(Song et al., 2017; Zhou et al., 2018). In addition, here the numerical 
MPM results also show that the inclination β and the barrier height 
relative to the flow depth (H/h) play a significant role in the generation 
of excess pore-water pressure inside the landslide body. Other insights 
are reported in Fig. 5a: a higher barrier (Fig. 5b) makes a reduction of pL, 

max from 135 kPa to 123 kPa; while a more inclined impact side (Fig. 5c) 
gives a higher value equal to 146 kPa. However, all these values are 
always lower than the case of a fixed barrier. The type of impact 
mechanism is a standing jump for all the scenarios, but the amount of 
material that is retained by the barrier (Vf, sx) increases with the incli-
nation β and height H of the barrier. The final displacement exhibited by 
the barrier is larger when the inclination β increases and for a smaller 
base of the barrier itself. 

Different flows are also considered to investigate other impact 
mechanisms (Fig. 6). A higher flow velocity (Fig. 6a) than for the case of 
Fig. 5a produces an increase of pL, max from 135 kPa to 172 kPa. The 
expected impact mechanism is an airborne jet (Table 3) and it is 
confirmed by the numerical simulation. A very prolonged jet with high 
energy is formed during the impact thus the amount of material that is 
retained by the barrier is quite smaller than the standing jump cases. 
Completely different is the case of a thinner flow-like landslide (Fig. 6b), 
where the flow hits the barrier and propagates upstream of it in unsteady 
conditions (bores regime). The flow has a very low kinetic energy and so 
the potential prevails, not allowing the flow to overtop the barrier. Also 
in this case, the link between pore-water pressure at impact and the 
overcoming material is confirmed. 

The MPM numerical simulations allow investigating the landslide- 
structure interaction from both a dynamic and kinematic point of 
view. It is worth noting that different materials and differently idealized 
impact conditions are here considered through different MPM formu-
lations. Particularly, the one-phase single point formulation is used for 
modelling a dry granular flow and a saturated flow under undrained 
conditions, while the two-phase single point formulation is used for the 
other cases. As shown in Fig. 7, the peak of the horizontal impact force 
F2, x is quite similar for all the cases, apart from case 3 that has the 
highest value due to the larger impacted area and from case 6 that does 
not show a peak at the impact moment. The latter trend is typical for 
impact mechanisms which are not characterized by the formation of a 
jet. The horizontal force of a one-phase flow differs from the two-phase 
coupled cases for t > 2s. This means that the presence of a liquid phase 
inside the flow generates a longer interaction with the barrier due to the 
build-up of excess pore pressure. 

In contrast, the vertical component F2, y has a different trend for each 
impact scenario, reaching the lowest values for the inclination β = 80

◦

(case 3). This happens because the vertical component of the impact 
force is strictly linked to the weight of the flow that propagates beyond 
the barrier. For this reason, the vertical impact force plays an important 
role in the prediction of the barrier maximum displacement, which in-
creases when the vertical force approaches to zero. The undrained 
simulation is characterized by the maximum values of pore pressure 
within the flow and therefore the more mass overrides the barrier 
because of the impetus of the flowing mass, the higher the vertical force 
generated. 

The temporal variation of the forces F3 and F4 are also obtained. The 

Table 4 
Selected parameters for validation of the analytical model through MPM 
simulations.   

Flow type landslide Barrier  

n (− ) h (m) V1 (m3/m) v1, 0 (m/s) m2/m1
(*) ( − ) β (

◦

) 

Set I 0.3 3 45 (i = 3) 10 0.94 60 
Set Iia 0.5 3 45 (i = 3) 15 1.10 60 
Set Iib 0.5 3 45 (i = 3) 20 1.10 60 
Set III 0.5 3 63 (i = 5) 10 0.80 60 
Set IV 0.5 3 45 (i = 3) 10 1.10 80 
Set V 0.5 4 48 (i = 1) 10 0.73 60 

(*)m2/m1 → ∞ for fixed barriers 

Fig. 1. Interaction diagram for a flow impacting a barrier (adapted from 
Faug, 2015). 

Fig. 9. Variation of impact forces and kinetic energy of the flow (solid lines) 
and the barrier (dashed lines), as schematised in the analytical model. 
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Fig. 2. Conceptual scheme for Landslide-Structure Interaction (LSI).  

Fig. 3. Geometric schematization of the problem in the numerical model.  

Fig. 4. Pore-water pressure distribution for: (a) infinite barrier (case 5); (b) fixed artificial barrier (case 1).  
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frictional force above the barrier F3 is due to the barrier overtopping by 
the flow and so it depends on the amount of flow that goes beyond the 
barrier. In fact, the highest value of F3 is reached for the case 1, where 
the retained volume is the smallest one simulated. This force can also 
have sign changes (case 4) when the flow, instead of going beyond the 
barrier, falls within the volume retained by the barrier. However, the 
force F3 can be neglected if compared to the frictional force at the base of 
the barrier F4. 

For the sake of simplicity, the flow basal frictional force F1 is 
assumed as nil in all the cases through a smooth contact not to influence 
the flow height and velocity at impact. 

The kinetic energy of the incoming flow (in solid lines) has a quite 
similar trend for most of the moving barrier scenarios. All curves show a 
sudden reduction up to t ≅ 2 s, that is the moment from which the 
formed jet takes the downward direction. This means that energy is 
transforming from kinetic to potential. Furthermore, the decay is faster 

Fig. 5. Pore-water pressure distribution for various unfixed artificial barriers: (a) H/h = 2; β = 60◦ (case 1); (b) H/h = 2.5; β = 72◦ (case 4); (c) H/h = 2; β = 80◦

(case 3). 

Fig. 6. Pore-water pressure distribution for different flows impacting unfixed artificial barriers: (a) H/h = 2; v0 = 20 m/s (case 2); (b) H/h = 6; v0 = 10 m/s (case 6).  
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for greater inclinations β, due to the increasing in kinetic energy of the 
barrier (in dashed lines), and therefore more flow kinetic energy is 
transformed into work produced by the movement of the barrier. 
Different is the kinetic energy evolution for the case 6, where the 
reduction is slower and quite constant over time without showing any 
secondary peaks as a jet is not formed. 

The kinetic energy for the dry flow assumes the lowest values 
compared to the saturated flow scenarios and thus also the kinetic en-
ergy of the barrier, due to the more contained movement. This suggest 
that the presence of a liquid phase inside the flow makes the interaction 
with the barrier more dramatic. If the landslide-structure interaction is 
studied in undrained conditions the flow kinetic energy is slightly higher 
than the cases with hydro-mechanical coupling until t ≅ 2 s. Afterwards, 
the difference becomes more evident because the jet is faster and more 
elongated and so more mass exceeds the barrier, leading to higher ki-
netic energy of the jet. 

However, there are still some limitations of the current MPM 
modelling. For example, more sophisticated constitutive models for the 
flowing mass could be investigated, even considering the presence of 
viscous stresses inside the flow. The selection of an appropriate consti-
tutive model is one key to having successful simulations. Moreover, the 
assumption of rigid barrier used for the design of DGRBs is acceptable 
for the sake of safety, but it can lead to oversized structures. More so-
phisticated analyses are needed for analysing (i) the large and irre-
versible deformations induced, (ii) the nonlinear soil stress-strain 
behaviour, and (iii) the interaction between the different components 
(reinforcement elements and backfill soil). These limitations must be 
overcome in the future, expanding the research to new frontiers. 

3. Casting a novel analytical model for LSI 

3.1. Formulation 

An analytical model (Di Perna, 2022) is set up where the landslide 
body and the barrier are considered as two colliding bodies (Fig. 8a). 
The approaching flow is schematized as a box of volume V1, with mass 
m1, length L1, 0, depth h, unitary width, density ρm, and initial velocity 
v1, 0. The barrier is rigid, with its own mass m2 and it is free to slide along 
the base. The frictional contact at the base is equal to tan(δb), which is set 
as the 80% of the strength properties of the subsoil base material 
(Cuomo et al., 2020b). 

The case of a fixed barrier is also possibly considered, setting the 
mass of the barrier to a very high value compared to that of the flow (i.e., 
m2/m1 → ∞). 

The interaction between the landslide and the barrier (impact stage) 
is schematized by an inelastic collision (Fig. 8b), therefore after the 
impact the two bodies reach the same velocity vCM, applied in the centre 
of mass (CM) of the system. The impact force F is a spatio-temporal 
function since the approaching volume of the landslide increases with 
time until T1 and then diminishes due to the dissipation of flow energy. 
The quantity s1 represents the change (shortening) in landslide body 
after the impact and it is computed as positive in the direction opposite 
to the flow movement. Being the impacting mass saturated, the expected 
behaviour is that a part of the landslide mass will overtop the barrier and 
the remaining volume will interact with the barrier. The maximum value 
s1, max is reached when the impact force is equal to the peak value. This 
means that only a part of the total volume of the landslide contributes to 
the interaction with the barrier. Once the interacting volume (hs1) has 
contributed to increase the impact force, it may overtop the barrier 
creating a vertical jet or may be completely reflected. If a vertical jet is 
formed, supposing that all the interacting volume has overtopped the 
barrier for the sake of safety, the amount of flow mass that can be found 
beyond the barrier will be at most equal to the ρmhs1, max. After reaching 
the maximum impact pressure, the flow mass decelerates and the 
interacting volume decreases in time until nil, i.e., s1 = 0 at t = T2. 
During the interaction, the barrier can slide along its base of a quantity 
equal to Δx. 

The proposed analytical model reproduces the global behaviour of 
landslide body in the LSI process and implicitly disregards some local 
mechanisms, such as the formation of a dead zone, over which the rear 
part of the landslide body propagates (Ng et al., 2018). This is one 
limitation of the model. 

Fig. 7. Impact forces (solid lines) and barrier displacements (dashed lines) and 
kinetic energy of the flow (solid lines) and the barrier (dashed lines) in 
different scenarios. 
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At the end of the impact stage, the motion of the system is governed 
by the inertial forces and the length s1 is assumed to be zero (Fig. 8c). 
Due to friction, both the colliding bodies decelerate so that their velocity 
(vINERTIA) decreases over time. The final configuration (Fig. 8d) is 
reached when the two bodies are completely stopped and have travelled 
for a total distance of Δxf. 

For the action-reaction principle, the mutual impact forces of body 1 
(i.e., the landslide mass) and body 2 (i.e., the barrier) are equal and 
opposite. Under the assumption of inelastic collision, the quantities 
referred to body 1 are considered and the governing equations obtained. 
Doing so, the trend of F along s is assumed to be less than linear (Eq. (5)), 
because this assumption considers the fact once the interaction has 
started, the additional volumes interacting with the barrier generate 
smaller and smaller increases in impact pressure with time. 

The impact force trend F(t) in Eq. (6) can be obtained from Eq. (5) by 
introducing the formulation of s1(t) reported in Appendix 2 (Eq. (A23)). 

It is worth noting that the quantity K1 =
(

m1m2
m1+m2

)
•
(

v1,0 − v2,0
s1,max

)
is a 

model parameters referred to the body 1, while the quantities q1 (Eq. 
(7)) and T2 (Eq. (8)) are the model primary unknows. Once known both 
T2 and T1 (Eq. (16)), that can be achieved by fixing the ratio τ = T1/T2 
(for example from experimental evidence), the description of the impact 
dynamics is complete. To consider this more realistic trend, the peak 
time T1 can be achieved by fixing the ratio τ = T1/T2 (for example from 
experimental evidence), as reported in Eq. (9). 

The mathematical steps are reported in Appendix 2, while the main 
equations are reported below. The model parameters that must be 
appropriately individuated are s1, max and τ. 

F(s) = q1
̅̅̅̅
s1

√
(5)  

F(t) =
1
2

q1
2

K1
t (6)  

q1 =
3
4

K1
(
v1,0 − v2,0

)

̅̅̅̅̅̅̅̅̅̅s1,max
√ (7)  

T2 =
8
3

s1,max
(
v1,0 − v2,0

) (8)  

T1 = τT2 (9) 

The kinematics of the landslide during impact is described by the 
velocity of its centre of mass (Eq. (10)) and kinetic energy (Eq. (11)). 
Similar equations are derived for the body 2 (i.e the barrier). Here, the 
frictional contact along the base of the barrier causes its deceleration 
and therefore it must be considered in the velocity formulation (Eq. 
(12)). The deceleration is equal to the ratio between the frictional 
contact force and the mass of the barrier and remains constant during 
the interaction with the flow. The formulations derived for the velocity, 

Fig. 8. Conceptual scheme in the analytical model: (a) at the early stage of impact, (b) during the impact, (c) during the inertial phase, d) at final condition.  
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kinetic energy and displacements of the barrier are reported in Eqs. 
(12)–(14), respectively. 

v1(t) = v1,0 −
q2

1

4K1m1
t2 (10)  

Ek,1(t) =
1
2

m1v2
1(t) (11)  

v2(t) = v2,0 − gtan(δb)t+
q2

2

4K2m2
t2 (12)  

Ek,2(t) =
1
2

m2v2
2(t) (13)  

Δx(t) = v2,0 −
g
2
tan(δb)t2 +

q2
2

12K2m2
t3 (14) 

After the impact, the landslide-structure interaction between the two 
bodies can be neglected since the motion is mostly governed by the 
friction at the base. In this stage, the change in velocity over time (Eq. 
(15)) can be calculated referring to the uniformly decelerated motion 
equations. The final displacement Δxf of the barrier (Fig. 8d) is reported 
in Eq. (16). 

vINERTIA(t) = vCM −
⃒
⃒afr
⃒
⃒Δt = vCM − g tan(δb) (t − T2) (15)  

Δxf =
vCM

2

2g tan(δb)
+ v2,0T2 −

g
2

tan(δb)T2
2 +

q2
2

12K2m2
T2

3 (16) 

In this analytical model two quantities s1, max and τ must be evalu-
ated, and it is useful to understand the meaning of these variables in the 
assessment of both impact force and kinetic energy variation in time. 
Supposing that the two bodies have the same mass m1 = m2 = 81000 kg, 

and L1, 0 = 15 m; h = 3 m; ρm = 1800 kg/m3; v1, 0 = 10 m/s; v2, 0 = 0 m/s; 
β = 90

◦

; tanδb = 0.29. 
From the variation of impact forces, it emerges that the larger s1, max 

the lower the peak force value. Since the linear momentum is inde-
pendent of s1, max, the reduction of the flow velocity from v1, 0 to vCM 
occurs over a greater distance (as understandable from Eq. (A16) in 
Appendix 2). Hence, the impact time T2 increases with higher values of 
s1, max. This is also reflected in the computation of the kinetic energy 
over time, where for larger values of s1, max the flow energy reduction is 
more gradual. For the barrier, lower value of s1, max lead to higher peak 
of kinetic energy since the same amount of momentum is transferred 
from the flow to the barrier in a shorter time lapse. The change in τ also 
leads to different results as for τ ⟶ 1 it occurs that T1 ⟶ T2. This also 
regulates the slope of the rise trend of the impact force diagram, being 
more inclined for lower values of T1. The inclination of the rise period 
influences the kinetic energy trend being its variation more gradual 
when τ approaches unity. 

3.2. Calibration 

The proposed analytical model needs the calibration of the quantities 
s1, max and τ before being adopted for the prediction of landslide- 
structure interaction. These terms are obtained through Eq. (5). And 
Eq. (9), respectively, using the peak value of the horizontal impact force 
and peak time T1 obtained from the MPM simulations. An example of the 
calibration for both fixed and unfixed barrier is reported in Fig. 10. 
Then, the trend over time of the kinetic energy is plotted for both the 
colliding bodies using the calibrated parameters. The results show a 
good correspondence between analytical and MPM model either in 
terms of impact forces or in terms of kinetic energy. 

To quantify the confidence in the predictive capability of the model, 

Fig. 10. Example of the analytical model calibration through MPM simulations (case 1 in Table 1).  
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a validation assessment is needed. The ratio λ = s1, max/L1, 0 obtained 
from calibration (0.72 and 0.41 for fixed and unfixed barriers, respec-
tively) was maintained unchanged and thus it was used to calculate the 
quantities s1, max for each impact scenario. 

However, to obtain more precise results for identical flows with 
different velocities, the quantities s1, max and τ must be changed so that 
they are directly and indirectly proportional to the initial velocity v1, 0, 
respectively. This means that the ratio v1, 0/s1, max and the product v1, 

0τ are kept constant. If it happens that s1, max > L1, 0 then the assumption 
s1, max = L1, 0 must be set. 

Nevertheless, real case landslides have different volumes, density, 
impact height, etc. from each other thus estimating s1, max through the 
calibrated λ is the best solution. 

The selected parameters used for assessing the goodness-of-fit for the 
analytical model under different scenarios are also here the porosity, the 
impact height, the triggered volume, the initial velocity of the landslide 
and the inclination of the impacted side of the barrier (Table 4). 

The correspondence of the results is still good for all the calibration 
set (Fig. 11), where the analytical model can predict quite well the peak 
of the impact force and its time of occurrence. The trend over time of 
flow kinetic energy is traced in broad terms for both fixed and unfixed 
barriers. The barrier kinetic energy is reproduced quite well during the 
acceleration phase, but a little worse during the reduction phase since 
the interaction calculated with MPM lasts longer. 

The analytical solution appears to overestimate the time of occur-
rence for case “set IV”. In this case, the barrier front is 80◦ steep, while in 
the other cases is 60◦. Of course, the inclination of the barrier side is 
important in the LSI process. However, the mismatch with numerical 

Fig. 11. Calibration results of the analytical model through MPM simulations (cases in Table 4).  

Fig. 12. Application of the proposed analytical model to the large field dataset 
(139 cases) collected by Hong et al. (2015). 
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model outcomes is considered as negligible. It is also important noting 
that the (necessarily simplified) analytical model is proposed as a fast 
design tool. Of course, the solution(s) individuated through this new 
proposed analytical method must be carefully verified by means of 2D or 
3D numerical (or physical) modelling. 

Concerning that, we can observe that a variety of numerical methods 
was developed to simulate large-deformation problems and examples 
are listed in the introduction of the manuscript. A complete list of 
available methods is reported in Soga et al. (2016). On one hand, it is 
well-known that FEM has severe limitations in simulating problems with 
extreme deformations, which are caused by extreme element distortions 
(e.g., Soga et al., 2016). On the other hand, in this manuscript, MPM was 
used to simulate landslide-barrier interaction, which is a large-strain 
problem. The goal is not to highlight pros- and cons- of this method 
compared to others, but to use a validated MPM tool to calibrate 
analytical models which can be easily used in engineering practice. 

3.3. Validation for a large dataset of field evidence 

The proposed analytical model is validated to interpret a large 
dataset of real observations of flow-type landslides measured through a 
permanent monitoring station. 

The field dataset from Hong et al. (2015) includes thickness, density, 
channel width, volume of discharge, velocity and impact forces recorded 
in real time during debris flow events. 

The data are relative to 139 historical events that took place between 
1961 and 2000 in the Jiangjia Ravine basin, located in the Dongchuan 
area of Yunnan Province in China (Zhang and Xiong, 1997; Kang et al., 
2007; Hong et al., 2015). The bulk density ranges from 1600 to 2300 kg/ 
m3 with fluid concentration ranging from 0.15 to 0.6. The dataset is well 
suited for the validation purpose as it has a wide range of values: v1, 0 =

3 − 14 m/s, h = 0.2 − 2.7 m, V1 = 269 − 1.75 • 106 m3 and ppeak = 14 −
435 kPa. 

The parameters needed to compute the impact pressure through the 

analytical model are K1, q1 (Eq. (7)) and ppeak = q1
̅̅̅̅̅̅̅̅̅̅̅̅s1,max

√
/h (Eq. (5)). 

The quantity s1, max is calculated for each flow data as λL1, 0, using the 
value λ = 0.72 calibrated in the case of fixed barriers. The flow length L1, 

0 is obtained dividing the measured volume of discharge by the impact 
area (which is the product of the channel width and the flow thickness). 

The validation results are reported in Fig. 12 and show a good cor-
respondence with the field data. A slight overestimate is achieved 
especially for high impact pressures. 

The application of the numerical MPM model is beyond the scope 
this paper, while it could be a future development of the research. 

4. Discussion 

A comparison between the presented models is necessary to assess 
their strengths and weaknesses in analysing landslide-structure 
interaction. 

MPM is an advanced numerical method and has proved to be reliable 
in predicting the impact force trend over time (Cuomo et al., 2021a, 
2021b). Moreover, unlike field evidence or laboratory tests, the nu-
merical results provide additional features, through the computation 
and time-space tracking of different quantities, such as stress, strain, 
pore pressure, solid and liquid velocities, which cannot be easily 
monitored or obtained in the field. 

Particularly focusing on LSI, MPM has many advantages. Primarily, 
it allows considering all such important aspects of the saturated flows, i. 
e., hydro-mechanical coupling and large deformations during propaga-
tion and impact. It was observed, in fact, that the presence of a liquid 
phase inside the flow can lead to different impact regimes in respect to 
dry granular flows, highlighting the importance of considering the solid- 
fluid interaction in the analyses. The accurate knowledge of the impact 
mechanism and so the evolution of flow depth and velocity is crucial for 
the design of mitigation countermeasures. For example, the accurate 
estimate of the length of the vertical jet must prevent that the retaining 
structure is overtopped by the flow, thus being ineffective. However, 

Fig. 13. Comparison of MPM and proposed analytical model for the cases of fixed barriers.  
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MPM suffers from some limitations, such as the high computational cost 
and until now the difficulty of being available in engineering practice. 

Analytical and empirical models are more immediate and easier to 
use than MPM, and thus they could be preferable in the assessment of the 
LSI problems for design purposes. 

Considering the impact scenarios used in the above-mentioned an-
alyses, Figs. 13–14 show the comparison between MPM and the pro-
posed analytical model in evaluating the most representative quantities 
in an LSI analysis. It emerges a general agreement among the models, 
considering both fixed and unfixed barriers. Fig. 13 shows that the 
proposed analytical model for fixed artificial barriers predicts quite well 
the peak impact force with a slight underestimation in some cases. The 
other quantities (T1, T2 and Ek, 1(T1)) are also characterized by a good 
match, apart from Set IIa and Set IV that give an overestimation for T1, 
T2 and an underestimation of Ek, 1(T1)) indicating that the flow velocity 
and the inclination β are less predicted. 

For unfixed barriers (Fig. 14), there is a high correspondence in terms 
of Fpeak, T1 and Ek, 1(T1) for all the scenarios. Even the maximum kinetic 
energy of the barrier Ek, 2, max is predicted quite well, apart from Set I and 
Set IV where the MPM simulations gives higher results. This means that 

the porosity n and the inclination β are the most influential parameters 
when evaluating Ek, 2, max with the analytical model. About the time T2 
and the flow energy Ek, 1(T1), the analytical solutions give an underes-
timation of the MPM results. This is mainly linked to the inability of this 
analytical model in considering the hydro-mechanical coupling and 
large deformations within the flow, which play a crucial role during the 
interaction with the barrier. 

The proposed analytical model is finally compared to some empirical 
formulations available in the scientific literature (Fig. 15). The empirical 
models have been classified into three groups: (i) hydro-static models, 
which require only flow density and thickness for evaluating the 
maximum impact pressure; (ii) hydro-dynamic models, based on flow 
density and the square velocity of the flow; (iii) mixed models, that 
include both information about the static and the dynamic component of 
the flow. The latter group is preferable; thus, the chosen empirical for-
mulations are all taken from group (iii): Hübl and Holzinger, 2003, 
Armanini et al. (2011), Cui et al. (2015), Vagnon (2020) and Di Perna 
et al. (2022). 

The large dataset used for the comparison includes 139 debris flow 
cases (from Hong et al., 2015) already considered in paragraph 4.3. The 

Fig. 14. Comparison of MPM and proposed analytical model for the cases of unfixed barriers.  
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proposed analytical model reports the highest correspondence among 
the real data and the computed values, also with a slight safe-side 
overestimation in the computed values. The empirical models of 
Armanini et al. (2011) and Vagnon (2020) are also acceptable with a 
contained dispersion of the calculated values and with an overestimated 
coefficient of 1.61 and 1.35, respectively (Fig. 15a). The formulations 
proposed by Hübl and Holzinger, 2003 and Cui et al. (2015) are, in 
contrast, characterized by a quite relevant variability of the achieved 
results. In particular, the method proposed by Cui et al. (2015) even 
leads to underestimate the peak values of impact pressure of about 7% 
(Fig. 15a). 

Furthermore, the relative error between model prediction and field 
data is computed as (ppeak, calculated − ppeak, field data)/ppeak, calculatedfor each 
of the 139 impact pressure values (Fig. 15b). The comparison among all 
the methods highlight that the best estimate is obtained with the pro-
posed analytical method, which is characterized by the lowest relative 
error, i.e., about ±10% for impact pressure values >50 kPa and up to 
±30% for 0–50 kPa. Moreover, it emerges that some empirical models 
lead to a larger (and systematic) overestimation of the impact pressure. 
This is crucial for making a cost-effective design of the protection 
structure. 

More in general, while the empirical models require as input data 
only the flow density, thickness and velocity, they can be used only for 
the design of fixed barriers, while not for DGRBs that are a promising 
landslide protection structure. The latter is instead well captured by 

both the proposed models, the MPM-based model and the energy-based 
analytical model. 

5. Conclusions 

This study has introduced and compared analytical and numerical 
MPM models to analyse the impact of flow-like landslides against arti-
ficial barriers, focusing not only on the evaluation of the peak impact 
forces but also on the kinematics evolution of both flow and barrier. 

A conceptual model for the LSI problem was firstly introduced to 
better focalized the main variables that govern the dynamics of the 
impact process. This conceptual model was then implemented in a nu-
merical Material Point Method (MPM) model and later used to propose a 
novel analytical impact model. 

The calibration of the analytical model was conducted against the 
MPM outcomes to better monitor the most influential quantities for LSI 
problems, setting their values within the typical ranges for flow-type 
landslides. The achieved results reported that for the analytical model 
all the formulations depend on the calibrated parameter λ, which is 
found to be equal to 0.72 for fixed barrier and 0.41 for unfixed barriers. 

The analytical model was validated through a real field dataset 
collected at Jiangjia Ravine (China), to check its predicting capability. 
The achieved results are encouraging, showing a high correspondence 
between the analytical model results and the measured field data. 

A discussion on strengths and limitations of the two proposed models 

Fig. 15. The proposed analytical model compared to some empirical models available in the scientific literature (a) with the relative errors of each model (b).  
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was conducted and can summarized as follows:  

1. MPM is an advanced numerical model and referring to LSI problems 
can handle a wide range of variables for both flow and barrier. Apart 
from this, MPM is a comprehensive method that allows to simulate 
the entire process of a landslide, from triggering to final deposition. 
This aspect is particularly important when studying the impact of a 
landslide against a protection structure since the main weakness of 
analytical and empirical models is the pre-setting of the flow depth 
and velocity. The latter parameters are particularly difficult to pre-
dict or measure during debris flow event, leading to a high uncer-
tainty of the models. However, the high computational cost and its 
limited diffusion until now to the research field leaves its use to a 
small group of engineers.  

2. An analytical model can be preferable in practice for designing fixed 
or unfixed barriers that must resist under the impulsive action of flow 
landslide. Its strong point is principally the simplicity in computing 
the main principal quantities in the context of LSI. In addition, it 
furnishes a not exaggerated overestimate of the peak impact pres-
sures compared to those measured in the field.  

3. Both the numerical and the analytical models here proposed are 2D 
approaches. Real landslides have a fully 3D evolution, that must be 
accurately treated in the triggering and propagation analyses. 
Indeed, also LSI is a 3D problem, but here the 3D effects are not 
considered in favour of less time-consuming computation. 

In conclusion, the models proposed in this study show a good 
capability to predict the impact dynamics and kinematics of LSI. Further 
measured field data obtained for both fixed and unfixed artificial barrier 

will be helpful to improve the predictability of the two (numerical and 
analytical) proposed models. This can be achieved only by monitoring 
barriers systems against real flow-like landslides, with the final goal of 
helping to design artificial protection barriers with increasing level of 
safety and reliability. 
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Appendix 1. Material Point Method model equations 

One-phase formulation 

The conservation of mass is reported in Eq. (A1) and is automatically satisfied as the solid mass remains constant in each MP during deformation. 

dρ
dt

+ ρ∇ • v = 0 (A1) 

The conservation of momentum includes the conservation of both linear and angular momentum. The former is represented by the equation of 
motion, even known as Newton’s second law (Eq. (A2)), while the conservation of angular momentum refers to the symmetry condition of the stress 
matrix (σ = σT). 

ρ dv
dt

= ∇σT + ρg (A2) 

Finally, the constitutive equation needs to be expressed to include the stress-strain dependency (Eq. (A3)). The term D is the stiffness matrix; σ̇′ and 
ε̇ are the stress and strain rate tensors of the solid phase, respectively. Ω is the spin tensor and ε̇vol is the volumetric strain increment. To simulate large 
deformations (Eq. (A3) is derived) the Jaumann’s stress rate of Kirchhoff stress can be considered; on the other hand, the Cauchy one which is limited 
to small strain rate (Martinelli and Galavi, 2022). 

σ̇′ = Dε̇+Ωσ′

− σ ′Ω − ε̇volσ
′ (A3) 

In undrained conditions, the stress state can be described in terms of effective stresses. The excess pore pressures can be computed by means of the 
so-called Effective Stress Analysis (Eq. (A4)), which assumes strain compatibility between the solid skeleton and the interstitial liquid (Vermeer, 
1993). 

ΔpL = KLΔεvol (A4) 

The time integration scheme considered in MPM is explicit, since most of the dynamic problems, including wave or shock propagation, cannot be 
treated properly by an implicit integration which tends to smooth the solution (Fern et al., 2019). 

Let’s consider the critical time step Δtcr as the time increment during which a wave with speed c crosses the smallest element length d (Eq. (A5)). 

Δtcr =
d
c
=

d
̅̅̅̅̅̅̅̅
E/ρ

√ (A5) 

The critical time step defines the biggest time increment which can be used for a stable calculation, but often it can’t be estimated in case of non- 
linear problems. For this reason, the critical time step is multiplied by an additional factor CNB (namely Courant number) in order to reach stability. 
The Courant number has values between 0 and 1. Generally, the smaller the Courant number and the smaller the time step, improving the accuracy of 
the numerical results. 
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Two-phase formulation 

A saturated porous medium is schematized as a solid phase which represents the solid skeleton, whereas the liquid phase fills the voids among the 
grains. Each MP represents a volume of the mixture V, given by the sum of the solid VS and liquid VL phases volumes. The behaviour of a saturated 
porous medium is here described using only one set of MPs, in which the information about both the solid and liquid constituents is stored. 

The velocity field of solid and liquid phases are both used, but the material points move throughout the mesh with the kinematics of the solid 
skeleton. The equations to be solved concern the balance of dynamic momentum of solid and liquid phases, the mass balances, and the constitutive 
relationships of solid and liquid phases. The accelerations of the two phases are the primary unknowns: the solid acceleration aS, which is calculated 
from the dynamic momentum balance of the solid phase (Eq. (A6)), and the liquid acceleration aL, which is obtained by solving the dynamic mo-
mentum balance of the liquid phase (Eq. (A7)). The interaction force between solid and liquid phases is governed by Darcy’s law (Eq. (A8)). 
Numerically, these equations are solved at grid nodes considering the Galerkin method (Luo et al., 2008) with standard nodal shape functions and 
their solutions are used to update the MPs velocities and momentum of each phase. The strain rate ε̇ of MPs is computed from the nodal velocities 
obtained from the nodal momentum. 

nSρSaS = ∇ • (σ − npLI)+ (ρm − nρL)b+ fd (A6)  

ρLaL = ∇pL − fd (A7)  

fd =
nμL

k
(vL − vS) (A8) 

The resolution of solid and liquid constitutive laws (Eqs. (A9)–(A10)) allows calculating the increment of effective stress dσ′ and excess pore 
pressure dpL, respectively. The mass balance equation of the solid skeleton is then used to update the porosity of each MP (Eq. (A11)), while the total 
mass balance serves to compute the volumetric strain rate of the liquid phase (Eq. (A12)) since fluxes due to spatial variations of liquid mass are 
neglected (∇nρL = 0). 

dσ′

= D • dε (A9)  

dpL = KL • dεvol (A10)  

Dn
Dt

= nS∇ • vS = 0 (A11)  

Dεvol

Dt
=

nS

n
∇ • vS +∇ • vL (A12) 

In the two-phase single-point formulation the liquid mass, and consequently the mass of the mixture, is not constant in each material point but can 
vary depending on porosity changes. Fluxes due to spatial variations of liquid mass are neglected and Darcy’s law is used to model solid-liquid 
interaction forces. For this reason, this formulation is generally used in problems with small gradients of porosity, and laminar and stationary flow 
in slow velocity regime. However, this formulation proves to be suitable for studying flow-structured-interaction (Cuomo et al., 2021a, 2021b). The 
water is assumed linearly compressible via the bulk modulus of the fluid KL and shear stresses in the liquid phase are neglected. 

The current MPM code uses 3-node elements which suffer kinematic locking, which consists in the build-up of fictitious stiffness due to the inability 
to reproduce the correct deformation field (Mast et al., 2012). A technique used to mitigate volumetric locking is the strain smoothening technique, 
which consists of smoothing the volumetric strains over neighbouring cells. The reader can refer to Al-Kafaji (2013) for a detailed description. 

Regarding the critical time step, the influence of permeability and liquid bulk modulus must be considered as well (Mieremet et al., 2016). In 
particular, the time step required for numerical stability is smaller in soil with lower permeability (Eq. (A13)). 

Δtcr = min

(
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(E + KL/n)/ρm

√ ;
2(ρm + (1/n − 2)ρL )ksat

ρLg

)

(A13) 

The sliding modelling of the flowing mass on the rigid material is handled by a frictional Mohr-Coulomb strength criterion. The contact formu-
lation was used to ensure that no interpenetration occurs, and the tangential forces are compatible with the shear strength along the contact. The 
reaction force acting on the structure at node j was calculated as in Eq. (A14). 

Fj(t) = mj,SΔaS,contact +mj,LΔaL,contact (A14) 

The terms ΔaS, contact and ΔaL, contact are the change in acceleration induced by the contact formulation, for both solid and liquid phase, and mi, S and 
mi, L are the corresponding nodal masses. The total reaction force is the integral of the nodal reaction forces along the barrier. 

Appendix 2. Analytical model equations 

Impact governing equations (timp < t < T2) 

For the action-reaction principle, the mutual impact forces of body 1 (i.e., the landslide) and body 2 (i.e., the barrier) are equal and opposite. In the 
following, the quantities referring to body 1 will be taken into consideration. 

According to Newton’s second law of dynamics, the reaction force between two colliding bodies can be written as in Eq. (A15), where s is time- 
dependent and represents the longitudinal interacting length of the considered body. 

F(s) = m1
dv1

ds1
•

ds1

dt
(A15) 

The velocity variation can be supposed to be linear along x and can be computed through Eq. (A16), which consists in the ratio between the velocity 
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variation during the impact period (timp,T2) and the maximum interacting length of body 1. 

dv1

ds1
=

v1,0 − vCM

s1,max
(A16) 

For inelastic collision, the final velocity vCM of the two bodies is the same and can be obtained from the conservation of linear momentum of the 
system if there is no friction between the sliding bodies and the surface (Eq. (A17)). If m2 → ∞, the final velocity of the body 1 goes to zero. This is a 
valuable assumption for the case of a fixed barrier. 

vCM =
m1v1,0 + m2v2,0

m1 + m2
(A17) 

During the collision between the two bodies, the kinetic energy of the system is not conserved and the total variation of kinetic energy of the system 
can be obtained from Eq. (A18). 

ΔEk =
1
2
(
m1v1,0

2 +m2v2,0
2) −

1
2
(m1 +m2)vCM

2 (A18) 

Using Eqs. (A15)–(A16), Eq. (A14) can be written as in Eq. (A19). 

F(s) =
(

m1m2

m1 + m2

)

•

(
v1,0 − v2,0

s1,max

)

•
ds1

dt
= K1 •

ds1

dt
(A19) 

It is worth noting that the quantity K1 =
(

m1m2
m1+m2

)
•
(

v1,0 − v2,0
s1,max

)
is a characteristic of body 1. Let introduce a new variable q1 such that multiplied by the 

maximum interaction length of the body 1 (s1, max) gives the work done by the impact force (Eq. (A20)). 
The function F(s) is not known a priori since ds1

dt is unknown. For this reason, the trend of F along s is assumed to be less than linear (Eq. (A21)), 
because this assumption considers the fact once the interaction has started, the additional volumes interacting with the barrier generate smaller and 
smaller increases in impact pressure with time. 

From Eqs. (A18) and (A20), the variation of ds1
dt (Eq. (A22)) and the relationship between s1 and t (Eq. (A23)) can be determined. The unknown 

quantities q1 and T2 can be obtained by solving the system in Eq. (A24), which reports the understandable conditions: (i) the integral of s1 over the 
impact time is equal to the maximum interacting length (s1, max) and (ii) the work done by the impact force is equal to the dissipated kinetic energy by 
the system (ΔEk in Eq. (A18)). The formulations of T2 and q1 obtained by solving the system in Eq. (A24) are reported in Eqs. (A25)–(A26), 
respectively. 

q1s1,max =

∫ s1,max

0
F(s)ds1 (A20)  

F(s) = q1
̅̅̅̅
s1

√
(A21)  

ds1

dt
=

1
2

(
q1

K1

)2

t (A22)  

s1(t) =
1
4

(
q1

K1

)2

t2 (A23)  

⎧
⎪⎪⎨

⎪⎪⎩

∫ T2

0

ds1

dt
dt = s1,max

∫ s1,max

0
F(s)ds1 = ΔEk

(A24)  

T2 =
8
3

s1,max(
v1,0 − v2,0

) (A25)  

q1 =
3
4

K1
(
v1,0 − v2,0

)

̅̅̅̅̅̅̅̅̅̅s1,max
√ (A26) 

Once known the quantities involved in the evaluation of the impact force over time and along s, the trend of the acceleration (Eq. (A27)) can be 
obtained from Eqs. (A15) and (A22). The velocity of body 1 is simply the integral of acceleration over time (Eq. (A28)) and so the trend of kinetic 
energy over time can be computed (Eq. (A29)). 

a1(t) =
q2

1

2K1m1
t (A27)  

v1(t) = v1,0 −
q2

1

4K1m1
t2 (A28)  

Ek,1(t) =
1
2

m1v2
1(t) (A29) 

The same equations can be obtained for the body 2, considering the quantities related to the barrier. However, the frictional contact along the base 
of barrier causes its deceleration and therefore must be considered in Eq. (A27). The deceleration is equal to ratio between the frictional contact force 
and the mass of the barrier (Eq. (A30)) and remains constant during the interaction with the flow. 
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The formulation derived for the acceleration, velocity and kinetic energy of the barrier are reported in Eqs. (A31)–(A33), respectively. The barrier 
displacement Δx (Fig. 8) can be obtained by integrating the velocity trend over time (Eq. (A34)). 
⃒
⃒afr
⃒
⃒ =

Ffr

m2
=

m2gtan(δb)

m2
= gtan(δb) (A30)  

a2(t) =
q2

2

2K2m2
t − gtan(δb) (A31)  

v2(t) = v2,0 − gtan(δb)t+
q2

2

4K2m2
t2 (A32)  

Ek,2(t) =
1
2

m2v2
2(t) (A33)  

Δx(t) = v2,0 −
g
2
tan(δb)t2 +

q2
2

12K2m2
t3 (A34) 

The presented formulations consider that the impact force trend over time is a linear function that reaches the peak value at t = T2. However, many 
studies (e.g. Song et al., 2017,) have demonstrated that the total impact force-time history can be simplified as a triangular force impulse, usually with 
a rise time (T1) much shorter than the decay time (T2 − T1), as shown in Fig. 1. To consider this more realistic trend, the above-mentioned formulations 
can be rewritten, introducing the dimensionless ratio τ = T1

T2 
in such a way that the different triangular trends (timp − Fpeak − T2) all have the same area 

(i.e., the impulse of the impact force does not change with τ). To this aim, the general formulation f(t) is converted into a new one f(t′) through a change 
of variables from t to t′, as reported in Eq. (A35), see Fig. 9. 
⎧
⎪⎪⎨

⎪⎪⎩

f (t’) = f
(t

τ

)
0 < t′ < T1

f (t′ ) = f
(

T2 − t
1 − τ

)

T1 < t′ < T2

(A35)  

Inertia governing equations (T2 < t < tf) 

After impact, the interaction between the two bodies can be neglected since the motion is mostly governed by the friction at the base. In this stage, 
the change in velocity over time (Eq. (A36)) can be calculated referring to the uniformly decelerated motion equations, with the constant acceleration 
reported in Eq. (A30). 

Since the barrier is assumed to slide over the distance Δx, the amount of energy that has been transferred to the barrier Ek, 2(T2) is equal to the 
amount of energy dissipated by friction (Wfr = FfrΔx). 

The final displacement Δxf of the barrier (Fig. 8d) is simply the sum of Eq. (A34) with t = T2 and Eq. (A37), as reported in Eq. (A38). 

vINERTIA(t) = vCM −
⃒
⃒afr
⃒
⃒Δt = vCM − g tan(δb) (t − T2) (A36)  

Δx =
vCM

2

2g tan(δb)
(A37)  

Δxf =
vCM

2

2g tan(δb)
+ v2,0T2 −

g
2

tan(δb)T2
2 +

q2
2

12K2m2
T2

3 (A38)  
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