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A B S T R A C T

Artificial agents are promising for real-time power network operations, particularly, to compute remedial
actions for congestion management. However, due to high reliability requirements, purely autonomous agents
will not be deployed any time soon and operators will be in charge of taking action for the foreseeable future.
Aiming at designing assistant for operators, we instead consider humans in the loop and propose an original
formulation. We first advance an agent with the ability to send to the operator alarms ahead of time when
the proposed actions are of low confidence. We further model the operator’s available attention as a budget
that decreases when alarms are sent. We present the design and results of our competition ‘‘Learning to run
a power network with trust’’ in which we evaluate our formulation and benchmark the ability of submitted
agents to send relevant alarms while operating the network to their best.

1. Introduction

Power network operators are in charge of maintaining a reliable,
secure supply of electricity at all times. A vast majority of the real-time
operation and control decisions are made by human operators based
on their experiences, and predefined operation rules and manuals.
However, real-time decision-making is getting more challenging as the
human operator has to deal with more information, more uncertainty,
more applications and more coordination [1]. Recent power outages
such as the Texas power outages in early 2021 clearly showed that
human operators faced daunting challenges in dealing with rare events
and they desperately need intelligent decision-support tools to help
make fast and robust decisions to safeguard the network. The ability
to foresee events ahead of time is also vital to the future operation of
the power system, given inherent future variability.

Human operators and AI can be seen as complementary heteroge-
neous intelligence that could achieve a superior outcome when com-
bined [2]. In the future, the human may supervise automation, with
artificial agents as so-called assistants, monitoring the current system
and projecting the forecasted system via simulation. The assistants
may propose actions to the operator when issues are identified [3],
ultimately having good foresight to securely operate the system [4].

Machine Learning (ML) and Reinforcement Learning (RL) mod-
els are showing promise for managing operational reliability [5–7].

∗ Corresponding author.
E-mail address: antoine.marot@rte-france.com (A. Marot).

ML and RL can propose operating control decisions very quickly,
making it suitable for emergency control purposes [8]. Autonomous
agents trained with RL are particularly promising as they can rein-
force its leanings, even on very complex tasks. Hence, an agent can
autonomously improve itself with training simulations, just as human
operators adapted their heuristics for their network with experience
over years and training on simulated scenarios. It has previously been
shown that RL based agents can autonomously improve its own model
quality for real-time power network operation management, through
the ‘‘Learning to run a power network’’ (L2RPN) competition series.
[9].

Starting from our initial baseline [10], winning solutions of these
successive L2RPN competitions have progressively improved the oper-
ational performance of artificial agents to robustly operate (even under
N-1 line disconnections) the network [11–13] as illustrated on Fig. 1
along the 𝑥-axis.

However, existing AI technology lacks the robustness and trustwor-
thiness that are required for high-consequence, high impact, decision-
making in real-time network operation. One key issue is insufficient
consideration of leveraging the experience of and working with hu-
man teammates (or operators) in existing AI models and applications.
Experienced operators in power network deploy extensive domain or
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Fig. 1. As a first approximation, trust in an agent can emerge under appropriate levels
of operational performance and predict consequence rates. Here we show the expected
path of successive L2RPN winning solutions to realistically develop a trusted agent
when adding a predict failure feature.

expert knowledge that cannot adequately represented mathematically
or easily captured by existing machine learning models [14]. A recent
study by MIT researchers showed that state-of-the-art AI agents can be-
come frustrating teammates, and highlighted the need of incorporating
subjective metrics such as trust and teamwork into the development of
assistants [15] .

Research suggests that an AI agent can increase its trustworthiness
by reducing conflicting evidence and by increasing the amount of
evidence it has gathered [16,17]. Therefore, based on an imperfect
and reinforced model, the assistant proposes actions with varying
confidence to reduce conflicting evidence. This is represented through
the agent Predictive Failure rate dimension in Fig. 1. This represen-
tation makes the low confidence of agents explicit. Working along
that direction could eventually make an imperfect agent trustworthy,
as the operator will know when to take over. It will also relieve the
operator from constant supervision, (hyper-vigilance) which might by
physiologically impossible. This also relates to 2-D Hybrid Intelligence
diagram target [18] which represents simultaneously high levels of
automation and yet high level of human control.

The objective of this paper is to develop an original formulation
that incorporates trust-building mechanisms into the process of intel-
ligent assistant learning to securely run the network against various
network overloading and physical violation conditions. The framework
was tested and demonstrated in the L2RPN with trust competition
which was organised over the summer 2021. It should be noted that
developing an efficient and effective sequential decision making (SDM)
formulation is not trivial, but rather critical for obtaining a competent
and trustworthy AI assistant for network operators. This is analogous
to a novel, complex formulation of the well-known (optimal power
flow) OPF problem in power systems [19], close to SCOPF (security
constrained OPF) [20] or Multi-period AC SCOPF [21] in particular,
but with a human consideration, built in.

The specific contributions of this paper are:

(i) proposing a novel SDM formulation in Section 2 that incor-
porates human-AI trust-building mechanisms in the design of
intelligent assistants. Agents are now given the ability to send
interpretable warning to the human—modelled using novel ‘‘at-
tention budget’’ constraints.

(ii) instantiating this concept through the L2RPN with trust frame-
work environment in Section 3.

(iii) analysing an open competition results to evaluate this concept
design in Section 4 and promising directions.

2. Trust in artificial intelligence (AI)

There are inherent issues with automation of tasks more gener-
ally [22], when agents are deployed as assistants to achieve higher
efficiencies in managing complex systems. Trust between the human
and agent will be difficult to achieve at first as it cannot be varied
and be completely lost [23]. Therefore, it seems promising to inves-
tigate the very fundamental concept of trust within humans (in this
case, operators). This paper investigates whether human operators can
develop trust in RL agents to address the issue of missing trust and
rigorousness, which currently represents a barrier to their deployment.
This idea connects to a broader topic as trustworthiness of AI which
is generally believed to be a must-have property for mission-critical
applications such as reliability management, in particular context such
as vehicle driving or network operations.

The assumption for the proposed trust concept is that humans will
trust an agent if they believe that the agent will act in the human’s
best interest, and accepts vulnerability to the agent’s actions (which
is adapted from the basic definition of trust [24]). Before a human
can trust (an agent), high levels of (i) credibility, (ii) reliability and
(iii) intimacy are required according to the Trust Equation (by Charles
Green):

(i) the credibility of an agent can increase when the agent is trans-
parent and explains the proposed actions [25]. Credibility is an
output of increasing transparency, however, transparency is not
always necessary for credibility in the extreme, idealistic case of
a perfect agent—for instance. Although trustworthiness should
be a property of any explainable model, not every trustworthy
model is explainable on its own. As an example, for emergency
network control, [26] explains RL actions by providing the
human with a series of summary plots.

(ii) trusting an agent requires reliability of the actions. A reliable
AI agent should work consistently for the same or similar sce-
narios that it ‘sees’ during training with a strong generalisation
capability and ‘know’ the limit of its capabilities. There are two
approaches that can be used to quantify the limits of an agent
and algorithm, passive or active. In the passive approach, a
level of confidence is quantified for each suggested automated
action/prediction [27], and the user can act accordingly. The
more active approach is to receive a signal of ’low confidence’
to actively warn the user. While the nature of the information
is the same, the confidence of a proposed action, may have a
different impact on building trust between humans and agents.
The active approach is usually utilised in automated driving of
cars, where the autonomous agent warns the driver to take over
under some perceived emergency conditions [28].

(iii) developing intimacy with an agent is needed. Similar to humans,
where intimacy grows with the length of a relationship, the life-
cycle of an RL can be considered as a whole. For instance, trust,
when lost, is difficult to restore. [29] identified how trust can be
enhanced in the various stages of an AI-based system’s life-cycle,
specifically in the design, development and deployment stages,
and introduced the concept of an AI Chain of Trust to discuss
the various stages and their interrelations.

Trust between humans and agents relates to these three aspects;
reliability, credibility, and intimacy. Unfortunately, standard, or sub-
optimally designed AI agents result in low levels of trust build-up
as illustrated in Fig. 2(a). This illustrative example shows sequential
decision making where the agent proposes exactly 1 out of 5 different
actions in each sequential scenario. The operator considers the pro-
posed action but may decide, in some cases, on a different action based
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Fig. 2. Trust concept and the proposed model using attention budget and warnings for actions. The proposed approach considers attention budget of the human, a warning
function, and to explain about the region increasing credibility.

on other tools, or experience. Therefore, sometimes the agent may
propose an incorrect action in conflict with the operators’ expectation,
and in that case, the intimacy may decrease, and, as no explanation
for incorrect actions is provided, the credibility stays at low levels.
Sometimes, however the agent can ‘‘surprise’’ and teach the human
through the agent’s proposed actions that humans would normally
not take. There, the human would approve this new action despite
it being beyond the human’s experience and having not trained for
it. If successful, this new proposed action can then become a new
strategy that humans will take in the future, and it becomes part of
the human operational experience. However, as no interaction further
considers the operator mental state, the operator can never fully trust
the standard agent as the minimum level (red line) of intimacy is never
surpassed. The reliability of the agent may improve with the experience
of the agent which is to propose consistently the correct action in the
correct scenario. In this illustration, the agent proposes two different
actions in the scenarios, resulting in reliability decreases because of this
inconsistency.

The proposed concept for human/agent interaction aims at im-
proving trust, considering all three aspects of the model: credibility,
reliability and intimacy. These three aspects are modelled as an at-
tention budget of the human and warning signals from the agent to
the human. As illustrated in Fig. 2(b), the agent can actively send
warning signals to the human when the agent’s confidence about its
own actions is low. Sending these warning signals improves reliability,
as well as credibility when it provides selective enough details. The
warning signals can be discrete, continuous information about the
confidence or aiming at explaining the warnings (e.g., in this challenge
regional signals are supplied to further improve credibility of agents).
The attention budget develops over time (similar as intimacy). The
attention budget decreases, when the agent warns the human. Intimacy
can increase if the warning was relevant or else it will decrease. In
case of unwarned failure while the operator could have paid attention,
intimacy is modelled to decreases substantially. The attention budget
is a balance for operators to decide when they can trust (the agent) or

their own experience. A more accurate, and transparent agent will build
trust and will result in overall higher available attention and reduced
supervision requirements.

3. A new competition design for human AI-agent trust-building

Following the trust concept and model described above, we devel-
oped a new L2RPN competition in 2021 with the trust-building between
human operator and AI-agent as the focus. The competition was or-
ganised through the Codalab platform in Summer–Autumn 2021, as
part of the ICAPS conference (International Conference on Automated
Planning and Scheduling) and attracted 100 participants. An overview
of the competition is provided below, followed by more details.

3.1. Competition overview

Besides operational performance, the L2RPN 2021 competition is
structured to build trust between humans and agents using the credibil-
ity, reliability, intimacy framework. Entrants are encouraged to design
their agents to grade how confident it is of achieving a positive outcome
(reward) for an action. It should send an alarm (to the operator)
when the proposed actions are of low confidence. This is a proxy for
identification of upcoming cascading failure and serves to reduce the
conflict in evidence for the human operator (reliability), and to alert
them to impending system issues. When formulating the problem, the
issue of over-alarming was a risk to positive human–agent interaction.
Conversely, the human operator supervising automated systems can
experience ‘‘too much reliability’’, otherwise known as ‘‘out-of-the-
loop’’ effect if the human is not warned or given enough time to
respond. This is where operators are cognitively dis-engaged from real
time monitoring and control. When forced to intervene, they are not
aware of what or where the problem is. Both illustrates the need for
the agent to consider the operator’s state in its interactions (intimacy):
the relationship quality depends on the right level of solicitations. We
propose to model a budget for the operator’s available attention so that
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Fig. 3. Top right IEEE 118 subgrid. Attackable lines by the opponent are red coloured.
3 alarm regions are highlighted.

Fig. 4. Weekly production example per carrier type in May.

the agent can be designed to consider the human in-the-loop, and which
incentivises the agent to choose the best times for interactions under
the attention constraints. Finally, agents are incentivised to selectively
explain when and where a problem originated among pre-defined
network areas (credibility).

The participants were eventually evaluated on a score computed
over 24 5-minute resolution weekly scenarios. It was composed of
the alarm score (detailed after) and the network operation cost score
(see [30]) with the following weighting:

𝑆𝑐𝑜𝑟𝑒 = 0.3 ∗ 𝑆𝑐𝑜𝑟𝑒𝐴𝑙𝑎𝑟𝑚 + 0.7 ∗ 𝑆𝑐𝑜𝑟𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (1)

3.2. Power network operation environment

The competition is based on one third subgrid of IEEE 118-bus
system as in [9] and showed on Fig. 3.

The renewable share makes up to 20% of the overall energy mix,
which is a proxy for high variability in network operation parameters.
Monthly Production and Load consumption with a 5-minute resolution
time was made available in the training environment and are represen-
tative every month of the year (see example in Fig. 4). They have been
generated through the open-source Chronix2grid package.1

The L2RPN Markov Decision Process (MDP) formulation have been
previously described here [31] and is implemented in Grid2op [32].
The most notable details about the environment, observation and action

1 See https://github.com/BDonnot/ChroniX2Grid/tree/master/input_data/
generation/case118_l2rpn_icaps_2x.

spaces are described below. The agents can take actions considering the
following constraints:

• Events such as maintenance (deterministic) and line disconnec-
tions (stochastic and adversarial) can disconnect power lines for
several hours.

• Power lines have thermal limits. If a power line is overloaded for
too long (e.g 15 min), it automatically disconnects. This can lead
to cascading failures.

• An agent must wait few hours before reconnecting an incurred
line disconnection (e.g one day).

• Additionally, to avoid expensive network asset degradation or
failure, an agent cannot act too frequently on the same asset
(e.g not more than once in a 15-minute time period) or perform
too many actions at the same time (e.g topological action over 1
substation per step).

The ‘‘Game Over’’ condition is triggered if total demand is not met
any more, that is if some consumption is lost at a substation, possibly
because of a cascading failure. About the action space, possible actions
are:

• Cheap topology changes (discrete and combinatorial actions) that
allow for line disconnection/re-connection and substation nodal
re-configurations.

• Costly production changes (continuous actions) through redis-
patching or now curtailment. They can be modified within the
physical constraints of each plant over time.

The final action space has more than 70,000 discrete actions and a
20-dimensional continuous action space.

Considering the observation space, agents can observe complete
states of the power network at every step. This includes flows on each
power line, electricity consumed and produced at each node, power
line disconnection duration etc. After verification of the previously
described constraints, each action is fed into an underlying power flow
simulator to run AC power flow [33] to calculate the next network
state. Agent also have the opportunity to simulate one’s action effect
on the current state, to validate its action for instance as a human
operator would do. But the future remains unknown: anticipating con-
tingencies is not possible, upcoming productions and consumption are
stochastic.

The novelty of this competition environment comes from the consid-
eration and interaction of three different kinds of ‘‘agents’’ within the
environment: AI based agent, the human operator which needs to focus
its attention when it is the most important, and an opponent which
emulates contingencies that the network must be robust against. We
will hence describe them in the following dedicated subsections.

3.3. Alarm and operator’s attention modelling

An agent should be designed to send alarms at a given time while
specifying an area among 3 pre-defined ones (as in Fig. 3). This area
demarcation does not have a direct effect on the environment, but
will enable desired interactions with an operator, who might modify
it, based on the information from the agent.

With regard to the operator’s attention, we model it as an ‘‘attention
budget’’ 𝛼𝑡 at each step 𝑡, compatible with an MDP formulation. Each
time an agent tries to raise an alarm to require the human attention, it
has a cost of 𝜅 (held constant and set to 𝜅 = 1). On the other side, if
the agent does not require the operator attention, then the ‘‘attention
budget’’ increases by 𝜇 > 0 (1.5 per day or per 288 timesteps here).
Then, we model the operator attention as:

(1) 𝛼𝑡+1 = 𝛼𝑡 − 𝜅 if an agent raised an alarm
(2) 𝛼𝑡+1 = 𝛼𝑡 + 𝜇 otherwise

https://github.com/BDonnot/ChroniX2Grid/tree/master/input_data/generation/case118_l2rpn_icaps_2x
https://github.com/BDonnot/ChroniX2Grid/tree/master/input_data/generation/case118_l2rpn_icaps_2x
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Human attention is limited in reality. To make sure that an agent
cannot raise alarms too often, the attention budget 𝛼𝑡 is capped to a
maximum value 𝐴 (𝐴 = 3 here). This ensures that the agent cannot raise
more than 𝐴

𝜅 consecutive alarms. Indeed, it can only raise an alarm if
the attention budget is above cost 𝜅. Otherwise it has to wait to recover
the necessary budget.

In case of failure at timestep 𝑡, an operator should ideally be warned
𝑇opt = 35 min ahead of time to make a more complex study and take
an informed decision. An alarm is considered relevant if sent within
[𝑡 − (𝑇opt + 𝑇width), 𝑡 − (𝑇opt − 𝑇width)], with 𝑇width = 25 min here. An
alarm will hence not be considered if raised in the final 10 min, before
a blackout event, as it is too late for a human operator to perform a
study in response to the alarm. An alarm sent greater than one hour is
not considered either as this is not selective enough. 35 min was chosen
as optimal, but may be adjusted for future competitions.

Finally, an alarm score function �̄� rewards the agent for sending
proper alarms at the right time ahead of failure:

(1) if no failure occurs, �̄� is given it maximum value, 100 points
here, as avoiding failure should always be favoured.

(2) if the agent fails the scenario at 𝑡 but raised an relevant alarm
at 𝑡𝑎 then �̄� = 100

(

1 −
|𝑇opt−|𝑡−𝑡𝑎||

𝑇width

)

× 𝐹𝑎𝑟𝑒𝑎.

(3) else if the agent failed to raise an alarm and the system blacks
out, it gets a penalty score of −200 points.

𝐹𝑎𝑟𝑒𝑎 is a multiplying factor depending on if the alarm spotted the right
area of cascade (𝐹𝑎𝑟𝑒𝑎 = 1) or not (𝐹𝑎𝑟𝑒𝑎 = 0.67).

NB. If an agent sends valid alarms at different times 𝑡𝑎, the maximum
score of each of the valid alarms is taken.

3.4. Opponent modelling and considerations

The strategies implemented by the agents in the competition must
be robust to unexpected network events, whether natural or intentional.
To promote this robustness, we have kept the adversarial approach [34]
again for the 2021 competition. We have placed in the environment a
‘‘special agent’’ – an ‘‘opponent’’ – whose role is to simulate failures
on the network at particular times. the agent must respond to this
adversarial attacks on the network.

Three principles are important in the opponent design:

• Aggressiveness: A too aggressive opponent can bias the competi-
tion towards some kind of unrealistic game far from operational
concerns. It can also discourage people from participating in the
competition.

• Unpredictability: It is also important for the opponent to be
as unpredictable as possible, since we do not want the agents
to learn and predict the behaviour of the opponent and adapt
specifically to it.

• Fairness between the participants. The opponent must present the
same aggressiveness to all participants.

A few improvements have been made for this edition:

• Attack times: These are random. For more unpredictability, they
are drawn according to an exponential distribution (geometric
distribution in discrete time) calibrated to have roughly one
attack per day on average but not always exactly one per day as
before.

• Durations of the attacks: These are changing following an expo-
nential distribution (they were fixed to four hours in the previous
edition) as seen in Fig. 6 but with a within a duration constraint
of 2 to 8 h.

• Attacked lines. In order to reflect the idea that the most electri-
cally loaded lines are generally the most prone to failures, we
have weighted the probability for a line of being the object of the

Fig. 5. Final ICAPS competition leaderboard.

current attack by the load factor of the line. On average this year,
some lines get more attacked than others, but within a maximum
1:4 ratio from the most attacked one to the least attacked one.

This year again, to avoid having too aggressive attacks, we have
kept the principle of one attacked electric line at a time. No multiple
attacks. The 10 same attacked lines are shown on Fig. 3. It is important
to note that for fairness the attack times and durations are the same for
everyone in the evaluation scenarios (even if these times and durations
are unknown to the participants), but not necessarily attacks on the
same lines.

4. Evaluation of competition design

This section evaluates the designed competition with trust concept
by analysing the results of the competition and further investigating
simple example agents.

4.1. Competition results

The official results and winners were announced in mid-October
2021 and presented at a webinar in February 2022.2 The best perform-
ing agents are the ones that achieved a combination of high operational
and attention scores (see Fig. 5). The results confirm that there was a
sufficient incentive to take into account the trust aspects (issuing the
right alarm at the right time) besides the pure operational performance
(running the power network) and this validates the framework used
for modelling and evaluating trust in the competition. Given that oper-
ational performance have already been analysed in depth in previous
competitions, in the below sections, we focus on the trust aspect and
the related attention score of the competition winners.

Analysing the results over the test scenarios, the two best agents
Xd_silly (Xd) and SupremaciaChina (SC) successfully operate the net-
work (i.e. without the network blacking out) over 16 out of 24 sce-
narios. Overall, both agents have 7 failing scenarios in common. The
best agent sends valid alarms in 5 out of 8 failing scenarios and the
second best in 4 out of 8. i.e. predicted failure rates of 63% and 50%
respectively (see Table 1). In these scenarios, the agent sends alarms
from 3 to 7 timesteps ahead of the failure (7 being the calibrated
ideal time of alarm), which might be an indication of its planning
time horizon. When sending alarms beyond 7 timesteps, it was usually
the case that the operator’s attention budget had diminished (so there
was previous instance of many alarms) so it could be concluded that
the agent would probably have resent alarms later on if the attention
budget was sufficient.

Looking in more depth at some statistics from the competition
results, shows that Xd requires less attention from the operator than
SC, and is also more cautious with its attention budget. Indeed, it
sends about 0.63 alarm per day on average (compared to SC: 0.78),
keeps an average budget of 2.5 (compared to SC: 2.2) and only spends
1.5% of the time with an attention budget below 1 (compared to SC:
10% of the time). This highlights that Xd has more advance behaviour

2 L2RPN Webinar: https://www.youtube.com/watch?v=WOt8xgpC370.

https://www.youtube.com/watch?v=WOt8xgpC370
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Table 1
Best alarm time and score comparison over failing scenarios for the 2 best agents.

Scenario Xd_silly SupremaciaChina

�̄� 𝑡𝑎 − 𝑡 𝑡 �̄� 𝑡𝑎 − 𝑡 𝑡

𝑑𝑒𝑐121 −200 −2 66 −200 −2 66
𝑑𝑒𝑐122 56 −9 710 64 −8 709
𝑓𝑒𝑏401 −200 −2 22 24 −3 23
𝑗𝑎𝑛281 42.7 −4 1997 −200 −15 790
𝑗𝑎𝑛282 66.7 −7 678 56 −9 668
𝑗𝑢𝑛011 100 −7 953 – – 2016
𝑚𝑎𝑟071 – – 2016 −200 −2 1700
𝑛𝑜𝑣341 64 −8 1282 −200 −2 1267
𝑛𝑜𝑣342 −200 −2 163 42.7 −4 1656

in regard of its ability to warn an operator when it is most needed,
possibly suggesting a better assessment in the confidence of its actions
and capabilities. In terms of actions, Xd performs also less actions
compared to SC, both on average per week (23.5 versus 26.5) and at
maximum (38 versus 64). It shows that Xd is somehow more efficient
in its decisions and actions. We will now give a short description of the
nature of those agents that could explain those observations.

4.2. Description of best competition agents

Both agents leverage the actions that were learnt by the best win-
ning solution of NeurIPS 2020 L2RPN competition [13]. Xd is a hybrid
agent that combines learnt modules and simulation. One learnt module
based on a Deep Neural Network gives fast predictions of action impacts
on line power flow margins. They use this predictive model to explore
the best possible combination of actions up to a depth of 4, defining
a planning horizon over 4 timesteps, but without explicitly taking
uncertainties into account over this horizon. They further simulate
the top candidate sequences. Thanks to this feature, an alarm is not
naively raised as soon as an overload appears, in the case when a
sequence of actions is expected to relieve it. If none has been found
to relieve existing overloads, only then an alarm would be raised. A
rule eventually prevents re-sending alarm in less than 3 timesteps.

The second best competitor, SC, is an advanced expert agent, which
makes proper use of rules and simulation to select the right actions
in real-time over an initially curated database of effective actions. It
however does not build a planning horizon and is closer to a greedy
agent in that regard. Its alarm module is, in part, rule based, checking
if overloads exist, if some lines are off and letting at least 5 timestep
interval between alarms. It is nevertheless quite reactive for any over-
load showing up and could be quick at depleting its attention budget as
we have noticed before. An additional alarm model is learnt to predict
a percentage of how appropriate sending an alarm is at a given time.
When above a threshold of 70%, an alarm could be sent. These two
strategies look complementary and it has been assessed on validation
scenarios that this learnt model when combined with the rule-based
one improves the attention scores by few points.

Given those characteristics, we will now make a more detailed
behaviour analysis over some interesting scenarios.

4.3. Behaviour analysis of competition agents

From the list of scenarios that the winning agents failed to solve,
dec12_2 and jan28_2 are interesting for judging how well the two
agents can anticipate its time of failure, instead of reacting and merely
surviving attacks. Indeed, in theses cases, failure occurs in the last part
of an attack period and not right at the beginning. The two agents have
the last alarm timing right, about 7 timesteps before collapse, but are
not accurate enough on the location (spatial area) of the failure. Based
on this observation, we can assume that both agents have developed
quite good prediction and planning skills over a fairly long time-
horizon. But this hypothesis is nevertheless mitigated by the fact that

Fig. 6. Two best agents behaviour over time and before respective failures in scenario
jan28_1. It shows times of actions (as the topology distance varies) and alarms, and
periods of attacks).

they also run out of budget and would have probably sent one more
alarms if they could have. They somehow ‘‘luckily’’ run out of budget
at the right time.

A similar situation for the SC agent occurs early evening of January
6th in scenario jan28_1 as shown in Fig. 6. But this time it sends
its last alarm too early (more than one hour ahead) before running
out of budget. It then runs into a long sequence of actions, deviating
strongly from the reference topology. In this sequence, it seems that
the agent does not know what it was actually doing and where it was
going: a characteristic of a greedy behaviour as we have suspected
before. At that point, Xd survives with a (somehow smart) sequence
of 4 actions. In this scenario, we also see that agents often send alarms
during periods of attacks but not only during these periods. The Xd
agent almost entirely manages this scenario but eventually fails. It
nonetheless managed to save enough attention budget to send a proper
alarm before failing, thanks to not being too eager at sending alarm and
spending its attention budget as seen in the statistics. When considering
how an agent would interact with a human in reality, this is good
behaviour. It alerts the operator in time that a major event will occur
without action, prompting them to take over system operation. We also
notice this at the beginning of the scenario: it only sends one alarm
instead of the two alarms sent by SC. Sending two alarms risks over
exercising the operator’s attention.

In the other failing scenarios, the reason why the agents get a
penalty score, is that they send an alarm too late and are not able to
survive long enough. This often happens right after a strong attack on
one of the high voltage lines.

Finally, in none of these scenarios did we notice a willingness to
deliberately fail at a given timestep to possibly maximise the atten-
tion score after sending an alarm earlier. This is reassuring for the
framework and competition design.

Our two agents showed good reliability due to its good operational
performance and an ability to raise alarms before failure. They however
mostly failed on the credibility side, not being selective enough on the
time of alarm and the area of failure. In terms of intimacy, they also
appeared limited, not taking sufficient account of its bounded attention
budget when sending alarms. All this suggests that they cannot yet
be considered trustworthy enough. For such complex acting agents. Is
this a limitation of rule-based alarms? Would it be necessary to learn
an alarm model instead? We now try to give some insights to those
questions through dedicated experiments.

4.4. Investigation of trust concept with example agents

With example agents, we aim to gain insights into some remaining
challenges when developing an agent with a successful alarm feature.
To this end, the uncertainties of the power system operation and the
constraints of sending meaningful alarms result in several challenges:
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(1) Given the attention budget 𝛼𝑡, the agent has to decide carefully
when to send an alarm without wasting its budget.

(2) To make the alarm successful, the agent has to send it in a partic-
ular time window before the failure/collapse (defined as ‘game over’).
As the underlying environment is stochastic (eg random possibilities
of lines being attacked) it is often too difficult to precisely predict the
‘game over’.

(3) On the other hand, an agent’s successful alarm sending capa-
bility is directly linked to its current action. Hence, the challenges in
designing the alarm feature increase with the increase in complexity of
the agent’s action selection criteria.

Next, we investigate in detail the design of agents with alarm
features. To ease our understanding, without loss of generality, we can
conceptually split the agent into two distinct parts, (a) action-making,
(b) alarm-generating.

Algorithm 1 Rule-based Alarm Agent-I
1: Check whether any line is disconnected or attacked.
2: if disconnection or attack then
3: Check for any overload:
4: if Overload then
5: Detect zones of overload and send an alarm.
6: end if
7: else
8: Do not send any alarm.
9: end if

First, we try to design a simple rule-based alarm agent. As men-
tioned earlier, a sound alarm agent can detect a possible danger in the
running condition of the system. To this end, the most obvious choice
is to monitor the capacity of each power line 𝜌, which is defined as
the observed current flow divided by the thermal limit of each power
line. Besides, there are possibilities that a power line can be attacked
or can be disconnected due to maintenance, and any line disconnection
obviously stresses the system operation. Hence, we extract the nec-
essary information from the current observation and define a simple
rule-based alarm feature agent (RbA-I) as given in Algorithm-1. The
design concept of this alarm feature is straightforward, and we tested
this feature with two different action-making agents i) ‘Do-Nothing
Action Agent’ (DN) and ii) ‘Simulation-intensive Expert Action Agent
(SiE)’. In two different instances of testing, we observed that DN + RbA-
I can send 14 successful alarm out of 24 different monthly scenarios.
While SiE + RbA-I sends 10 successful alarms out of the same 24
different scenarios. In this testing phase, we observed that no scenarios
are completed till the end by any of the agent. We can state that the
simple rule-based alarm feature can be good for DN, but the same is
not as suitable for complex action agents. The reason is quite apparent;
in DN, the agent does not take any corrective action. Thus, it can be
easily inferred that when the system is operating with one or more
line outages and at the same time this power system is overloaded,
failure is inevitable. In contrast, an SiE can solve some difficulties after
executing necessary corrective actions. The simple alarm agent fails
to interpret the outcomes of the expert actions and sends unnecessary
alarms thinking that there is an impending collapse. This ultimately
reduces their attention budgets, makes them unable to send an alarm
when the situation needs it. Plus, the operating conditions of failure for
particular scenarios are not the same in the case of DN and SiE. Hence,
there may be the possibility that the DN fails for simple reasons that
are easily detectable. While the failure of SiE is due to some complex
reasons, the simple alarm agent fails to detect the same. This implies
that the alarm feature of the agent needs some improvement, in order
to perform well with a complex action agent. To improve the alarm
feature, we studied some of the failures with unsuccessful alarms. It is
found that attention budget and the timing of the alarm are playing
key roles. Mostly, the alarms are sent but are not successful because
either (a) the agent does not have the required amount of budget to
send a successful alarm, or (b) the collapse occurred suddenly after

a line attack, hence the alarm did not meet the desired time-window
requirement. To tackle such situations, the agents need to predict the
outcome of a line attack before the attack actually happened. Here,
we modify the alarm features given in Algorithm-1 and add some
additional condition for sending alarm defining RbA-II agent:

• Simulate N-1 for the attacked lines list. If an overflow is predicted
and max𝑙∈𝐚𝐥𝐥 𝐥𝐢𝐧𝐞 𝜌

pred
𝑙 > 𝑇ℎ, and there is no alarm in last 𝐷 time-

steps, generate alarms for the zone where the predicted overflows
exceed the defined threshold 𝑇ℎ.

With this modification, the same set of scenarios: DN + RbA-II and
SiE + RbA-II sends respectively, 21 (previously 14) and 13 (previously
10) successful alarms. This number increased from the one found with
RbA-I, especially for the DN agent but there was a smaller increase
for the SiE agent. We see that designing a complex rule-based alarm
agent does not greatly improve this score on top of a complex acting
agent. A rule-based alarm agent is not enough and we believe that this
alarm prediction part can be improved with the help of a learning-based
agent. This part should be further investigated in the future.

5. Conclusion

On the journey towards creating trustworthy AI-based assistants for
future network operators, we have proposed a trustworthy framework
that builds on the reliability, credibility and intimacy model of trust, by
explicitly considering the human operators’ mental workload and ca-
pability of addressing issues when early warning and relevant network
information are provided. Through the L2RPN with trust competition
in 2021, we have successfully designed a realistic active warning
environment to experiment and evaluate trust between humans and
agents. Winning teams have achieved the best alarm scores overall, in
combination with the best operational performance, and demonstrated
good reliability. By relying mostly on rule-based alarms, there however
remains room for improvement on the credibility and intimacy aspects.
Learning based alarm agents could help address in the future these open
questions.
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