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A B S T R A C T   

In this work, three classes of fatigue models are reviewed according to the fatigue regimes commonly considered 
in the current components design. Particular attention is devoted to the so-called Class III fatigue models, 
covering the three fatigue regimes, namely, LCF, HCF and VHCF. The applicability and limitations of the pro-
posed analytical sigmoidal solutions are discussed from the viewpoint of practical design. The compatible 
Weibull S-N model by Castillo and Canteli is revisited and improved by considering a new reference parameter 
GP = E⋅σM ⋅(dε/dσ)|M as the driving force alternative to the conventional stress range. In this way, the 
requirement, σM ≤ σu, according to the real experimental conditions, is fulfilled and the parametric limit number 
of cycles, N0, recovers its meaning. The probabilistic definition of the model on the HCF and VHCF regimes is 
maintained and extended to the LCF regime. The strain gradients may be calculated from the monotonic or cyclic 
stress–strain curve of the material although a direct derivation from the hysteresis loop is recommended. Some 
Class III fatigue models from the literature and another one improved by the authors are applied to the 
assessment of one experimental campaign under different stress ratios conditions and the results compared 
accordingly. Finally, the new probabilistic GP-N field is evaluated. The results confirm the practical confluence of 
the stress- and the strain-based approaches into a single and advantageous unified methodology.   

1. Introduction 

The validity of a fatigue model can be referred to the fatigue regimes 
implied in the current component design, determined by the loading 
type characteristics and the material used. Accordingly, a plausible 
classification of fatigue models may obey the following categories as 
suggested by Strzelecki [1]: Class I models, describing a bounded fatigue 
life range only, which among others, disregards the inclusion of a fatigue 
limit; Class II models, including the relationships on the middle- and 
long-life region and the existence of a fatigue limit, and Class III models, 
including all the three domains, low-cycle fatigue (LCF), high-cycle fa-
tigue (HCF) and very-high-cycle fatigue (VHCF). 

Further enrichment within each category can be envisaged by 
including additional subcategories to account for relevant characteris-
tics of the model such as its probabilistic or stochastic character and how 

the fatigue limit is defined. The fatigue limit may be derived either as a 
constant value for a predefined number of cycles, say 106 or 107 cycles, 
as usually suggested in the standards, or as an asymptotic value ac-
cording to the own definition of the model. Otherwise, fatigue failure 
would occur for a finite number of cycles under null loading [2]. 
Sometimes, the criterion to justify an S-N fatigue model seems to be 
simply the quality of a particular fitting achieved. This criterion be-
comes critical when extrapolation for lifetime prediction beyond the 
scope of the experimental fatigue program is based on speculative 
empirical models, which do not fulfil a minimum of necessary re-
quirements. Accordingly, the probabilistic definition of the S-N field for 
the material being studied is crucial to ensure a reliable fatigue design of 
components, in particular for life prediction or failure hazard under 
varying loading based on a damage accumulation rule, as required in the 
structural integrity concept [3,4]. In this work, the fatigue limit is 
identified with the endurance limit, i.e. the value of the driving force 
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below which no failure occurs for an infinite number of cycles. Both 
issues prove to have a great influence on the way the practical design of 
components is performed. Additionally, other questions may be crucial 
such as if the model does or does not fulfil certain objective conditions 
that may be considered ineluctable for the model to be considered a 
valid one. 

Often, the S-N fatigue models arise as the definition of a median 
percentile regression function, see [5]. Frequently, such fatigue models 
exhibit dimensional inconsistencies in their analytical definition [3]. 
Furthermore, they may ensure, based on gratuitous premises, the 
asymptotic approach to the fatigue limit for an infinite lifetime, and 
define a posteriori the percentile functions to account for the variability 
of the S-N field. The rigid starting basis of the model derivation leads to 
functional contradictions which determine the limits of its possible 
extension to LCH and VHCF regions and further enhancement to include 
the stress ratio effect. For instance, if constant scatter along the S-N 
curve, i.e. homoscedasticity, or linear heteroscedasticity is assumed 
[6–10], the factual non-linear evolution of the scatter along the S-N 
field, evidenced in the experimental fatigue campaigns, cannot be 
replicated, see [11–13]. 

In this paper the stochastic fatigue model of Castillo-Canteli [3–14] is 
modified to extend its application validity to the three regions, i.e. LCF, 
HCF and VHCF, while keeping their compatibility and other important 
properties. The compatibility condition is not a trivial or secondary 

requirement but an irrefutable and unavoidable statistical condition for 
a fatigue model to be valid. As already explained in [3], the compati-
bility condition implies the equality between the cumulative distribu-
tions F(N;Δσ), i.e. the lifetimes for given stress range (or maximum 
stress), and F(Δσ;N), i.e. the stress range (or maximum stress) for given 
lifetimes, as illustrated in Fig. 1. In other words, this paper provides a 
unified model of general validity in the three regions. 

The rest of the paper is organized as follows. In Section 2, the 
characteristics of the three fatigue Class models are discussed. In Section 
3, some Class III fatigue models entailing the three fatigue domains (LCF, 
HCF and VHCF), as one supposedly unified solution of the complete S-N 
field, are analyzed from the adequateness of the fitting technique and 
the type of the data provided from the experimental program, but also 
from the conceptual and practical viewpoints. In Section 4, the 
compatible fatigue models are introduced in detail, their limitations 
analyzed and possible improved alternatives presented, allowing their 
applicability to the three fatigue domains to be extended. In Section 5, 
an example of application is introduced. Different Fatigue Class III 
models as representing integral fatigue proposals are applied to exper-
imental data and the outgoing results discussed. Section 6 is devoted to 
the discussion on the experimental data assessment and other important 
questions arising from the previous study about a comparative suit-
ability of the models. Finally, in Section 7 the main conclusions from the 
paper are drawn. 

Nomenclature 

a crack size; generic model parameter in the Basquin, 
Stromeyer, Bastenaire and Weibull models; the 
extrapolated value of the tangent in the point of inflexion 
for N = 1 in the Kohout-Vĕchet model 

b generic model parameter in the Basquin, Stromeyer, 
Bastenaire and Weibull models; the slope of the tangent in 
the point of inflexion in the Kohout-Vĕchet model (log–log 
scale) 

c generic model parameter in the Basquin, Stromeyer, 
Bastenaire and Weibull models; number of cycles 
corresponding to the cross point of the upper asymptote 
and middle tangent at the inflexion point in the Kohout- 
Vĕchet model 

cdf cumulative distribution function 
d number of cycles corresponding to the cross point of the 

lower asymptote and middle tangent at the inflexion point 
in the Kohout-Vĕchet model 

k exponent parameter in the Ravi-Chandran model 
n’ cyclic hardening exponent in the Ramberg-Osgood 

relationship 
D number of cycles determining the turning point (in log–log 

fit) in the Kohout-Vĕchet model (log–log scale) 
E Young’s modulus 
GRVε proposed generalized reference variable (fatigue driving 

force) defined as GRVε = σM

(
dε
dσ

⃒
⃒
⃒
⃒
M

)

GRVε,0 fatigue limit of the proposed generalized reference variable 
GRVσ alternative generalized reference variable with the stress 

dimensions,
(

= EσM

(
dε
dσ

⃒
⃒
⃒
⃒
M

))

GRVσ,0 fatigue limit of the alternative proposed generalized 
reference variable 

K exponent parameter in the Ravi-Chandran model 
K’ cyclic hardening coefficient in the Ramberg-Osgood 

relationship 
Kε

’ modified K’ to obtain GRVε 
Kσ

’ modified K’ to obtain GRVσ 
N generic number of cycles in the S-N field 

Nf generic lifetime in the S-N field 
N0 lower or limit number of cycles in the S-N field 
R stress ratio (=σm/σM) 
U Strain energy 
Δε generic strain range 
Δσ generic stress range 
Δσu Δσ for σM = σu 
Δσup Δσ for σM = σup to be distinguished from Δσu 
Δσ0 endurance limit in the Δσ-N field identified as the fatigue 

limit for infinite number of cycles 
∊ error term in the Pascual-Meeker and d’Angelo and 

Nussbaumer models 
ε strain 
εa strain amplitude 
εm minimum strain in the cyclic loading 
σlim stress related to the proportionality limit in the 

stress–strain curve 
εM maximum strain in the cyclic loading 
σa stress amplitude 
σel elastic limit of the material 
σlim generic fatigue limit 
σm minimum stress in the cyclic loading 
σmean mean stress in the cyclic loading (=(σM + σm) /2) 
σM maximum stress in the cyclic loading 
σM,0 endurance limit in the σM – N field identified as the fatigue 

limit for infinite number of cycles 
σp limit of proportionality of the material, usually identified 

with σel 
σu ultimate tensile strength 
σup upper bound as a model parameter in the Class III models 
dε
dσ

⃒
⃒
⃒
⃒
M 

dε/dσ at the point where σ = σM and, correspondingly. 

Where ε = εM 

dε
dσ

⃒
⃒
⃒
⃒
m 

dε/dσ at the point where σ = σm and, correspondingly. 

Where ε = εm  
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2. Fatigue models classification 

2.1. Class I fatigue models 

The paradigmatic Class I case is the Basquin model, see Eq. (1) and 
[15], which represents a linear relation function between the stress 
range Δσ and the number of cycles to failure, N, in log–log scale, as 
follows (see Fig. 2): 

N = aΔσb→logN = loga+ blogΔσ (1) 

Despite its limitations, it is the favorite S-N model to which many 
current fatigue studies are referred to define the HCF region of the S-N 
field. Its deterministic version is defined as the mean percentile curve 
without exhibiting fatigue limit, thus contradicting the experimental 
evidence of the general fatigue results. Some enhanced alternatives, as 
bi-linear and tri-linear S-N diagrams, are also the common solution in 
standards and directives. Thus, the utility of these Class I models in the 
design of components is limited to particular load histories concerned 
only with the specific stress of the HCF regime implied. The probabilistic 
definition implies arbitrary proposals for the lifetime distribution along 
the S-N curve around the regression function, which is identified as the 
mean percentile (see Fig. 2). Because of the obvious incapacity of the 

Basquin model to follow the trend towards a non-zero horizontal fatigue 
limit, as experimentally verified, different solutions have been proposed 
to provide a possible correction to the original proposal. This can be 
achieved by converting this Class I model into a Class II one by esti-
mating a fixed fatigue limit horizontal S-N curve at a certain fixed 
number of cycles, usually for N > 106 cycles based, for instance, on the 
staircase method or simply on arbitrary considerations, as it is the case 
of most standards, see [16–21]. 

2.2. Class II fatigue models 

The Class II models represent an extension of the Class I ones in 
which different solutions are proposed to ensure asymptotic matching to 
the fatigue limit, whereas the condition of existence of an upper limit in 
the S-N field prescribed by the non-linear σ-ε relation and the ultimate 
stress of the material is not specified. Accordingly, these Class II models 
are not useful to define the LCF regime. Most Class II models fail to 
satisfy the compatibility condition and dimensional consistency, which 
represent unavoidable conditions for a S-N fatigue model to be valid. In 
fact, this requirement is only satisfied by the models proposed by 
Freudenthal-Gumbel [22], Bolotin [23–25] and Castillo-Canteli [3], see 
below. 

Generally, a probabilistic analysis is added to the data assessment 
assuming homoscedasticity or linear heteroscedasticity for lifetimes and 
stress ranges over the HCF but also in the fatigue limit region, see Fig. 3. 
Most of the standards, directives and recommendations adopt the mo-
dality of bilinear or tri-linear S-N curves for the definition of the S-N 

Fig. 1. The compatibility condition required by Castillo-Canteli [3,14].  

Fig. 2. Schematic representation of homoscedasticity (left) and linear heteroscedasticity (right) for the S-N fields usually assumed in the fatigue models of Class I.  

Fig. 3. Schematic representation of the usual variability laws assumed for the 
S-N field models of Class II: linear heteroscedasticity for lifetimes in the HCF 
region and homoscedasticity for stress ranges in the VHCF region. 
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curves [15–20]. The bilinear random fatigue limit model (BRFLM) of 
D’Angelo and Nussbaumer [26], see Eq. (2), can be included in this 
group: 

logN =
a + blogΔσ
H(log Δσ

Δσ0
)
+ ∊(0, expΔσ),Δσ > Δσ0 (2)  

where H is the unit step function and ∊(0, exp(Δσ)) is the error term 
supposed to be normalized and distributed with zero mean and standard 
deviation equal to exp (Δσ). This model is based on bilinearization of the 
S-N curve and independent Gaussian distributions for the definition of 
the variability of the lifetime in the HCF region and of the stress range in 
the VHCF one. The disrupted scatter change and the kinked transition 
from the HCF to the VHCF regions of the S-N curves contradicts the 
smooth changing observed trend in real fatigue tests. 

Paolino et al. [27,28] focus their bilinear S-N models in the demon-
stration of the multiplicity of S-N fields associated with the different 
possible fatigue mechanisms intervening in the transition from HCF to 
VHCF regimes. They confirm the existence of multiple fatigue limits in 
the VHCF regime according to these fatigue mechanisms refuting the 
negation of the fatigue limit concept. The S-N variability of their models 
is based on normal distributions, which are not convenient for the 
estimation of low percentile curves to be applied in practical design. 

Alternatively, a more satisfactory way of procuring a continuous 
conversion from Class I models into Class II ones can be achieved by 
including the asymptotic matching condition into the model definition 
of the VHCF region as proposed by different authors, such as Stromeyer 
[29], see Eq. (3), which manages the expected curvature of the S-N field 
with a simple modification of the Basquin model, see Eq. (1), while 
Bastenaire [30] proposes a more complex model, see Eq. (4), to ensure 
the asymptotic matching for the VHCF branch. 

N = a(Δσ − Δσ0)
b→logN = a+ blog(Δσ − Δσ0),Δσ > Δσ0 (3)  

log
(

N
c

)

=
a

Δσ − Δσ0
exp[ − b(Δσ − Δσ0)],Δσ > Δσ0 (4) 

Note that the notation referred to the parameters intervening in the 
original models may have been rewritten in order to facilitate, hope-
fully, a comparative analysis among the different models and an easier 
interpretation of them. The physical meaning of the parameters can be 
affected by the new notation. For simplicity, the stress amplitude is 
replaced by the stress range as driving force without the meaning of the 
formulae being changed. 

In a similar way, Leonetti et al. [31] ensure the asymptotic matching 
introducing power coefficients in the equation with the same idea of a 
denominator singularity: 

logN = alog
(

Δσb

(Δσ − Δσ0)
c

)

,Δσ > Δσ0 (5) 

These authors claim about the importance of the proposed smooth 
transition from the finite life regime to the infinite life regime proving 
that this is a more general model that includes the kinked model of 
D’Angelo and Nussbaumer as a particular case. The Bayesian analysis 
applied to estimate the variability of the model parameters is a relevant 
contribution of Leonetti et al. [31] as it points out a methodology of 
general application to the proposed particular fatigue model. With this 
solution, the most complete probabilistic information is provided for the 
application of a fatigue model to practical design. 

Pascual and Meeker [5] start from the Stromeyer model to derive the 
denoted random fatigue-limit model: 

logN = a+ blog(Δσ − Δσ0)+ ∊,Δσ > Δσ0 (6)  

in which ∊ is the error term. The model assumes the probability density 
function (pdf) of log(Δσ0) to be either the standardized smallest extreme 
value (SEV) or the normal one, in both cases divided by the standard 

deviation. Additionally, the variability of the lifetime distribution along 
the S-N curve is considered using the logarithm of the number of cycles, 
log(N). In this way, the model describes the curvature of the S-N field 
provided by the Stromeyer basis and the probabilistic S-N field with 
increasing data scatter for decreasing stress range, as already stated by 
Freudenthal [32]. Nevertheless, no attention is paid to the distribution 
of the stress range for a given number of cycles (see words above about 
the compatibility condition). 

In an attempt to allow extreme value criteria to be considered in the 
definition of the S-N field, Strzelecki and Tomaszewski [1] propose an 
alternative to the Pascual and Meeker model, in which the normal dis-
tributions are replaced by a three-parameter Weibull distribution in 
what concerns the variability of lifetimes along the S-N curve and a 
biparametric Weibull distribution for the variability of the fatigue limit. 
This last option of replacing a three-parameter Weibull distribution by a 
biparametric one has no justification taking into account the expected 
lower bound of the fatigue limit, unless it looks for eliminating one 
parameter in the model. Nevertheless, Pascual-Meeker and the afore-
mentioned models do not satisfy the compatibility condition between 
the distribution of the lifetime for given stress range, i.e. F(N;Δσ), and 
that for the stress range for a given lifetime, i.e. F(Δσ;N). 

It can be concluded that the satisfaction of compulsory properties 
rather than the discussion about “the best proposal” to achieve the 
asymptotic matching to the fatigue limit for a particular sample data is 
the relevant question for a fatigue model to be valid. Some consider-
ations about the two above distributions are made by Nishijima [34] and 
Little-Jebe [35], without recognizing the compatibility between both. 
Compared with the former publication of Freudenthal [32], the later 
contribution of Freudenthal and Gumbel [22] seems to confirm the 
presumable contribution of Gumbel to the indefectible focusing of the 
fatigue problem from the extreme value perspective but also to 
emphasize the relevance of the recognition of the double analysis of the 
“distribution of the fatigue life at constant stress amplitude” and the “dis-
tribution of fatigue strength at constant number of cycles” as specific sub-
section titles in their scientific contribution. This leads to their 
unequivocal statement that “the general form of the S-N relation is deter-
mined by the condition that the distributions F(Δσ;N) and F(N;Δσ) must be 
compatible”, see [22] page 150. Surprisingly, this transcendental 
requirement for a model to be valid remained unadvertised for the 
practically totality of fatigue model derivations, and were rescued and 
supported solely, to the authors’ knowledge, by Bolotin [23–25] and 
Castillo et al. [3,14,33]. Further discussion will be undertaken in Section 
4. 

2.3. Class III fatigue models 

These models aim to define the three fatigue domains, LCF, HCF and 
VHCF based on a unified concept of a regression or mean function that 
enables to reproduce the sigmoidal shape noticed as a trend in the 
outcomes of experimental campaigns. In this way, two boundary con-
ditions have to be fulfilled consisting in the upper left branch with the 
condition Δσup = Δσu, supposedly starting at 0 or 1 cycle (according to 
the model), and the lower right branch fulfilling the condition of 
asymptotic matching to the fatigue limit Δσlim. Two different categories 
of regression functions are distinguished: those representing non-scaled 
regression curves, such as the Stüssi [36], and Kohout-Věchet [37] 
models, and those normalized to the interval [1] which are identified as 
biparametric Weibull cdfs, such as those of Ravi-Chandran [38,39] and 
D’Antuono [40] models whereas the Kurek model [41] represents a 
special case as discussed below. In both cases, the improved version 
includes a limit number of cycles N0 as the minimum required to cause 
LCF failures and an upper bound of the stress range identified with Δσu. 
The possible misinterpretation of these fitting functions as “sample 
functions”, in the sense of stochastic process realizations, and their 
probabilistic definition deserves an extended analysis of these models in 
Section 3. 
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The Class III fatigue models, defined as deterministic regression 
functions, require an extension to provide the probabilistic definition of 
the S-N field, where definition of the lifetime distribution along the 
regression curve represents a very involved task due to the sigmoidal 
shape of the percentile curves. In fact, fulfilment of the required 
compatibility condition along the whole S-N field is mandatory as 
proved by the functional equations analysis applied to the solution of the 
Castillo-Canteli model, see [3,42]. 

2.4. Non-conventional fatigue models 

There are models of difficult classification, such as the B-model of 
Bodanoff-Kozin [43,44] focused on the probabilistic modeling of the 
evolution of the cumulative damage phenomena based upon the 
Markov-chain process theory. Although this approach represents a solid 
basis for the development of models related to the progress of fatigue 
and fracture phenomena based on their interpretation as stochastic 
sample functions, i.e. as process realizations, see [45], its application to 
the definition of the whole probabilistic S-N field is not yet clear. 

Finally, some comments about the staircase method [46,47], which 
acts as a well-known auxiliary or complementary procedure in some 
standards, such as [48–52], to estimate the probabilistic distribution of 
the fatigue limit albeit for a predetermined number of cycles. Generally, 
this spurious fatigue limit is misleadingly interpreted as the endurance 
limit, i.e. the real fatigue limit for an infinite number of cycles in the 
VHCF regime. An alternative assessment of the staircase method 
replacing the normal distribution proposed in the original version by a 
three-parameter Weibull distribution is presented by Castillo et al. [53], 
in which a comparison is performed between the results provided by the 
staircase method and those from the Castillo-Canteli model, see [3]. 
Besides some light comments about the unsuitability of the staircase 
method, as devoted in Schijve [10], Pascual [54] and Snyder et al. [55], 
detailed analyses of the main limitations of the staircase model, as a non- 
recommendable procedure to estimate fatigue limits even for finite 
lifetimes, is provided in [53,56]. 

3. Class III fatigue models as spurious sample function models 

The Class III models are the rational evolution of the schematic 
Basquin-Wöhler model presented in Ciavarella-Monno [57] for subse-
quent application in the derivation of the Kitagawa-Takahashi diagram, 
see Fig. 4. In this section, the model proposed by Stüssi [36], Kohout- 
Věchet [37], Ravi-Chandran [38,39], D’Antuono [40] and Kurek et al. 
[41] are analyzed as a preliminary proposal for modeling the entire S-N 
field by a single equation encompassing the LCF, the HCF and the VHCF 

domains, see Fig. 5. 
The solution proposed by Kurek et al., as a three-degree polynomial 

solution in log–log scale, see [41]: 

log
(

Δσ
σu

)

= alog(N) + blog2(N) + clog3(N) (7)  

satisfies the upper condition of the LCF regime by allowing σa to be 
identified with (σu − σm)/2 for N = 1. Unlike the original formula of 
Kurek et al., where 2⋅Nf and the stress amplitude, σa, are used, respec-
tively, Eq. (7) are referred to N and Δσ. Nevertheless, contrary to the 
remaining Class III models, which approach asymptotically to the fa-
tigue limit, this model exhibits a minimum value of the regression 
function for a certain finite number of cycles. This is the consequence of 
being given by a three-degree polynomial solution, which it is well- 
known that cannot fit satisfactorily a sigmoidal shape. Consequently, 
the regression function proves to exist beyond the minimum point, 
failing to accomplish the condition of asymptotic matching to the fatigue 
limit, see [2,11–13]. 

All the remaining Class III regression models referred to in the 
introductory section fulfil both the upper bound condition represented 
by Δσ = Δσu, i.e. the trend dictated by the static test, and the condition 
of the asymptotic matching to the fatigue limit. Nevertheless, they differ 
in the way the regression function is defined. The models of Stüssi [36] 
and Kohout-Věchet [37], represent an immediate solution of the 
regression function, without any previous scaling, that fits directly the 
experimental results. In the models of Ravi-Chandran [38,39] and 
D’Antuono [40] the original variation field of the reference variable, i.e. 
of the driving force between the two bounds, is normalized to the in-
terval [1] allowing a Weibull cumulative distribution function (cdf) to 
be used as the fitting regression function. The experimental results must 
be accordingly transformed for the estimation of the model parameters. 

In the case of the Stüssi model [36], defined as: 

Δσ =
σu + aNbΔσ0

1 + aNb →N =

[
1
a

(
σu − Δσ

Δσ − Δσ0

)]1
b

(8)  

the asymptotic matching to the fatigue limit is contrived as a potential 
singularity of the denominator in Eq. (8), whereas the convergence to 
the upper bound requires the identification of the monotonic static case 
as the fatigue case for N = 0 (see Fig. 6). Supposedly, the formula is 
derived for R = σm/σM = 0, in which case Δσu = σu. The applicability of 
the Stüssi model to fit results of practical design in the LCF region is 
investigated by Toasa-Caiza and Ummendorfer [58] and Toasa-Caiza 
et al. [59] while, because its excessive conservatism, the Weibull 
model, see [3], is recommended instead to fit results in the VHCF 
regime. An extension of the Stüssi model to account for the effect of the 
stress ratio, R, is explored by the modified Stüssi model of Toasa Caiza- 

Fig. 4. The schematic Basquin-Wöhler law for a steel. . 
Adapted from [57] 

Fig. 5. Schematic Class III model represented as a single median percen-
tile curve. 
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Ummendorfer [60] while Castillo and Canteli propose a three- 
dimensional σM-R-N model to this aim based on cross compatibility [33]. 

The Kohout-Věchet model [37] is based on the aprioristic assump-
tion of a sigmoidal shaped S-N curve that includes two horizontal as-
ymptotes corresponding with the upper and lower bounds, Δσu and Δσ0, 
to facilitate the fitting of results in both LCF and VHCF regimes. The 
authors extend the model even to the very low cycle fatigue (VLCF) 
regime, which is particularly disputable since it implies continuity be-
tween the monotonic failure and fatigue mechanisms (see below). 

The equation of the original model is, supposedly, derived for σm =

0 whereas an extension to the general case of stress range is presented 
here: 

Δσ = a
[
(N + c)d

N + d

]b

→logΔσ = loga+ b
(

logd + log
[

N + c
N + d

])

(9) 

For N → ∞, Δσ = Δσ0 and Δσ0 = adb while for N → 0, Δσ = Δσu so 
that Δσu = acb from which the model takes the form: 

Δσ = Δσ0

(
N + c
N + d

)b

= Δσu

⎛

⎜
⎝

1 + N
c

1 + N
d

⎞

⎟
⎠

b

(10) 

While the fatigue limit, Δσ0, acts as a model parameter to be assessed 
from the experimental results, the upper limit, Δσu, is derived directly 
assuming σM to be the ultimate tensile stress of the material, σu. This 
allows the number of the model parameters to be reduced to three by 
considering a = Δσu/cb. The S-N curve is additionally defined by two 
characteristic values of the number of cycles, c and d, which enforce a 
central symmetry of the model shape implying a severe and unjustified 
prescription. Furthermore, the scale effect cannot be considered in this 
model for transferability purposes. 

The Kohout-Věchet model is extended to account for temperature 
effects [61]. Correia et al. [62] generalize its application based on single 
and combined power damage models referred to energy-based driving 
forces in order to enhance the efficiency of the estimation of the model 
parameters though pointing out the necessity of a probabilistic assess-
ment for fatigue design. 

Ravi-Chandran, see [38,39], has proposed the model: 
(

Δσ − Δσ0

Δσu − Δσ0

)

= exp
(
− aNb), (11)  

based on an asymptotic crack growth rate equation representing 
asymptotic evolution of the stress range for increasing crack growth. 

This is accomplished by assuming 1 − a
W =

[

1 − N
Nf

]k
, i.e. a function that 

relates the fractional uncracked section size (1 − a/W) to the fractional 
remaining fatigue life (1 − N/Nf). 

The model represents a biparametric Weibull distribution for 
minima, where the normalized Δσ interval between the lower bound, 

Δσ0, and the upper bound, Δσu, is identified with probability, while 1/a 
and b are the scale and shape parameter, respectively. The model sat-
isfies the monotonic failure condition, Δσ = Δσu for N = 0, and the 
asymptotic fatigue limit condition, Δσ = Δσ0 = (σu − σm), for N = ∞, 
respectively. Note that in the original version, the relations are estab-
lished as a function of stress amplitudes considering σmean = 0, and the 
conversion of the Weibull cdf into a Gumbel one when log N are 
considered instead of N. 

D’Antuono proposes in [40] the use of a biparametic Weibull cdf for 
minima as the adequate regression function evolved from the Basquin’s 
power law to encompass the three fatigue regimes, LCF, HCF and VHCF 
as a whole S-N field. First, the driving force is normalized between the 
upper and lower bounds, Δσu and Δσ0, respectively so that the regres-
sion function is first normalized to the interval [1] and then identified as 
a biparametric Weibull cdf. Using the notch sensitivity factor based on 
Neuber’s building blocks concept allows D’Antuono to smooth the 
Basquin’s law by modifying the spurious fatigue limit while maintaining 
its associated number of cycles (in this case 106 cycles). By extension, a 
direct conversion of the S-N curve using the Weibull model is achieved to 
take into account the notch effect. The advocated identification of the 
slope of the sigmoidal S-N curve at the inflection point using the Bas-
quin’s power-law model contravenes the hypothetical advances repre-
sented by the adoption of a Weibull regression function since the 
simplistic linear log–log scale fitting of the Basquin law just depends on 
the chosen region for applying that fitting. 

Note that the asymptotic fatigue limit implied in most of the Class III 
models represents an a priori model requirement in accordance with the 
asymptotic matching of the fatigue limit in [2]. 

A similar normalizing procedure implying identification with 
generalized extreme value (GEV) cdfs is applied to model cumulative 
damage processes using stochastic sample functions, as defined in [45]. 
Nevertheless, fundamental discrepancies can be observed with the 
above mentioned fitting models. In the damage processes, a sample 
function fitting the process register from a single specimen is identified 
after its normalization with a GEV cdf. The choice of the GEV function 
succeeds either by applying some discriminating statistical criteria or 
simply comparing the fitting quality observed. The high quality of fitting 
of sample functions using the GEV cdfs is justified as a subjacent sta-
tistical process of progressive damage character, see [45], whereas in the 
aforementioned Class III models, the data number representing spec-
imen failures is more scarce. On the other hand, the normalized function 
in the above Class III models happens to be a regression function referred 
to the mean percentile curve fitted to several random results obtained 
from different specimen lifetime results, which exhibit a noticeable 
scatter band. 

As a summary of the Class III models, the following comments seem 
to be pertinent:  

i. All of them are supposed to represent mean or median percentile 
curves as reference functions, so that they are deterministic 
models, though those of Ravi-Chandran and D’Antuono are rep-
resented by Weibull cdfs. Therefore, the stochastic character of 
the whole S-N field is not provided.  

ii. The definition of the probabilistic distribution of lifetimes (and 
correspondingly, of the driving force) along the sigmoidal-shaped 
regression function in these models entails strong assumptions 
that can be hardly established. Only the application of Bayesian 
techniques would represent a plausible solution to this necessary 
probabilistic improvement of the Weibull function.  

iii. No model satisfies the compatibility condition F(N; Δσ) = F(Δσ; 
N) along the S-N field, see [3,22,24] and all of them present 
dimensional inconsistencies, which, at least in some cases, can be 
redressed introducing the adequate normalization into the vari-
ables and model parameters.  

iv. The probabilistic definition of the S-N field is not provided, which 
requires it to be implemented a posteriori once the fatigue curve is 

Fig. 6. Adaptation of the original Kohout-Věchet model as referred to stress 
ranges [36]. 
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fitted, using for instance the boot-strap method or Bayesian 
techniques.  

v. Only models based on Weibull cdfs are able to handle the size 
effect to ensure the transferability of laboratory results to prac-
tical components design, see [63–65]. 

vi. Pooling all S-N data as coming from a single statistical distribu-
tion, using a normalizing variable encompassing both the driving 
force and the number of cycles, is not feasible. This makes it 
impossible to improve the reliability of the parameter estimation, 
see [3]. 

The biparametric Weibull models for minima of Ravi-Chandran and 
D’Antuono can be enhanced by assuming three-parameter Weibull or 
Fréchet cumulative distribution functions (cdf), as the median percentile 
curves [66,67]. This would imply to recognize the Weibull location 
parameter, N0, as the minimum number of cycles necessary to achieve 
LCF failures and the fact that the upper bound is referred to another 
model parameter denoted Δσup = (1-R)⋅σup, rather than to Δσu = (1- 
R)⋅σu, see Fig. 7, where σup is the upper cyclic limit to be distinguished 
from σu so that σup < σu. The adoption of both parameters is justified by 
the fact that the failure micro-mechanism in the monotonic loading can 
be hardly identified with that intervening in the LCF regime and because 
of the experimental discrepancy between the monotonic σ-ε and cyclic 
σ-ε diagrams with steady changes for the increasing number of applied 
cycles. Both arguments imply denying the identification of the static 
failure mechanism for monotonic loading as the effect occurring in a 
single fatigue cycle (or half a cycle, depending on the model used), and 
as a consequence, the transition without continuity solution from 
monotonic loading failure process to that in VLCF, and further on from 
the latter to that in LCF. 

4. The extended Weibull regression model: Towards a general 
concept of the reference parameter in the s-n field 

The probabilistic S-N Weibull model developed by Castillo and 
Canteli [3], given by Eq. (12): 

p = 1 − exp

⎡

⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎝ −

(

log N
N0

)(

log Δσ
Δσ0

)

− λ

δ

⎞

⎟
⎟
⎠

β ⎤

⎥
⎥
⎥
⎦
;

(

log
N
N0

)(

log
Δσ
Δσ0

)

≥ λ

(12)  

arises from (a) physical conditions, (b) some requirements supported by 
the statistical extreme value theory (weakest link principle) and the 
compatibility condition F(N;Δσ) = F(Δσ;N) (see Fig. 1), which allows a 

functional equation to be established [42]. Its solution provides the 
probabilistic definition of the S-N field as hyperbolic percentile curves. 
The relevance of the compatibility condition has been already empha-
sized in the Introduction and in Refs [3,33]. 

The fortresses of the model are, among others:  

• its dimensionless form of being analytically defined,  
• derivation based on demanding strong and necessary statistical 

conditions,  
• reduction of the S-N field to a single cumulative distribution function 

of the normalized variable V = log (N/ N0) log (Δσ/Δσ0),  
• enhanced reliability in the model assessment due to feasible pooling 

of all data as pertaining to a single distribution due to the normal-
izing property,  

• its robustness as a result of the probabilistic definition of the S-N field 
by means of percentile curves,  

• definition of the asymptotic fatigue limit as a model parameter not 
included as an initial premise in the derivation of the model but 
resulting from the solution of a functional equation,  

• direct physical interpretation of the model parameters,  
• simple way to account for the scale effect,  
• easy consideration of the runouts in the evaluation,  
• possible estimation of confidence intervals using the boot-strap 

method or Bayesian techniques,  
• extension of the model to the strain-based approach and to any other 

fatigue analysis implying adequate choice of the driving force, as 
energy-based parameters,  

• application to the cumulative damage design for life prediction 
under varying load with the definition of a probabilistic Palmgren- 
Miner rule,  

• friendly and easy application to the practical data fatigue assessment 
using the free-use program ProFatigue [68,69]. 

The model is built on the premise that the stress range, Δσ, as driving 
force, is valid without any value limitation up to infinity. Since the 
maximum stress in the fatigue tests cannot exceed the ultimate strength 
due to physical reasons, the applicability of the model, when using Δσ as 
driving force, expires as soon as Δσ becomes > Δσu, or more precisely, as 
soon as Δσ implies σM > σp, i.e. when σM exceeds the limit threshold of 
linear proportionality of the stress–strain diagram. In this work, for the 
sake of simplicity, the limit of proportionality is identified with the 
elastic limit of the material. 

As a result, the model shows the following two apparent weaknesses, 
which are the consequence of the acceptance of the validity of the stress 
range as the driving force when the maximum stress exceeds σlim, i.e. the 
σ-ε proportionality threshold: 

Fig. 7. Two-parameter Weibull Class III model and the alternative three-parameter Weibull model including location parameter and the upper bound represented by 
Δσup ≤ Δσu. 
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• the asymptotic character of the Δσ for N = N0 is not consistent with 
the existence of an upper bound of the stress range related to the 
ultimate strength of the material, which makes impossible its 
application in the LCF region,  

• the difficult physical interpretation of the vertical asymptote of the 
model, representing the lower limit of the number of cycles below 
which no damage accumulation begins. 

As an advantageous probabilistic alternative to the Morrow equa-
tion, see [70], the Castillo-Canteli model is applied to the strain-based 
approach in the form of Δε-N or εa-N fields, see [71]. In its derivation, 
the same requirements as those used in the S-N case are applied, but the 
limitations related to the upper bound of the stress range are in this case 
roughly avoided without practically incidence on the solution. In fact, 
no maximum strain is prescribed, and large, though only finite strain 
values are accepted as the alternative trend to the asymptotic strain 
values for N = N0. 

Finally, note that the variability of the fatigue limit, as an estimated 
model parameter, can be estimated, the same as those of the remaining 
model parameters, using the maximum likelihood method or the 
Bayesian technique. The latter allows the distribution of the model pa-
rameters to be determined as random variables rather than deterministic 
ones, see [31,72]. 

After analyzing the experimental results of a number of experimental 
fatigue programs, the adequacy of the stress range, Δσ, as a ubiquitous 
and universal driving force in the fatigue analysis, must be put under 
question in those fatigue programs in which the applied maximum stress 
exceeds the proportionality limit in the stress–strain curve. In such cases, 
it would be advisable to search for a driving force alternative to the 
conventional stress range Δσ, as a more adequate fatigue reference 
variable able to account for the potential influence of the non-linear 
relation between stresses and strains. In this respect, the consideration 
of the Smith-Watson-Topper parameter as a driving force in the model of 
Castillo-Canteli provides a satisfactory solution when applied to the 
probabilistic fatigue analysis in notches [73–76]. Among other energetic 
alternatives already envisaged, a new parameter, GP = Δσ⋅εM, was 
proposed by the authors in [77], which provides fairly satisfactory re-
sults in the probabilistic assessment. Nevertheless, the lack of theoretical 
justification of this driving force and the critical comments of Dowling 
concerning its questionable suitability to consider the mean stress effect 
[78,79] suggest the search of a new alternative. 

The proposed solution requires the extension and reinterpretation of 
the reference or generalized parameter (GP) in an attempt to include the 
effects of the non-linearity of the σ-ε relation into the fatigue assessment. 
In fact, the stress range Δσ, though masterfully recognized by Wöhler 
[80] as the traditionally accepted fundamental parameter from the 
initial fatigue studies to the present, it does not seem to represent the 
adequate parameter for the fatigue analysis when the maximal stress 
surpasses the linear elastic domain. The generalized local model (GLM) 
proposed by Muñiz-Calvente et al. [63–65] provides a consequent sta-
tistical treatment in the evaluation of experimental fatigue results and 
recognition of the limitations of the procedures currently employed in 
the evaluation of fatigue data including the size effect and its subsequent 
application to the components design. One of the fundamental contri-
butions of this methodology is the feasibility of generalizing the concept 
of the reference generalized parameter (GP), i.e., the driving force, in 
agreement with the model chosen. 

According to the above considerations, a new generalized reference 
variable denoted GRVε, as given in Eq. (13), is proposed based on the 
maximum stress, σM, rather than on the stress range, Δσ, as the driving 
force, which includes the influence of the tangent modulus of the σ-ε 
curve both on the maximum cyclic stresses and strains. 

GRVε =
σM

(
dσ
dε

⃒
⃒
⃒
⃒

M

) = σM

(
dε
dσ

⃒
⃒
⃒
⃒

M

)

(13) 

The GRVε can be interpreted as a strain-based approach. In fact, 

when σM < σp, dε
dσ

⃒
⃒
⃒
⃒
M
= 1/E so that GRVε = σM/E = εM. i.e., the maximum 

strain applied during the test, whereas when σM > σp, the GRVε repre-
sents the magnification of the maximum strain, εM, due to the mono-
tonically decreasing slope of the σ-ε curve and its influence on the factor 
(

dε
dσ

⃒
⃒
⃒
⃒
M

)

. This can be interpreted as the enhancing effect of the non- 

linearity between σ and ε on the fatigue damage: 
Assuming the Ramberg-Osgood relationship to be applicable for the 

σ-ε relation: 

ε =
σ
E
+
( σ

K’

) 1
n’ (14)  

the proposed driving force, GRVε = σ(dε/dσ), becomes 

GRVε = σM

(
dε
dσ

⃒
⃒
⃒
⃒

M

)

=
σM

E
+

1
n’

(σM

K’

)1/n’

=
σM

E
+

(
σM

K’
ε

)1/n’

(15) 

Eq. (15) confirms that the new parameter GRVε represents a certain 
enhanced strain from a hypothetical Ramberg-Osgood equation in 
which a new parameter is included, given as K’

ε= (n’)
n’

K’, in the original 
relationship. This evinces that the GRVε represents a simple mapping of 
εM based on an σ-ε law affine to the original one of the material. While in 
the elastic domain the mapping should preserve the initial value of the 
variable εM, in the plastic region, the maximum strain εM is enhanced by 

the factor dε
dσ

⃒
⃒
⃒
⃒
M 

trending asymptotically to infinity (in the hypothesis of 

null hardening at the ultimate tensile strength) for the maximum of the 
σ-εM function. 

This suggests a possible alternative generalized parameter, GRVσ, 
simply defined as: 

GRVσ = σM
E

(
dσ
dε

⃒
⃒
⃒
⃒

M

) = EσM

(
dε
dσ

⃒
⃒
⃒
⃒

M

)

(16) 

This evinces the similitude between the stress-based approach using 
the new parameter GRVσ as driving force and the strain-based approach 
when the strain range Δε is used as the reference parameter, the former 
allowing the influence of the plastic phase to be emphasized. 

In this case, when σM < σp then 
(

dε
dσ

⃒
⃒
⃒
⃒
M

)

= 1
E so that the new driving 

force, GRVσ, coincides with the maximum stress,σM, and so do both S-N 
fields, the modified and the conventional ones, without the assessment 
of the S-N field being affected by the change of the driving force. On the 
contrary, if σM > σp, the GRVσ values, representing the transformed 
original σM data, may be fitted to the hyperbolic shape of the model 
proposed by Castillo-Canteli while maintaining the probabilistic defi-
nition of the S-N field by the percentile curves. In this case, the fulfilment 
of the compatibility condition between the cdfs F(N;σM) and F(σM;N) is 
extended even to the LCF region. 

When the Ramberg-Osgood Eq. (14) is used to define the σ-ε relation, 
the GRVσ becomes: 

GRVσ = EσM

(
dε
dσ

⃒
⃒
⃒
⃒

M

)

= σM +
E
n’

(σM

K’

)1/n’

= σM +

(
σM

K’
σ

)1/n’

(17) 

Similar considerations as above can be drawn from Eq. (17), which 
proves that the new parameter GRVσ represents a certain enhanced 
stress from a hypothetical Ramberg-Osgood equation where 
K’

σ= (n’/E)n’
K’. 

In a general fatigue program, data for different values of R = σm /σM 
are usually involved, see the application example in Section 5. In this 
case, when σM < σp, the fatigue characterization of a material can be 
described in terms of σM as primary variable, and R, as secondary vari-
able, rather than in terms of Δσ and R, see [33]. The extension to the 
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non-linear portion of the σ-ε is straightforward by replacing σM by GRVσ 
given by Eq. (16), whereas for the moment the conventional definition 
for R as σm /σM is maintained. 

Assuming that the curve σ-ε reaches a maximum, the GP would adopt 
a singular value at this point, thus justifying the asymptotic trend of the 
model. 

Finally, note that the conventional way of defining the strain energy 
can be transformed as a function of the proposed generalized parameter, 
GP: 

U =

∫ εM

0
σdε =

∫σM

0

(

σ dε
dσ

)

dσ =

∫σM

0

GP(σ, ε)dσ (18)  

where GP(σ, ε) = GP(σ) for given σ-ε relation. This proves that the 
objective function, in this case the strain energy, can be indistinctly 
defined based on either the maximum stress σM or the mapped GP value. 

Accordingly, the left and right hand integrals of Eq. (18) are equiv-
alent and represent alternative ways of defining the amount of energy 
implied in the fatigue loading and unloading process irrespective of the 
integral being referred to dε or to dσ. 

Incidentally, the limits of the integral being referred to stresses and 
not to strains seem to correspond better to the real control conditions 
established in the fatigue tests when the stress-based approach, i.e. the S- 
N field, is selected for fatigue characterization. 

Therefore, nothing may be objected to the formal replacement of Δσ 
by GRVσ as the driving force when applied to the assessment of the S-N 
field, according to the model in Eq. (12)  

which entails GRVσ and N as the new model variables and the same 
meaning of the model parameters as in Eq. (12) except for Δσ0, which is 
replaced by GRVσ,0. 

Nevertheless, this simple change allows the two limitations of the 
model proposed by Castillo and Canteli [3] to be overcome and, as a 
result, the probabilistic prediction of the S-N field to be extended to the 
LCF region, implying stresses beyond the linear elastic region of the σ-ε 
curve. 

In an experimental program, a feasible solution in the search of a 
suitable definition of the shape of the curve σ-ε, and therefore of the 
reference parameter would consist in estimating the dε/dσ derivatives 
directly from the experimental monotonic σ-ε curve or preferably from 
the cyclic one. Since the cyclic curve is varying over the test and a 
unified methodology for the definition of the cyclic curve from loading- 
unloading tests seems far from being agreed, see [81], other options, as 
the use of the hysteresis loop, should be considered to ensure a reliable 
value of the dε/dσ derivative just from the specimen being tested. This 
seems to be in agreement with the ZdD and PJ damage parameters pro-
posed by Heitmann [82] and Vormwald [83], respectively, as driving 
forces in the fatigue Wöhler field analysis. 

The credibility of the resulting model lies mainly on the compati-
bility on which it is based, allowing statistical and functional contra-
dictions to be avoided. Among the number of fatigue models proposed in 
the literature, only those of Freudenthal-Gumbel [22], Bolotin [23–25] 
and Castillo-Canteli [3,14,33] models fulfil this important statistical 
requirement for the definition of the probabilistic S-N field. The two 
former models represent only one of the two possible solutions from the 

functional equation, in which the zero percentile hyperbola degenerates 
into the asymptotes in contradiction with the experimental evidence, see 
[3] pages 49–53. This is the reason why these compatible models are 
discarded as suitable models. Rigor and statistical consistency are the 
basis of the model derivation as confirmed by later extensions to strain-, 
and fracture mechanics-based approaches [3,33], which proves the 
interrelation among the three traditional approaches, stress-, strain- and 
fracture mechanics based approaches to the fatigue problem. In addi-

tion, the modified version of the model referred to σM

(
dε
dσ

⃒
⃒
⃒
⃒
M

)

instead to 

Δσ, or even σM, provides a unified probabilistic solution applicable over 
the three domains LCF, HCF and VHCF after evidencing the unsuitability 
of the stress-based approach, and the convenience of its substitution by 
an advanced “mixed stress–strain” based approach, possibly derived 
directly from the hysteretic cycle of the material. 

5. Example of application 

The experimental program on P355NL1 steel reported in [84] is used 
to compare the suitability of both the improved Castillo-Canteli model 
and the different Class III models reported above to fit fatigue data. 

The mechanical properties of the fatigue results cover the LCF and 
HCF regions for three different stress ratios R = 0, − 0.5 and − 1 whereas 
VHCF data are unfortunately missed what impedes a reliable estimation 
of the fatigue limit (see Fig. 8). In the present data assessment, the 
maximum value of the stress, σM, is considered the driving force. This 
facilitates the comparison of results, whose R values are equal or less 
than zero, by considering in this case σM,0 and σu instead of Δσ0 and Δσu, 

respectively, as boundary limits in the fitting process. Such a change 
does not affect the general procedure, but only simplifies it. Accordingly, 
the figures are referred to the maximum stress value on the ordinate axis. 

5.1. Assessment using the Class III fatigue models 

First, the models, of Kohout-Věchet and Stüssi are evaluated, fol-
lowed by the biparametric Weibull mean function as that representing 

Fig. 8. Original fatigue results from the experimental campaign reported in 
[84] for three different R ratios. 

p = 1 − exp

⎡

⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎝ −

(logN/N0)(log GRV
GRVσ,0

) − λ
δ

⎞

⎟
⎟
⎠

β ⎤

⎥
⎥
⎥
⎦
; (logN/N0)(logGRV/GRVσ,0) ≥ λ (19)   
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the proposals of Ravi-Chandran and D’Antuono. As a second alternative, 
the improved three-parameter Weibull and Fréchet cdf versions pro-
posed by the authors are also included. Latter extreme value distribu-
tions exhibit a location parameter ≥ 0 and tend asymptotically to 
infinity. Finally, the modified probabilistic Weibull model of Castillo- 
Canteli is applied to the assessment of the probabilistic S-N analysis of 
the above data. As explained in Section 4, the new GRVσ resulting from 
the consideration of the tangent modulus of the σ-ε curve is used to 
replace the traditional stress range, Δσ, as the driving force. The results 
are discussed with particular attention to the upper and lower bounds of 
the regression curve and the limit number of cycles, N0. 

5.1.1. Assessment using current Class III fatigue models 
The experimental values obtained under zero load ratio are initially 

considered. The Kohout-Věchet model, see Fig. 9-a is previously fitted 
providing the estimated parameter values shown in Table 1, among 
them both upper and lower bounds, i.e., Δσ0 and Δσu. The latter is 
subsequently used in the evaluation of the Stüssi model so that only two 
additional parameters, namely bStüssi and aStüssi are required to complete 
the fitting procedure in the second case, see Fig. 9-b. The same bounds 
are also assumed in the evaluation of the 2-parameter Weibull distri-
bution model according to Ravi-Chandran and D’Antuono, see Fig. 9-c 
and Table 2. 

5.1.2. Improved Class III fatigue models 
In the second alternative the improved model proposed in Section 3, 

see Fig. 7, based on five parameters, two representing the free upper and 
lower bounds, and the remaining three ones corresponding to the Wei-
bull and Fréchet distributions is used. Nevertheless, due to the possible 
influence of the inconvenient test strategy followed in the experimental 
campaign implying absence of experimental results at the VHCF domain 
and, consequently, the fatigue limit region, two assessments are 

performed. The first one, assuming free both lower and upper model 
limits, and the second one assuming the lower limit, i.e. the fatigue limit, 
to be given as the one previously determined from the ProFatigue soft-
ware [68,69]. In this way, a more realistic solution of the whole S-N field 
is achieved, see Fig. 10 and Table 3. 

5.1.3. Scrutiny of results 
At first glance, all the above referred models seem to fulfil adequately 

the requirements to admit a successful data fitting without any of them 
representing clear superiority in terms of the regression coefficient R2 

values over the other ones. The values from Table 2, see Fig. 9, let 
conclude that the regression coefficient R2 is practically independent of 
the model applied and the number of parameters, so that the assessment 
does not provide a definitive criterion to decide which of the proposals is 
the most convenient to be used for lifetime prediction. The same can be 
said about the results from the 3P-Weibull and Fréchet models in 
Table 3, Fig. 10 (a) and (b), though they point out the possible limit 
number of cycles in the LCF regime. After proceeding similarly as above 
to the assessment of the remaining stress ratios, R = − 0.5 and − 1, Fig. 11 
summarizes the results of [84] using the different Class III models for the 
three different stress ratios, R = 0, − 0.5 and − 1 illustrating the simili-
tude among the evaluations. Nevertheless, the results from the 

Fig. 9. Fiting of the experimental data in [84] for R = 0 using: (a) the Kohout-Věchet model; (b) the Stüssi model and (c) the Ravi-Chandran and D’Antuono models.  

Table 1 
Mechanical properties and cyclic hardening parameters of the P355NL1 steel 
used in the example of application, from [84].  

Ultimate tensile strength, σu [MPa] 568 
Monotonic yield strength, σy [MPa] 418 
Young’s modulus, E [GPa] 205.2 
Poisson’s ratio, ν 0.275 
cyclic strain hardening coefficient, K’ [MPa] 948.35 
cyclic strain hardening exponent, n’ 0.1533  
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alternative 3P Weibull and Fréchet models in Table 3, Fig. 10 (c) and (d), 
taking into account a more realistic fatigue limit provided by the Pro-
Fatigue software [69], illustrates the hazard of an incorrect definition of 
that lower limit when the experimental campaign is not suitably per-
formed omitting to cover the lower domain of the HCF region. 

Nonetheless, the limitations of all former Class III model fittings in 
what concerns reliability for fatigue lifetime prediction in the LCF 
regime (but also in HCF and VHCF) is notorious due to the lack of 
probabilistic information provided by them and the weak basis on which 
the estimation of both lower and, particularly, upper model bounds is 
sustained. 

In fact, the scarce number of data available and their unfavorable 
distribution, just clustered in the upper HCF region and omitted in the 
lower HCF region, represents a serious limitation to estimate the fatigue 

limit and, hence, to achieve a reliable determination of the complete S-N 
regression sigmoidal curve independently of resorting to the 3- or the 5- 
parameter models. Even assuming a high-quality data fit, the uncer-
tainty of predictable lifetimes is remarkable due to the quasi-horizontal 
trend of the regression function when approaching to the upper bound, i. 
e. just in the critical region of low number of cycles. This implies a wide 
lifetime band in the LCF regime for very small variations of the applied 
stress range. The uncertainty of the lifetime estimation increases with 
the variability inherent to the deterministic character of the model, 
despite the choice of Weibull and Fréchet cdfs to fit the regression line, 
paradoxically. All this proves that the discussed Class III models are 
unsuitable to define the LCF region in a probabilistic, reliable way. 

Finally, note that these empirical S-N models have to be distin-
guished from those stochastic models represented by sample functions in 

Table 2 
Results from the assessment of the experimental data R = 0 for the material tested in [84] according to the different Class III fatigue models considered, see Fig. 9.  

Class III models Δσ0 [MPa] Δσu [MPa] a b c d R2 

Kohout-Věchet  410.47  562.22   − 4.3107  95386.1 102,607  0.95264 
Stüssi  *(410.47)  *(562.22)  2.7580⋅10-4  0.72772    0.90582 
Weibull biparametric (Ravi-Chandran, D’Antuono)  *(410.47)  *(562.22)  5.7065⋅10-5  0.82273    0.94937  

Fig. 10. Fitting of the experimental data in [84] for R = 0 using the five-parameter model. Top: For both limits free; (a) 3P-Weibull distribution; (b) 3P-Fréchet 
distribution. Bottom: For fixed upper and lower limits from ProFatigue assessment; (c) 3P-Weibull distribution; (d) 3P-Fréchet distribution. 

Table 3 
Results from the assessment of the experimental data R = 0 for the material tested in [84] according to the improved Class III fatigue model, see Fig. 10.  

Improved Class III models Δσ0 [MPa] Δσup [MPa] λ [cycles] δ [cycles] β R2 

3P-Weibull + 2 additional parameters (lower and upper bound), Fig. 10-a  430.0  555.1 140 104,243  1.0355  0.9750 
3P-Fréchet + 2 additional parameters (lower and upper bound), Fig. 10-b  428.1  550.0 400 65,399  1.5097  0.9684 
3P-Weibull (Δσu as the strength and Δσ0 from ProFatigue), Fig. 10-c  238.7  568.0 22 1,586,775  0.4896  0.6831 
3P-Fréchet (Δσu as the strength and Δσ0 from ProFatigue), Fig. 10-d  238.7  568.0 366 361,369  0.2476  0.8848  
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the sense defended by Bogdanoff-Kozin [43,44] and pointed out by the 
authors in [45]. In the former models, a regression line is fitted from 
random, statistically independent terminal results obtained from 
different tests whereas in the latter case the continuous record of dam-
age is determined from a single specimen over the test though, gener-
ally, only a fraction of the process is feasible to be monitored, see [45]. 

5.2. Assessment using the improved Weibull model of Castillo-Canteli 

In the search of a reliable alternative to the above Class III regression 
models to define the LCF region, the improved version of the probabi-
listic Weibull regression S-N model proposed by Castillo and Canteli, see 
Section 4, is applied to the assessment of the same experimental data 
reported in [84]. In this way, the probabilistic definition of the LCF, HCF 
and VHCF regions as percentile curves is achieved. For the sake of 
simplicity, the analysis is performed for the generalized reference vari-
able, GRVσ, as derived from σM according to Eq. (16), as a more suitable 
driving force than Δσ. The original experimental results represented as 
σM-N are showed in Fig. 8. The σ-ε curve of the material is assumed to 
follow a Ramberg-Osgood equation, see Eq. (14) and Fig. 12 (Left) with 
parameters K’= 948.35 MPa and n’ = 0.1533, and E = 205 GPa, from 
which the stress gradients dσ/dε are first obtained and then applied to 
Eq. (16) to yield the GRVσ values. Fig. 12 (Right) represents the 
magnification factor, E(dε/dσ), that allows the results of the maximum 
stress, σM, to be converted into the corresponding transformed values of 
GRVσ helping us to interpret how the transformation evolves as a 
function of the σM value. 

This conversion is understood as a mapping of the original σM-N field 
to the asymptotic GRVσ-N field, where the highest possible σM value, i.e. 
σup, would correspond to dε/dσ = ∞. Nevertheless, this will not be the 
case when the cyclic Ramberg-Osgood equation is used because it rep-
resents a monotonically non-decreasing parabolic function, which does 
not reach a maximum value at σup. In fact, to achieve the complete 
reconversion of the GRVσ-N field into the conventional sigmoidal σM-N 
field showing both horizontal upper and lower limits, as those evaluated 
in Section 5.1, a σ-ε curve exhibiting an absolute maximum at σu would 
be required. 

Figs. 13 and 14 show, respectively, the σM-N field resulting from the 
original Weibull model of Castillo-Canteli [3] and the GRVσ-N field 
resulting from the proposed improved model for the three stress ratios R 
= − 1, − 0.5 and 0, for p = 0.01, 0.50 and 0.99, see Tables 4 and 5. The 
choice of these percentiles for the probabilistic S-N field representation 
could seem contradictory since, as well known, only low or very low 
percentiles are of interest in practical design. In this case, it obeys only to 
an attempt to give an overview of the variability field of the fatigue 
properties of this material. In fact, any desired percentile curve is easily 
obtained from the analytical expression, Eq. (19), by substituting the 
model parameters, see Table 6, already estimated using the ProFatigue 
software [68,69]. 

In the assessment of the present experimental campaign, the 
Ramberg-Osgood equation, apart from impeding to attain an asymptotic 
value of GRVσ, as already mentioned, avoid any coincidence between 
both original and the transformed S-N fields even for small σM values. 
Even if the discrepancy among those values is unnoticeable for σM < 100 
MPa, this is not applicable since unfortunately this value is below the 
fatigue limit, at least for R = − 1 and − 0.5. Nonetheless, this has no 
repercussion on the estimation of the model parameters. The relatively 
high values of the Weibull shape parameters allow the Weibull distri-
bution to be approached as a Gumbel distribution, proving that their 
variability has no significant influence between the reciprocal results 
from both the original and the transformed S-N fields. In fact, despite the 
diverse fatigue limits obtained from the original and transformed re-
sults, the predicted lifetimes in a broad scope of the VHCF region (from 
106 to 1010 cycles) are approximately the same, thus confirming the 
lower values fatigue limit as mentioned above. The equally low lifetime 
limit, N0, obtained for the three stress ratios, point to the inconvenient 

Fig. 11. Comparison among the Class III S-N fields obtained for the material 
tested in [84] for stress ratios R = 0, − 0.5 and − 1 using different S-N models 
(Kohout-Věchet, Stüssi, 2P-Weibull and 3P Weibull and Fréchet). 
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test planning. 
The limit number of cycles, represented by the N0 parameter, hap-

pens to be near zero according to the ProFatigue evaluation of this 
particular data set, contrary to what happens in the most practical cases 
in which it turns to be of thousands denoting the particularity of the 
estimated parameters in this example of application. This, besides the 
unreliable estimation of both upper and lower bounds of the sigmoidal 
regression line, provides the possible explanation of the negligible dif-
ference between the two- and three-parameter Class III models assessed 
in Section 5.1. 

Finally, note that the comparison between Figs. 13 and 14 points out 
that the transformed results practically maintain their respective posi-
tion though shifted up to higher values of the new driving force GRVσ. 
This can be again assigned to the Ramberg-Osgood equation from which 

an almost linearly relation between the factor E
(

dε
dσ

)

and σ is observed, 

see in Fig. 12 (Right), implying a constant translation at the logarithmic 
scale irrespective of the σ value. 

Planning a future experimental campaign based on a suitable test 
strategy implying the suitable data distribution in the three regions LCF, 
HCF and VHCF) is envisaged. 

6. Discussion 

From the comparative evaluation of the experimental data, it follows 
that satisfactory fittings are obtained for the Class III models without 
remarkable differences irrespective of the model used, see Fig. 11, for 
the three stress ratios, R, investigated in the practical example. There are 

Fig. 12. (Left) Cyclic Ramberg-Osgood curve for the material tested in the experimental campaign reported in [84] and (Right) E⋅(dε/dσ)–σ curve derived from the 
Ramberg-Osgood equation. 

Fig. 13. Assessment of the fatigue properties of the material tested in [84] for the stress ratios R = 0, − 0.5 and − 1, and p = 0.01, 0.50 and 0.99 using the ProFatigue 
software [68,69]. σM-N field for the original fatigue data according to [3]. 
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no criteria to decide which model would be more reliable due, first, to 
the impossibility to define precisely either upper and lower tails of the 
equations proposed; second, because the probabilistic assessment of 
these Class III models, pertaining to the stress-based approach, is yet 
pending, while the modified Stüssi model proposed by Toasa-Caiza and 

Ummendorfer [58–60] deserves further analysis, and third, because the 
Δσ is considered to be an inadequate driving force to be used as a driving 
force in the LCF analysis. It suffices to compare the variations of the Δσ 
and Δε fields implied in the non-linear region of the σ-ε material curve to 
verify the disproportion in the sensitivities expected for each of both 
variables. This suggests the convenience of substituting the stress-based 
approach, when Δσ acts as the driving force, by the strain-based 
approach or, preferably, by the proposed generalized reference vari-
able, GRVσ to represent better the effect of the non-linearity in the σ- ε 
relation. 

It follows that the class III models are not recommended for LCF 
failure prediction in components’ design. Note that the key objective in 
the evaluation of experimental results is to guarantee the probabilistic 
transferability from the experimental results in the laboratory rather 
than to achieve a suitable, or even optimal data fitting. Only this way, 
the structural integrity principles will be accomplished in the practical 
design of components irrespective of the shape and size of the specimens 
tested or in service. 

In any case, the capability of the different former regression Class III 
models in Section 3 to fit the experimental data from the campaign 
referred in [84] are disturbed by the following issues:  

(a) The number of results located in the LCF region is generally 
scarce in the experimental campaigns focused on Class III models. 
This impedes a reliable estimation of the upper tail of the S-N 
curve. On the other side, when the LCF region is the specific re-
gion to characterize and adequately covered by experimental 
results, usually, the lack of results concerns the HCF and VHCF 
regions. In this case, inaccurate definition of the fatigue limit is 
unavoidable impairing a reliable estimation of the model pa-
rameters and so of the integral S-N field. It follows that a correct 
strategy in the fatigue test planning is crucial to achieve a reliable 
model. 

Fig. 14. Assessment of the fatigue properties of the material tested in [84] for the stress ratios R = 0, − 0.5 and − 1, and p = 0.01, 0.50 and 0.99 using the ProFatigue 
software [68,69]. GRVσ -N field for the relocated fatigue data according to the proposed new Weibull model. 

Table 4 
Parameters of the Castillo-Canteli σM-N field model for the material tested in 
[84] (without considering relocation according to the proposed model), see 
Fig. 13.  

Castillo-Canteli parameters (from ProFatigue 
software) 

R = 0 R = − 0.5 R = − 1 

B 0 0 0 
N0 [cycles] 1 1 1 
C 5.48 5.60 5.15 
σ0 [MPa] 238.70 271.78 172.89 
β 4.38 11.04 15.42 
δ 1.74 4.35 7.29 
λ 6.29 0 0  

Table 5 
Parameters of the Castillo-Canteli GRVσ -N field model for the material tested in 
[84] with data relocation according to the proposed model, see Fig. 14.  

Castillo-Canteli parameters (from 
ProFatigue software) 

R = 0 R = − 0.5 R = − 1 

B 0 0 0 
N0 [cycles] 1 1 1 
C 5.26 6.18 3.92 
GRV0 [MPa] 192.85 

(σ0 =

172.78) 

482.96 
(σ0 =

251.38) 

50.35 
(σ0 =

50.34) 
β 4.21 6.88 11.58 
δ 10.64 16.85 26.41 
λ 40.34 9.9 13.66  
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(b) The possible Class III model improvement proposed by applying 
three-parameter Weibull and Fréchet solutions, which include N0 
and Δσup as additional parameters, represents a conceptual 
advance but only if a sufficient number of data is available. 
Otherwise, i.e. when the number of results is scarce, it is not a 
recommendable alternative.  

(c) It is not clear how the size effect can be included in the Class III 
models in order to ensure transferability from the laboratory fa-
tigue results to design.  

(d) A probabilistic definition of the Class III models studied in Section 
3, for the improved suggested Weibull and Fréchet version with 
the two aforementioned parameters, N0 and Δσup, could be ach-
ieved using the Bayes technique. Nevertheless, the limitations of 
such a regression model due to the lack of fulfilment of the 
compatibility condition, cannot be obviated. 

The nearly horizontal upper tail of the sigmoidal regression function 
in the Class III models studied in Section 3 reveals a likely high vari-
ability of fatigue lifetimes even for small variations of the stress range, 
see Fig. 15. It follows that descriptive (data evaluation) and predictive 
(lifetime prediction) analyses in the practical LCF design risk being 
unreliable using this kind of models. This way, the improved Weibull 
model of Castillo-Canteli, based on the substitution of the stress range by 
a generalized reference variable (GRVσ) as the driving force, while 
preserving the probabilistic requirements in its derivation, comes up as 
the more convincing alternative to achieve the assessment of a complete 
GRVσ -N field encompassing the LCF region. Note that a redefinition of 
the traditional Δσ-N field from the GRVσ -N ones is superfluous in the 
practical design. In fact, the equivalence of lifetime prediction using 
either the stress-based GRVσ -N or the strain-based GRVε -N approach is 
recognized as a single and advantageous unified methodology, which 
suggests obviating the traditional stress-based approach. 

The substitution of the conventional stress range, as the driving 
force, by the new GRVσ parameter in the Castillo-Canteli model allows 
the model to overcome the two limitations implied in its basic version, 
namely, to justify the asymptotic behaviour represented by the hyper-
bolic solution, and the presence of a limit number of cycles, N0. As a 
result, the admissibility of a possible continuous transition from the 
monotonic to LCF failure over the VLCF regime must be rejected as 
failures being generated according to different specific mechanisms. In 
this way, the model provides the whole probabilistic definition of the S- 
N field, including the LCF region, through the definition of percentile 
curves extended to the LCF region. Given the limitations exhibited by 
the Ramberg-Osgood equation, the choice of an adequate σ-ε function 
assumed for the calculation of the derivative dε/dσ turns out to be key 
point for the reliable calculation of the GRVσ values. 

Lastly, some comments are added regarding a possible comparison 
among different fatigue models to decide which one fits “the best”, 
(goodness of fit test), see [1,85]. Some basic statistical requirements on 
the models are a minimal prerequisite for the models to be accepted as 
candidates for comparison. Otherwise, the models are compared under 
inconsistent criteria. If compulsory constraints are relaxed and over-
looked for some of the models, their assessment disposes about higher 
freedom to improve the fit but in an irregular, fraudulent and misleading 
way, particularly if only a restricted domain of the whole model is 
chosen for the assessment. If the number of results is scarce or ill- 
balanced without covering the whole potential existence field (as usu-
ally happens and is the case of the experimental campaign evaluated 
here, see Section 5.1.2) the fulfilment of additional requisites, such as 
the compatibility condition, may represent an additional constrain for 
an advanced compatible model compared with a constraint-free 
elementary model. In any case, the compatibility condition is essential 
for a consistent S-N fatigue model but rarely fulfilled, see [29–31]. This 
is just the case when a small pseudo-linear piece in the HCF region is 
scrutinized where the data do not still exhibit yet clearly the trend to the 
S-N incurvation. In fact:  

• The comparative analysis must be extended to the whole potential 
field of application of the phenomenon i.e. not limited to a particular 
domain covered by the chosen fatigue data ignoring the complete 
field of existence of the models. This represents a tricky way to 
distort the objectivity of the comparison by limiting it to a “conve-
niently chosen” restricted domain of application (as would be limited 
to the HCF region). Accordingly, the capability of extrapolation of 
the model beyond the test scope is an important criterion of validity, 
particularly, for prediction in structural design.  

• The comparison of the models must be referred to the real low failure 
percentiles considered in the real components’ design (p = 0.05, 
0.01, or even lower) and not for p = 0.50, i.e. the mean percentile 
curve in the S-N field, which reference is irrelevant to judge the 
model quality as associated to a safe design avoiding catastrophic 
events. This is why the extreme value statistics are suggested by the 

Table 6 
Predicted maximum stress values (MPa) for p = 1%, 5%, 50% in the VHCF region from the original σM-N and GRVσ -N fields, respectively.  

From σM-N R = 0 R = − 0.5 R = − 1 

N [cycles] p = 1% p = 5% p = 50% p = 1% p = 5% p = 50% p = 1% p = 5% p = 50% 

107 368,0 374,3 391,3 323,1 332,4 351,1 241,2 250,4 268,2 
108 348,8 354,0 368,1 316,0 323,9 339,8 231,3 239,0 253,8 
109 334,6 339,0 351,0 310,6 317,5 331,3 223,9 230,5 243,1 
1010 323,6 327,5 337,9 306,3 312,4 324,7 218,1 223,9 234,9  

From GRVσ -N R = 0 R = − 0.5 R = − 1 

N [cycles] p = 1% p = 5% p = 50% p = 1% p = 5% p = 50% p = 1% p = 5% p = 50% 

107 363,6 370,1 387,8 323,6 332,2 351,3 228,7 241,2 263,2 
108 342,6 348,2 363,3 314,9 322,4 339,0 208,7 221,0 242,3 
109 326,5 331,4 344,6 308,1 314,8 329,5 190,9 203,3 224,4 
1010 313,7 318,1 329,9 302,7 308,8 322,0 175,2 187,4 208,6  

Fig. 15. Schematic illustration of the sensitivity of lifetime due to small stress 
range variations. 
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authors, see [3], but also by Freudenthal-Gumbel [22] and Bolotin 
[23–25].  

• The comparison cannot be referred indistinctly to models pertaining 
to Class I and Class II or even Class III, and the same applies for 
comparing probabilistic with deterministic models.  

• Both the test planning strategy applied and the number of data in the 
sample may exert a noticeable influence on the assessment and 
therefore on the test goodness results, see [3]. In fact, the testing 
strategy responds to the specific fatigue model trying to be 
confirmed.  

• Further abilities of the model, as its capability to be further extended 
to include the influence of secondary parameters, such as the stress 
ratio R, while maintaining the functional structure is surely a reli-
ability criterion that reinforces its robustness and credibility.  

• According to the statistical theory, the randomness concomitant to 
any experimental sample data do not ensure that the correct distri-
bution provides necessarily the best fitting for a particular sample. 
This is why the analysis is complemented with a relative evaluation 
of the interpretation of the results referring to, for example, the 
Kolmogorov-Smirnoff statistic, which allows the goodness of fit to be 
relativized when comparing a sample with a reference cdf, or two 
samples each other. 

This proves that a judgment about the hypothetic best fatigue model 
is difficult if not impossible, in particular when different models per-
taining to the above mentioned different Classes are mixed in pro-
miscuity. In this respect, we point out the inadequate comparison 
sometimes performed in the literature based on the presumable objec-
tivity provided from the comparison of the R2 coefficient, see [1,85], 
where none of the foregoing remarks have been observed. Even 
respecting strength statistical criteria such comparisons are of limited 
value and only the application to the real practical design provides 
criteria for the acceptation or non-acceptation of a model. 

7. Conclusions 

The main conclusions derived from this work are the following:  

• The fatigue models used in the stress-based approach are classified 
according to the LCF, HCF and VHCF domains of the S-N field to 
which they can be applied. The attention is focused on models 
labelled Class III, which allow data fitting to be extended to all fa-
tigue regimes. 

• The Class III models of Kohout-Věchet, Ravi-Chandran and D’An-
tuono provide, in principle, satisfactory fitting of fatigue results in 
the three domains. Nevertheless, the inadequacy of Δσ, as the 
reference driving force, and the inherent deterministic definition of 
the S-N field does not ensure a reliable S-N field to be used in a 
practical fatigue design. The same applies to the Stüssi model, which 
additionally proves to be too conservative in the VHCF region. 

• Two additional limitations of the Class III models analyzed are cor-
rected with the consideration of the proposed three-parameter 
Weibull model which provides new model parameters such as: a) 
the limiting lifetime, N0, which represents the minimum number of 
cycles for LCF failures to occur, and b) the upper bound of the S-N 
field Δσup, to be distinguish from Δσu, i.e. the stress range resulting 
from the ultimate stress σu. This modified model points out the in-
adequacy of the conventional driving force Δσ, and the discontinuity 
in the transition from the monotonic to the LCF zone, whose tests 
evidence the failure mechanisms diversity.  

• The application of the former Class III models to the whole S-N field 
assessment of one experimental program confirms, on one side, the 
satisfactory applicability of the former Class III models by fitting data 
to the LCF domain with descriptive purposes. On the other side, it 
also evidences the limitations of these models when a probabilistic 
failure prediction is considered, which can be assigned to the 

sigmoidal shape of the S-N field due to the driving force selected. In 
fact, the compatibility condition is not fulfilled. From this, it follows 
the need for a definitive replacement of Δσ as the driving force for 
the S-N assessment and, therefore, the need to renounce the stress- 
based approach in the evaluation of the LCF results for failure 
prediction.  

• The probabilistic Weibull model of Castillo-Canteli, which should be 
classified as a Class II model when the conventional Δσ is taking as 
the driving force, can be extended towards a Class III model when the 
generalized reference resulting from the variable GRVσ = E⋅σ⋅(dε/ 
dσ), instead of Δσ, or even σM is adopted as the reference driving 
force. This makes this model a compatible one to be applied for the 
probabilistic prediction of fatigue failure over the whole S-N field, i. 
e. over the three fatigue domains, LCF, HCF and VHCF. In this case, 
the limiting condition σM ≤ σup is ensured and the asymptotic fatigue 
limit is included as a model parameter, while the normalization of 
the S-N field implies more reliable assessment through data pooling 
and easier evaluation of cumulative damage under varying load.  

• The adoption of advanced driving forces as the one proposed to 
improve the model of Castillo-Canteli, suggests the traditional clas-
sification of stress- and strain-based approaches to be unified as a 
unique mixed approach which simultaneously incorporates the ad-
vantages of both approaches to be applied in a components’ design. 
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[53] Castillo E, Ramos A, Koller R, López-Aenlle M, Fernández-Canteli A. A critical 
comparison of two models for assessment of fatigue data. Int J Fatigue 2008;30: 
45–57. 

[54] Pascual FG. Planning the fatigue experiments and analyzing fatigue data with the 
random fatigue-limit model and modified sudden death tests. Retrospective theses 
and Dissertations, 12229, Iowa State University; 1997. 

[55] Snyder PM, Lu M-W, Lee Y-L. Reliability-based fatigue strength testing by the 
staircase method. SAE technical paper series 2004-01-1288. Detroit, MI: SAE 
International; 2004. 
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