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WAVEFIELD MIGRATION 
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1 Tu Delft

Summary 

Conventional Full Wavefield Migration (FWM) is a full-wavefield inversion method based on 

recursively applying one-way convolutional propagation and reflection operators in the space-frequency 

domain at every depth level. Therefore, it struggles to model diving waves and image steep reflectors 

accurately. In this paper, the Interface Contrast imaging technique, an imaging technique based on the 

scattering integral developed in the context of medical ultrasound, is presented and used to provide a 

natural omni-directional extension to the conventional FWM method. The resulting algorithm is applied 

to a synthetic 2D model featuring a steep reflector. The results of these simulations are given and show 

that the technique can successfully image steep reflectors. This result yields a proof-of-concept for 

further research into this algorithm, where including internal scattering is a top priority. 



Interface Contrast Imaging for Omni-directional Full Wavefield Migration

Introduction

In recent years, much progress has been made in full wavefield imaging techniques such as Full Wave-
form Inversion (FWI) (Virieux and Operto, 2009), to obtain high-resolution velocity models, and Full
Wavefield Migration (FWM) (Berkhout, 2014b), where all propagation and scattering effects are incor-
porated in the imaging process. This has led to an increased interest in situations featuring large offsets,
which lead to large diving wave amplitudes and allow for the imaging of steep reflectors.

One of the current limitations of FWM is that it is based on one-way propagation between subsequent
depth levels, which poses a challenge for imaging diving waves and steep reflectors correctly. Various
methods have been proposed to solve these problems. One approach, proposed by Davydenko et al.
(2014) and Masaya and Verschuur (2019), is to include horizontal, one-way, propagation and reflection
operators in the conventional FWM framework. However, this approach leads to significant cross-talk
between horizontal and vertical components of the wave-field and reflectivity. A second approach is
to move towards two-way propagation operators by incorporating reverse time migration (RTM) in the
FWM framework. This approach has been recently introduced, most notably by Davydenko and Ver-
schuur (2021) and Whitmore et al. (2020). However, this approach leads to higher computational costs,
as one must model the wavefield using finite difference methods.

In this abstract, we derive a novel approach to extend the conventional FWM method to the omni-
directional case, based on a method called Interface Contrast imaging, developed by van der Neut et al.
(2018) in the context of medical ultrasound imaging. This is an omni-directional, integral-based ap-
proach, providing a natural extension of FWM to the omni-directional case without significantly in-
creasing computational costs.

Theory

In this section, we derive the forward model of omni-directional FWM. To this end, we consider a spatial
domain D0 with a constant mass density ρ0, and a spatially varying speed of sound profile c0 (x) and
compressibility profile κ0 (x). The domain D0 encloses a spatial sub-domain D ⊂ D0 with a heteroge-
neous speed of sound profile c1 (x), mass density profile ρ1 (x) and compressibility profile κ1 (x).

The pressure field at a receiver located at a position ~xR outside D (but inside D0) can then be found by
considering the volume integral formulation of the acoustic scattering problem in the frequency domain,
as discussed in van den Berg (2021). This gives

P(~xR) = Pinc (~xR)+Pκ (~xR)+Pρ (~xR) , (1)

where Pinc (~xR) is the incident field propagating in D0 in absence of D, and where the scattered fields
Pκ (~xR) and Pρ (~xR) are defined as:

Pκ (~xR) =−
∫

~x∈D

ω
2
ρ0G0 (~x→~xR) [κ0 (~x)−κ1 (~x)]P(~x)dV (2)

and
Pρ (~xR) =

∫
~x∈D

iω~∇G0 (~x→~xR) · [ρ0−ρ1 (~x)]~V (~x)dV , (3)

with ω the angular frequency,~V (~x) the particle velocity and G0 (~x→~xR) the Green’s function describing
the wave propagation in the background medium.

We now examine equation (3) in detail. As the total wavefield is source-free within D, we can write

~∇P(~x)+ iωρ1 (~x)~V (~x) = 0, (4)
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for~x inside D. Using equation (4), we can write equation (3) as

Pρ (~xR) =
∫

~x∈D

~∇G0 (~x→~xR) ·
(

1− ρ0

ρ1 (~x)

)
~∇P(~x)dV . (5)

This equation, however, still depends on both P(~x) and ~∇P(~x). To eliminate the ~∇P(~x) dependence, we
use the product rule, hence

Pρ (~xR) =
∫

~x∈D

~∇G0 (~x→~xR) ·~∇
[(

1− ρ0
ρ1(~x)

)
P(~x)

]
dV −

∫
~x∈D

~∇G0 (~x→~xR) ·P(~x)~∇
(

1− ρ0
ρ1(~x)

)
dV .

(6)
Using integration by parts, we find

Pρ (~xR) =−
∫

~x∈D
∇2G0 (~x→~xR)

(
1− ρ0

ρ1(~x)

)
P(~x)dV +

∫
~x∈D

~∇G0 (~x→~xR) ·~∇
(

ρ0
ρ1(~x)

)
P(~x)dV . (7)

Finally, using the relation ∇2G0 (~x→~xR) =−ω2c−2
0 (~x)G0 (~x→~xR)−δ (~xR−~x), and placing the obser-

vation point~xR outside D, we find

Pρ (~xR) =
∫

~x∈D

ω2

c2
0(~x)

G0 (~x→~xR)
(

1− ρ0
ρ1(~x)

)
P(~x)dV +

∫
~x∈D

~∇G0 (~x→~xR) ·~∇
(

ρ0
ρ1(~x)

)
P(~x)dV . (8)

Combining equation (8) with equations (1) and (2) yields the following expression for P(~xR):

P(~xR) = Pinc (~xR)−
∫

~x∈D
ω2G0 (~x→~xR)

(
1

c2
0(~x)
− 1

c2
1(~x)

)
ρ0

ρ1(~x)
P(~x)dV

+
∫

~x∈D

~∇G0 (~x→~xR) ·~∇
(

ρ0
ρ1(~x)

)
P(~x)dV ,

(9)

with c−2
0 (~x) = ρ0κ0 (~x) and c−2

1 (~x) = ρ1 (~x)κ1 (~x). Note that we can completely separate the contribu-
tions to the scattered fields due to a density contrast and a speed of sound contrast.

We now wish to illustrate how this result can be applied in a seismic context. In order to simplify the
analysis, we restrict ourselves to a domain D ⊂ D0 with a constant density ρ1 and no contrast in speed
of sound with respect to the background, i.e. c1 (x) = c0 (~x). In that case, the scattered P̃κ (~xR) = 0
throughout D, and P̃ρ (~xR) has only non-zero values on the boundary of D, which we denote by ∂D.
Consequently, we can write

P(~xR) = Pinc (~xR)+
∫

~x∈∂D

~∇G0 (~x→~xR) ·~n(~x)
(

1− ρ0

ρ1

)
P(~x)dA, (10)

with~n(~x) the (outgoing) normal vector of ∂D. Note that we now only have to integrate over the boundary
∂D of D rather than the whole volume D. We now follow the strategy of van der Neut et al. (2018), and
approximate P(~x) as P(~x)≈ 2ρ1(ρ1 +ρ0)

−1Pinc (~x), to reproduce the result of van der Neut et al. (2018):

P(~xR) = Pinc (~xR)+2
∫

~x∈∂D

(
∂G0 (~x→~xR)

∂x
Rnx (~x)+

∂G0 (~x→~xR)

∂ z
Rnz (~x)

)
Pinc (~x)dA. (11)

with the reflectivity coefficient R defined as

R =
Z1−Z0

Z1 +Z0
=

ρ1−ρ0

ρ1 +ρ0
, (12)

as the speed of sound c0 (x) is the same for both spatial domains.

Defining Rx (~x) = Rnx (~x) and Rz (~x) = Rnz (~x), with R =

√
Rx (~x)

2 +Rz (~x)
2, we can now view equation

(11) as a forward model to find the wavefield at a receiver given the x and z-components of the reflectivity.
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Figure 1 Model used to generate data. The model has a constant background velocity c0 = 1500 m/s, a
density ρ0 = 1000 kg/m3 above the reflector and ρ1 = 2500 kg/m3 below the reflector. 16 sources with
a spacing of 100 meters, denoted by red crosses, are placed vertically at the left side of the model. 151
receivers with a spacing of 10 meters, denoted by black circles, are located at the top of the model.

Given a known speed of sound model c0 (~x) and incident wavefield Pinc (~x), one can invert this model
to find Rx (~x) and Rz (~x), given a known wavefield at the receivers. An example of an inversion result,
generated using a gradient descent method, is given in the Results section.

Note that, while equation (11) has been derived in the case of a single reflector and in the absence of
speed-of-sound contrasts, it can easily be extended to include increasingly complex geometries. For ex-
ample, non-zero velocity contrasts can be incorporated by using the definition of the acoustic impedance,
Z = ρc. This extension does not take AVO effects into account, but can be used in cases where these
can be neglected. Also note that, as the background velocity model c0 (~x) does not need to be constant,
propagation effects such as diving waves can be taken into account without loss of accuracy.

Also, multiple reflectors can be taken into account in this framework by iteratively updating the incident
wavefield. Using equation (11), one can find the scattered wavefield at the other reflectors. Adding this
to the initial incident wavefield allows the method to iteratively update the incoming wavefield and take
multiple scattering events into account, following the approach of Berkhout (2014a).

Results

To illustrate the method described in the Theory section, we examine the 2D synthetic model, shown in
figure 1. In this model, we examine a highly curved reflector, with a normal that transitions smoothly
from 0 degrees to 90 degrees with respect to the z-axis. In order to generate enough illumination on
the steep flank of the model, we place the sources vertically in the model and the receivers at the top
of the model, simulating a pseudo-borehole situation. Synthetic data is generated using finite difference
time-domain modelling. While this model is quite synthetic in its design, it allows us to illustrate the
performance for a steep flank case in a homogeneous background.

The results of the inversion process for this model are shown in figure 2. In this figure, four sub-images
are shown. In the top-left corner, the true reflectivity model is shown. In the bottom-left corner, the
inversion result for the total reflectivity, R =

√
R2

x +R2
z , is shown. Looking at these results, we see that

the reflector is well-resolved, both for the horizontal part as for the steep flank. This shows that the
method allows us to resolve steep reflectors in the subsurface. Also note the difference between the total
reflectivity and its z-component (bottom-right). This difference is relevant, as in conventional FWM one
only finds the z-component of the reflectivity (top-right), meaning that the steep part of the reflector will
not be resolved using conventional techniques.

Conclusions

In this abstract, we have presented a novel approach to extend the Full Wavefield Migration method
to the omni-directional case, using the scattering integral-based Interface Contrast imaging technique.
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Figure 2 Result of the inversion process after 10 iterations, showing the true reflectivity (top-left), in-
verted total reflectivity (bottom-left), inverted z-component (top-right) and difference between the in-
verted total reflectivity and the inverted z-component (bottom-right).

Using this technique, we can successfully find reflectors at arbitrary angles, including steep flanks. This
technique can be expanded to include more complex geometries, such as models containing strong diving
waves or multiple scattering events, and serves as an omni-directional extension to the FWM method.
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