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Coherent feedback in optomechanical systems in the
sideband-unresolved regime
Jingkun Guo and Simon Gröblacher

Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology,
2628CJ Delft, The Netherlands

Preparing macroscopic mechanical resonators close to their motional quantum ground-
state and generating entanglement with light offers great opportunities in studying fun-
damental physics and in developing a new generation of quantum applications. Here we
propose an experimentally interesting scheme, which is particularly well suited for sys-
tems in the sideband-unresolved regime, based on coherent feedback with linear, passive
optical components to achieve groundstate cooling and photon-phonon entanglement
generation with optomechanical devices. We find that, by introducing an additional
passive element – either a narrow linewidth cavity or a mirror with a delay line – an
optomechanical system in the deeply sideband-unresolved regime will exhibit dynamics
similar to one that is sideband-resolved. With this new approach, the experimental re-
alization of groundstate cooling and optomechanical entanglement is well within reach
of current integrated state-of-the-art high-Q mechanical resonators.

1 Introduction
Over the past decade, optomechanical systems have seen great progress towards studying funda-
mental physics and in realizing new applications [1–8]. In particular, microfabricated optome-
chanical systems with large mechanical resonators and an integrated optical cavity have attracted
significant interest, as they provide a versatile and easy-to-use platform in many areas including
sensing [2, 9], quantum networks [10–12], and for studying quantum effects in massive, macro-
scopic systems [13]. Demonstrating quantum effects in optomechanics has almost exclusively been
the realm of systems in the sideband-resolved regime [3, 6, 7, 14–18], with several notable excep-
tions [19–21]. This is in great part due to the strong suppression of either the phonon creation
or the annihilation process through the optical cavity [14, 17] when the cavity linewidth is small
compared to the mechanical frequency.

For fundamental tests using optomechanics, large and massive mechanical resonators are re-
quired however, which typically puts these systems far into the sideband-unresolved regime, where
the mechanical resonance frequency is smaller than the linewidth of the optical cavity. While sig-
nificant advancements have been made for device designs in the sideband-unresolved regime, both
in terms of the mechanical resonator [22–25] and the integration with optical cavities with large
optomechanical coupling strength [24, 26, 27], the difference in suppression of the optomechani-
cal sidebands is insignificant due to the large optical linewidth. This makes them incompatible
with many of the standard approaches for quantum experiments used to date. At the same time,
the large bandwidth of the optical cavity allows obtaining the information of the mechanical res-
onator and interacting with it very efficiently and with little delay. This has lead to several ideas
specifically designed for this regime, including short-pulse [28–31] and measurement-based [32]
approaches for quantum state preparation. However, several challenges to experimentally imple-
ment these schemes exist, such as using an optical pulse with a duration much shorter than the
mechanical oscillation period typically being limited by noise introduced by unwanted mechanical
modes [33]. While measurement-based scheme are mostly focused on feedback cooling, creating
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photon-phonon entanglement through continuous measurement has also been proposed, with po-
tential squeezing of the Einstein-Podolski-Rosen (EPR) quadratures of up to 50% [34].

In this work, by further exploring the large bandwidth of the optical cavity, and by using either
a continuous laser or pulses that are much longer than the mechanical period, we propose schemes
based on coherent feedback by external linear, passive optical elements. Effectively, the extra
optical element creates an asymmetry in the suppression, similar to the sideband-resolved regime.
We show that using this new approach, groundstate cooling and quantum entanglement, with
squeezing of the EPR quadratures beyond 50%, is possible with realistic experimental requirements,
even with systems deep in the sideband-unresolved regime.

2 Model
2.1 Optomechanical system
We consider an optomechanical system consisting of a single mechanical mode and a single-mode
optical cavity. The mechanical mode has an angular resonance frequency Ωm and an energy
damping rate Γm. Its field is bosonic, and the position and momentum quadratures are described
by two normalized Hermitian operators X̂m and Ŷm. The optical field has a resonance frequency
of ωc and an energy damping rate κc, with the amplitude and phase quadratures X̂c and Ŷc.
Throughout this work, we combine the quadratures û = (X̂, Ŷ )T to simplify our expressions. The
quadratures satisfy the commutation relation [ûα,i, ûβ,j ] = iδαβεij , where α, β are for c (cavity
field) or m (mechanical field), i, j ∈ {1, 2} for the X or Y quadrature. εij = 1 for i = 1, j = 2,
εij = −1 for i = 2, j = 1, and 0 otherwise. The annihilation operators of the two bosonic fields

are âα = (X̂α + iYα)/
√

2. We use the the frame rotating with the laser (drive) frequency ωl, and
we define the detuning ∆c = ωl − ωc as being the frequency difference between the input laser
and the cavity field. The mechanical resonator and the optical cavity couple dispersively, with
a (linearized) coupling strength g = √ncg0 [17, 35], where g0 is the single photon coupling rate
enhanced by the intra-cavity photon number nc.

The mechanical resonator and the optical cavity couple to the environment through their re-
spective loss channels, the energy dissipation rate Γm and κc. For the mechanical mode, in a
typical experiment in the sideband-unresolved regime at temperature T , the thermal phonon ex-
citation is given by nth ≈ kBT

~Ωm
� 1, with kB being the Boltzmann constant. We further as-

sume the mechanical quality factor Qm to be large. The bath only couples to the momentum
quadrature of the harmonic oscillator and is approximately Markovian, ûin

m = (0, Ŷ in
m ), with〈

Ŷ in
m (t)Ŷ in

m (t′) + Ŷ in
m (t′)Ŷ in

m (t)
〉
≈ (nth + 1/2)δ(t− t′) [34]. Due to the high frequency of the cavity

field any thermal excitations can be neglected and the cavity input field is in the vacuum state.
We consider two loss channels for the cavity, where one is due to the coupling to an external mode

with an energy dissipation rate of κ
(e)
c and all other losses are included in κ

(i)
c , with κc = κ

(e)
c +κ

(i)
c .

The associated optical field are ûin,e
c and ûin,i

c , respectively. The linearized dynamics of the system
are then described by the Quantum Langevin equation [34, 35]

˙̂
Xc = −κc

2 X̂c −∆cŶc +
√
κ

(e)
c X̂ in,e

c +
√
κ

(i)
c X̂ in,i

c ,

˙̂
Yc = ∆cX̂c −

κc
2 Ŷc − 2gXm +

√
κ

(e)
c Ŷ in,e

c +
√
κ

(i)
c Ŷ in,i

c ,

˙̂
Xm = ΩmŶm,

˙̂
Ym = −ΩmX̂m − ΓmYm − 2gXc +

√
2ΓmŶ

in
m .

(1)

Only the field coupled back to the external mode can be collected, ûout
c = ûin,e

c −
√
κ

(e)
c uc.

2.2 Coherent feedback with linear optical elements
With additional resources included, coherent feedback can have a significant impact on the dynam-
ics of a system [36–50]. In our approach, we consider the optomechancial cavity being connected
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Auxiliary
component

Auxiliary cavity

(a)

Auxiliary mirror

(b) (c)

Figure 1: (a) Coherent feedback scheme. The optomechanical cavity, with an intrinsic loss rate κ(i)
c and an

external coupling κ(e)
c , is connected to an auxiliary component via an optical path. The output light from the

optomechanical cavity couples to the auxiliary component, and then travels back to the optomechanical cavity,
forming a feedback loop. The optical path introduces a single-way delay of τs, phase φs, with a single-way
efficiency of ηs and can be used as a channel to couple driving laser into the feedback system and to perform
measurements. We consider (b) an auxiliary cavity or (c) an auxiliary mirror for the auxiliary component in this
work. The auxiliary cavity has a coupling rate κ(1)

A to the internal feedback optical path and κ(2)
A to the outside.

The reflectivity of the auxiliary mirror is RA.

to either an external optical cavity or a mirror via an optical path, as shown in Figure 1. Exper-
imentally, the optical path might be realized by free-space optics, an optical fiber, or an on-chip
waveguide. The light traveling through the path acquires a constant single way delay τs and a phase
shift φs, and the path has a single way efficiency ηs. The input and output of the optomechanical
cavity are related to the input and output of the auxiliary component,

ûin,1
A (t) = √ηsR(φs)ûout

c (t− τs) +
√

1− ηsû
in
fw(t),

ûin
c (t) = √ηsR(φs)ûout,1

A (t− τs) +
√

1− ηsû
in
bw(t).

(2)

ûin
fw and ûin

bw are the input vacuum field due to the loss in the optical connection, and the subscript
A denotes the field of the auxiliary component. R is a rotational matrix,

R(φ) =
(

cosφ sinφ
− sinφ cosφ

)
, (3)

due to the phase acquired in the optical path. The auxiliary component in general has two sides,
with channel 1 coupling to the optomechanical system, and channel 2 coupling to the outside,
which can be used for driving and readout. With a constant drive field from channel 2, the input
ûin,2

A is a vacuum field since only the fluctuations are considered.
To simplify our discussion, we will mostly focus on using an optical cavity as the auxiliary

component. The intracavity field is then denoted as ûA = (X̂A, ŶA) and

˙̂
XA = −κA

2 X̂A −∆AŶA +
√
κ

(1)
A X̂ in,1

A +
√
κ

(2)
A X̂ in,2

A ,

˙̂
YA = ∆AX̂A −

κA
2 ŶA +

√
κ

(1)
A Ŷ in,1

A +
√
κ

(2)
A Ŷ in,2

A ,

(4)
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where κ
(1)
A and κ

(2)
A are the loss rates, or coupling, to channel 1 and 2 and the total loss rate of the

cavity κA = κ
(1)
A + κ

(2)
A . The output on both channels is given by the input-output relation [17]

ûout,k
A = ûin,k

A −
√
κ

(k)
A ûA, (5)

where k ∈ {1, 2} denotes the index of the coupling channel.
For the coherent feedback cooling, we will also explicitly consider the scheme where a mirror

with a reflectivity RA is used as the coherent feedback component. In this case, there are no
addition fields with a time derivative, and the output is directly given by the input

ûout,1
A =

√
RAu

in,1
A +

√
1−RAu

in,2
A . (6)

Here, we drop an added phase from the reflection as any additional phases can be included into
the phase of the optical path φs. Combining the dynamics in the system, we obtain a Langevin
equation of the form,

˙̂u(t) +D ˙̂u(t− τ)

= A0û(t) +A1u(t− τ) +
2∑

n=0
Cnûin(t− nτs),

(7)

D and An (n = 0, 1) define the interaction between fields in different elements in the system, while
the Cn matrices give the coupling to the external fields. The delayed response are given in the
matrices D and An, Cn with n 6= 0. All the localized fields are included in û, and all the input
fields are included in ûin. For example, for the coherent feedback with an auxiliary cavity, we
can write û = (X̂m, Ŷm, X̂c, Ŷc, X̂A, ŶA)T . The delay τ depends on the scheme, which for the
coherent feedback with a mirror is τ = τs and with an auxiliary cavity τ = 2τs.

Equation (7) is a delay differential equation, which is hard to solve in general. However, for
coherent feedback cooling the system will reach a steady state and with the stability test [51, 52],
this steady state can be solved in the Fourier domain and the final phonon occupancy can be
obtained (Appendix B). For entanglement generation and verification, we will consider the special
case with τs = 0, for which the solution can be obtained by solving the time evolution of the
covariance matrix.

3 Results
3.1 Similarity of a sideband-resolved system with auxiliary cavity
Let us first consider a simplified but illustrative model, which can be solved analytically. The
optomechanical system is in the deep sideband-unresolved regime, κc � Ωm. The cavity field has
a dynamics that is much faster than the dynamics of the mechanical resonator. It is therefore
possible to eliminate the derivative to the cavity field by approximating it with an instant response
to the mechanical resonator [32, 34]. If we choose ∆c = 0 the optical field in equation (1) is then
given by

κc
2 X̂c ≈

√
κ

(e)
c X̂ in,e

c +
√
κ

(i)
c X̂ in,i

c ,

κc
2 Ŷc ≈ −2gXm +

√
κ

(e)
c Ŷ in,e

c +
√
κ

(i)
c Ŷ in,i

c .

(8)

For the feedback part, we consider φs = 0. This can be achieved experimentally by locking the
length of the feedback path to a fixed value. We further choose a short feedback path τs � 2π/Ωm,
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allowing us to approximate τs ≈ 0. This results in a linearized Langevin equation

˙̂
XA = κ̃A

2 X̂A −∆AŶA +
√
κ̃

(1)
A

ˆ̃X in,1
A +

√
κ

(2)
A X̂ in,2

A ,

˙̂
YA = ∆AX̂A + κ̃A

2 ŶA − 2g̃Ŷm +
√
κ̃

(1)
A

ˆ̃Y in,1
A +

√
κ

(2)
A Ŷ in,2

A ,

˙̂
Xm = ΩmŶm,

˙̂
Ym = −ΩmX̂m − ΓmŶm +

√
2ΓmPin − 2g̃

(
X̂A −

√
(1− ηs)ξ1
ηOMηsκ

(1)
A
X̂add

)
,

(9)

where ηOM = κ
(e)
c /κc, and ξn = 1−ηns rnOM with rOM = 1− κ(e)

c
κOM/2 . We have introduced two effective

bosonic fields, ˆ̃uin,1
A and ûadd, whose full expressions are given in Appendix C. Equations (9) results

in dynamics that are similar to a bare optomechanical cavity where the mechanical resonator is
directly coupled to the auxiliary cavity when compared to equation (1), with modified parameters,

κ̃
(1)
A = ξ2

ξ2
1
κ

(1)
A ,

κ̃A = κ̃
(1)
A + κ

(2)
A ,

g̃ = −

√
ηsκ

(1)
A κ

(e)
c

ξ1κc/2
g.

(10)

Now, the effective optical decay rate is κ̃A. By using a narrow-linewidth auxiliary cavity, it there-
fore effectively brings the system into the sideband-resolved regime. In particular, with the optical
cavity of the optomechanical system being overcoupled, which can be routinely achieved experi-
mentally [24, 27, 53], rc < 0 and ξ2/ξ

2
1 < 1, κ̃A < κA. The effective optical decay rate is smaller

than the actual decay rate of the auxiliary, enabling even less stringent linewidth requirements
for the auxiliary cavity. Experimentally, external Fabry-Pérot cavities can have a much narrower
linewidth than the mechanical frequencies in many integrated optomechanical systems. Connecting
to an external cavity, however, introduces an additional delay due to the optical path length, which
can be significant for mechanical resonators with high frequencies [12, 26, 54]. In this regime, an
on-chip auxiliary optical cavity [55, 56] is able to provide both small linewidth and short optical
path to ensure τs � 2πΩm.

The drastic reduction of the effective linewidth of the optical cavity, from κc to κ̃A, allows to
now realize experiments and applications originally proposed for the sideband-resolved regime, with
systems with broad integrated cavities or very low mechanical frequencies. This however comes
at the expense of a reduction in the (effective) optomechanical coupling rate g̃. Furthermore, the
added noise X̂add increases the effective phonon number of the bath,

ñth = nth + 41− ηs
ξ1

g2

Γmκc
. (11)

Note that the added noise vanishes at the limit of ηs → 1, i.e., no loss in the optical path, while it

does not require a fully overcoupled optomechanical cavity (κ
(i)
c = 0).

To better understand the effect of the coherent feedback, we consider another important figure

of merit in optomechanics, the quantum cooperativity Cqu = 4g2

nthκΓm
[17]. Larger Cqu means a more

robust optomechanical interaction compared to the photon and phonon decoherence and is thus
favorable for optomechanical experiments in the quantum regime [17]. The quantum cooperativity
with the coherent feedback is then given by

C̃qu = 4g̃2

κ̃AΓ̃mñth
= 4ηsηc(κ(1)

A /κA)/ξ2
1(

1 + 2ηsrc
ξ1

κ
(1)
A
κA

)(
1 + 1−ηs

ξ1
Cqu

)Cqu, (12)

For a lossless optical path, the effective quantum cooperativity is enhanced as long as κ
(1)
A > κA/2,

i.e., the auxiliary cavity is overcoupled to the optomechanical cavity. This is due to the fact
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Figure 2: (a) Effective quantum cooperativity as a function of the original quantum cooperativity and (b) their
ratio at different single-way optical path efficiency ηs. When the original quantum cooperativity is large, the
enhancement can be reduced. The dotted line in (a) is for C̃qu = Cqu. Note that (a) and (b) share the
same legend. (c,d) The quantum cooperativity ratio as a function of the coupling of the optical cavities to the
feedback system. The dotted line, dashed lines, and the solid line are for an original quantum cooperativity of
0.1, 0.5 and 1, respectively, and the color labels are indicated in (c). In (c), κc/2π = 10 GHz is fixed. In (d),
κA/2π = 500 kHz is fixed. The other parameters for the plot are listed in the appendix.

that an overcoupled auxiliary cavity recycles photons. With an inefficient feedback ηs < 1, the
enhancement is reduced when the original quantum cooperativity is very large due to the added
noise from the optical path.

For a set of practical parameters (see Appendix A), the effective quantum cooperativity and
the ratio between the effective and the original quantum cooperativity are shown in Figure 2(a,b).
Without loss in the optical path, the cooperativity is enhanced by up to a factor of 1.5. Despite
the added noise, we note that the enhancement is robust against loss in the feedback path. With
a moderate single way efficiency of 70%, the enhancement of the quantum cooperativity persists
until Cqu ≈ 3.25, which allows for experiments with a relatively large quantum cooperativity. This
regime is crucial for many applications at high temperature, such as cooling and non-classical state
generation [34, 57, 58]. Improving the efficiency drastically increases the enhancement region, with
a single-way efficiency of 0.8 yielding an upper bound of Cqu = 6.98, more than doubling the

previous value. The results for changing the coupling efficiency κ
(e)
c /κc and κ

(1)
A /κA, while fixing

κA and κA, are plotted in Figure 2(c,d). As expected, increasing the coupling to the internal
feedback system increases the quantum cooperativity enhancement.

3.2 Coherent feedback cooling
Preparing a mechanical resonator close to its quantum groundstate has been a major driving force
in optomechanics over the past decades [57, 59–61], enabling many quantum experiments [62].
Inspired by the similarity between a system in the sideband-unresolved regime with coherent feed-
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Figure 3: Coherent feedback cooling with an auxiliary cavity without delay. The dashed lines show the sideband
cooling result for a similar optomechanical cavity (see section 3.1), and circles show the optimized results. (a)
Only φs and ∆A are optimization parameters and while in (b) φs, ∆A and κ

(1)
A are optimization parameters.

The optimized parameters for (b) are plotted in (c-e). The optimized parameters for (a) are plotted in Figure 8.

back and a sideband-resolved system, we show that it is possible to reduce the phonon occupation
with our coherent feedback scheme. With large quantum cooperativity even groundstate cooling
can be achieved. Furthermore, the additional parameters available to control the optomechanical
system, allows it to perform better than a similar optomechanical system without the coherent
feedback.

Figure 3(a) shows the average phonon occupancy for an optomechanical system that is coupled
to an auxiliary cavity without delay. The phonon number is minimized numerically with respect
to the phase acquired on the optical path φs and the detuning of the auxiliary cavity ∆A. When
the quantum cooperativity approaches 1, the phonon number starts to drop below 1. For a single-
way efficiency of 70%, 80% and 90%, it is possible to achieve a minimum phonon number of
0.24, 0.16 and 0.10, respectively. When the quantum efficiency becomes too large, the added
noise from the feedback and the back-action noise in the optomechanical system dominates and
thus the phonon number increases. The sideband cooling results of an equivalent optomechanical
system (Equation (9)) is shown as well. They correspond to a feedback cooling where φs = 0 and
∆A = −Ωm. We see that the optimized phonon number is slightly lower and that the reduction
is larger when the efficiency is higher. A greater benefit can be obtained when we further include

κ
(1)
A as an optimization parameter (cf. Figure 3b). As the auxiliary cavity is not part of the

optomechanical system, we can freely choose its parameters as long as they are experimentally

feasible. Here, we keep the coupling to the outer channel the same as before, κ
(2)
A /2π = 100 kHz

and for a single-way efficiency of 70%, 80% and 90%, it is then possible to achieve a minimum
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Figure 4: Coherent feedback with delay for (a) an auxiliary cavity and (b) an auxiliary mirror. In (a), the round
trip delay is 0.0, 0.05 and 0.1 µs, corresponding to a feedback phase 2Ωmτs of 0, 0.1π and 0.2π. The single way
efficiency over the optical path is ηs = 0.7, 0.8, 0.9 for blue, orange and green curves. The phonon number is
minimized numerically with respect to κ(1)

A , ∆A and φs. In (b), the reflectivity of the auxiliary mirror is set to
1. Non-unity reflectivity can be included in the optical path efficiency. The phonon number is minimized with
respect to τs and φs.

phonon number of 0.15, 0.10 and 0.07, respectively. The optimized parameters are plotted in
Figure 3(c-e), showing the optimal parameters being very different from simply setting φs = 0 and
∆A = −Ωm. The optimal detuning is not necessarily on the red sideband due to the extra degree
of freedom φs. The optimal linewidth is larger than or comparable to the mechanical frequency,
resulting in an auxiliary cavity that is heavily overcoupled to the feedback system. It is also
interesting to note that we find an optimal point that is fixed for different efficiencies over the
feedback optical path. It occurs at roughly 500 intra-cavity photons (Cqu ≈ 2.8), with the optimal

set of parameters φs ≈ π/4, ∆A/2π ≈ 0 MHz, and κ
(1)
A /2π ≈ 2 MHz. The reason for this fixed

point is not yet understood and it may require solving the model analytically.
In an actual experiment, the optical path will always introduce a delay, which reduces the

coherence of the feedback. For low frequency mechanical resonators, this delay can however be
kept small compared to the oscillation period. We would like to stress that the delay does not
introduce a significant reduction of the cooling performance if the mechanical decoherence rate
is small, i.e., the decoherence has a time scale that is much longer than the feedback delay. In
Figure 4(a), the cavity-assisted coherent feedback with delay at different ηs is studied, where the
round trip delay 2τs is set to 0, 0.05 and 0.1 µs. This corresponds to a single-way free-space optical
path of 0, 7.5, and 15 m, respectively. No significant higher phonon number for different delays
with different ηs can be observed. The cooling performance is worse at very large photon number,
which is however already outside the optimal regime.

Besides the coherent feedback with an auxiliary cavity, coherent feedback cooling can also be
achieved by using a mirror as the feedback element (cf. Figure 1(c)) in the presence of optical
delay. With a round-trip delay of around 1/4 of the mechanical oscillation cycle, the feedback can
introduce a significant damping force onto the mechanical resonator when φs is properly tuned,
which we show in Figure 4(b). For simplicity, we assume a mirror reflectivity of 1, while any
deviation from unity can be directly included in the optical path efficiency ηs. We find a similar
cooling performance compared to the coherent feedback with an auxiliary cavity. At large quantum
cooperativity, the resulting phonon number is slightly higher due to the larger delay which intro-
duces an additional incoherent signal to the feedback. However, similar to the feedback with the
cavity, the impact is small at the optimal quantum cooperativity. A direct comparison is plotted
in Figure 5.

Additonally, we compare the coherent feedback to the measurement-based feedback approach
(see Figure 5). For the measurement based feedback cooling, we adapt the results from [32] with
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Figure 5: Comparison between coherent feedback by mirror (crosses, results from 3(b)), by auxiliary cavities
(circles, results from 4(b)), and from measurement-based feedback (dashed lines, results calculated from [32]).
The measurement based feedback cooling has a detection efficiency ηdet that is equal to ηs of the corresponding
coherent feedback case.

the regime κc � ωfb ∼ Ωm � Γm, where ωfb is the feedback bandwidth. We minimize the phonon
number with respect to ωfb and the feedback gain numerically. We use a detection efficiency that
matches the single-way optical path efficiency, ηdet = ηs. At small quantum cooperativity, the
measurement-based feedback cooling is much more efficient, as the weak cooling power for the
coherent feedback cooling is due to the lack of gain in the coherent feedback system proposed here.
On the other hand, in the measurement-based feedback cooling, the gain can be tuned to reach
the noise-squashing regime [19, 63]. However, at large intra-cavity photon number, it is possible
to achieve a lower phonon occupation with the coherent feedback. For the coherent feedback, the
feedback control signal ûfb coherently mixes with the vacuum noise (ûvac) with an efficiency η
coupling into the optomechanical cavity, ûin

c = √ηûfb +
√

1− ηûvac. For the measurement-based
feedback cooling, the control signal is classical, ûin

c = √ηufb + ûvac. The input noise is therefore
lower in the coherent feedback case, with 0 < 1− η < 1 always satisfied.

3.3 Entanglement generation and verification between photons and phonons
Quantum entanglement between photons and phonons has been proposed using an optomechan-
ical system in the sideband-resolved regime [14, 64] and experimentally demonstrated in various
systems [16, 65]. Depending on the detuning of the input field with respect to the optomechanical
cavity, either the Stokes process can be used to generate entanglement or the anti-Stokes process
serves as a readout and to verify the entanglement (state-swap operation). With a sideband-
resolved system, the other process can always be strongly suppressed, which makes it possible to
efficiently generate and verify entanglement by sending two pulses. In contrast, in a sideband-
unresolved system, the difference in the suppression is lacking. Entanglement creation and the
readout happens at a similar rate, making experimental implementations challenging. Inferring
entanglement through continuous measurement inspired by the similar idea has been proposed,
with a maximum squeezing of the EPR quadratures reaching up to 50% of the vacuum noise [34].
The coherent feedback proposed can effectively bring the sideband suppression back and it is again
possible to create and verify optomechanical entanglement with the help of an auxiliary cavity.
Squeezing of the EPR quadratures beyond 50% of the vacuum noise could be achieved by optimiz-
ing the mechanical quality factor with a reasonably high efficiency of the optical path.
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Figure 6: Entanglement generation and verification scheme considered in this work. The optomechanical cavity
connects to three auxiliary cavities via an optical switch. The three cavities are for cooling, entanglement
generation, and state-swap for entanglement verification. By measuring the output of the last two auxiliary
cavities, photon-phonon entanglement can be detected. Between the entanglement generation and verification,
a gap without the feedback is inserted. Optionally, as considered in this work, light from the laser is coupled
into the optomechanical directly to keep a constant cavity photon number.

We consider the scheme shown in Figure 6, without any delay in the feedback to reduce the
complexity of the model. It expands the coherent feedback scheme in Figure 1 to a setup with
three cavities. A fast optical switch allows to select which of the auxiliary cavities couples to
the optomechanical system. Light is sent into the system through port 2 (the port connecting to
the outside) of the auxiliary cavities. To start, the switch is set to the first cavity, which is used
to pre-cool the mechanical resonator into a low thermal occupation state. For simplicity, we set

κ
(1)
A /2π = 400 kHz, κ

(2)
A /2π = 100 kHz, ∆A = −Ωm, and φs = 0. We also use an interaction time

of 0.1 s, which is sufficient to reach a steady state. We then switch to the second cavity, which
is used for the entanglement generation. Finally, the third cavity is used to perform a state-swap
in order to read the state of the mechanics. We assume an experimentally achievable switching
time of 100 ns between the entanglement generation and the state-swap stage, during which there
is no feedback (shown as an empty channel with dotted optical lines in Figure 6). Our approach
expands on the scheme presented in [14]. By introducing the switching time between the second
and the third cavity, which is much larger than 1/κc, the entanglement generation cavity and the
state-swap cavity are effectively isolated. The light carrying information during the entanglement
generation cannot be detected by the state-swap measurement. Optomechanical entanglement can
thus be verified by measuring the X and Y quadratures of the output of the two cavities.

We calculate the entanglement through the linearized dynamics described in Equation (7), with
D = A1 = C1 = 0. The calculation routine is similar to that in reference [18], but without the
use of the rotating wave approximation (RWA) for the mechanical resonator. The evolution of the
system is of the form

û(t) = exp(A0t)û(t0) +
∫ t

t0

ds exp (A0(t0 − s))C0ûin(s). (13)

For t being in different stages (pre-cooling, entanglement generation, switching, state-swap), t0
represents the start of each stage. With this setting, A0 and C0 are constant. The output of the
auxiliary cavities, for the entanglement generation and verification, are then defined as

ûα = uin,2
A,α −

√
κA,αuA,α. (14)

α ∈ {g, s} denotes the components involved in the entanglement generation and the state-swap
phase. Further, we define optical temporal modes [14, 34]

r̂α =
∫ tf

t0

dtfα(t)R(θα(t))ûα. (15)
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The integration is carried out only within the corresponding stage, starting from t0 and ending at
tf . R is the rotation matrix defined in Equation (3), with θg(t) = Ωmt and θs(t) = −Ωmt + φs.
The rotation matrix is necessary since we do not use the RWA for the sideband-unresolved regime.
Also, we take the exponential form for the envelope fα [14, 34]

fg(t) =
(

1− e−2Γtmτp

2Γtm

)1/2

eΓtm(t−t(f)
g ),

fs(t) =
(

1− e−2Γtmτp

2Γtm

)1/2

e−Γtm(t−t(0)
s ).

(16)

t
(f)
g is the end time of the entanglement generation, and t

(0)
s is the starting time of the state-swap

process. They can be chosen to be centered around t = 0 (t
(f)
g = −t(0)

s ). Γtm is a parameter
controlling the exponential decay rate of the envelop. Both processes have a duration of τp.
Outside the period they are equal to 0. This definition ensures that the temporal mode r̂ satisfies
the bosonic commutation relation, [r̂α,i, r̂β,j ] = δαβεij , where i, j ∈ {X,Y } are for the two
quadratures included in r̂. The covariance matrix of the temporal mode can then be evaluated

σij = 〈r̂ir̂j + r̂j r̂i〉, (17)

with r̂ = (r̂g,X , r̂g,Y , r̂s,X , r̂s,Y ). In this work, we use the EPR-variance to quantify the entan-
glement, ∆EPR = (σ11 + σ22 + σ33 + σ44)/2 + (σ13 − σ24) [34].

We note that switching with a finite dead time might introduce classical noise to the mechanical
resonator due to the resulting change in the cavity photon number. It thus reduces the entangle-
ment and is not captured by the linearized model [66]. It is more relevant to the calculation here, as
the mechanical oscillation considered is significantly less coherent compared to the typical optome-
chanical experiments in the sideband-resolved regime [6, 16]. A higher interaction strength with
a shorter pulse is favorable, as demonstrated below. However, we stress that the switching time
is much shorter than the mechanical oscillation period and thus the disturbance would mainly be
at very high frequency, while the impact on a low-frequency mechanical resonator is minimal. As-
suming an unchanged average photon number inside the optomechanical cavity, allows to eliminate
the effect of the switching. Experimentally this can be realized by introducing another coupling
channel, such as another waveguide into the optomechanical system. Alternatively, an additional
channel on the optical switch that couples to the laser directly can be introduced. We include this
in the scheme shown in Figure 6, plotted as the dotted red lines for the optics and the dashed
line inside the switch. By controlling the light intensity on this additional channel, it is then
possible to achieve a constant cavity photon number. This approach reduces the entanglement
since the photons during the switching are not measured, corresponding to a loss of information.
Meanwhile, the photons interact with the mechanical resonator, creating mechanical decoherence.
Therefore, a switch with a short switching time is required to reduce the switching impact. We
note that on-chip optical switches with low loss and short switching time have been demonstrated
experimentally [67, 68].

In the scheme considered here, the auxiliary cavities for entanglement generation and verifica-
tion have the same parameters, except for an opposite detuning. The phases of the optical paths

φs for both stages also have opposite signs. We then minimize ∆EPR with respect to κ
(1)
A , κ

(2)
A , ∆A,

φs, Γtm and τp, where the values are given in the appendix (Figure 9). Different from the feedback

cooling, we include κ
(2)
A as an optimization parameter since the entanglement is detected from the

output light of channel 2. The result is plotted in Figure 7, with a unity detection efficiency for the
light getting out of the feedback system. We consider mechanical resonators with Qm = 2 × 107

and 108, corresponding to a thermal decoherence rate, in the unit of mechanical resonance cycles,
Qmfm/(kBT/h) of 230 and 1100, respectively. When increasing the cavity photon number, we can
observe a reduction in ∆EPR. For a single-way efficiency of 0.7, 0.8 and 0.9, it is possible to achieve
a ∆EPR of 1.37, 1.22 and 1.05 with Qm = 2× 107, and 1.23, 1.05 and 0.84 with Qm = 108, respec-
tively. ∆EPR < 2 is the threshold for entanglement between the temporal modes of the two output
light pulses and is a direct result of the entanglement between the photons and the motion of the
mechanical resonator. Increasing the photon number beyond an optimal point leads to an increase
in ∆EPR. In the present of optical loss, a stronger interaction leads to a stronger effective noise,
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Figure 7: Optimized ∆EPR for (a) Qm = 2 × 107 and (b) Qm = 108. The gray solid line shows the separability
bound ∆EPR = 2.

reducing C̃qu. As the interaction strength is increased, the time of the pulse becomes shorter. The
fixed switching time, during which the entanglement is reduced, becomes therefore more dominant.
The calculation shows that it is beneficial to achieve low loss over the feedback path and a low
thermal decoherence. Still, it is remarkably robust against any dissipation in the system, making

it feasible for real experimental parameters. In the optimization, an optimal κ
(2)
A /2π is around

500 kHz. We note that a total linewidth of 220 kHz has been reported recently using on-chip disk
resonators [55], which is promising for a fully integrated coherent feedback system, which could
minimize optical loss over the feedback path. A reasonable increase of the mechanical frequency
would also make a fully integrated system more feasible.

4 Conclusion
In this work, we propose a coherent feedback scheme with linear, passive optical components.
We mainly consider optomechanical systems in the deep sideband-unresolved regime, and with
experimentally relevant parameters. We show that an additional, external optical cavity can
effectively bring the optomechanical system into the sideband-resolved regime for a specific set of
parameters (φs = 0, τs = 0, ∆c = 0). We consider non-unity feedback efficiency, which introduces
additional noise to the mechanical resonator. Overall, the effective quantum cooperativity can still
be enhanced, depending on the feedback path efficiency and the original quantum cooperativity.
Our analysis shows that coherent feedback is a highly promising path for broad applications using
sideband-unresolved systems.

We use these results to demonstrate how either an optical cavity or a mirror plus an optical
delay path as an auxiliary component can be used to perform groundstate cooling of the mechan-
ical resonator under practical experimental conditions. Furthermore, based on an entanglement
protocol with long pulses [14], we then propose an experimental scheme that uses three auxiliary
cavities for cooling, entanglement generation and verification. By switching between these cavities
in a relatively short time the output light can be used to detect photon-phonon entanglement.
We quantify the entanglement of the output light by evaluating the EPR-variance of the tem-
poral optical mode. Even though it is not necessarily the optimal entanglement witness [34, 69]
it shows a significant squeezing well below the inseparability bound. Experimentally realizing a
fully integrated on-chip coherent feedback structure is within reach of state-of-the-art on-chip op-
tical resonators [55, 56] and fast optical switches [67, 68], even for mechanical frequency as low
as 1 MHz. Such an integrated structure would drastically reduce the complexity of an experi-
ment and could help realize novel quantum applications [62] with optomechanical systems in the
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sideband-unresolved regime.
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A Default parameters and convention
If not specified otherwise, we consider the following parameters.

Mechanical frequency Ωm/2π 1 MHz
Mechanical quality factor Qm = Ωm/Γm 2× 107

Energy decay rate of optomechanical cavity κc 2π × 10 GHz
Detuning of the optomechanical cavity ∆c 0

Coupling efficiency of optomechanical cavity ηc = κ
(e)
c /κc 0.8

Coupling rate of auxiliary cavity to the feedback κ
(1)
A 2π × 400 kHz

Coupling rate of auxiliary cavity to other channels κ
(2)
A 2π × 100 kHz

Environment temperature T 4.2 K
Delay (only for the feedback by auxiliary cavity) τs 0

“Switching time” of the temporal mode function t
(0)
s − t(f)g 0.1 µs

We define the Fourier transform with the convention

u(ω) = F [u(t)](ω) =
∫ +∞

−∞
u(t)eiωtdt. (18)

B Steady state and photon number
When performing the feedback cooling, the steady state of the system is considered. It can be
analyzed by transforming Equation (7) to the Fourier domain,

− iω
(
I +Deiωτ) û(ω) =(

A0 +A1eiωτ) û(ω) +
( 2∑
n=0

Cneinωτs

)
ûin(ω),

(19)

where I is the identity matrix. Rearranging Equation (19) yields the form û(ω) = M(ω)ûin(ω),
where M(ω) is the transfer matrix

M(ω) = −
(
iω
(
I +Deiωτ)+A0 +A1eiωτ)−1

×

( 2∑
n=0

Cneinωτs

)
.

(20)

The input noise has a single-side spectrum [32]

Suini
(ω) = 1,

SXin
m

(ω) = SY in
m

(ω) = 2nth + 1.
(21)

Here, uini are for the elements corresponding to the optical input noise only. It is then possible to
get the spectrum of û [32],

Su(ω) = |M(ω)|2 Suin . (22)

The absolute value and the square are performed entry-wise. This allows extracting the energy of
the mechanical resonator by integrating the spectrum of the mechanical field. The corresponding
phonon occupancy is given by [32],

nphn = 1
2

(∫ ∞
0

dω

2π (SXm(ω) + SYm(ω))
)
− 1

2 . (23)

The scheme is valid only when the system is stable. Determining the stability of the system
can be done in a classical way [32]. For our system with delay, we follow the method described in
[51, 52] to perform the stability test.
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C Expression of the effective fields in Equation ((9))

ˆ̃uin,1
A = 1√

ξ2

−
√
ηsκ

(e)
c κ

(i)
c

κc/2
ûin,i

c + rOM

√
ηs(1− ηs)ûin

bw +
√

1− ηsû
in
fw

 ,

ûadd =
√

ηOM
(1− ηs)ξ1

(1− ηs)

√
κ

(i)
c

κ
(e)
c
ûin,i

c +
√

1− ηsu
in
bw +

√
ηs(1− ηs)uin

fw

 .

(24)

They are a result of the combination of the optical vacuum field, and they satisfies the Bosonic
commutation relation.

D Optimized parameters for Figure 3 and Figure 7
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Figure 8: Optimized parameters used in Figure 3(a).
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at telecom wavelengths, Nat. Phys. 16, 772 (2020).

[7] N. Fiaschi, B. Hensen, A. Wallucks, R. Benevides, J. Li, T. P. M. Alegre, and S. Gröblacher,
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