

Enhanced Wake-Mixing with Floating Offshore Wind Turbines.

- Controls Co-Design of Offshore Floating Turbines for Wake-Mixing.
 - Daniel van den Berg
 - Jan-Willem van Wingerden
 - Delphine de Tavernier

Table of Contents

- Introduction.
 - Wake Mixing Strategies.
- Floating Offshore Wind Turbine Motions.
- Case Study.
 - Scenarios.
 - Scenarios preliminary results.
- Future Work & Scientific Prospects.
 - Co-Design Triangle.

Introduction – Wake Mixing Strategies

- Introduction
- FOWT Motions
- Case Study
- Furthe Work

¹Frederik, Joeri A., et al. "The helix approach: Using dynamic individual pitch control to enhance wake mixing in wind farms." *Wind Energy* 23.8 (2020): 1739-1751.

Introduction – Wake Mixing Strategies

Introduction

- FOWT Motions
- Case Study
- FurtherWork

Introduction – Wake Mixing Strategies FOWT

- Introduction
- FOWT Motions
- Case Study
- FurtheWork

FOWT Motions – Bode Plots

- Introduction
- FOWT Motions
- Case Study
- Further

The red dotted line indicates St = 0.25, experimentally found to be the ideal mixing frequency for DIC².

²Wim Munters and Johan Meyers. "Effect of wind turbine response time on optimal dynamic induction control of wind farms". In:Journal of Physics: Conference Series753 (Oct. 2016).doi:10.1088/1742-6596/753/5/052007

Introduction

- FOWT Motions
- Case Study
- Further Work

TUDelft

Case Study:

- Several Different scenarios compared based on Bode plot findings.
- DTU 10MW on the Triplespar³ platform with subscribed motion.
 - Pulse with Qblade:
 - 2 Degree blade pitch, no platform movement.
 - 4 Degree blade pitch, no platform movement.
 - 2 Degree blade pitch, 1 degree platform movement.

- Helix with SOWFA:
 - 4 Degree blade pitch, no platform movement.
 - 2 Degree blade pitch, 6 degree platform movement.

Introduction

- FOWT Motions
- Case Study
- Further
 Work

Case Study – Pulse Results – 5D

		Baseline	- 2 Degree Pitch - No Platform	- 2 Degree Pitch - 0,5 Degree Platform	- 4 Degree Pitch - No Platform	- 4 Degree Pitch - 1 Degree Platform
	Avg Wind [m/s]	5.49 (-)	5.94 (+8.2%)	6.29 (+14.5%)	6.24 (+13.5%)	6.67 (+21.5%)

Case Study – Helix Results

- Introduction
- FOWT Motions
- Case Study
- Further Work

Conclusion

- Introduction
- FOWT Motions
- Case Study
- Further Work

- Both Pulse and Helix looks promising.
- Amplification of motion mainly dependent on platform parameters.
- · Ideal mixing frequency unknown.
- Implication on FOWT loads?

FLOATECH Scientific Prospects — Co Design

- Introduction
- FOWT Motions
- Case Study
- Further Work

⁴Lemmer, Frank, et al. "Optimization of floating offshore wind turbine platforms with a self-tuning controller." *International Conference on Offshore Mechanics and Arctic Engineering*. Vol. 57786. American Society of Mechanical Engineers, 2017.

⁵Pedersent, T.F., 1986. Wind Turbine Test wind Matic WM15S. Work, 20130325(892), p.20130325T171011.

- Introduction
- FOWT Motions
- Case Study
- FurtherWork

FOWT Motions – Pulse

- Introduction
- FOWT Motions
- Case Study
- FurtheWork

FOWT Motions – Helix

- Introduction
- FOWT Motions
- Case Study
- Further Work

Introduction

- FOWT Motions
- Case Study
- Furthe Work

FOWT Motions – Pulse Bode Plots

- Introduction
- FOWT Motions
- Case Study
- Furthe
 Work

FOWT Motions – Helix Bode Plots

- Introduction
- FOWT Motions
- Case Study
- Furthe Work

Case Study - Qblade

- Free Vortex Wake Method.
- Solve Lagrangian Marker movement.

•
$$\frac{d\mathbf{r}}{dt} = V_{\infty} + V_{ind} + V_{rmb}$$

- V_{∞} is freestream velocity
- V_{ind} is Vortex interaction by Biot-Savart law.
- V_{rmb} is Velocity changes due to rigid body motion.
- Computationally more efficient method [1].
- Prone to numerical instability for longer wakes [2].

