TWIND Summer School 2021

Development of a Underwater Gravity Energy Storage (UGES) concept for offshore applications.

CITG-HE-Offshore Engineering

07/07/2021

Motivation

Motivation – High productivity fields

FPSO Capacity limited by:

- Deck space
- Power Generation (100MW)

Motivation – Subsea processing

HiSep™ provides Gas Plant Debottlenecking and/or Future New Generation FPSOs with Less Complex Gas Processing Plants

Motivation – Offshore renewables

Equinor (2019) - Hywind Tampen - Norwegian North Sea

Aims of the project

- Power a subsea system at Mero oil field:
 - Wanter Injection System (SWI)
 - Power Source
 - Energy Sotorage

Power source selection (MCDA)

Wind power

Energy storage technology

Gravitational Energy Storage

Zhenjun (2014) – Patent CN103867409B

Buoyancy-Supported Rise (BSR)

Underwater Gravity Energy Storage (UGES)*

*Out of scale

UGES – Dimensioning

UGES – Preliminary system sizing

- Support structure:
 - 55 X 40 m
- Weights
 - 8 x concrete cylinders r = 2.5 m H = 10 m
 - 474 tones each
- Working Parameters
 - Maximum Speed: 1 m/s
 - Maximum power: 4.64 MW
 - Total energy stored 10.3 MWhr
 - Full power discharge time 4h26min

Dynamic Behaviour*

Dynamic Behaviour

Numerical model

- Semi-analytical model based on Yang Qu (2019);
- Couple cross-flow and inline vortex-induced vibrations (VIV) → Nonlinear
- Implemented and solved on commercial software's.

Adapted from Yang Qu (2019) - Thesis

Next steps

- Validate the model
- Evaluate the effect of waves and elasticity of the cable
- Evaluate the sincronization effect

Concluding

Thanks to:

Promoter: Andrey V. Metrikine

Co-Promoter: Antonio Jarquin Laguna

Master student: Frank Mols

A.R.NovgorodcevJunior@tudelft.nl

