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A B S T R A C T   

Flood has long been known as one of the most catastrophic natural hazards worldwide. Mapping flood-prone 
areas is an important part of flood disaster management. In this study, a flood susceptibility mapping frame-
work was developed based on a novel integration of nature-inspired algorithms into support vector regression 
(SVR). To this end, various remote sensing (RS) and geographic information system (GIS) datasets were applied 
to the hybridized SVR models to map flood susceptibility in Ahwaz township, Iran. The proposed framework has 
two main steps: 1) updating the flood inventory (historical flooded locations) using the proposed RS-based flood 
detection method developed within the google earth engine (GEE) platform. The mosaicked images of multi- 
temporal Sentinel-1 synthetic aperture radar (SAR) data have been used in this step; 2) producing flood sus-
ceptibility map using the standalone SVR and hybridized model of SVR. The hybridized methods were derived 
from a novel integration of SVR with meta-heuristic algorithms, hence forming the SVR-bat algorithm (SVR-BA), 
SVR-invasive weed optimization (SVR-IWO), and SVR-firefly algorithm (SVR-FA). A spatial database of flood 
locations and 11 conditioning factors (altitude, slope angle, aspect, topographic wetness index, stream power 
index, normalized difference vegetation index (NDVI), distance to stream, curvature, rainfall, soil type, and land 
use/cover) were built for the susceptibility modelling. The accuracy of the proposed model was evaluated using 
the statistical and sensitivity indices, such as root mean square error (RMSE), receiver operating characteristic 
(ROC) and area under the ROC curve (AUROC) index. The results indicated that all hybridized models out-
performed the standalone SVR. According to AUROC values, the predictive power of the SVR-FA was the highest 
with the value of 0.81, followed by SVR-IWO, SVR-BA, and SVR with values of 0.80, 0.79, and 0.77, respectively.   

1. Introduction 

Flood is a natural disaster (Khosravi et al., 2016; Chen et al., 2020) 
with many socio-economic repercussions (Tien Bui et al., 2018), 
resulting in several other disasters, such as erosion, landslide, and 
sinkholes (Arabameri et al., 2019). Therefore, it is required to monitor 
floods using advanced techniques and develop accurate flood risk 
models (Samanta et al., 2018b). 

To decrease the negative socio-economic effects of floods, it is 
important for governors and decision-makers to follow effective flood 

management plans. The most important part of flood management plans 
is to use the most accurate methods to identify and model the flood- 
prone areas within watersheds (Rahmati et al., 2016b; Tien Bui et al., 
2018; Parsian et al., 2021). Contrary to flood prevention, which is not 
entirely possible, prediction of flood-prone areas is practical (Bui et al., 
2016; Falah et al., 2019). 

In general, methods used for flood susceptibility mapping can be 
categorized into four groups including physically-based models, multi- 
criteria decision analysis, statistical, and machine learning (Liu et al., 
2021). The primary problem with physically-based models in several 
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areas like Iran is that acquisition of various types of datasets is almost 
impractical due to many limitations (Shahabi et al., 2020). Physically- 
based models often need a significant level of computation and 
enough expertise to consider proper hydrological parameters (Mosavi 
et al., 2018). The multi-criteria decision analysis methods, such as the 
analytic hierarchy process are well-known for their simplicity making 
them widely used for flood susceptibility assessment. Multi-criteria de-
cision analysis methods heavily rely on the judgement of experts, hence 
the results can inevitably be accompanied by subjectivities and un-
certainties (de Brito et al., 2019). 

Statistical methods generally include bivariate statistical analysis 
and multivariate statistical analysis (Liu et al., 2021). The frequency 
ratio (FR) is one of the most popular statistical bivariate statistical 
analysis methods (Ranjgar et al., 2021), which has frequently been used 
to estimate the influence of each class of factors on flooding. Logistic 
regression is also a common statistical multivariate statistical analysis 
method which can be used to determine the effect of conditioning fac-
tors on flooding. The predicted variables in these statistical methods are 
based on linear assumptions, while flood has generally been a phe-
nomenon with a nonlinear structure (Liu et al., 2021). 

The disadvantages of the physically-based models, multi-criteria 
decision analysis, and statistical models have led the researchers to 
use advanced data-driven models, such as machine learning algorithms, 
for studies of flood susceptibility modelling (Mosavi et al., 2018). The 
main reason that these models are more popular is because they can 
numerically formulate the complex nonlinearity of relationships be-
tween flood conditioning factors and flood potentiality. Among the 
machine learning methods, the artificial neural network (Tiwari and 
Chatterjee, 2010; Kim et al., 2016), neuro-fuzzy (Dineva et al., 2014), 
adaptive neuro-fuzzy inference system (ANFIS) (Pourghasemi et al., 
2019), optimization of the ANFIS (Tien Bui et al., 2018), random forest 
(Wang et al., 2015), decision tree, support vector machine (SVM) 
(Suykens and Vandewalle, 1999; Tehrany et al., 2015a), and support 
vector regression (SVR) (Rahmati et al., 2020; Siam et al., 2021) have 
been widely employed for producing flood susceptibility maps. Many 
studies have attempted to incorporate the metaheuristic algorithms into 
the aforementioned machine learning methods to introduce near- 
optimal solutions at a reasonable computational cost. For instance, 
Termeh et al. (2018) investigated a combination of ANFIS with meta-
heuristic algorithms, including ant colony optimization, genetic algo-
rithm, and particle swarm optimization (PSO) for flood susceptibility 
mapping. According to their results, the ensemble of ANFIS-PSO was the 
superior model in their study area. Pourghasemi et al. (2020) have also 
investigated the capabilities of combining ANFIS with four metaheur-
istic algorithms to flood zoning and assessments. Their results indicated 
that their proposed ensemble approaches were useful for flood hazard 
management. 

Producing Flood susceptibility maps using SVM has increasingly 
been popular over recent years (Tehrany et al., 2015a, (Tehrany et al., 
2019b,b)). The main reason is its generalization excellence (Choubin 
et al., 2019). The issue of the generalization problem implicates how 
well the trained system can predict the cases that were not the targets of 
training (Liu et al., 2021). Therefore, the generalization excellence helps 
to predict beyond the range of the training dataset. Moreover, SVM’s 
independence from the subjective determination of weights (as opposed 
to multi-criteria decision analysis methods), and its capability to work 
without a large number of model parameters (as opposed to physically- 
based models) were the other reasons for its popularity. SVM has also 
been extended as a regression tool known as SVR (Ansari and 
Akhoondzadeh, 2020; Rahmati et al., 2020; Balogun et al., 2021). 
Generating Flood susceptibility maps using SVR models has frequently 
been reported to have successful results (Rahmati et al., 2020). How-
ever, the optimum determination of the SVR parameters is difficult and 
important. This challenge has led to the introduction of optimization- 
based SVR models. The remarkable outcomes of many novel- 
hybridized SVR methods (with regard to accuracy, generalization, 

uncertainty, performance, and robustness) have been reported in the 
literature (Hong, 2008; de Moel et al., 2015; Zhu et al., 2016; Young 
et al., 2017). 

Historical flooded regions (flood inventory maps) are usually the 
foundation of flood susceptibility map generation (Samanta et al., 
2018b; Tehrany et al., 2014). The flooded locations provided by field 
measurements are usually accurate. However, monitoring and model-
ling flood and flood-related parameters using in-situ data has many 
challenges, such as the limited number of measurements, coarse/inad-
equate spatial distribution, and outdated data. Due to such limitations, 
quick, large-scale and fine-resolution monitoring of the inundated areas 
using the traditional field measurements is almost impractical (Xu et al., 
2020). Therefore, updated flood inventory maps are required to publicly 
identify the vulnerable areas that would be endangered in the near 
future flood events. The most practical way to quickly update a flood 
inventory is through remote sensing (RS) methods that use frequent near 
real-time data (Ngo et al., 2021). 

Over recent years, large-scale hydrological data processing and ac-
curate production of susceptibility maps have become feasible due to the 
recent developments in RS, geographic information system (GIS), ma-
chine learning, and cloud computing services (Tien Bui et al., 2018; 
Mahdavi et al., 2019; Shahabi et al., 2020). Large-scale flood studies 
inevitably have to cope with a vast quantity of data processing and 
computational complexity (Shafizadeh-Moghadam et al., 2018). Despite 
the significant advances in the RS field and the availability of time-series 
datasets, a major challenge is processing big geodata, which can be 
resolved by cloud computing platforms, such as the google earth engine 
(GEE) (Mehravar et al., 2021). 

The specific geographical-climatic attributes of Iran, such as its large 
extent, abrupt climate changes, and spatially varying ranges of precip-
itation have intensively made it a flood-prone country. Flood damage in 
Iran has considerably increased over the past decades (Rahmati et al., 
2016a; Termeh et al., 2018; Panahi et al., 2021). For example, the latest 
major floods in Iran, which occurred in February and March 2019, have 
caused 78 dead people and economic losses of about 1.8 billion USD. 
Particularly in the city of Ahwaz, these floods have caused thousands of 
partial/complete collapses of the structural systems and building shifts. 
Accordingly, 13 villages went thoroughly under water. Therefore, this 
study aims at flood susceptibility map production over the city of 
Ahwaz, Iran. As per the limitations of the current methods discussed 
above, the present study used the bitemporal ground range detected 
(GRD) product of Sentinel-1 SAR to update the outdated flood inventory 
maps. In this regard, a novel RS-based method for large-scale flood 
detection was developed in GEE. Then, a novel integration of SVR with 
three nature-inspired metaheuristic algorithms has been used to model 
flood susceptibility in Ahwaz. Aiming to fine-tune the parameters of the 
model, SVR was integrated with three metaheuristic optimization al-
gorithms, including bat algorithm (BA), invasive weed optimization 
(IWO), and firefly algorithm (FA) algorithms. 

2. Study area and data 

2.1. Study area 

Ahwaz is a city in the southwest of Iran (Fig. 1a) with a population of 
about 1,300,000. The city has an average elevation of 11 m above sea 
level. Ahwaz has an average temperature of 25  degreesC, and its 
average value of annual rainfall is 213 mm, indicating an arid climate 
region. The northern and central parts of Ahwaz contain flat and fertile 
plains, while its west and east halves have a considerable number of 
sandy hills. An infertile-dry plain is also extended from the south to the 
south-westernmost areas. Many high-risk riverine floods have occurred 
in this city over the recent years, and the latest dates back to April 2016, 
February 2019, April 2019, and November 2020, respectively (Fig. 1b). 

One of the latest applications of RS as a flood warning system was the 
emergency declaration of the European commission’s Emergency 
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Response Coordinate Centre (ERCC) on the 1st of April 2019 for the case 
of Khuzestan province, Iran. According to the ERCC report, heavy 
rainfall was expected within 24 h after the 1st of April 2019, leading to 
large amounts of water moving downstream into the province of Khu-
zestan and potentially causing rivers to overflow their banks. 

2.2. Datasets 

In this study, the VV polarization of the Sentinel-1 GRD data with a 
spatial resolution of 10 m was used for flood mapping. The GRD prod-
ucts used in this study were two mosaicked images, among which the 
first one corresponded to the time before the flood event (mosaic of the 
images acquired on March 11th,2019 and March 24th, 2019). The sec-
ond one corresponded to the time of the sequential flood event (mosaic 
of the images acquired on April 7th, 2019 and April 16th, 2019). In this 
study, the flood map of the Copernicus emergency management service 
(website address: https://www.erccportal.jrc.ec.europa.eu) for the city 
of Ahwaz (for the same flood event) was used to evaluate the accuracy of 
the produced flood maps. 

3. Method 

The workflow of the proposed method (Fig. 2) is divided into two 
main sections: (1) The flood detection methodology for producing and 
updating flood inventory maps; and (2) The modelling approach which 
was used for flood susceptibility map production. In general, the main 
steps of the proposed method are: (1) An updated flood inventory map is 
generated using a novel flood detection method applied to Sentinel-1 
SAR data within the GEE platform (section 3.1); (2) A spatial database 
was formed using the produced flood inventory and the layers of the 
flood conditioning factors; (3) The multi-collinearity test and ReliefF 
algorithms were used to analyze the suitability and relative importance 
of the flood conditioning factors. The frequency ratio (FR) model was 
then used to assess the effect of each flood conditioning factor on flood 
occurrences; (4) The flood inventory derived from GEE was categorized 
into training (70 %) and testing (30 %) samples; (5) The training sam-
ples were utilized to optimize the parameters in the SVR using the BA, 
IWO, and FA meta-heuristic algorithms; (6) The susceptibility maps were 
separately produced using the SVR, BA-SVR, IWO-SVR, and FA-SVR 
algorithms; (7) The generated flood susceptibility maps were evalu-
ated using root mean square error (RMSE) and the receiver operating 

Fig. 1. Study area (Ahwaz city, Iran): (a) The location of the study area illustrated by the Landsat-8 true color composite image, and (b) The photographs of the past 
flood events in this city. 
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characteristic (ROC) curves. 

3.1. Updating the flood inventory using the proposed flood mapping 
algorithm 

The initial flood inventory map was obtained from two sources. The 
first source was the historical flood locations provided by the local 
agricultural department. These datasets include the locations that have 
frequently been affected by floods. The second source was a flood map 
generated using the proposed method. Since the proposed flood map-
ping method benefits from the ready-to-use Sentinel-1 datasets and 
processing power of GEE (https://earthengine.google.com/platform), it 
can be a practical choice for mapping large floods which require heavy 
computation of massive data. As depicted in Fig. 3, the proposed method 
for flood detection had five main steps: (1) SAR data preprocessing; (2) 
change detection; (3) water body detection; (4) flood inventory gener-
ation; and (5) validation. These steps are briefly explained below. 

In the first step, two subsets of the same descending/ascending 
Sentinel-1 data were extracted from GEE data collection (pre-flood SAR 
image (I1) and post-flood SAR image (I2)). Afterwards, the VV polari-
zation of these images was employed for further processing of flood 
detection. Many studies in the literature have reported that slightly 
higher thematic accuracies could be obtained using the VV polarization 
instead of the VH polarization for flood mapping/monitoring (Twele 
et al., 2016; Martinis et al., 2018). This is mainly due to the better 

contrast between water and no-water areas in the VV polarization data. 
To reduce the intrinsic speckle-effect of pre-and post-flood images, I1,VV 

and I2,VV, a smoothing filter with a window size of 7*7 was utilized. 
In the second step, a reliable binary change map of floods was pro-

duced by applying an appropriate decision function on a difference 
image. To this end, the bitemporal smoothed images of I1,VV and, I2,VV, 
were first utilized to generate three difference images generated by the 
normalized difference flood index (Cian et al., 2018), log ratio index, 
and mean ratio index (Moghimi et al., 2017a) as follow: 

mean ratio index = 1 − min
(

mean(σ0 I 1,VV)

mean(σ0 I 2,VV)
,
mean(σ0I 2,VV)

mean(σ0I 1,VV)

)

(1)  

logratio index = |ln
(
σ0I2,VV/σ0I1,VV

)
| = |ln

(
σ0I2,VV

)
− ln

(
σ0I1,VV

)
(2)  

normalized difference flood index =
mean(σ0I 1,VV) − min

(
σ0 I 1,VV + σ0 I 2,VV

)

mean(σ0I 1,VV) + min
(
σ0 I 1,VV + σ0 I 2,VV

)

(3) 

Where mean(.) and min(.) refers to the ‘local mean’ and ‘minimum’ 
operators. Although the mean ratio index can well highlight the 
changed/flooded regions, it intensifies noise and artifacts. On the other 
hand, the log ratio index is usually robust to residual speckle-effect 
owing to log transformation in converting the multiplicative noise to 
additive noise (Moghimi et al., 2017b). However, the changed/flooded 
regions and their boundaries are less highlighted in this index. In 

Fig. 2. The block diagram of the proposed methodology.  
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addition to the advantages and disadvantages of the log ratio index and 
mean ratio index, they do not completely embody the nature of the 
scattering behavior of SAR images in detecting flooded regions. In this 
regard, the normalized difference flood index reflects more accurate 
structural information for flooded regions, resulting in better differen-
tiation of these areas than non-smooth surfaces (e.g., urban zones, for-
ests, and agriculture) (Cian et al., 2018). This can be mainly due to the 
simultaneous use of ratio and minimum operators in the normalized 
difference flood index equation. Nevertheless, noise-like patterns 
(anomalies) are highlighted more in this index compared to the log ratio 
index, resulting in a noisy change map. Moreover, some geometrical 
details of changed/flooded areas may be lost in the normalized differ-
ence flood index, resulting in miss detection errors. 

In general, a single index cannot accurately demonstrate the infor-
mation of the flooded regions and their geometric details. Aiming to 
address this issue, we strengthen the normalized difference flood index 
by combining it with the log ratio index and the mean ratio index based 
on a simple operator (the second root of multiplying) to generate a single 
ideal difference index as the proposed method (Eq. (4)). Using the 
proposed method, flooded regions can be detected with better accuracy 
and anomalies can be lessened. 

In this study, the proposed method was adjusted further using the 
SRTM DEM from pixels with slope values>5 %. Subsequently, a change 
map was produced by applying the k-means algorithm (MacQueen, 
1967) with k = 2 (referring to change and no-change classes) to the 
refined difference index. Finally, the surface water layer was excluded 
from the change map to generate an ideal map, specialized for flood 
detection applications. 

Besides the flooded areas, the change map might include the other 
land cover changes, resulting in false detection. The water body map 

derived from a post-flood image should be masked from the change map 
to reduce such false alarms. In this study, the water body was first 
detected by applying Otsu thresholding (Otsu, 1979) on the post-flood 
SAR image, I2,VV. The flood extent map was then produced by inter-
secting the change map and water body map. Then, it was evaluated by 
the flood map provided by the Copernicus emergency management 
service. Finally, the flood inventory map was produced by adding new 
locations from the flood extent map to the historical flood points. 

3.2. Flood conditioning factors 

The selection of the optimal flood conditioning factors is a prereq-
uisite for producing flood susceptibility maps. In this study, based on the 
results of previous studies (Arabameri et al., 2019; Janizadeh et al., 
2019; Kalantar et al., 2021), 11 flood conditioning factors (Fig. 4) 
including altitude, slope angle, aspect, topographic wetness index, 
stream power index, normalized difference vegetation index (NDVI), 
distance to stream, curvature, rainfall, soil type, and land cover were 
employed. Among the selected factors, altitude is of considerable 
importance, which has been reported to be a key factor in many previous 
studies (Tehrany et al., 2014; Dodangeh et al., 2020). Some of the 

aforementioned flood conditioning factors, including altitude, curva-
ture, distance to streams, slope angle, aspect, stream power index, and 
topographic wetness index were produced from the 30 m SRTM DEM. 
The altitude range in the study area is very low (-3 to178 m), and the 
region is mostly covered by flat plains, farmlands, and bare lands. The 
slope is an important factor that controls the velocity of water on the 
ground surface, hence affecting the infiltration and runoff. In fact, the 
infiltration depth is high and the runoff is low wherever the slope is low 
(Al-Juaidi et al., 2018). Curvature has also been reported to have the 

Fig. 3. The flowchart of the proposed flood mapping method.  

proposed method =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
mean ratio index + log ratio index

2

)

.normalized difference flood index

√

(4)   
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potential to influence flood occurrences, surface runoff and infiltration 
(Cao et al., 2016; Chapi et al., 2017). 

The distance to stream factor is reported to have a substantial effect 
on flood extent and severity (Termeh et al., 2018). The hydrological 
flood conditioning factors, such as the stream power index and topo-
graphic wetness index also play a key role in the flood models. Since the 
stream power index can denote the potential of the stream to trigger 
erosion, it plays an imperative role in terrain stability level, hence being 
a widely used factor in most flood modelling studies. The topographic 
wetness index can also be used to quantify the topographical impact on 
hydrological processes (Tehrany et al., 2019a), and it is computed by 
dividing the specific basin area by the region slope (Arora et al., 2021). 
The topographic wetness index and stream power index have been 
calculated from DEM in QGIS using Eq. (5) and (6). 

topographic wetness index = ln(
As

β
) (5)  

stream power index = As*tanβ (6) 

where As shows the particular catchment area and β denotes the 
slope angle. The stream power index indicates the erosive power of 
surface runoff. In this study, the land cover map of the study area with a 
spatial resolution of 10 m was used (Ghorbanian et al., 2020). Moreover, 
the rainfall thematic layer was derived from the last decade of rainfall 
data in the region (stations of the region). Heavy rainfall is reported to 
be the main factor for floods occurrence (Samanta et al., 2018a)(Khos-
ravi et al., 2019a,b). The rainfall thematic layer was acquired from the 
Khuzestan meteorological organization based upon the data over the 

Fig. 4. The maps of the flood conditioning factors, including (a) altitude, (b) slope, (c) aspect, (d) curvature, (e) topographic wetness index, (f) stream power index, 
(g) NDVI, (h) distance to stream, (i) rainfall, (j) soil, and (k) land cover. 
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2010–2020 period, provided from stations in the city of Ahwaz. The 
inverse distance weighted technique was applied in this study to inter-
polate rainfall values. The soil type conditioning factor was also selected 
due to its noticeable effect on runoff risk. Since the infiltration of water 
mainly relies on soil texture, the soil type can be an effective parameter 
for the activation of hydrological processes. The soil type formation 
layer was obtained from the pedological map of Ahwaz at 1:100,000 
scale. The soil data were classified into five classes, including Incepti-
sols, Dune lands, Entisols/Aridisols, Marsh, and Badlands. According to 
the literature, there is a negative relation between flooding and vege-
tation density. Therefore, the NDVI can be considered an appropriate 
factor to show the relationship between flooding and vegetation in a 
basin. The NDVI map of the study area was produced from the Landsat 8 
OLI imagery for the year 2019 using Eq. (7), and its values varied be-
tween − 0.6 and 0.91. 

NDVI =
nearinfrared − red
nearinfrared + red

(7)  

3.3. Flood susceptibility modeling 

In this study, the hybridization of SVR and three metaheuristic al-
gorithms of BA, IWO (Mehrabian and Lucas, 2006), and FA (Yang, 2009) 
were used for flood susceptibility modelling. The BA, IWO, and FA were 
used to optimize the parameters of SVR to obtain the optimized SVR 
model. The FR method was also employed to evaluate the effect of each 
flood conditioning factor on flood occurrences. FR is a bivariate statis-
tical method for estimating the probability relationship between 
dependent and independent factors, which is commonly used in 
modeling of the environmental risks as a geostatistical assessment tool 
(Ranjgar et al., 2021). The suitability and relative importance of these 
factors were analyzed using the multi-collinearity test and ReliefF al-
gorithm, respectively. 

3.3.1. Multi-collinearity analysis 
Multi-collinearity among conditioning factors could cause a reduc-

tion in model performance accuracy due to the bias between variables it 
could lead (Saha et al., 2021). In other words, a multi-collinearity test is 
necessary to determine the suitability of factors for modelling applica-
tion. The multi-collinearity analysis is carried out using tolerance and 
variance inflation factor (VIF), where values of tolerance less than 0.1 
and a VIF>10 signify the existence of collinearity among factors (Ara-
bameri et al., 2019). 

3.3.2. ReliefF feature selection method 
Feature selection is a vital preprocessing stage in data mining ap-

plications, especially when feature space has many variables. The Relief- 
based approaches are the only filter-based methods that are capable of 
identifying feature dependencies (Urbanowicz et al., 2018). However, 
the original Relief method is scarcely used nowadays and has been 
substituted by ReliefF (Kononenko, 1994). The ‘F’ in ReliefF denotes 
that the algorithm is the sixth variation of the original algorithm. This 
variation is the best-known and most-used relief-based algorithm in 
practice up to date. ReliefF is another algorithm similar to ReliefF that 
uses intermediate weights to compute the final predictor weights 
differently from ReliefF. The details of this method can be found in 
(Robnik-Šikonja and Kononenko, 1997). 

3.3.3. Optimization of SVR with metaheuristics algorithms 
The values of the SVR parameters have a significant impact on its 

prediction efficiency (Dodangeh et al., 2020; Panahi et al., 2020). In this 
study, BA, FA, and IWO were used as metaheuristic algorithms to 
improve the results of the SVR algorithm and for fine-tuning its pa-
rameters. Furthermore, RMSE (Eq. (8)) is used as the objective function 
that the optimization must minimize. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xobs − Xpred)

2

n

√
√
√
√
√

(8) 

where Xobs is the target data, Xpred is the predicted value resulting 
from the considered flood susceptibility models. Moreover, n is the total 
number of training or test datasets. When the final conditions are met 
with the best output, the optimization process stops. Otherwise, the 
optimization of the parameters is repeated. 

3.4. Validation 

3.4.1. Evaluation criteria for flood maps 
The reference flood map was generated by manual rectification of 

the flood map derived from the Copernicus emergency management 
service. Aiming to do so, the surface water was first omitted from the 
flood map of the Copernicus emergency management service and then 
manually refined from noise and artefacts. Five evaluation metrics of the 
miss alarm rate (PMA), false alarm rate (PFA), total error rate (PTE), 
overall accuracy (OA), F1 score (F1), and kappa coefficient (Kap) (see 
Eq. 9–15), which were calculated based on the reference flood map, 
were employed to assess the effectiveness of the proposed flood detec-
tion method. 

PMA =

(
FP

FP + TN

)

*100% (9)  

PFA =

(
FN

FN + TP

)

*100% (10)  

PTE =

(
FN + FP

FN + TP + FP + TN

)

*100% (11)  

OA = (100 − PTE) (12)  

F1 =

(
2TP

2TP + FP + FN

)

*100% (13)  

Kap =
OA − PE

1 − PE
(14)  

PE =
(TP + FP).(TP + FN)

(TP + TN + FP + FN)
2 +

(FN + TN).(FP + TN)

(TP + TN + FP + FN)
2 (15) 

In Eq. 9–15, false-positive (FP) is the number of non-flooded pixels 
which were wrongly labelled as the flooded pixels and false-negative 
(FN) denotes the number of flood pixels that were wrongly labelled as 
non-flooded pixels. Moreover, the number of flooded and flooded pixels 
which were correctly detected are respectively represented by TP (true 
positive) and TN (true negative). 

3.4.2. Modelling evaluation 
The RMSE and the ROC curves were used for the quantitative ac-

curacy assessment of the FS models. Considering the binary pattern of 
the input modelling data (0 = non-flooded, 1 = flooded), the RMSE was 
calculated using Eq. (8). 

The area under the ROC curve (AUROC) is also a typical tool for 
evaluating the performance and prediction power of models (Farhangi 
et al., 2020; Razavi-Termeh et al., 2020). AUROC values range from 0 to 
1, where the higher values represent more reliable and accurate model 
performance. The qualitative relationship between AUROC and predic-
tion accuracy of the model can be categorized as follows: 0.5–0.6 (poor), 
0.6–0.7 (moderate), 0.7–0.8 (good), 0.8–0.9 (very good), and 0.9–1 
(excellent) (Ranjgar et al., 2021; Shogrkhodaei et al., 2021). 

S. Mehravar et al.                                                                                                                                                                                                                              



Journal of Hydrology 617 (2023) 129100

8

4. Results 

4.1. Flood detection results 

The visual comparison of the results of the proposed flood detection 
method, normalized difference flood index, log ratio index, and mean 
ratio index, (shown in Fig. 5) indicated that the flooded areas in the 
mean ratio index image were more prominent than those obtained by 
other methods. Nevertheless, it is dramatically affected by the noise and 
artefacts, which can result in a high false detection in the final flood map 
(Fig. 5c). Moreover, although the log ratio index was more robust to 
anomalies, it missed some parts of the flooded area and did not preserve 
its geometric details (e.g., boundaries) (Fig. 5d). In contrast, the flooded 
areas were more prominent in the normalized difference flood index 
owing to basic insights into the backscattering behavior in its formula. 
However, the loss of geometrical details of the flooded area is still 
observed in the results of the normalized difference flood index (Fig. 5e). 
Overall, the proposed flood detection method, which combines the 
normalized difference flood index with difference images obtained by 
the mean ratio index and log ratio index, provided better discrimination 
between flooded and non-flooded regions (Fig. 5f). For instance, some 
changed areas that were discarded in the normalized difference flood 
index and difference images generated by the log ratio index were well 
highlighted in the results of the proposed method (Fig. 5d-f). This can be 
mainly due to taking advantage of all mentioned difference images in 

the form of a single difference image, which boosts the intensity of flood 
regions while reducing the noise. 

The results of the proposed flood detection method were statistically 
compared with those of the recently proposed flood detection methods 
(Cian et al., 2018; Moharrami et al., 2021), where the results are pro-
vided in Table 1 and Fig. 6. As can be observed from Table 1, the pro-
posed method outperformed the normalized difference flood index and 
Otsu-based methods considering different accuracy measures. For 
example, the proposed method could respectively increase the overall 
accuracy, F score, and Kappa by 0.7 %, 5 %, and 5.51 % compared to the 
normalized difference flood index. However, the performance of the 
proposed method on Miss alarm is worse than that of the Otsu-based 
method. Meanwhile, the Otsu-based method, with an overall accuracy 
of 91.42 % and a Kappa coefficient of 63.12 achieved the worst accuracy 
among all methods. In fact, the lack of using the pre-flood image in this 
method led to recognizing the lakes, rivers, and other smooth surfaces as 
flood areas and resulted in substantial false alarms. 

4.2. Flood susceptibility mapping 

4.2.1. Multicollinearity test 
A multicollinearity test was performed to ensure that the regression 

assumptions in this study are correct. The VIF and tolerance were 
implemented to diagnose collinearity in multiple regression and to 
detect multicollinearity for each flood conditioning factor (see Table 2). 
It was observed that VIF values for all factors were less than 1.8, indi-
cating that the value of VIF for all independent variables is free of a 
multicollinearity issue. The VIF score in Table 2 denotes the strength of 
the correlation between the independent variables. Moreover, the 
tolerance criterion with values>0.566 indicated satisfying results that 
confirmed the suitability of all selected flood conditioning factors for 
further analyses. 

4.2.2. Feature selection using the ReliefF method 
The results of the ReliefF method, indicating the importance level of 

the selected flood conditioning factors are shown in Fig. 7. Feature 
weights (or feature scores) are a type of feature statistic that ranges from 

Fig. 5. Bitemporal mosaiced SAR images from Ahwaz, and difference images generated from different methods: Mosaiced Sentinel-1 images acquired on (a) March 
11, 2019 and March 24, 2019 (b) April 7, 2019 and April 16, 2019, (c) mean-ratio difference image, (d) log-ratio difference image, (e) normalized difference flood 
index, and (f) proposed method. 

Table 1 
Comparative accuracy results of the flood detection methods.  

Method Miss 
alarm 
rate 
(%) 

False 
alarm 
rate 
(%) 

Total 
error 
rate 
(%) 

Overall 
accuracy 
(%) 

F1 
score 

Kappa 

Otsu-based  20.96  6.96  8.57  91.42  67.96  63.12 
normalized 

difference 
flood index  

28.65  0.12  3.41  96.59  82.82  80.99 

Proposed 
method  

21.52  0.26  2.71  97.29  86.96  85.46  
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− 1 (the worst) to + 1 (the best). The results denoted that all 11 factors 
were appropriate to predict flood probabilities in this research. In the 
flood model, the aspect factor was the best predictor, followed by dis-
tance to stream, land cover, NDVI, rainfall, topographic wetness index, 

altitude, soil, slope, and curvature. 

4.2.3. Result of FR model 
The results of spatial interaction between the flood incidence and the 

selected flood conditioning factors were obtained using the FR model 
(see Table 3). On average, FR values greater than one express larger 
correlations and vice versa (Termeh et al., 2018). The analysis of the FR 
between flood and altitude indicated that the altitudes of the 24–41 m 
range had the largest FR values (1.77). All flood occurrences were also in 
altitudes less than 41 m. As per the distance to stream factor, the highest 
FR value was in the range of 0–200 m (1.73), and as distance to stream 
value increased, the FR value declined. Considering the slope factor, 
more than half of the flood events occurred within the range of 0–1.8 
degrees with an FR value of 1.13. The NDVI with the least values (within 
the range of − 0.6- − 0.11) has the highest FR value of 2.25. The topo-
graphic wetness index class within the 12.75–16 range showed an FR 
value of 1.42 as the maximum correlation. Also, by the increment of 
topographic wetness index values, the FR values has increased. 
Regarding the stream power index, the values belonging to the 20–40 
class showed the largest FR. Furthermore, floods occurrences showed 
drastic drops by the increase of the stream power index values. Ac-
cording to the rainfall factor, the highest (9.52) and lowest values of FR 
(0.42) was seen in the > 259.7 mm and less than 163.86 mm classes, 
respectively. Regarding the land lover factor, farmlands and vegetation 
experienced the largest (105) and the smallest (1) number of floods, 
respectively, and water body class had the highest FR. According to the 
soil factor, most floods occurred in the Entisols/Aridisols class, while 
Inceptisols had the highest FR value (3.07). In the case of the aspect 
factor, an almost equal distribution of floods was observed in different 
directions, and the N class had the highest FR value (1.29). 

4.2.4. Flood susceptibility mapping using hybrid algorithms 
The locations of the flooded points needed for modelling were 

selected from both historical points and the flood detected areas ob-
tained from the proposed RS-based method. In total, 300 flood and 300 
non-flood points were selected. For each flood and non-flood group, 70 
% of the data (210 points) was randomly used for the modelling 

Fig. 6. Detected flood maps using different methods: (a) Pre- and (b) post-mosaiced SAR images captured by sentinel-1 from the city of Ahwaz, (c) reference flood 
map, flood inundation maps generated by (d) normalized difference flood index (Cian et al., 2018), (e) Otsu-based (Otsu, 1979; Moharrami et al., 2021), and (f) 
proposed method. 

Table 2 
Result of multicollinearity analysis.  

Flood Conditioning Factor Tolerance Variance Inflation Factor (VIF) 

Land cover  0.713  1.403 
Soil  0.678  1.476 
topographic wetness index  0.857  1.167 
Rainfall  0.566  1.765 
stream power index  0.691  1.448 
Curvature  0.842  1.188 
Slope  0.588  1.699 
Aspect  0.973  1.027 
Distance to stream  0.983  1.017 
NDVI  0.779  1.284 
Altitude  0.770  1.298  

Fig. 7. The importance of flood conditioning factors calculated by the 
relieff algorithm. 
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(training) procedure and 30 % (90 points) was used for the validation. 
The spatial distribution of the flood and non-flood locations is shown in 
Fig. 8. 

After normalizing the weights derived from the FR model and 
assigning them to the factor classes, all the input locations and their 
corresponding values of flood conditioning factors were imported into 
the MATLAB R2017b software. According to the RMSE results of the 
training and validation samples shown in Table 4, SVR-FA with the 
RMSE values of 0.3058 and 0.3538 (for training and validation, 
respectively) outperformed the other algorithms, followed by SVR-IWO 
(0.3177, 0.3742), SVR-BA (0.333, 0.3783), and SVR (0.3602, 0.3952), 
respectively. The optimum parameters of the SVR, including C, ∈ and γ, 
were also calculated by setting an iteration process in each hybrid al-
gorithm based on minimizing the RMSE value as the optimization cri-
terion. The optimized parameters of the SVR-BA, SVR-IWO, and SVR-FA 
hybrid algorithms are also provided in Table 4. 

The target and output values of the employed models for all flood 
samples are shown in Fig. 9 to display the levels of prediction error. 
According to Fig. 9a, the difference between the targets and outputs in 
the SVR model was considerably greater than those of the hybrid 
methods. This result is even worse in the case of validation samples, 
indicating that the optimization algorithms could significantly improve 
the SVR performance. The highest overall accuracy of the 420 training 
samples was obtained by the SVR-FA model, while the non-optimized 
version of SVR denoted the least level of correlation for the validation 

samples. 
After conducting SVR hybrid modelling with metaheuristics, the 

outputs were transferred into the ArcGIS 10.3 software to produce the 
simulation results of the proposed hybrid methods. Based on the natural 
break classifier, the classified flood susceptibility maps were divided 
into five susceptibility classes of very low, low, medium, high, and very 
high susceptibility levels (Termeh et al., 2018). Based on the results 
demonstrated in Fig. 10, all investigated models showed almost similar 
susceptibility maps (e.g., approximately similar extent and spatial dis-
tribution of susceptibility classes). 

The extent percentages of flood susceptibility classes obtained from 
the proposed models were summarized in Table 5. Compared to the 
other models, the SVR allocated a smaller number of pixels to the very 
low susceptibility class while showing the largest extent of low suscep-
tible areas (with 39 %). The SVR-FA, as the more accurate model, 
indicated that the susceptibility classes of very low, low, moderate, high, 
and very high roughly corresponded to 12 %, 36 %, 31 %, 17 %, and 3 % 
of the study area. The percentages of such susceptibility classes for SVR- 
BA were 18 %, 38 %, 27 %, 15 %, and 2 %, respectively. Similarly, the 
corresponding percentages of SVR-IWO were 18 %, 31 %, 30 %, 17 %, 
and 4 %, respectively. Considering all models, almost a fifth of the entire 
study area was prone to high and very high flood susceptible classes. 

4.2.5. Validation of flood susceptibility maps 
In general, AUROC values of>0.5 are usually known as the suitable 

Table 3 
Spatial relationship between flood conditioning factors and flood locations using the FR method.  

FR No. of floods No. pixels in domain Class FR No. of floods No. pixels in domain Class 

Altitude (m) 
less than 14 
14–24 
24–41 
41–74 
> 74  

9,975,573 
5,220,516 
3,668,543 
738,652 
207,180  

99 
42 
69 
0 
0  

0.94 
0.76 
1.77 
0 
0 

Distance to stream (m) 
0–200 
200–400 
400–600 
600–800 
>800  

1,471,439 
1,274,237 
1,141,531 
947,560 
2,917,671  

69 
34 
32 
22 
53  

1.73 
0.99 
1.03 
0.86 
0.67 

Slope 
0–1.81 
1.81–3.85 
3.58–7.02 
7.02–12.69 
> 12.69  

9,272,782 
6,745,367 
2,908,126 
769,535 
114,654  

111 
75 
24 
0 
0  

1.13 
1.05 
0.78 
0 
0 

NDVI 
− 0.6- − 0.11 
− 0.11–0.13 
0.13–0.27 
0.27–0.47 
>0.47  

207,631 
10,788,433 
4,500,050 
2,579,399 
1,549,781  

5 
95 
53 
36 
21 

2.25 
0.82 
1.1 
1.3 
1.27 

Topographic wetness index 
less than9.46 
9.46–10.07 
10.07–12.75 
12.75–16 
>16   

5,755,148 
6,294,206 
4,022,116 
3,732,539 
6455   

50 
62 
42 
56 
0   

0.82 
0.93 
0.99 
1.42 
0 

Stream power index 
0–20 
20–40 
400–60 
60–80 
>80  

10,544,429 
3,315,203 
2,106,095 
1,177,927 
2,666,809 

120 
44 
25 
9 
12  

1.07 
1.25 
1.12 
0.72 
0.42 

Curvature 
<-1.6 
− 1.6- − 0.59 
− 0.59–0.17 
0.17–1.18 
>1.18  

355,169 
1,785,610 
9,993,942 
7,062,406 
613,337  

1 
13 
115 
80 
1  

0.27 
0.69 
1.09 
1.07 
0.15 

Rainfall (mm) 
less than 163.86 
163.86–193.12 
193.12–220.2 
220.2–259.7 
>259.7  

1,824,640 
1,286,417 
1,804,262 
2,720,738 
116,381  

21 
52 
28 
79 
30  

0.42 
1.49 
0.57 
1.07 
9.52 

Land cover 
Urban 
Water body 
Wetland 
Bare land 
Farmland 
Vegetation  

1,143,039 
876,569 
583,025 
9,513,879 
5,165,958 
159,898  

8 
22 
7 
67 
105 
1  

0.58 
2.08 
1.00 
0.58 
1.69 
0.52 

Soil 
Inceptisols 
Dune Lands 
Entisols/Aridisols 
Marsh 
Bad Lands  

443,507 
422,147 
6,215,480 
359,018 
294,768  

37 
1 
159 
12 
1  

3.07 
0.09 
0.94 
1.23 
0.12 

aspect 
F 
N 
NE 
E 
SE 
S 
SW 
W 
NW  

1,449,919 
2,409,629 
2,051,799 
2,569,698 
2,065,918 
2,434,496 
2,114,456 
2,639,218 
2,075,331   

18 
33 
24 
17 
17 
24 
22 
30 
25  

1.17 
1.29 
1.10 
0.62 
0.78 
0.93 
0.98 
1.07 
1.14       
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range for validation purposes. According to the ROC curves (Fig. 11) and 
AUROC results (Table 6), all models indicated satisfying sensitivity re-
sults (with AUROC values > 0.77), implying the fact that these models 
were appropriate for flood susceptibility analyses. The predictive power 
of the SVR-FA was the highest with the AUROC value of 0.806, which 
was followed by SVR-IWO, SVR-BA, and SVR with the values of 0.802, 
0.793, and 0.774, respectively. This indicated the high predictive per-
formance of all three hybrid models compared to the standalone SVR. 

5. Discussion 

5.1. Impact of flood conditioning factors on flood 

The importance analysis of the flood-related variables, derived from 
the ReliefF method, showed that the aspect, distance to stream, and land 
cover conditioning factors were respectively the most significant vari-
ables that contributed to the flood occurrence. This is almost in contrast 
with the results reported by Hong et al. (2018) and (Razavi Termeh 
et al., 2018). The most important flood conditioning factors in the study 
conducted by Hong et al. (2018) were altitude, topographic wetness 
index, and distance from the river. (Razavi Termeh et al., 2018) also 
reported that the slope, rainfall, and altitude were the most important 

factors contributing to the floods in their case study. The reason why the 
aspect was more important in this study could be due to its indirect 
effect on the surface runoff through its impact on other factors like 
rainfall regime, soil humidity, and solar radiation. The aspect showed 
that the largest extent of the study area was along the south direction 
followed by south-east and south-west. This is consistent with results 
reported by Regmi et al. (2014). Distance to stream is of high importance 
because those regions that are closer to streams and main rivers are 
obviously more prone to inundations and runoffs. The significant role of 
distance to stream in flood occurrence has frequently been addressed in 
the literature, i.e., (Danumah et al., 2016; Gigović et al., 2017). The 
significance of land cover is because the land cover of an area de-
termines its water infiltration rate. The high contribution of land cover 
in flood occurrence found in this study could be justifiable since bare 
lands or scantily vegetated areas have been reported to be more sus-
ceptible to flooding due to their low percolation level and high runoff 
(Talha et al., 2019; Souissi et al., 2020). 

As regards the land cover factor (see Table 3), the water body class, 
farmlands, and wetlands were respectively the most susceptible areas to 
flooding with the highest FR values. Regarding the land cover map, a 
large portion of the water body and farmland classes was specifically 
located in the central northern regions of the study area where two of the 
main rivers (Dez and Karoun) enter Ahwaz city. This region is where the 
highly susceptible areas were located in the produced flood suscepti-
bility maps. Larger changes in slope were also observed in such areas. 
This could be a reason for the water runoff of the mentioned rivers. The 
noticeable influence of the class of water bodies on flood susceptibility 
has also been addressed by Paul et al. (2019), and Tella and Balogun, 
(2020). The farmlands at the river banks were observed at special risk of 
flood hazards presumably due to the frequent runoff occurrences in the 
vicinity of the main streams and tributaries. Moreover, the low perme-
ability and limited water infiltration of wetlands have the potential to 

Fig. 8. The flood inventory map from the study area along with the spatial distribution of the flood and non-flood points used for model training and validation, 
respectively. 

Table 4 
RMSE results of the training and validation data, and the optimized parameters 
of the hybrid models.  

Model Training Validation Optimized parameters 

SVR  0.3602  0.3952 – 
SVR-BA  0.333  0.3783 C = 6.99, ∈= 0.323, γ = 5.54 
SVR-IWO  0.3177  0.3742 C = 1.77, ∈= 0.303, γ = 6.36 
SVR-FA  0.3058  0.3538 C = 10.62, ∈= 0.264, γ = 8.88  
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lead to the maximum water capacity, spillage or overflow after a series 
of rainfall events, hence floating a large amount of water to downstream 
areas through surface flows. 

As per the altitude factor, the largest FR value was observed for the 
altitudes less than 24 m, and the low altitudes of the region can be 
considered as the flood prone-areas. According to Fig. 10, very high 
susceptible areas of the susceptibility maps can be found in both high 
and low altitudes. The topographic wetness index indicated that its 
larger values had the larger FR values. Large values of the topographic 
wetness index were reported to correspond to the regions that are prone 
to water accumulation and high runoff, and indicate how low drainage, 
representing more saturated land, can trigger flash flooding (Swain 
et al., 2020). The inverse relation between the stream power index and 
FR values was observed. The stream power index delineates soil water 
content and erosion power of floods to flow downwards in a watershed, 
hence some areas with the potential of flow accumulation are indicated 
by the lower values of the stream power index. This was the reason why 
most floods in the study area occurred in places with lower values of the 
stream power index. This inverse relation has also been addressed by 
Swain et al. (2020). In accordance with the NDVI, values less than − 0.11 
were found to have higher FR, indicating that regions with low vege-
tation levels were more flood-prone and vice versa. This relation is also 
addressed by Bui et al. (2019). 

5.2. Analysis of flood maps 

Considering the flood maps illustrated in Fig. 6, the maps produced 
by the Otsu-based method were considerably affected by noise and 

anomalies where plenty of surface water (or water bodies) were mis-
classified as flooded areas. This limitation was well addressed by the 
normalized difference flood index and the proposed approach (Fig. 6c- 
f). Most of the flooded regions were accurately detected using the 
normalized difference flood index but with several false alarms 
compared to the proposed method. Moreover, the geometrical details of 
the flood areas were more preserved by the proposed method (Fig. 6c, 
6f). This is probably due to a combination of change detection and water 
body detection in its process. Nevertheless, multiple small flooded areas 
were missed in the maps generated by the normalized difference flood 
index and the proposed method which can be due to the lack of the 
contextual information used in the core of these methods (Fig. 6c, 6e and 
7f). In this study, the remotely detected flood maps could provide the 
model input with numerous training points, while traditionally made 
maps usually suffer from the inadequate spatial distribution of data 
points. Moreover, since the employed SAR data is not subject to clouds 
and atmospheric conditions, the proposed method took advantage of 
multi-temporal consistently available data. 

5.3. Comparison of the flood susceptibility models 

Based on Figs. 9 and 11, and Table 6, the FA-SVR outperformed the 
other models, while the non-optimized SVR was found as the weakest 
model. Although the final flood susceptibility maps of the hybrid models 
were in line with each other, the standalone SVR was relatively 
different. The same results were observed for the level of prediction 
power of the models where the hybrid models showed a close perfor-
mance (see ROC curves in Fig. 11). However, SVR had the lowest 

Fig. 9. Results of prediction error obtained from (a) SVR, (b) SVR-BA, (c) SVR-IWO, and (d) SVR-FA.  
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accuracy in predicting the same pattern. The efficiency of the employed 
meta-heuristic algorithms for optimization of the flood susceptibility 
maps has been addressed by Khosravi et al. (2018a,b), which is consis-
tent with the results of this study. The better predictive power of the 
hybridized SVR models using meta-heuristic algorithms was also 
approved by (Pourghasemi et al., 2020) which was in line with the re-
sults of this study. Aiming at spatial modelling of urban flood inunda-
tion, the efficiency of some hybridized (integrated with a configuration 
of the wavelet transform, grey wolf optimizer and bat optimizer) and 
standalone SVR models was evaluated by Rahmati et al. (2020). Their 
results showed the superiority of the hybridized SVR against the 
standalone SVR models. Generally, the high efficiency of hybridized SVR 
models, as a solution to linear and non-linear problems, has been re-
ported for many practical problems, especially flood susceptibility 
modelling (Saha et al., 2021; Siam et al., 2021). Many ensemble models 
that combine several single statistical or machine learning methods have 

Fig. 10. Flood susceptibility maps produced by: (a) SVR, (b) SVR-BA, (c) SVR-IWO, and (d) SVR-FA.  

Table 5 
Area percentage of each flood susceptibility class based on different models.  

model Very low Low Moderate High Very high 

SVR  6.48 %  39.19 %  36.57 %  16.1 %  1.66 % 
SVR-BA  17.81 %  37.86 %  27.44 %  15.21 %  1.68 % 
SVR-IWO  17.65 %  31.45 %  29.89 %  17.44 %  3.57 % 
SVR-FA  12.31 %  36.35 %  30.81 %  17.22 %  3.31 %  

Fig. 11. Result of ROC curves of the hybrid models.  
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proved effective in improving the flood mapping results (i.e., (Shafiza-
deh-Moghadam et al., 2018; Islam et al., 2021). 

In this study, the FA, IWO, and BA algorithms had the highest ac-
curacy in optimizing the SVR model, respectively. Auto-segmentation 
and the ability to handle a multi-quality challenge are two of the FA 
algorithm’s main advantages. With the help of the FA algorithm, the 
total population will be divided into subgroups with a mean interval, 
and each group will be able to conquer an optimal location. This division 
makes it possible to find the best one at a time. Unlike other meta-heu-
ristic algorithms, the IWO permits all potential candidates to participate 
in the reproduction process. One of the disadvantages of the IWO al-
gorithm is the increase of computational time and convergence to local 
optimization (Ahmadi and Mojallali, 2012). The BA is simple, flexible, 
and easy to implement, but this algorithm converges very quickly in the 
early stages and then slows down. There is also no mathematical analysis 
for the relationship between the parameters and the convergence rate. 
Therefore, in this study, this algorithm was less accurate than the other 
two algorithms. 

5.4. Comparison, limitation, and future work 

Several approaches have so far been used for flood susceptibility 
mapping, among of which the methods depending on the geo-
morphologic characteristics of a basin have frequently been employed in 
many studies (Nardi et al., 2006; Degiorgis et al., 2012; Samela et al., 
2018). Although hydrogeomorphic methods extensively use DEMs and 
terrain analysis for preliminary floodplains characterizations, accurate 
inundation/flood mapping is generally based on advanced hydrologic 
and hydraulic modelling (Grimaldi et al., 2013; Ezzine et al., 2020). 
These methods cannot replace hydrology and hydraulic modelling 
which are based on actual physical processes (Vojtek and Vojteková, 
2019). 

The conventional hydrologic and hydraulic modeling approaches 
need various types of resources to collect the required data and run the 
models after appropriate calibration and validation. In this regard, some 
of the important data consist of DEM, soil, land use, river bathymetry, 
hydrological data, and details of man-made structures along the inten-
ded reach. This approach is commonly employed to create flood maps 
for individual river segments where such data is available or can be 
acquired through resources. On the other hand, flood maps generated 
through modeling can suffer from high level of uncertainty in data- 
scarce areas (Jafarzadegan and Merwade, 2017). Although the hydro-
logic and hydraulic modeling approach should always be the first pri-
ority for inundation/flood mapping efforts, the proposed method of this 
study could be employed as an alternate approach when the required 
data is limited or unavailable, especially in large-scale analysis or in 
developing countries. A notable limitation of the proposed flood 
detection method could be the limited temporal resolution of satellite 
imagery, because it can lead to missing the flood extent map at its peak 
time. Moreover, another limitation of the proposed susceptibility map-
ping method is that it highly relies on the quality and precision of the 
flood conditioning factors which are usually provided from diverse 
sources. 

In large-scale flood susceptibility mapping tasks, finding the optimal 
balance between the flood susceptibility model complexity and the 

accuracy and amount of the input data is generally challenging. Aiming 
to address this issue, future studies can deal with the challenges related 
to data consolidation, especially by improving their original scale, res-
olution, or generalization. Moreover, RS data can be applied to hydro-
logical and hydraulic modelling through three different scenarios: (1) 
model input integration by providing information on the basin or 
boundary conditions; (2) model calibration or parameter estimation; 
and (3) data assimilation (Xu et al., 2014). Future studies can investigate 
novel capability integrations of hydrological modelling, RS, GIS and 
geomorphology to provide accurate inferences about the dynamics of 
flooded areas and flood-prone regions. 

6. Conclusion 

Flood is one of the most catastrophic phenomena in the world and is 
a drastic danger to many aspects of life. Aiming to mitigate human losses 
and flood damage, producing a flood hazard susceptibility map is an 
important step in any flood management plan. One challenge of sus-
ceptibility map generations in many countries is the lack of adequate 
and up-to-date field data to be used for the training step of machine 
learning methods. Moreover, flood susceptibility map production is 
generally subject to two main components, pace and accuracy. In this 
study, a combination of RS, GEE, and GIS capabilities were used to 
produce the required speed and accuracy in susceptibility map genera-
tions. In this regard, a novel RS-based flood detection method along with 
three hybridized SVR models was developed to automatically and 
quickly produce susceptibility maps. The RMSE results of the training 
and validation samples used in this study indicated that the SVR-FA 
could outperform the other models. The evaluation of the prediction 
power of all models also showed that the SVR-FA was superior with a 
larger AUROC value. In general, the weakest model was the standalone 
SVR model, which indicates the efficient impact of using the optimum 
SVR parameters on modelling. The flood susceptibility map results 
showed that the northern areas of Ahwaz, where a couple of main rivers 
and tributaries come together, were the most vulnerable regions, and 
farmlands were the high-risk regions. The produced flood susceptibility 
maps of this study can help the governors and planners, water resources 
organizations, environment-related organizations, and natural resource 
managers to take proper actions for flood damage reductions. 
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Table 6 
The results of the area under the ROC curve (AUROC) related to the flood sus-
ceptibility models.  

Models AUROC Standard error Asymptotic 95 % confidence interval  

Lower bound Upper bound 

SVR-FA  0.806  0.0319  0.741  0.861 
SVRIWO  0.802  0.0323  0.737  0.858 
SVR-BA  0.793  0.0334  0.727  0.850 
SVR  0.774  0.0346  0.705  0.833  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2023.129100. 
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Gigović, L., Pamučar, D., Bajić, Z., Drobnjak, S., 2017. Application of GIS-interval rough 
AHP methodology for flood hazard mapping in urban areas. Water 9, 360. 

Grimaldi, S., Petroselli, A., Arcangeletti, E., Nardi, F., 2013. Flood mapping in ungauged 
basins using fully continuous hydrologic–hydraulic modeling. J. Hydrol. 487, 39–47. 

Hong, W.-C., 2008. Rainfall forecasting by technological machine learning models. Appl. 
Math. Comput. 200, 41–57. 

Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.-X., Chen, W., 2018. Application of fuzzy 
weight of evidence and data mining techniques in construction of flood susceptibility 
map of Poyang County. China. Sci. Total Environ. 625, 575–588. 

Islam, A.R.M.T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K.U., Pham, Q.B., Kuriqi, A., 
Linh, N.T.T., 2021. Flood susceptibility modelling using advanced ensemble machine 
learning models. Geosci. Front. 12, 101075. 

Jafarzadegan, K., Merwade, V., 2017. A DEM-based approach for large-scale floodplain 
mapping in ungauged watersheds. J. Hydrol. 550, 650–662. 

Janizadeh, S., Avand, M., Jaafari, A., Phong, T.V., Bayat, M., Ahmadisharaf, E., 
Prakash, I., Pham, B.T., Lee, S., 2019. Prediction success of machine learning 
methods for flash flood susceptibility mapping in the tafresh watershed. Iran. 
Sustainability 11, 5426. 

Kalantar, B., Ueda, N., Saeidi, V., Janizadeh, S., Shabani, F., Ahmadi, K., Shabani, F., 
2021. Deep neural network utilizing remote sensing datasets for flood hazard 
susceptibility mapping in Brisbane. Australia. Remote Sens. 13, 2638. 

Khosravi, K., Panahi, M., Bui, D.T., 2018a. A comprehensive study of new hybrid models 
for Adaptive Neuro-Fuzzy Inference System (ANFIS) with Invasive Weed 
Optimization (IWO). 2 Differential Evolution (DE), Firefly (FA), Particle Swarm 
Optimization (PSO) 3 and Bees (BA) Algorithms for Spatial Predi. 

Khosravi, K., Panahi, M., Tien Bui, D., 2018b. Spatial prediction of groundwater spring 
potential mapping based on an adaptive neuro-fuzzy inference system and 
metaheuristic optimization. Hydrol. Earth Syst. Sci. 22, 4771–4792. 

Khosravi, K., Melesse, A.M., Shahabi, H., Shirzadi, A., Chapi, K., Hong, H., 2019a. Flood 
susceptibility mapping at Ningdu catchment, China using bivariate and data mining 
techniques. Extreme Hydrology and Climate Variability. Elsevier 419–434. 

Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., 
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