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Communication-Efficient Cluster Scalable Genomics
Data Processing Using Apache Arrow Flight
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Abstract—Current cluster scaled genomics data processing
solutions rely on big data frameworks like Apache Spark, Hadoop
and HDFS for data scheduling, processing and storage. These
frameworks come with additional computation and memory
overheads by default. It has been observed that scaling genomics
dataset processing beyond 32 nodes is not efficient on such
frameworks.

To overcome the inefficiencies of big data frameworks for
processing genomics data on clusters, we introduce a low-
overhead and highly scalable solution on a SLURM based HPC
batch system. This solution uses Apache Arrow as in-memory
columnar data format to store genomics data efficiently and
Arrow Flight as a network protocol to move and schedule this
data across the HPC nodes with low communication overhead.

As a use case, we use NGS short reads DNA sequencing
data for pre-processing and variant calling applications. This
solution outperforms existing Apache Spark based big data
solutions in term of both computation time (2x) and lower com-
munication overhead (more than 20-60% depending on cluster
size). Our solution has similar performance to MPI-based HPC
solutions, with the added advantage of easy programmability and
transparent big data scalability. The whole solution is Python
and shell script based, which makes it flexible to update and
integrate alternative variant callers. Our solution is publicly
available on GitHub at https://github.com/abs-tudelft/time-to-fly-
high/tree/main/genomics

Index Terms—Genomics, Whole Genome/Exome Sequencing,
Big Data, Apache Arrow, In-Memory, Plasma Object Store,
Parallel Processing

I. INTRODUCTION

Due to massively parallel sequencing methods used in high

throughput sequencing (HTS) technologies are making their

way from research to the field in a wide range of applica-

tions ranging from clinical diagnostics to agriculture research.

Next Generation Sequencing (NGS) technologies like Illumina

short-reads (a couple of hundred bases), can produce high

throughput and higher depth DNA sequence coverage at low

cost. Similarly, longer read third generation sequencing tech-

nologies are also emerging as a more competitive alternative

in terms of cost and throughput with improving accuracy as

compared to NGS. They can produce reads of up to hundreds

of kilobases (kbps). Depending on the experiment design,

the need of sequencing coverage varies [1]. A typical 300x

coverage human genome dataset size exceeds 2 TBytes [1].

Processing this amount of data on a single computing machine

can take multiple days to complete.
High-throughput sequencing technologies are also enabling

cancer diagnoses and treatment beyond histopathology and

traditional standard-of-care therapies. Molecular and genomic

profiling for patients and tumours at time of diagnosis help

in improving diagnostic accuracy, better predict outcome, and

personalize therapy [2]. Sequencing coverage influence both

the accuracy and sensitivity of such genomics analysis. In

pediatric brain-tumor studies [2], more than 200x coverage

for the tumor sample, and more than 100x coverage for the

normal sample are collected for better focus on the concerned

tumors.

In the coming years, as sequencing becomes a normal prac-

tice for human health and other types of research, single node

compute resources to any organization will not be adequate

to fulfill the sequencing requirements. The increased need for

data processing will lead to use cluster scaled solutions and

outsourcing genomics computations to external private and

public cloud services on data centers.

Genonmics data processing pipelines (e.g, short-variants,

structural variants and copy-number variants discovery) in-

volve many computational processing steps. Sequence align-

ment and variant calling are two important steps while in-

termediate steps like sorting, duplicates removal and base

quality score recalibration which use row-based SAM/BAM

format to store the outcome of these algorithms on I/Os.

Generally genomics data formats (FASTQ/SAM/BAM) permit

independent compute and analytic operations on a granular

level, i.e., even smaller chunks can be processed without any

dependency issues. This eventually helps to run genome analy-

sis algorithms on multiple data chunks in parallel. Halvade [3],

which uses the Hadoop MapReduce API, while ADAM [4] and

SparkGA2 [5] use the Apache Spark framework and HDFS

as a distributed file system are few examples of frameworks

which use big data frameworks to scale-up variant calling

pipelines on clusters. Because big data scalability requires

moving a lot of data between nodes in a big data analytics

infrastructure, the current row-based data storage formats and

processing row-by-row make these frameworks less efficient

for linear scalability and high performance. These solutions

use Apache Spark/Hadoop as big data frameworks loosely

integrate existing single node pre-processing and variant call-

ing applications. ADAM [4], for example, introduces its own

formats, APIs and processing engines. It is built on top of Avro

and Parquet for columnar I/O based storage. These solutions

come with extra memory overhead and scalability issues.

In order to address these overhead challenges, Apache Ar-
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row in-memory columnar data format in genomics applications

has been shown to provide for efficient storage, in-memory

analytics and better cache locality exploitation in addition

to improved parallel computation [6], [7]. However, limita-

tions in communication overhead remain a challenge, thereby

limiting scalability potential of these solutions compared to

their custom-made MPI-based HPC alternatives. In this work

we establish a case for low-overhead communication using

Apache Arrow Flight, enabling efficient scalability of pre-

processing and variant calling applications for NGS data on a

cluster. This solution leverages the benefits of the Arrow in-

memory columnar data format and Arrow Flight wire-speed

protocol for shuffling data (between nodes) to sort reads after

alignment. The whole workflow is created in Python and

Pandas dataframes, which enable computation/analytics like

sorting and duplicates removal of NGS data. This solution

combines the easy programmability and flexibility of big data

pipelines with the high performance and scalability of it HPC-

based alternatives. The main contributions of this work are as

follows:

• BWA-MEM, a sequence alignment algorithm has been

modified to output Arrow in-memory columnar data

instead of SAM file. Each BWA-MEM instance on each

executor creates 128 Arrow RecordBatches correspond-

ing to chromosomes. This approach stores chromosomes

regions level sorted SAM reads.

• Arrow Flight data communication (receiver and transfer

protocol) applications have been developed, which com-

municate with each other to shuffle data through Arrow

Flight end-points.

• On each executor node, Arrow data is converted to Pandas

dataframes through PyArrow APIs. A Picard MarkDu-

plicate compatible algorithm for short-reads duplicates

removal is developed in Python.

• The whole variant calling pipeline (alignment, sorting,

duplicates removal and variant caller) is managed through

SLURM workload manager scripts to use in-memory data

for intermediate applications.

In summary, this implementation has following advantages

over the existing Apache Spark and MPI based workflows:

• As compared to Apache Spark based frameworks, this

approach provides more than 2x speedup, better cluster

scalability, less memory footprints, efficient system re-

source utilization and low communication overhead for

data shuffling in intermediate applications.

• When comparing with MPI based solutions, this approach

has similar performance for runtime but exhibits better

cluster scalability. However, Python ease of programma-

bility and simple Arrow Flight based cluster creation

through SLURM or with any other workload manager

makes this approach more attractive and suitable for

people with little knowledge of HPC systems and per-

formance scalability.

This paper is organized as follows. In Section II, a brief

Client Server

GetFlightInfo

FlightInfo

DoGet

FlightData

Fig. 1. A simple Flight setup might consist of a single server to which clients
connect and make DoGet requests.

introduction of the Apache Arrow in-memory data format, the

Arrow Flight protocol and the SLURM scheduler is given.

Section III outlines some big data based pipelines for NGS

data processing. Our implementation for both pre-processing

and variant calling is described in Section IV, followed by

Section V, where we compare this approach with existing

frameworks in both performance and accuracy. Finally we

conclude this work in Section VII.

II. BACKGROUND

In this section, we introduce genome sequencing technolo-

gies, NGS data, pre-processing and variant calling followed by

a short discussion on Apache Arrow data format, Arrow Flight

communication protocol and SLURM workload manager.

A. Genome sequencing and NGS data

To analyze an organism DNA for the purpose of under-

standing and characterizing the unique features it exhibits,

the proper order of bases of its DNA should be determined.

Different sequencing technologies have been invented for

this purpose. Previously widely used Sanger sequencing, next

generation sequencing (short reads) from Illumina and the

latest third generation sequencing technologies (long reads)

from PacBio and Oxford Nanopore are most common tech-

nologies. These technologies produce massive amounts of raw

genome sequencing data. To understand it and extract useful

information about the DNA bases variations in a genome,

multiple computational processing steps are necessary to clean

and arrange this data for down stream analysis.

B. Pre-processing and variant calling

In comparative genomics, variant calling analysis reveals

deep insights into nucleotide-level organismal differences in

some specific traits among populations from an individual

genome sequence data. To accomplish this analysis NGS

data requires a number of pre-processing steps including

sequence alignment, chromosome based coordinate sorting,

PolymeraseChain Reaction (PCR) duplicates removal and
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DoGet() [remote]DoPut() [remote]

Fig. 2. Arrow Flight DoPut() and DoGet() throughput with multiple stream/threads with varying number of records per stream (0.2-90 million) on a remote
client-server nodes connected through a Mellanox ConnectX-3 or Connect-IB InfiniBand adapter.

sometimes base quality score re-calibration. These steps are

common in all most every variant calling workflow.

C. Apache Arrow

Apache Arrow is an in-memory standard columnar data

format. Due to the columnar data storage, efficient vectorized

data analytics operations and better cache locality can be

exploited using this format. Apache Arrow [8] is becoming a

standard columnar format for in-memory data analytics. Intro-

duced in 2015, Arrow provides cross-language interoperability

and IPC by supporting many languages such as C, C++, C#,

Go, Java, JavaScript, MATLAB, Python, R, Ruby, and Rust.

Arrow also provides support for heterogeneous platforms in

the form of rapids.ai for GP-GPUs and Fletcher for FPGA

systems [9]. Apache Arrow is increasingly extending its eco-

system by supporting different APIs (e.g., Parquet, Plasma

Object Store, Arrow Compute, etc.) and many open-source

libraries/tools are integrating Arrow inside them for efficient

data manipulation and transfer. For example, TensorFlow has

recently introduced the TensorFlow I/O [10] module to support

the Arrow data format, the Dremio big data framework is

built around the Apache Arrow eco-system, pg2arrow (a utility

to query PostgreSQL relational database), turbodbc which

supports queries in Arrow format, etc.

Arrow stores data in contiguous memory locations to make

the most efficient use of CPU cache and vector (SIMD) oper-

ations. Moreover, Arrow can efficiently manage big chunks of

memory on its own without any interaction with a specific soft-

ware language run-time, particularly garbage-collected meth-

ods. This way, large data sets can be stored outside heaps

of virtual machines or interpreters, which are often optimized

to work with few short-lived objects, rather than the many

large objects used throughout big data processing pipelines.

Furthermore, movement or non-functional copies of large

data sets across heterogeneous component boundaries are pre-

vented, including changing the form of the data (serialization

overhead).

D. Arrow Flight

Arrow Flight is a submodule in the Apache Arrow project

which provides a protocol for transferring bulk Arrow format

data across the network. Apache Arrow is also being integrated

into Apache Spark for efficient analytics for columnar in-

memory data. Arrow Flight [11] provides a high perfor-

mance, secure, parallel and cross-platform language support

(using the Apache Arrow data format) for bulk data trans-

fers particularly for analytics workloads across geographically

distributed networks. Using Apache Arrow as standard data

format across all languages/frameworks as well as on the

wire allows Arrow Flight data (Arrow RecordBatches) to

prevent any serialization/de-serialization when it crosses pro-

cess boundaries. As Arrow Flight operates directly on Arrow

RecordBatches without accessing data of individual rows as

compared to traditional database interfaces, it is able to provide

high performance bulk operations. Arrow Flight supports

encryption out of the box using gRPC built in TLS/OpenSSL

capabilities. A simple user/password authentication scheme is

provided out-of-the-box in Arrow Flight and provides extensi-

ble authentication handlers for some advanced authentication

schemes like Kerberos. A simple Arrow Flight client-server

setup in which clients connect and establish connection to a

server and preform DoGet() operations is shown in Figure 1.

The performance efficiency and throughput of Arrow Flight

connection in a remote client-server architecture have been

analyzed. The throughput of DoPut() (client send a stream

of RecordBatches to the server) and the DoGet() (client

receives a stream back from the server) operations is measured

and shown in Figure 2. DoPut() throughput increasing from

1.9GB/s to 4.5GB/s while DoGet() achieves 2.5GB/s to

6GB/s throughput with 1 up to 16 Arrow streams in parallel.
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Variant calling 

Store Sorted Dataframes to Files Sort Pandas Dataframes Merge PyArrow Tables Parallel Files Creation Storage I/O Memory (ArrowSAM) 

ArrowSAM ArrowSAM ArrowSAM 

output (*.sam, *.bam, *.vcf.gz, *.arrow, *.parquet) input (*.fastq and *.fasta) 

  Flight data merge, sort & store processes 
Alignment 

Streaming 

Arrow Flight Connections Arrow Flight Connections Arrow Flight Connections 

Fig. 3. Detailed architectural design of pre-processing and variant calling workflow. Input FASTQ data is being streamed to multiple BWA-MEM instances,
which create the ArrowSAM output. Arrow RecordBatches are being transferred/received through Arrow Flight. These Arrow RecordBatches are finally
merged, sorted, duplicates removed and resultant output is written on IO, followed by variant calling.

E. SLURM Scheduler

SLURM is a portable and highly scalable cluster resources

management framework. Setting up jobs and resources in

SLURM to get bare-metal performance is easy and simple and

it also provide both the robustness as well as security needed

for HPC applications.

III. RELATED WORK

In the past two decades, both high performance computing

(HPC) programming models (using MPI) and big data frame-

works (like Apache Hadoop and Spark) based solutions have

been explored rigorously for genomics applications. Many

variant calling workflows and tools have been developed

over the past decade, including SparkGA2 [5], ADAM [4],

SparkBWA [12], BWASpark [13], etc. Similarly, MPI based

parallel versions of the BWA aligner have been developed,

such as pBWA [14] as well as QUARTIC, the most recent

MPI based BWA (alignment and sorting) [15] algorithm.

IV. IMPLEMENTATION

While Apache Hadoop and Spark based solutions provide

a simple and straightforward method for data parallelization

for genomics workflows and particularly somatic/germline

variant calling pipelines, still the overheads related to data

communication, memory usage and better scalability issues

for big clusters remain unsolved for such big data frameworks.

We combine the benefits of the Apache Arrow columnar in-

memory data format in-conjunction with the high performance

wire-speed data transfer protocol, Arrow Flight. SLURM’s

managed private cluster is used for distributed and parallel

NGS data processing. In the following, the implementation de-

tails of pre-processing (alignment, sorting, duplicates removal)

applications and variant calling are discussed.
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A. Pre-processing

1) FASTQ Streaming and BWA-MEM: SeqKit [16] is an

efficient multi-threaded command line FASTQ/FASTA data

manipulation software. SeqKit runs on a dedicated node and

streams out the same number of FASTQ data files as the

number of executor nodes available in the cluster in parallel.

Each BWA-MEM instance runs on a separate node in a cluster

for performance purposes as shown in Figure 3. Each BWA-

MEM instance produces in total 128 Arrow RecordBatches

in ArrowSAM [6] format. For human genomes, this division

into separate chromosome chunks is derived from the ability

of load-balanced parallel and independent processing of NGS

data on multi-cores and multi-nodes computing systems.

2) Arrow Flight Data Shuffling: Once the distributed BWA-

MEM instances finish the alignment task, Arrow Flight sender

and receiver applications on each node start sending/receiving

a designated number of Arrow RecordBatches from all the

connected nodes through an Arrow Flight connection. Each

node sends [128/N] RecordBatches to all available executor

nodes, where ’N’ is the total number of executor nodes

connected through Arrow Flight endpoints.

3) Arrow Data Merging: Flight receiver application on

each node collects total of 128 RecordBatches, coming from

its own sender and the sender applications of the rest of

the executors. All RecordBatches of specific partitions are

then merged through pyarrow APIs and converted to pyarrow

tables. The resultant tables are efficiently converted to Pandas

dataframes for some further sorting and duplicate removal

operations/analytics.

4) Pandas Dataframe Sorting: All dataframes on each node

are sorted by coordinates with the ’beginPos’ key in

parallel. Sorting on Pandas dataframes with size less than 2GB

is efficient.

5) Pandas Dataframe MarkDuplicate: A Picard ”MarkDu-

plicate” compatible algorithm is developed for duplicate

reads removal in pair-end short reads NGS data. The sorted

dataframes go through this algorithm by updating the ’Flag’
field in case the read in a specific reads bundle is detected as

a duplicate.

6) Intermediate Output: For further downstream

variant analysis, any variant caller can be selected. All

mainstream germline (Strelka2, DeepVariant, Octopus)

and somatic (Strelka2, Octopus, NeuSomatic) variant

callers use (region-specific) chromosome coordinates like

"chr20:10,000,000-10,010,000". Since this

approach outputs data to the I/O with a total of 128 files, this

partition is useful when multiple nodes are used for variant

calling. The resultant dataframe(s) can be stored on disk in the

conventional BAM file format and/or a columnar output file

format options like Arrow, Parquet and compressed Parquet

for further downstream analysis. The columnar formats are

particularly suited for high performance I/O writing/reading.

B. Variant Calling

Any variant caller which can support region-specific variant

calling can be used in this approach. We use DeepVariant

Fig. 4. Breakdown of execution time for different pre-processing stages on
the HG002 dataset. A scalable trend is observed by increasing the number of
nodes, also for the communication part which traditionally is a bottleneck for
scalability [5].

a recent and accurate/fast variant caller as a use case to

demonstrate the feasibility of using variant caller in this

framework.

V. EVALUATION

This section evaluates the scalability, throughput and

speedup we have achieved for pre-processing of NGS se-

quencing data in alignment, sorting and marking duplicates

stages against the existing frameworks. Here we compare

two other existing state-of-the-art cluster scaled pre-processing

implementations namely, SparkGA2 [5] and QUARTIC [15].

A. SparkGA2

SparkGA2 [5] is a Apache Spark based cluster scaled im-

plementation of GATK best practices variant calling pipeline.

SparkGA2 starts FASTQ streaming application and initiates

multiple BWA instances on Spark executor nodes in par-

allel. It uses the built-in Scala API in Spark for sorting

the aligned reads. As Picard MarkDuplicate algorithm is
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Fig. 5. Overall pre-processing runtime performance comparison of different approaches by increasing the number of nodes. Apache Spark (SparkGA2), MPI
(QUARTIC) and this approach (Apache Arrow and Arrow Flight) are compared.

considered as standard for paired-end reads for duplicates

removal, SparkGA2 uses this Picard MarkDuplicate in Spark

for distributed processing on cluster.

B. QUARTIC

QUARTIC (QUick pArallel algoRithms for high-

Throughput sequencIng data proCessing) is implemented

using MPI. Though this implementation uses I/Os between

pre-processing (alignment, sorting and mark duplicate)

stages, it still performs better than other Apache Spark

based frameworks. These implementations efficiently exploit

the multi-cores and multi-nodes parallelization on HPC

infrastructure. An MPI wrapper is created for the original

BWA-MEM algorithm while using parallel IO and shared

memory for alignment. Sorting implements a parallel version

of the bitonic sort from scratch in MPI. Their duplicate

removal algorithm is based on Picard [17] MarkDuplicate

written in MPI.

C. Experimental Setup

We have performed all the experiments and comparisons

on the SurfSara Cartesius [18] HPC cluster (part of the Dutch

national supercomputing infrastructure) with each node is a

dual socket Intel Xeon server with E5-2680 v4 CPU running

at 2.40GHz. Each processor has 14 physical cores with support

of 28 hyper-threading jobs. Both processors are connected

through Intel QPI (QuickPath Interconnect) and share memory

through NUMA (non-uniform memory access) architecture.

A total of 192-GBytes of DDR4 DRAM with a maximum

of 76.8 GB/s bandwidth is available for whole system. A
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TABLE I
ACCURACY EVALUATION OF SMALL VARIANTS OF HG002 (NA24385 WITH 50X COVERAGE TAKEN FROM PRECISIONFDA CHALLENGE V2 DATASETS)
AGAINST GIAB HG002 V4.2 BENCHMARKING SET. THIS TABLE SHOWS THE SNP AND INDEL RESULTS FOR ”CHR1” ON A SINGLE NODE (DEFAULT)

RUN.

Variant type Truth total True positives False negatives False positives Recall Precision F1-Score
INDEL 42689 42390 299 131 0.992996 0.997053 0.995020

SNP 264143 262367 1776 351 0.993276 0.998665 0.995963

TABLE II
ACCURACY EVALUATION OF SMALL VARIANTS OF HG002 (NA24385 WITH 50X COVERAGE TAKEN FROM PRECISIONFDA CHALLENGE V2 DATASETS)

AGAINST GIAB HG002 V4.2 BENCHMARKING SET. THIS TABLE SHOWS THE SNP AND INDEL RESULTS FOR ”CHR1” ON A CLUSTER SCALED

(DISTRIBUTED) IMPLEMENTATION. ”CHR1” HAS BEEN CHUNKED INTO TEN PARTS.

Variant type Truth total True positives False negatives False positives Recall Precision F1-Score
INDEL 42689 42390 299 127 0.992996 0.997142 0.995065

SNP 264143 262365 1778 355 0.993269 0.998649 0.995952

(2,14)

(4,9)

(8,6)

(16,3.5)

(2,20)

(4,15)

(8,10.5) (16,10)

Fig. 6. A comparison of the communication overhead for the ’Sorting’ stage
in both the Apache Spark and Arrow Flight based implementations.

local storage of 1-TBytes is available on the system. CentOS

7.3 Minimal Server operating system is installed. All nodes

are connected through Mellanox ConnectX-3 or Connect-IB

InfiniBand adapter.

D. Data Set

We use Illumina HiSeq generated NA12878 dataset with

paired-end reads of WES of human with 30x sequencing

coverage. Read length of 100 base-pairs is used for all data.

The Human Genome Reference, Build 37 (GRCh37/hg19), is

used as a reference genome.

VI. RESULTS

A. Performance Evaluation

This section evaluates the performance gains in term of run-

time speedups, efficiency and cluster scalability as compared

to existing frameworks as well as the Arrow Flight throughput

over the network which enables the better overall performance

of this approach on clusters.

1) Runtime Speedup: For pre-processing applications,

breakdown of execution time of individual applications is

shown in Figure 4. A scalable trend is observed by increasing

the number of nodes, also for the communication and data

shuffling part in sorting which is explicitly measured here to

show a linear decrease in it that is traditionally a bottleneck

for scalability on Apache Spark cluster. We also compared the

overall runtime of pre-processing applications including BWA,

sorting and duplicates removal with the existing state-of-the-

art cluster scaled frameworks. Both the Apache Spark based

framework (SparkGA2) and MPI implementation (mpiBWA,

mpiSORT and mpiMarkDup) have been run on the same clus-

ter with same datasets. Compared to SparkGA2 pre-processing

results, more than 2x and 1.5x speedups are achieved, respec-

tively, for all cluster sizes as shown Figure 5. Regarding MPI

based comparisons, our approach incurs a marginal overhead

for 2 and 4 nodes cluster however increasing the nodes size

in cluster to 8 or more nodes, the overall execution time of

our approach is decreasing 20%-60%. This is due the fact that

MPI write shared I/O operations causing an extra overhead

with increasing the number of processes. Also our approach

is more flexible and easy to implement as compared to MPI

implementations from the scratch.

2) Cluster scalability: If the data size remains constant the

overall runtime of pre-processing applications can be scaled

efficiently by doubling the number of nodes. The total data size

also influences the overall performance. As discussed below,

Arrow Flight gives better throughput when the Arrow data

packet size is big. Normally the Figure 5 does not highlight

that linear scalability because the total input data is also being

being divided by the factor of nodes being increased. As

shown in Figure 6, the communication overhead in the Apache

Spark based framework (SparkGA2) is not scalable above 8

nodes while the Arrow Flight based implementation has lower

overhead and at the same time is scalable to at least 16 nodes.

3) Memory consumption: With the limited memory avail-

able per core on clusters, using the Apache Spark framework

incurs additional memory overhead due to its built-in Java

and Scala codebase which makes it inefficient to process

both computation and memory-bound applications. To prevent
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Fig. 7. Left figure shows the throughput (on each node) in MB/s with different payload sizes (88-11 GB) with varying number of nodes from 4 to 32, while
right figure demonstrates the continued increase in throughput (on each node) when increasing input data size from 11 to 88 GB on a 4 node cluster.

this extra memory overhead we replace Apache Spark by

SLURM, which is a memory-efficient alternative for cluster

environments. As shown in Figure 3 after BWA (alignment)

application, data shuffling, merging and sorting and finally du-

plicates removal is solely being done inside memory. Though

this requires almost two folds extra memory of total data size

but still this is much less than what is used in Apache Spark

based implementations.

4) Arrow Flight Throughput: It has been observed that a

maximum of 4.5GB/s throughput is achievable for DoPut()

while DoGet() achieves up to 6GB/s throughput with up to

16 streams in parallel on remote hosts as shown in Figure 2.

But increasing the Flight connections in a cluster also effects

this throughput. In this implementation, every Arrow Flight

connection on each node communicate (sends and receives)

with all available Arrow Flight end-points on all the nodes in

a cluster. This Arrow Flights connections scenario creates a

network congestion but achieves efficient data shuffling. As

shown in Figure 7, a maximum 500 MB/s throughput was

achievable in a 4 nodes cluster when each node is sending

more than total regions files (128) / number of nodes (4) in

each iteration to its neighboring nodes at the same time. This

also shows that with increasing the Arrow data packet size in

each Arrow Flight steams promises much better throughput on

even small cluster.

B. Accuracy

SNP and INDEL variants detection accuracy of DeepVari-

ant variant caller has been compared in a single node and

distributed environment. We used HG002 (NA24385 sample

with 50x coverage taken from PrecisionFDA challenge V2)

dataset to detect SNP and INDEL variants using DeepVariant

(v1.1.0), against GIAB v4.2 benchmark set for HG002 dataset.

The GA4GH small variant benchmarking tool hap.py [19] has

been used to compare the resulting variants in both methods.

Tables I and II list the accuracy analysis results in terms

of recall, precision and F1-score for the single node and

distributed approach, respectively. For DeepVariant, the tables

show that the distributed approach has comparable accuracy

results to the baseline. Detailed inspection of the results shows

that the distributed approach detects the same number of

INDEL true positives and false negatives, and a slightly lower

number of false positives compared to the baseline. This

gives the same recall results, but ensures a slightly improved

precision and F1-score. For SNPs, however, the distributed

approach detects slightly less true positives but more false

negatives and false positives. This gives a marginally degraded

SNP recall, precision and F1-score.

VII. CONCLUSION

This work demonstrates the efficient usage of the Apache

Arrow data format and Arrow Flight communication proto-

col to ensure low-latency communication of genomics data

in a cluster environment. Arrow Flight allows for effective

scalability of genomics pipelines on large clusters, while

eliminating communication time as a scalability bottleneck.

Almost all existing frameworks for processing genomics data

are built around big data frameworks like Apache Hadoop

and Apache Spark, which does not benefit from columnar in-

memory data processing on vector units nor exploit the caches

locality efficiently. These frameworks also cost extra memory

overheads. Our solution uses the SLURM workload manager

as an application handler and data scheduler to replace Apache

Spark framework or MPI based implementation of genomics

applications. Our approach allows to process more columnar

data in-memory without worrying about the extra memory

costs. Using SeqKit to create chunks and streaming the resul-

tant FASTQ input to BWA instances eliminates the additional

processing time. We have shown that BWA is being scaled

almost linearly while initiating only one instance per node.

Through this approach we are also able to achieve 1.5x and

2x speedup over existing state of the art frameworks like

SparkGA2. The performance comparisons of this approach

with MPI based implementation gives similar run-times with
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better clusters scalability and applications flexibility. Integrat-

ing Arrow Flight microservices into existing data transfer and

analytics frameworks (Apache Spark, TensorFlow, XGBoost,

etc.,) for distributed and scalable processing exhibits both

parallel and high throughput data transfer and compute ca-

pabilities. Also Arrow Flight based distributed Apache Arrow

data scheduling, compute and query services like DataFusion

and Ballista present applications for this purpose.
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