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Abstract—In urban environments, the complex and uncertain
intersection scenarios are challenging for autonomous driving.
To ensure safety, it is crucial to develop an adaptive decision
making system that can handle the interaction with other
vehicles. Manually designed model-based methods are reliable
in common scenarios. But in uncertain environments, they are
not reliable, so learning-based methods are proposed, especially
reinforcement learning (RL) methods. However, current RL
methods need retraining when the scenarios change. In other
words, current RL methods cannot reuse accumulated
knowledge. They forget learned knowledge when new scenarios
are given. To solve this problem, we propose a hierarchical
framework that can autonomously accumulate and reuse
knowledge. The proposed method combines the idea of motion
primitives (MPs) with hierarchical reinforcement learning
(HRL). It decomposes complex problems into multiple basic
subtasks to reduce the difficulty. The proposed method and
other baseline methods are tested in a challenging intersection
scenario based on the CARLA simulator. The intersection
scenario contains three different subtasks that can reflect the
complexity and uncertainty of real traffic flow. After offline
learning and testing, the proposed method is proved to have the
best performance among all methods.

I. INTRODUCTION

In urban environments, intersection scenarios are
challenging for intelligent vehicles because of their
uncertainty and complexity. As shown in Fig. 1, intelligent
vehicles have to deal with various situations involving other
vehicles, such as other vehicles changing lanes, other vehicles
turning around, unprotected left turns with oncoming traffic,
etc. To ensure safety, it is crucial to develop an adaptive
decision making system that can handle the interaction with
other vehicles.

Model-based methods have been applied to build decision
making systems [1]. Time-to-collision (TTC) [2] is a safety
indicator that is widely used [3]. With TTC, manually
designed hierarchical state machines were adopted as the
decision making mechanism for intersections in the DARPA
Urban Challenge [4]. Generally, these methods are reliable
and predictable. However, the model-based methods often
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require manually designed driving strategies. Yet the number
of new scenarios is large while the labor available for method
designing is limited.

These limitations might be avoided with learning based
methods. Imitation learning (IL) [5-9] learns driving policies
from expert driving data, and it does not require manually
designed strategies. However, the policies learned by IL are
not satisfying when faced with situations outside of the
training data. Besides, IL needs a large amount of expert data
that are expensive and difficult to collect. Combing with
neural networks, reinforcement learning (RL) becomes
popular [10-12]. Unlike model-based methods and IL [13, 14],
RL can adapt to changing environments by trial and error. In
addition, some researchers also use RL to build human-like
behavior learning systems that learn from human data [15, 16].
It is noteworthy that the RL can learn policies autonomously
without labeled data, but they cannot be practically applied to
complex and uncertain intersections because of the following
reasons: 1) The learned knowledge is not transferable. As
different scenarios have different characteristics, an RL
algorithm trained for a specific scenario requires retraining to
perform appropriately in other scenarios. 2) The RL methods
are not interpretable. They usually use a single neural network
to fit the problem, and the inner part of the neural network is a
black-box structure with poor interpretability. As a result, it is
difficult to analyze the neural networks and generalize them to
new environments.

Hierarchical reinforcement learning (HRL) is introduced
to solve these problems [17, 18]. RL methods with flat policy
tend to be a smooth mapping, so it is difficult for them to solve
complex problems with distinct subtasks. HRL introduces
hierarchical structures and temporal abstraction into learning,
which makes it possible to learn policies separately for distinct
subtasks [19]. Moreover, some researchers combine the idea
of motion primitives (MPs) with HRL [20]. MPs-based
methods decompose a complex problem into multiple easy
subtasks and arrange corresponding MPs for each subtask.
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Figure 1. The intersection scenario
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These MPs-based HRL methods have strong interpretability
and scalability. However, the existing MPs-based HRL
methods also suffer from the drawback that the MPs are
manually defined, so they do not work well in unexpected
situations.

In this paper, we propose an MPs-based HRL framework
that enables autonomous learning of MPs. It is an adaptive
decision making system that can reuse accumulated
interpretable MPs, where MPs are learned autonomously
based on skill discovery methods. With these features, the
proposed method can deal with complex traffic scenarios with
high uncertainty.

The remainder of the paper is organized as follows.
Section II describes the proposedMPs-based HRL framework.
In Section III, an intersection scenario is designed in CARLA
and the details of the experiments are depicted. In section IV,
the results of the proposed method and other baseline methods
are discussed. Section V concludes the work.

II. HIERARCHICAL REINFORCEMENT LEARNING WITH
MOTION PRIMITIVES

A. Hierarchical Decision Making System
As shown in Fig. 2, this paper utilizes a hierarchical

architecture that divides the system into an upper decision
making layer and a lower execution layer:

1) Decision Making Layer: The upper decision making
layer uses the MPs automatically learned in the lower
execution layer to build an extensible and interpretable MPs
library. The MPs manager will observe the environment and
determine whether the current subtask has been learned. If the
subtask has already been learned, it selects the corresponding
MP from the MPs library and reuses it. If the subtask is new, it
autonomously creates a newMP and adds it to the MPs library
after the training of MP is complete.

2) Execution Layer: The lower execution layer uses a skill
discovery method to autonomously learn MPs, where every
MP contains initiation set, termination set, and intra policy.
The initiation set and termination set determine when the MP
starts and when the MP stops, respectively. The intra policy is
the strategy responsible for specific subtask assigned by the

MP manager.

B. Hierarchical Reinforcement Learning with MPs
In RL, a Markov decision process (MDP) consists of a set

of states S , a set of actions A , a transition function
P [0,1]:   S A S and a reward function :r  S A  .
We tend to maximize the cumulative reward, i.e., expected
return, defined as 0 1 0( |) t trG s s s 


     E . In

continuous tasks, the return can easily be infinite. Therefore,
we use the discounted return 0 1 0( |) t

t tG r s ss  
     E ,

where [0,1)  represents the discount factor, and 
represents the policy.

In details, the action at time step t is denoted as
, throttle ,brake ,steer[ , , ]at t t ta a a where , throttleta , ,braketa and ,steerta

are the throttle, brake and steering angle of the host vehicle,
respectively. The state st at time step t is denoted as:

,host ,other

,host ,host ,host ,host ,host

,other ,other ,other ,other ,other

[ || ]
=[ , , , ]
=[ , , , ]

s s s
s
s

t t t

t t t t t

t t t t t

x y v
x y v







(1)

where ,hostst is the state of the host vehicle. The operator ||
stands for concatenation operation. ,otherst is the state of the
vehicle closest to the host vehicle. ( , )x y is the position of the
vehicles.  and v are the yaw angle and velocity of the
vehicles, respectively.

As for MPs, each of them is a kinematically or
dynamically feasible control sequence/trajectory that connects
a pair of start/goal configurations [21].We combine the idea of
MPs with the options framework in HRL [19], which means
everyMP is an option. AMarkovian option  is a 3-tuple
 , ,   I in which  I S is an initiation set,

[0: ,1]  S A is an intra-option policy, and   S is
the termination set. In order to achieve autonomous learning of
MPs, a skill discovery method called deep skill chaining is
adopted [22] which will be explained later.

C. Execution Layer Policy
As discussed above, We build the MP framework based on

Figure 2. The hierarchical decision making system based on motion primitives
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options. For the policy  of MP, we use the model-free
reinforcement learning method deep deterministic policy
gradient (DDPG) to estimate the Q value ( , )Q s a [23]. The
DDPG includes an online Q network and a policy network
with parameters  and  , as well as a target Q network and a
policy network with parameters   and  . The Q value is
updated by using the following expression:

( , ( | ) | )y r Q s s        (2)

The critic is updated by minimizing the loss as:

21 ( ( , | ))i i ii
L y Q s a

N
  (3)

The actor policy is updated as:

, ( | )
1 ( , | ) | ( | ) |

i i ia s s a s s
i

J Q s a s
N          (4)

The target networks under the “soft” update rule are
updated as follows:

(1 )
(1 )

   
   
   
   

(5)

with 1  .

D. Autonomously Learn MPs
In a high-dimensional continuous space, it is difficult to

reach the endpoint. To ensure that the algorithm reaches it, a
strategy named deep skill chaining for learning MPs from the
endpoint to the start point is adopted. The core idea is that it is
simpler to get to the end at the local neighborhood of the end
[24]. Firstly, the MPs should learn the initial set with a certain
size. Please note that the size of the set cannot be too large or
too small. If the size is too small, it is difficult to trigger the
MP. But if it is too large, the MP may be triggered in an
inappropriate state. We train a one-class SVM classifier to
autonomously learn it, and the random walk strategy is used to
collect data: if the agent starts at state ts , and reaches the
termination set in K timesteps, then we label it as a positive
sample, otherwise, it is labeled as a negative sample. When N
samples have been collected, we use them to train the
classifier to represent the initial set and the first MP is
complete.

Then we learn the second MP. To ensure that the MPs can
form an uninterrupted sequence, let the termination set of the
secondMP be equal to the initiation set of the first MP. Repeat
and learn 3, 4, 5...n until the initial set of MP contains the
starting point, i.e., finally complete the MP sequence from the
starting point to the ending point.

E. Decision Making Layer Policy
When the MP manager observes the environment, there

may be several available MPs in state s . To solve it, HRL is
used to select the best MP. We define a policy
: [0,1]sS O   , where O represents the set of all options,
sO represents the set of options available in state s , and
( , )s o represents the probability of selecting o as the current

option in state s . The Q function is mathematically
expressed as:

2
1 2 0 0|( ,, ) t t tr r r sQ s o oo s

          E (6)

The goal of the decision making layer is to maximize
( , )Q s o to find optimal solution. We use double deep

Q-learning (DDQN) to evaluate the value of each MP and
choose the most valuable one [25]. We use a deep neural
network to represent the Q value as ( , | )Q s o  with
parameters  , and represent the target Q as ( , | )Q s o   with
parameters   . The targets are mathematically defined as:

( ,argmax( , | ) | )
o

y r Q s s o  


     (7)

We update the neural networks by minimizing the
following function:

min ( ( , | ))y Q s o


 (8)

Please note that a “soft” update rule, similar to DDPG, is
also used.

III. EXPERIMENTS

A. Simulation Environment and Scenario

We test the proposed algorithm on the CARLA simulator ,
which provides a high-definition display, multiple sensors,
and simulation with dynamics [26].

To test the proposed algorithm, we need to design a
scenario that is interactive, uncertain, and complex. To fulfill
these requirements, we designed an intersection scenario, as
shown in Fig. 3. The host vehicle is denoted in red, and other
vehicles are denoted in blue. There are three subtasks in this
scenario: 1) Other vehicles change lanes. 2) turning left
yielding to oncoming traffic. 3) Other vehicles turn around. In
these subtasks, all other vehicles will have a 50% chance of
moving and a 50% chance of stopping in place. If the other
vehicles choose to move, they randomly choose the start point
and speed, as shown in Fig. 3.

Figure 3. The experiment scenario built in CARLA
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For the host vehicle, the algorithm controls longitudinal
movement, i.e., accelerator and brake, and lateral movement is
controlled by a pure pursuit controller. Other vehicles follow
predetermined trajectories, where pure pursuit controllers
control lateral movement and PID controllers control
longitudinal movement.

B. Offline Learning and Testing
Offline learning is necessary for MPs. In the beginning, the

scenario is initialized without introducing other vehicles. We
train all the MPs for 400 epochs so that they learn to drive
smoothly at a goal speed of goal=5 m/sv . Afterward, we train
every MP separately, the training process also continues for
400 epochs for each subtask. Thus, offline learning has a total
of 1600 epochs. To ensure fairness, all baseline methods will
share the same offline learning process with the proposed
method.

After the offline learning, the testing with all subtasks is
performed. The length of testing is 1000 epochs, that is, the
testing in the 1601~2600 epoch. There are all three subtasks in
the scenario, each subtask has a half probability of appearing
or not appearing. The host vehicle needs to flexibly adjust
between the two strategies of avoiding other cars.

C. Network Architectures
As shown in Table. I, all the networks are trained with

Adam optimizer and soft update. The details of network
architecture are as follows:

TABLE I. HYPERPARAMETERS OF THE DECISION MAKING AND
EXECUTION LAYER

Hyperparameter Decision-making
(DDQN)

Execution
(DDPG)

Number of hidden layers 2 2 (actor and critic)

Hidden size 1 256 400

Hidden size 2 128 300

Learning rate 1e-4 1e-4 (actor)
1e-3 (critic)

Batch size 64 64

 0.99 0.99

 1e-3 0.01

1) Decision Making Layer: Based on the semi-Markov
decision process (SMDP), a single DDQN network is used to
control the policy over MPs. Each hidden layer is followed by
a ReLU activation function. The final layer is slightly different
as the number of nodes in this layer can be changed. With n
MPs, there are n nodes in the final layer, each representing
the Q-value of the corresponding action. When a new MP is
created, we add a new node in the final layer.

2) Execution Layer: Based on MDP, a DDPG network is
used to control the intra policy for every MP. With n MPs,
there are n DDPG networks. In actor network, Each hidden
layer is followed by ReLU activation and batch normalization.
The final layer has 1 node corresponding to the size of the
action, which is followed by a tanh activation function to limit

the output range. In critic network, each hidden layer is
followed by a ReLU activation function.

D. Baseline Methods
We choose the following baseline methods:

1) Flat Policy: To compare with the proposed hierarchical
method, DDPG is selected as the flat policy method. It shares
the same architecture as the motion primitives in the
hierarchical method.

2) Tabular Method:Q Learning is also selected to compare
with the proposed method.

E. Implementation Details
1) Rewards Design: After extensive testing, we found that

the following reward function works well in practice:

vel living col goalR R R R R    (9)

vel

0.25 , if 5
=

0.25(10 ), if 5
v v

R
v v


  

(10)

living 0.5R   (11)

col 100 if collisionR   (12)

goal=10R (13)

where velR encourages the host vehicle to keep moving
forward with a target speed of 5 m/s . If the speed of the host
vehicle exceeds the target speed, the reward will be gradually
reduced, and if the speed is too high, penalize the host vehicle
with a negative reward. livingR encourages completing the task
as quickly as possible. Without this restriction, the host vehicle
may stop frequently. colR penalizes collision with other
vehicles or buildings. In our case, we treat collision as a
serious mistake and penalize it with a large negative reward.

goalR reward the host vehicle for reaching the end.

2) Exploration Strategies: For the upper decision making
layer and lower execution layer, we use Epsilon-Greedy as the
exploration strategy. Epsilon-Greedy is a simple but effective
method to balance exploration and exploitation by choosing
between exploration and exploitation.

IV. RESULTS

The experiment is divided into two parts: offline learning
and testing. The testing scenario will contain all subtasks with
additional randomness.

A. Offline Learning
Fig. 4 shows the average return of MPs and baseline

methods. Among the four stages, MPs have the best
performance. Each motion primitives focuses on its own task,
so the learning curve converges faster. DDPG performs
similarly to MPs in most subtasks, except for the turning
around subtask. This might be because it is the most difficult,
and DDPG is powerless after learning three subtasks. As for Q
Learning, it barely learns knowledge. The return of Q
Learning almost keeps unchanged.
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B. Testing with all subtasks

The test result is shown in Fig. 5. MPs perform best
because they can reuse accumulated knowledge. When the
scenario switches from offline learning to testing, MPs
remember learned knowledge and keep good performance.
Therefore, they have the advantage in the initial performance
over the memoryless DDPG which needs 500 epochs
retraining to reach the initial performance of MPs. Q Learning,
like the offline learning stage, barely learns any knowledge.

After the testing is finished, we then collect the success
rates of each subtask for 200 epochs. As shown in Table. II,
the success rates are recorded at every subtask and goal point.
Please note that the success rates of Q Learning are deceptive.
Q Learning cannot deal with continuous tasks and it randomly
chooses between throttle and brake. Therefore, the speed is
always maintained at a low level and fluctuates greatly, as
shown in Fig. 6(a). As a result, this “lazy” strategy makes the
host vehicle coincidentally avoids collisions, as shown in Fig.

6(b) and Fig. 6(c). As for MPs and DDPG, MPs reuse the
accumulated knowledge and perform much better.

TABLE II. THE SUCCESS RATES OF EACH SUBTASK IN TESTING

Method MPs DDPG Q Learning*

Other vehicles change lane 71% 50% 58%

Unprotected left turn 68% 49% 55%

Other vehicles turn around 40% 28% 27%

Goal 40% 28% 27%

*Please note that the success rates of Q Learning are deceptive.

The vehicle kinematic parameters are as shown in Fig. 6.
In the first subtask, both MPs and DDPG follow the other
vehicles, and their performance is similar. In the second
subtask, MPs choose to pass as quickly as possible under the
premise of ensuring safety, which brings a smooth heading
curve as shown in Fig. 6(b). But for DDPG, it chooses to slow
down and let other vehicles pass first. In the third subtask,
MPs observe and make decisions faster. Besides, the speed
curve is also smoother as shown in Fig. 6(a). Q Learning keeps
creeping slowly through all subtasks.

V. CONCLUSION
In this paper, a hierarchical framework that can reuse

accumulated knowledge is proposed. The proposed method
combines the idea of MPs with HRL. This feature solves the
problem that RL needs retraining after the scenario changes.
The proposed method and the baseline methods are tested in a
challenging intersection scenario. After offline learning and
testing, the proposed method is proved to have the best
performance. However, there are also deficiencies in this work.
Although the proposed method performs best, the success rate
of reaching the goal is still relatively low. This is due to the
randomness of reinforcement learning. In the future, we will
explore various methods to make the accumulated MPs more
stable.
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Figure 6. Kinematic parameters of the host vehicle. (a) The speed curves indicate the absolute velocity in the world coordinate system of the host vehicle. (b)
The heading curves indicate the yaw angle in the world coordinate system of the host vehicle. (c) The spatio-temporal trajectories in the world coordinate
system of the host vehicle.
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