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Graph Convolution-Based Deep Reinforcement Learning for
Multi-Agent Decision-Making in Interactive Traffic Scenarios

Qi Liu∗, Zirui Li∗, Xueyuan Li, Jingda Wu, Shihua Yuan

Abstract— A reliable multi-agent decision-making system is
highly demanded for safe and efficient operations of connected
and autonomous vehicles (CAVs). In order to represent the
mutual effects between vehicles and model the dynamic traffic
environments, this research proposes an integrated and open-
source framework to realize different Graph Reinforcement
Learning (GRL) methods for better decision-making in interac-
tive driving scenarios. Firstly, an interactive driving scenario on
the highway with two ramps is constructed. The vehicles in this
scenario are modeled by graph representation, and features are
extracted via Graph Neural Network (GNN). Secondly, several
GRL approaches are implemented and compared in detail.
Finally, The simulation in the SUMO platform is carried out to
evaluate the performance of different GRL approaches. Results
are analyzed from multiple perspectives to compare the perfor-
mance of different GRL methods in intelligent transportation
scenarios. Experiments show that the implementation of GNN
can well model the interactions between vehicles, and the pro-
posed framework can improve the overall performance of multi-
agent decision-making. The source code of our work can be
found at https://github.com/Jacklinkk/TorchGRL.

I. INTRODUCTION

Autonomous vehicles operate in highly complex driving
environments. An interactive traffic scenario refers to a
driving environment that is highly cooperative and dynamic.
Decision-making for autonomous vehicles should consider
the interaction with surrounding vehicles, and the mutual
effect between different traffic participants has a great in-
fluence on decision-making [1]. It is critically important for
each autonomous vehicle in interactive traffic scenarios to
generate appropriate and cooperative behaviors. Therefore,
intelligent multi-agent decision-making technology is highly
demanded for autonomous vehicles to efficiently handle
complex road environments and multi-agent interactions [2].

The detailed overviews of decision-making technology for
autonomous vehicles are presented in [3], [4]. In general,
current technologies mainly focus on reinforcement learning
(RL) methods due to the high complexity of the driving
environments and the frequency of interaction with different
agents [5]. The keys of RL in interactive traffic scenarios can
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be summarized in the two following aspects: 1) The accurate
representation of the feature of each agent and the interaction
between different vehicles. 2) The efficient modeling of the
driving policy to generate reasonable behaviors [6]. Consid-
ering that the RL methods with a manually designed policy
model are easily affected by prior knowledge, which suffers
from several weaknesses, including accuracy of generated
behavior in interactive environments and generality between
different scenarios. With the rapid development of deep
learning methods in supervised learning, incorporating neural
networks into RL frameworks has shown a large potential to
improve the performance of RL methods in recent research.
Thus, deep reinforcement learning (DRL) methods have been
proposed to ensure better high efficient exploration and
learning process of each agent [7].

There have been some studies on the decision-making
in interactive traffic scenarios using DRL methods [8]–
[13]. However, such approaches only consider the individual
features of each vehicle as the input of DRL, ignoring the
mutual effects between pairs of vehicles. This will generate
low cooperative behaviors in interactive traffic scenarios,
which may lead to danger or even traffic accidents. Graph
representation can accurately describe the mutual effects
between pairs of agents, which enables modeling the re-
lationship of vehicles in interactive traffic scenarios. Thus,
some researchers focus on GRL methods to model the
interaction with graph representation.

GRL methods combine GNN and DRL to achieve better
decision generation in interactive scenarios. The features of
interactive scenarios are proceeded by GNN, and cooperative
behaviors are generated by DRL framework. GRL methods
have great application prospects in intelligent transporta-
tion systems; for instance, traffic light control [14], vehicle
routing [15], trajectory prediction [16], [17] and vehicle
repositioning [18]. There are also some related works in
multi-agent decision-making based on the GRL approach.
In [19], graph convolutional reinforcement learning method
is proposed for multi-agent decision-making; two multi-
head attention graph convolutional layers are utilized for
features extraction of agents, and behaviors for different
agents are generated by DQN. The experiment is carried
out on the ”MAgent” platform, and results show that the
proposed methods substantially outperform existing methods
in various of cooperative scenarios. In [20], GNN and DQN
are combined (named GCQ) for multi-agent cooperative con-
trolling of CAVs in merging scenarios. Specifically, GNN is
proposed to aggregate the information acquired from collabo-
rative sensing, while cooperative lane-changing decisions are
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generated from DQN. The experiment is carried out in the
SUMO platform, results show good performance compared
with the rule-based method and LSTM-based Q-learning
method. A similar research is put forward in [21], the main
difference is that a reward function matrix is proposed for
training various decision-making modes to achieve a better
trade-off between safety and efficiency.

This paper proposes an innovative modular framework
to analyze the performance of different GRL methods in
interactive traffic scenarios. The traffic scenario adopted
in our work is constructed based on [20]. The designed
algorithm in this paper is based on GRL, which consists of
two modules: GNN and DRL. Specifically, several Deep Q-
Learning methods are utilized in the DRL module, including
DQN, Double DQN, Dueling DQN, and Dueling-Double
DQN (D3QN). The graph representation of the multi-agent,
including node feature matrix, adjacency matrix, and RL-
filter, are selected as inputs, while the behaviors of each
agent are generated as output. The general framework of our
approach is modularized and developed based on python,
different categories of GNN and DRL algorithms can be
replaced according to actual needs. Finally, simulation is
carried out based on the SUMO platform [22], and the
results are discussed in detail from multiple perspectives
and dimensions. The schematic diagram of the designed
framework is shown in Fig.1.

The main contributions of this research are summarized
as follows:

(1) Compared with [19], we applied the GRL method
to multi-agent decision-making for highway ramping of
autonomous vehicles. The constructed traffic scenario is
dynamic, and the number of agents varies with time.

(2) Compared with [20], we propose a general GRL
framework to solve the decision-making issues in interactive
traffic scenarios. Various GRL models under the proposed
framework are also compared and analyzed.

(3) An open-source library with detailed instructions is
constructed. This library enables the verification of different
GRL methods; it can also be extended to various types of
interactive traffic scenarios.

II. PROBLEM FORMULATION

The purpose of our work is to generate cooperative lane-
change decisions for autonomous vehicles in an interactive
traffic scenario. A framework implemented with several
GRL algorithms is proposed, which consists of three key
components: Scenario Construction, GRL Algorithm, and
Simulation. The vehicles in the scenario are modeled as a
graph, where nodes represent different vehicles and edges
represent the interplay between every two vehicles. Graph
representation is then processed into node features, adjacency
matrix, and RL-filter. The GRL Algorithm is developed to
train lane-changing policy, which takes graph representation
as input and generates the Q values [23] of different lane-
change actions. The simulation part takes Q values as input,
and motions of each vehicle are generated to update the

scenario, thus enabling the continuous training of the GRL
framework.

The scenario in our research is constructed based on
[20], which is shown in Fig.2. The scenario includes a 3-
lane highway with two ramp exits. In this scenario, two
types of vehicles operate: human-driven vehicles (HVs) and
autonomous vehicles (AVs). Different vehicles have different
driving tasks, and they need to cooperate to complete the
scheduled driving tasks more efficiently. White vehicles
represent HVs, entering from the left side of the highway
and exiting from the right side. Colored vehicles represent
AVs and enter from the left side of the freeway, specifically
red vehicles exiting at ramp 1 and green vehicles exiting at
ramp 2.

AVs interact with the traffic environment by taking lane-
change actions at discrete time steps in the constructed traffic
scenario. Upon taking the actions, the state of the traffic en-
vironment changes, and AVs receive a reward. Nevertheless,
the environmental information can be completely observed
within the observation range of AVs. Thus, this process can
be modeled as Markov Decision Process (MDPs). For this
constructed traffic scenario, four components define a finite
horizon MDP: state space (S), action apace (a), reward
function (R), and the discount factor (γ) [24].

A. State Representation

The scenario is modeled as an undirected graph. Each
vehicle in this scenario is regarded as the node of the
graph, and the interaction between vehicles is regarded as the
edge of the graph. More formally, the constructed graph is
described as G = {N,E}, where N = {ni, i ∈ {1, 2, ...n}}
is a set of node attributes and E = {eij , i, j ∈ {1, 2, ...n}}
is a set of edge attributes. Specifically, n denotes the number
of nodes in the constructed graph that is equal to the total
number of vehicles. Then, graph representation is utilized
to model the characteristics and interaction of vehicles. The
state space is discrete and can be described as follows:

St = [Nt, At, Ft] (1)

where Nt ∈ Rn×f denotes the node features matrix, At ∈
Rn×n denotes the adjacency matrix and Ft ∈ R1×n denotes
the RL-filter matrix. The above three matrices together
constitute the state space matrix, each of the matrix is
manipulated as follows.

1) Node Features Matrix: Node features matrix represents
the features of the constructed scenario. It consists of the
feature matrix of each vehicle, which can be described as
follows:

Nt =


[V1, X1, L1, I1]
[V2, X2, L2, I2]

· · ·
[Vi, Xi, Li, Ii]

· · ·
[Vn, Xn, Ln, In]

 (2)

where [Vi, Xi, Li, Ii] represents the normalized state matrix
of each vehicle. Specifically in the lane-change task, Vi =
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Fig. 1. The schematic diagram of the proposed framework.

Fig. 2. The traffic scenario constructed in the proposed research. (a) is
the whole view of the traffic scenario; (b) is the view of ramp 1 where red
vehicles drive out; (c) is the view of ramp 2 where green vehicles drive out.

Vi actual/Vmax denotes the normalized longitudinal speed of
vehicles relative to the maximum longitudinal speed; Xi =
Xi longitudinal/Lhighway denotes the normalized longitudi-
nal coordinate of vehicles relative to the length of highway;
Li denotes the one-hot encoding matrix of current lane
position (left-lane, right-lane and middle-lane) of vehicles;
Ii denotes the one-hot encoding matrix of current intention
of (change to left-lane, change to right-lane and go straight)
of vehicles.

2) Adjacency Matrix: Adjacency matrix represents the
interaction between vehicles, which is embodied in the
information sharing between vehicles in the constructed
scenario. The adjacency matrix is calculated based on the
following assumption: 1) All vehicles can share information

with themselves. 2) All AVs can share information. 3) All
AVs can share information with HVs in their sensing range.
The derivation of the adjacency matrix is as follows:

At =



e11 e12 · · · · · · e1n
e21 e22 · · · · · · e2n

...
...

. . .
...

eij
...

...
. . .

...
en1 en2 · · · · · · enn


(3)

where eij denotes the edge value of vehiclei and vehiclej .
eij = 1 when vehiclei and vehiclej share information; while
eij = 0 when vehiclei and vehiclej share no information.

3) RL-filter Matrix: The construction of the RL-filter
matrix is to filter out the corresponding terms of HVs for
the output of the GRL algorithm. The derivation of the RL-
filter matrix is as follows:

Ft = [f1, f2, · · · , fi, · · · , fn] (4)

where fi = 0 or 1 . If vehiclei belongs to AVs controlled
by GRL algorithm, fi = 1; otherwise fi = 0.

B. Action Space
The action space is discrete. At each time step, the action

space of AVs in the scenario is composed of different lane
changing instructions that can be described as follows:

a = [change to left, go straight, change to right] (5)
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C. Reward Function
The details of the reward function can refer to [20]. The

reward function consists of four parts: intention reward,
average speed reward, lane-changing penalty, and collision
penalty. The reward function is defined as follows:

R = w1RI + w2RAS + w3PLC + w4PC (6)

where wi denotes the weight of each item; RI denotes the
intention reward, RAS denotes the average speed reward; PLC
denotes the lane-changing penalty, PC denotes the collision
penalty.

III. GRL ALGORITHM

The GRL algorithm is the critical part of the proposed
framework, consisting of GNN and DRL. Based on the graph
representation of scenario and reward functions, GRL can ex-
plore optimized lane-change strategies to ensure autonomous
vehicles’ efficient and safe driving task completion. The
detailed algorithm design of the GNN and DRL module will
be further illustrated. The detailed network structure of GRL
is shown in Fig.3.

A. GNN Module
The GNN module consists of fully connected layers (FC)

and graph convolutional network (GCN). GCN is a type of
GNN that extracts features of graph-structured data based
on an efficient variant of convolutional neural networks [25].
Before implementing the graph convolution process, the node
features matrix Nt is firstly input into the FC to map the
node features to sample markup space, which is described
as follows:

NFC = ϕFC(Nt) (7)

where NFC denotes the node feature matrix proceed by the
FC; ϕFC denotes the neural network with FC.

Then, NFC and adjacency matrix At are firstly input
into the GCN to generate the graphical convolution feature,
and the graph convolution process can be expressed by the
following formulation [25]:

Gt = ϕGCN(NFC, At) = σ(D
1
2
t AtD

− 1
2

t NFCWt + b) (8)

where Gt denotes the graph convolutional features proceed
from GCN; ϕGCN denotes the graph convolution operator;
matrix Dt is computed based on At, specifically, Dii =
ΣjAij ; Wt denotes a layer-specific trainable weight matrix;
b denotes the offset, specifically, b = 0 is defined in this
research; σ denotes an activation function, specifically, ReLU
[26] is chosen in this research.

Graph convolutional features are then input into the DRL
module, then the Q value of lane changing actions for AVs
is generated by filtering through the RL-filter matrix. The
derivation of the Q value is as follows:

Q(s, a) = Ft · [ϕDRL(Gt)] (9)

where Q(s, a) denotes the Q value of lane-changing actions
for AVs; ϕDRL denotes the policy neural network.

B. DRL Module

This part elaborates on the principles and implementation
process of different DRL algorithms carried out in this
research.

1) Deep Q-Network (DQN): Q-learning is one of the
most representative value-based RL methods based on the
estimation of Q value [23]. Q value can be expressed as
Q(s, a), defined as the expectation of future rewards when
taking action {a, a ∈ A} at state {s, s ∈ S} at a specific time
step; in addition, reward r is generated to the agent according
to the response of the environment. The main idea of Q-
learning is selecting the action that can obtain the greatest
reward based on the Q value; then, the Q value is updated
as follows:

Y Q
t = Rt+1 + γ argmax

a
Q(st+1, a) (10)

where γ denotes the attenuation factor of the RL process.
However, Q-learning suffers from the curse of dimension.

When the dimension of the state space is too large, the
construction, searching, and updating of the Q value will
cause high computational complexity; thus, the algorithm’s
efficiency will be greatly reduced or even become impossible
to solve the RL problem. With the development of deep
learning technology, DQN was proposed in [27], a neural
network is constructed to estimate the Q value of the action
space to extend the state space to high dimensions. The
online Q network can be parametrized as Q(s, a; θ). The
state space of the environment is chosen as the input of the
neural network, while the Q value of the action space is
generated as the output of the neural network. Finally the
next action of the agent is determined.

DQN includes the following elements: replay buffer D and
a fixed target Q network parametrized as Q(s, a; θ′). During
the learning process of the agent, transition (s, a, r, s′) is
stored in the replay buffer and sampled at each learning
process. The calculation process of target Q value can be
expressed by the following formula:

Y DQN
t = Rt+1 + γ argmax

a
Q(st+1, a; θ

′) (11)

The output value of the target Q network y is compared
with the estimated value of the online Q network to calculate
the loss, a gradient descent step on (Y DQN

i − Q(si, ai; θ))
2

is carried out to update θ. In addition, θ is synchronized to
θ′ every certain number of iterations.

DQN also suffers from several weaknesses: 1) The target
Q value is overestimated due to the max operator. 2) The
online Q network has the same structure as the target Q
network, resulting in inefficient learning and convergence.

2) Double DQN: Double DQN is proposed to solve the
overestimation problem of DQN [28]. Double DQN and
DQN lie in the different estimation methods of the target Q
value. The main idea is to construct different action selection
and value evaluation functions. When updating the target Q
value, the subsequent actions are selected from the online Q
network, while the assessment of the Q value depends on
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Fig. 3. The network structures of GRL algorithm. N denotes the number of agents, F denotes the length of feature vector for each agent, A denotes the
length of action space.

the target Q network. The estimation of the target Q value
of Double DQN is derived as follows:

Y Double
t = Rt+1 + γ Q(st+1, argmax

a
Q(st+1, a; θ); θ

′) (12)

3) Dueling DQN: Dueling DQN is proposed to opti-
mize the network structures of DQN [29]. Specifically,
Dueling DQN consists of two separate estimators: one for
the state value function, defined as V (s; θ, β); another for
the state-dependent action advantage function, defined as
A(s, a; θ, α). Outputs from the two estimators are finally
combined to generate the target Q value Q(s, a; θ, α, β). The
main benefit of this factoring is to generalize learning across
actions without imposing any change to the underlying RL
algorithm to ensure better policy evaluation. The estimation
of the Q function of Dueling DQN is derived as follows:

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α)−
1

|A|
∑
a′

A(s, a′; θ, α))
(13)

where θ denotes the parameters of the online Q network,
while α and β denotes the parameters of the two streams of
fully-connected layers; |A| denotes the absolute value of the
average of A(s, a; θ, α)

Thus, the target Q value of Dueling DQN can be calculated
as follows:

Y Dueling
t = Rt+1 + γ argmax

a
Q(st+1, a; θ

′, α′, β′) (14)

4) Dueling Double DQN (D3QN): D3QN combines the
improvements from Double DQN and Dueling DQN to
optimize the estimation of Q value while ensuring better
strategy evaluation. The estimation of the target Q value is
derived as follows:

Y D3QN
t = Rt+1+

γ Q(st+1, argmax
a

Q(st+1, a; θ, α, β); θ
′, α′, β′)

(15)

IV. EXPERIMENT

In this section, the construction of the simulation en-
vironment is described, and implementation details of the
proposed research is presented.

A. Simulation Environment

The proposed framework is developed based on python
and various third-party libraries. The program structure is
shown in Fig.4, and the information of implemented third-
party libraries is presented in Table I.

TABLE I
THE INFORMATION OF IMPLEMENTED THIRD-PARTY LIBRARIES

Library Refs Function

Pytorch [30] The core framework of neural network
Pfrl [31] The DRL library based on Pytorch

Pytorch
Geometric [32] The GNN library based on Pytorch

FLOW
Library [33] The interface between traffic simulators

and DRL libraries

The traffic scenario and experiments are constructed based
on the SUMO platform. It consists of a lateral control module
and longitudinal control module. Q value of different lane-
change actions from the GRL algorithm is input into the
lateral control module, and control commands are finally
generated to update the status of each vehicle, thus enabling
the continuous training of the GRL algorithm. The two
control modules are described in detail as follows:

1) Longitudinal Control Module: Acceleration commands
are generated from the longitudinal control module. The
longitudinal control of both HVs and AVs is achieved by
the IDM model [34] embedded in SUMO.

2) Lateral Control Module: Lane-change commands are
generated from the lateral control module. The lateral control
of HVs is achieved by the LC2013 lane-changing model
[35] embedded in SUMO, while the lateral control of AVs
is achieved by the proposed GRL algorithm.

B. Implementation Details

Simulation parameters include the parameters of traffic
scenario that are summarized in Table II, and the parameters
of GRL algorithm that are summarized in Table III.

Different exploration strategies are adopted at different
training stages. Define π(s) as the lane-changing strategy
adopted by the AVs in state s. In the beginning, a random
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Fig. 4. The program structure of the proposed framework

TABLE II
PARAMETERS OF TRAFFIC SCENARIO

Parameters Symbols Value

Number of HVs NHVs 20
Number of AVs NAVs 20

Number of AVs driven out by ramp 1 Nr1 10
Number of AVs driven out by ramp 2 Nr2 10

Length of Highway L 500m
Longitudinal position of ramp 1 Xr1 200m
Longitudinal position of ramp 2 Xr2 400m

Speed limit for HVs VmaxHVs 60km/h
Speed limit for AVs VmaxAVs 75km/h

Inflow of HVs PHVs 0.3veh/s
Inflow of AVs PAVs 0.15veh/s

exploration phase with a specific step is carried out to
expand the exploration space of AVs. During the random
exploration phase, AVs are sampled in the action space to
generate random lane-change behavior, defined as π(s) =
random(a). After the random exploration phase, the epsilon-
greedy strategy is used to generate the lane-change behavior
of the AVs according to the Q table calculated from the GRL
algorithm, and network parameters are updated at regular
step intervals. The derivation of the epsilon-greedy strategy
is as follows:

π(s) =

{
random(a) P = ϵ
argmaxQ(st, a) P = 1− ϵ

(16)

During the testing process, the greedy strategy is used
to generate lane-change behavior, defined as π(s) =
argmaxQ(st, a).

C. Results

Experimental results are presented in this part, including
reward, loss, and average Q value of different GRL algo-
rithms. The rule-based method is selected as the baseline,
and LC2013 lane-changing model is applied to AVs instead
of the GRL algorithm.

1) Reward: During the training process, the reward for
each training episode is shown in Fig.5. The training data

TABLE III
PARAMETERS OF GRL ALGORITHMS

Parameters Symbols Value

Number of training episode Ntraining 150
Step size of the random exploration phase Srandom 20000

Batch size Mbatch 32
Replay buffer capacity Mreplay 106

Discount factor γ 0.9
Optimizer - Adam

Learning rate η 10−4

Online network update frequency Nonline 10
Target network update frequency Ntarget 1000
Target network update method - soft
Soft target network update rate ηsoft 0.01

from the end of the random exploration phase is summarized
in Table IV.

Fig. 5. The reward curve of four GRL algorithms. The shaded areas show
the standard deviation for 3 random seeds.

TABLE IV
TRAINING DATA OF FOUR GRL ALGORITHMS

Algorithm Average Training Reward Standard Deviation

Rule-Based 720.68 549.17
DQN 3375.50 208.40

Double DQN 3433.23 214.29
Dueling DQN 3453.67 220.64

D3QN 3460.90 222.88

2) Loss: During the training process, the loss is calculated
for each training episode, which is shown in Fig.6.

3) Average Q Value: During the training process, the
average of Q values in the Q table generated by the GRL
network is calculated for each training episode to compare
the estimation effects on the Q value of different algorithms.
When the difference in rewards is small, a large average
Q value implies an obvious overestimation effect of the
algorithm. The average Q value for each training episode
is shown in Fig.7.
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Fig. 6. The loss curve of four GRL algorithms. The shaded areas show
the standard deviation for 3 random seeds.

Fig. 7. The average Q value curve of four GRL algorithms. The shaded
areas show the standard deviation for 3 random seeds.

D. Analysis

In this part, experimental results are presented and ana-
lyzed to compare the performance of different GRL algo-
rithms applied in our proposed framework.

As shown in Fig.5. The rewards of the four GRL algo-
rithms are much higher than the rule-based method. It proves
that the implementation of GNN can well represent the
interaction between vehicles, and the combination of GNN
and DRL can improve the performance of the generation of
lane-change behaviors. In the random exploration phase, due
to the random behavior generation of AVs, the reward is low
with severe fluctuation; after the random exploration phase,
the reward rises rapidly, and fluctuation becomes steady.
However, the reward curve of the four algorithms didn’t
show significant differences. It can be concluded from Table.
IV that the average reward of Double DQN is higher than
that of DQN, and the average reward of Dueling DQN and
D3QN is much higher than that of DQN. This is because
the establishment of Dueling Network can better optimize
the behavior generation of AVs.

As shown in Fig.6. The loss of the four algorithms in the
training process decreases with the increase of the training
episode and converges to a stable value. DQN and Double
DQN have no obvious difference in the loss convergence
process, but it is significantly higher than Dueling DQN and
D3QN, and the convergence speed is relatively slow. After
the loss convergence process, the loss curves of the four
algorithms have no noticeable difference. It can be seen that
there is no significant difference between the average loss of
DQN and Double DQN. This result can prove that optimizing
the strategy with Dueling Network can effectively reduce the
loss in the training process.

It can be seen from Fig.7 that as the training episode in-
creases, the average Q value increases continually; however,
the variation trend of the average Q value for the four algo-
rithms is quite different. The curve of DQN is significantly
higher than the other three algorithms, but the average reward
is relatively low; this is due to the problem of overestimation
caused by the max operator when calculating the target
Q value. The curve of Double DQN and D3QN changes
relatively smoothly, which shows that the implementation of
Double operation can effectively improve the effect of Q
value evaluation. The average Q value of Dueling DQN is
lower than DQN but higher than Double DQN and D3QN,
indicating that the establishment of Dueling Network can
also benefit the evaluation of Q value.

We then test the four GRL algorithms under the same
experimental parameter settings for ten episodes. During the
test process, we restricted the lane-changing behavior of all
the vehicles to avoid collisions as much as possible. The
testing data is calculated, and the results are shown in Table
V.

TABLE V
TESTING DATA OF FOUR GRL ALGORITHMS

Algorithm Average Testing Reward Standard Deviation

DQN 3246.10 297.52
Double DQN 3283.57 225.34
Dueling DQN 3295.97 312.05

D3QN 3346.74 225.73

Results show that D3QN has the highest reward with stable
standard deviation, followed by Dueling DQN, Double DQN,
and DQN. It can be concluded that the improved DQN
methods have shown promising results in the constructed
traffic scenario.

V. CONCLUSION

This research proposes a modular framework with high
generality that consists of three key modules: scenario con-
struction, GRL algorithm, and simulation. The proposed
framework can be used to verify the effects of different
GRL methods in various traffic scenarios according to the
actual demands. A 3-lane highway with two ramp exits
scenario is constructed, and four different types of GRL
algorithms are applied and evaluated in our framework. The
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experimental results show that the combination of GNN
and DRL can well solve the decision-making task in an
interactive traffic scenario. The designed framework can also
realize the verification and comparison of different GRL
algorithms in the field of intelligent transportation systems.
Future work will focus on verification under the different
parameters of the traffic flow, designing more discriminative
traffic scenarios to verify the effect of the algorithm better,
and implementing more GRL algorithms into the proposed
framework.
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