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A B S T R A C T

This paper develops and analyzes a Markov chain model for the treatment of cancer. Cancer therapy is modeled
as the patient’s Markov Decision Problem, with the objective of maximizing the patient’s discounted expected
quality of life years. Patients make decisions on the duration of therapy based on the progression of the disease
as well as their own preferences. We obtain a powerful analytic decision tool through which patients may select
their preferred treatment strategy. We illustrate the tradeoffs patients in a numerical example and calculate
the value lost to a cohort in suboptimal strategies. In a second model patients may make choices to include
drug holidays. By delaying therapy, the patient temporarily forgoes the gains of therapy in order to delay its
side effects. We obtain an analytic tool that allows numerical approximations of the optimal times of delay.
1. Introduction

1.1. Motivation

Patients face challenging decisions regarding cancer treatments.
This is especially so when cure is uncertain or nearly impossible, re-
gardless of treatment. Such is the case for most patients with metastatic
disease. Patients’ decisions invariably balance quality of life with quan-
tity of life. Therapies are invasive, costly, and often significantly reduce
a patient’s well-being both during and after therapy. Many chemother-
apies bring hair loss, nausea, malaise and lethargy. Hormone therapies
may leave the patient feeling uneasy, agitated, weak, and with di-
minished sex drive and performance. Radiation therapy can leave the
patient acutely ill or with long-term health issues from damaged tissues
such as urinary problems following radiation of the prostate, bladder
or pelvic area. Partial or complete surgical removal of the colon,
breasts, prostate, liver, brain and even amputations of limbs can leave
permanent physical and psychological disabilities.

Survival time remains the prevailing measure of success in cancer
therapy. Due to the unambiguity and availability of data it is the
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refused chemotherapy (𝑛 = 19), later ceased chemotherapy (𝑛 = 51), and those who completed chemotherapy (𝑛 = 51) (also see Frenkel (2013), and Delisle et al.
(2020)).

least controversial and most accessible metric. Mathematical models
of cancer therapy often report on their proposed regimens’ effects on
(simulated) survival or progression time. Clinical trials of new drugs
and methods of delivery are similarly evaluated on this basis. Yet, there
is reason to believe that oncologists and patients do not make treatment
decisions to maximize survival time. In particular, decisions to refuse
therapy are often influenced by concerns over quality of life (Shumay
et al., 2001) and cure probability (Frenkel, 2013) possibly at the
expense of expected survival time. While the prevailing response to
such decisions had been a call for oncologists to ‘‘better communicate’’
with their patients, whether the prescribed therapy indeed aligns with
the patient’s objectives is not so clear.1

Here, we provide a theoretical foundation to formally capture these
dilemmas. We employ the mathematical tools of dynamic optimization,
statistics and decision theory. With these, we build a model of cancer
treatment by which these dilemmas can be explicitly modeled and
analyzed. Our model will not capture all elements of such dilem-
mas. Our intention is to advance a modeling approach that introduces
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methods and concepts by which the discussion surrounding patient
empowerment and individuality, quality versus quantity of life, and
therapeutic strategies can be advanced.

There are two key aspects of our approach. First, it is akin to
dynamic programming in that it seeks to optimize an objective func-
tion (the patient’s utility) from the present state through the range
of possible outcomes in the future emanating from a particular de-
cision now (Gluzman et al., 2020). This thinking ahead by antici-
pating and steering has become a cornerstone of evolutionary thera-
pies (Staňková et al., 2019). Second, we balance quality and quantity
of life (see Billingham and Abrams (2002) for a review of modeling
approaches). Simes (1985) provides an early application of decision
theory to balancing this tradeoff in cancer therapy. Glasziou et al.
(1998) use a gradient analysis by considering how a decision now
influences the product of survivorship and quality of life. Empirically,
this issue becomes important in encouraging patients to pursue curative
options when they otherwise refuse treatment (Huijer and Leeuwen,
2000; Dias et al., 2021); or, respecting a patient’s right to balance qual-
ity and quantity of life issues (Chaikh et al., 2016; Terpos et al., 2021);
or the inclusion of financial considerations when care is considered
palliative (Patnaik et al., 1998).

1.2. Background

The tools and concepts of game theory and decision theory have
proven extremely valuable in cancer research. The objective has been
to utilize game theory’s insights in understanding the eco-evolutionary
dynamics of cancer. The practical application of this research is first,
to calibrate the parameters (doses, timing, duration) of existing therapy
regimens (see e.g. adaptive therapy, (Gatenby et al., 2009)) and, sec-
ond, to find new points of attack against the disease in search of new
therapy regimens.

One development towards this first goal views cancer therapy as a
game played between the disease and the treating physician (Orlando
et al., 2012). A useful framework is to model the game as a leader–
follower (Stackelberg) game with the treating physician as a strategic
decision maker and cancer as a reactive player. Via natural selection,
the cancer evolves resistance to the physician’s past and current treat-
ment strategies (Staňková et al., 2019). The approach identifies the
patient benefits that the physician can realize by assuming the role
of leader in the therapy-cancer game. The physician anticipates the
cancer’s possible evolutionary responses and uses this to the patient’s
advantage. In the absence of such an approach, we often observe
physicians in the reactive role and following a prescribed or standard
treatment strategy, changing only after observing disease progression
as measured by tumor burdens rather than the evolutionary strategies
of the cancer cells.

In the following modeling sections, we advance this thread of the
literature by viewing the therapy-cancer game as a Markovian process.
In Markovian models of cancer (Kay, 1986; Andersen et al., 1991), all
relevant information regarding the prognosis of the patient is encoded
in health states, usually including a healthy state, various states of
disease progression, and a death state. The patient’s transitions between
these states follows a stochastic process. The transition probabilities
between states may be calibrated from cohort data (Duffy et al., 1995)
for simulations of likely disease progression. The resultant toolkit has
applications in both medicine (Llorca and Delgado-Rodríguez, 2001)
and health economics (Le Lay et al., 2007).

Traditionally, in Markovian models, the transition probabilities are
assumed to depend only on the current state of the patient, not on
previous disease history. This is both a simplifying and restrictive
assumption. Too few health states may obscure state differences created
by the patient’s past history of therapy. Too many health states requires
an overly large and unwieldy transition matrix that may fail to produce
insights applicable to a large cohort of patients. Cooper et al. (2003,
2

2004) resolved this by introducing a small number of payoff-states a
(responsive, stable and progressive disease; and dead) while letting the
transition probabilities change based on the length of the treatment,
measured in the number of treatment cycles.

To this existing framework we add the element of choice by the
patient.2 Markov decision processes (MDPs) (Bellman, 1957) combine
the tools of stochastic processes and decision theory. In this model the
Markovian transition probabilities depend upon both the current state
and the strategy of a payoff-maximizing decision maker. The patient
receives payoffs, measured in quality adjusted life years (QALYs), from
spending time in states, with more healthy states giving higher payoffs.
The tension in these problems is introduced when the decision-maker
faces a choice between strategies that lead to immediate payoff gains
and strategies that lead to better future prospects but at the cost of fore-
going immediate gains. These tradeoffs occur with cancer therapy. The
patient taking therapy makes immediate financial and QALY sacrifices
in hopes of a higher probability of cure and greater life expectancy. If
the decision-maker’s objectives can be represented by time-discounting
future expected payoffs and the set of states is finite, then optimal
policies will exist (Blackwell, 1962, 1965).

In this paper we use MDPs to reduce the game to the decision
problem of a single strategic decision maker, the patient. We treat
the evolutionary processes of cancer as an exogenous and stochastic
element, whose behavior, conditional on the selected treatment strat-
egy. We introduce exponential discounting to model a preference for
earlier QALYs over later ones. The treatment strategy should maximize
discounted expected QALYs, we are able to derive optimal treatment
strategies.

In Section 2, we consider the duration of treatment. The patient’s
payoff is the difference between their QALYs and the cost of the
treatment. The patient decides whether to continue treatment in hopes
of a higher cure probability or longer life expectancy, or to abandon
treatment to forgo the cost of therapy. The adaptive dynamics of
the cancer become a key factor. As the patient’s disease progresses,
cancer’s responsiveness to therapy changes. Following Cooper et al.
(2003) our model has an infinite series of health states, in addition to
the absorbing ‘cured’ and ‘dead’ states. There are two types of non-
absorbing states, characterized by two detection levels, detectable and
undetectable disease burden. Both types of state have infinite copies,
characterized by an integer 𝑖 which corresponds to the state of the
disease based on the patient’s therapy history. While undetectable, we
assume that therapy cannot be given; the disease will, in time become
detectable. Without therapy, the detectable state 𝑖 disease will, in time,
lead to the death of the patient. With therapy, the detectable state 𝑖
disease will transition to state cure, death, or state 𝑖+1 undetectable or
state 𝑖 + 1 detectable disease state. We call the therapy received while
the disease is in detectable state 𝑖 a round of therapy. Thus, the first
time the patient may receive care is in detectable state 0. The rates of
transition are dependent on the value of 𝑖, the number of rounds the
patient has received. The dilemma of the patient is to select the value
𝑖∗ beyond which, no more therapy is taken.

This model permits evaluating treatment strategies of different du-
ration. The model is highly efficient as the patient’s payoff-maximizing
treatment strategies may be derived analytically as a solution to a
linear system of equations for all parameter settings. Furthermore, if
the patient’s likelihood of recovery declines with the progressive state
of the detectable disease, an assumption that is motivated both by the
onset of resistance to therapy as well as observed outcomes of cancer
therapy, the globally optimal payoff-maximizing duration of therapy
equals the myopically optimal one, the strategy the patient follows if
they only plan one decision node ahead, i.e. take the next round of

2 In the remainder of the paper we refer to the patient as the sole decision-
aker without explicitly mentioning the treating oncologist, tumor board, or

ny other participants of the decision making process.
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therapy if and only if taking it once more is better than ceasing immedi-
ately. This is an attractive property that avoids any time-inconsistencies
of treatment. If the monotonicity conditions are met, then there will
exist a unique progressive disease state beyond which the patient loses
expected QALYs due to overtreatment if treatment is not stopped.
Interestingly, while the average expected payoff loss of overtreatment
across all patients may be marginal due to time-discounting and the
cohort’s attrition up to the time when overtreatment is reached, the
realized payoff loss for patients who do reach that stage is substantial.
We demonstrate this through a simulation.

Cancer therapy is often highly toxic for the patient. This lost quality
of life is one of the main reasons for patients to refuse or abandon
therapy. Our second model (Section 3) includes loss of QALYs where
the payoff of the patient depends upon their current health state and
the current level of toxicity. We assume that a patient’s toxicity level
increases with each round of therapy and declines as past rounds of
drugs in the patient decay over time. Including toxicity makes the cost
of therapy conditional on its effect. Surviving patients have to bear
the QALY reduction longer, and patients who are not cured may have
to resort to taking on higher levels of toxicity and additional QALY
reductions from additional rounds of therapy. This affords patients an
additional option for managing the QALY-cost of therapy. They may
choose to postpone rather than abandon therapy as a means of allowing
their toxicity burden to depreciate. However, by doing so they also
postpone any benefits of therapy to their recovery.

This model addresses what already happens in practice. For cer-
tain therapies, drug holidays are mandated as a means for reducing
the risk of mortality from toxicity. Physicians may also temporarily
cease drug use if the patient’s health seems overly compromised, and
patients themselves will temporarily refuse treatment as a consequence
of feeling sick from the drug. By including the loss of patient QALYs
due to cumulative toxicity, our model no longer conforms to classic
MDPs. It is no longer analytically tractable. But, we do provide methods
for a numerical approximation that allows the patient to optimize
simultaneously the timing and duration of cancer therapy.

The paper proceeds as follows. In Section 2, we develop a Markov
model of cancer therapy that includes therapy-dependent likelihoods
of cure and mortality that can change with time. A key element of
this model is the inclusion of patient-specific quality adjusted life years
(QALYs). We then use of Markov decision processes (MDPs) to seek
dynamic and optimal therapy scheduling that anticipates and allows for
multiple points of decision making. In Section 3, we expand the model
to include the effects of drug toxicity on QALYs and presents a finer
tuning of the optimal duration and timing of therapy. In Section 4, we
discuss the significance of the results, their relationship to other rele-
vant work, and provide prospectus for future theoretical and empirical
research. All mathematical proofs are provided in the appendix.

2. State-dependent payoffs

We assume that the patient has a solid tissue detectable tumor with-
out specifying the exact kind of cancer. The progression of the disease is
modeled as a Markov-process in continuous time. The states encode the
patient’s quality of life and prognosis-relevant data, while the transition
rates describe their prognosis and depend upon the patient’s chosen
treatment strategy. The set of cancer’s progressive states (henceforth,
states) is 𝑆 = {0, {1(𝑖), 2(𝑖)}∞𝑖=0, 3}. The states are interpreted as follows:

• 0: Healthy, cancer free state.
• 1(𝑖): Undetectable cancer after 𝑖 rounds of therapy.
• 2(𝑖): Detectable cancer after 𝑖 rounds of therapy. The patient

chooses whether to take the 𝑖 + 1th round of therapy.
• 3: Death of the patient.
3

Without therapy, the natural progression has state 1(𝑖) leading even-
ually to state 2(𝑖) which leads to state 3, an absorbing state. The healthy
bsorbing state 0 may only be reached by therapy. The patient or
he treating physician cannot distinguish between the cured and the
ndetectable states, 0 and 1(𝑖), and hence we assume that the patient
oes not receive therapy until the next detectable state, 2(𝑖) is reached.

Upon entering state 2(𝑖) the patient alters the progression of the
isease by accepting therapy. When receiving therapy in state 2(𝑖) the
atient may transition to any one of the four states 0 (cure), 1(𝑖+1)
partial therapy success), 2(𝑖+1) (partial therapy failure), or 3 (death).
artial therapy success means a remission of the cancer but not cure:
he cancer will return in time, but, for the moment, no therapy can be
ttempted. Partial therapy failure means that cancer did not respond to
he treatment in a significant way and the next round of therapy can
e attempted immediately. This may manifest in a number of disease
rogression events; the build-up of resistance, the appearance of a
ew metastasis, the necessity of moving to a different treatment, or
he minimum time until the same treatment can be attempted again.
he time until transition to the next progressive state is exponentially
istributed, a defining characteristic of Markovian processes and as
uch, necessary for our model. On reaching the 𝑖+1th progressive states,
he patient potentially faces different transition rates and probabilities.
or instance, as resistance evolves, disease burden increases, or new
etastases occur, the cure rate may decline and mortality may increase.

We define a treatment strategy by a function 𝑥∶ {2(𝑖)}∞𝑖=0 →
𝑡ℎ𝑒𝑟𝑎𝑝𝑦, 𝑛𝑜 𝑡ℎ𝑒𝑟𝑎𝑝𝑦}. In words, for each detectable state 2(𝑖) the patient
hooses whether or not to take therapy. If the choice is no therapy,
he patient remains in state 2(𝑖) until the end of his or her life. If the
hoice is therapy, the patient remains in state 2(𝑖) until the 𝑖 + 1th
reatment round is completed, i.e. until he or she transitions to one
f 0, 1(𝑖+1), 2(𝑖+1), or 3. As a state 2(𝑖+1) can only be reached if the
atient chooses to receive therapy in state 2(𝑖), we restrict attention to
reatment strategies such that for every 𝑖 ≥ 0 with 𝑥(2(𝑖)) = 𝑛𝑜 𝑡ℎ𝑒𝑟𝑎𝑝𝑦
e have 𝑥(2(𝑖+1)) = 𝑛𝑜 𝑡ℎ𝑒𝑟𝑎𝑝𝑦. We can therefore describe a treatment

trategy by the index of the detectable state 2(𝑖) at which the patient
eases treatment. We will thus denote strategies by 𝑥𝑖, indicating that
he patient chooses therapy in every state 2(𝑗) for 𝑗 < 𝑖. Strategy
0 describes a patient forgoing therapy entirely, while 𝑥∞ describes
patient who always opts for therapy in a detectable state. Let the

atient’s set of permissible strategies be denoted by 𝑋 = {𝑥𝑖}∞𝑖=0.
Time is continuous. We assume that the states encode all

rogression-relevant information to the disease. Hence the process,
onditional on the treatment strategy, is Markovian. The transition
ates by which the patient moves between the states are as follows:

(1) 1(𝑖) → 2(𝑖) at rate 𝛿𝑖,
(2) if 𝑥(2(𝑖)) = 𝑛𝑜 𝑡ℎ𝑒𝑟𝑎𝑝𝑦, then 2(𝑖) → 3 at rate 𝜔𝑖
(3) if 𝑥(2(𝑖)) = 𝑡ℎ𝑒𝑟𝑎𝑝𝑦, then

a. 2(𝑖) → 0 at rate 𝜆𝑖,
b. 2(𝑖) → 1(𝑖+1) at rate 𝛽𝑖,
c. 2(𝑖) → 2(𝑖+1) at rate 𝛾𝑖,
d. 2(𝑖) → 3 at rate 𝜇𝑖.

et the term 𝛼𝑖 = 𝜆𝑖 + 𝛽𝑖 + 𝛾𝑖 + 𝜇𝑖 describe the overall rate of exit from
tate 2(𝑖). The model is summarized by Fig. 1.3

3 The connection with the more well-known discrete-time Markov Decision
rocesses is the following: In expectation, a patient who does not take therapy
t state 2(𝑖) spends time 1∕𝜔𝑖 in 2(𝑖) before progressing to 3. The transition

probability from 2(𝑖) to 3 is thus 1 without therapy. Similarly, a patient in
1(𝑖) transitions to 2(𝑖) with probability 1, spending at expected time of 1∕𝛿𝑖 in
1(𝑖). A patient who takes therapy in 2(𝑖) spends an expected 1∕𝛼𝑖 time in this
state before transitioning to one of 0, 1(𝑖+1), 2(𝑖+1), 3 with probabilities 𝜆𝑖∕𝛼𝑖,
𝛽𝑖∕𝛼𝑖, 𝛾𝑖∕𝛼𝑖 and 𝜇𝑖∕𝛼𝑖, respectively. The time spent in each state is exponentially
distributed with parameter corresponding to the total transition rate out of the
state: 𝛿𝑖 for state 1(𝑖), 𝜔𝑖 for state 2(𝑖) without therapy and 𝛼𝑖 for state 2(𝑖) with
therapy.
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Fig. 1. Schematic showing transition rates of the first 3 decision nodes of therapy.
Each 0 node and each 3 node on the figure represent one absorbing state, while the
igure shows multiple copies for better visibility. From an undetectable disease state,
(𝑖), the patient will eventually progress to detectable state 2(𝑖). If the patient opts for

therapy, he or she progresses to one of the four states 0, 1(𝑖+1), 2(𝑖+1), or 3. Otherwise,
by choosing the no therapy option, he or she eventually progresses to state 3.

Spending time in each health state provides payoffs to the patient
easured in QALYs. In this section we assume that the payoff values

f each state are independent of the chosen treatment strategy. This
ssumption is relaxed in the following section. We assume that the rate
f accruing QALYs is highest when cured, lower when burdened by
ndetectable disease, lower still when having detectable disease, and
if dead. For 0 ≤ 𝑣 ≤ 𝑢 ≤ 1, the rate of QALY accrual is given by the

unction 𝑞∶𝑆 → [0, 1] given by

(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝑠 = 0

𝑢 if 𝑠 ∈ {1(𝑖)}∞𝑖=0
𝑣 if 𝑠 ∈ {2(𝑖)}∞𝑖=0
0 if 𝑠 = 3

alled the patient’s instantaneous payoff function.
Upon selecting the treatment strategy 𝑥𝑖, the patient’s progression

hrough the states is a stochastic (Markovian) process. A realization
f the patient’s progression is called a play, described by a class of
unctions 𝑠∶ [0,∞) × 𝑋 → 𝑆. The value 𝑠(𝑡, 𝑥𝑖), denotes the patient’s
tate at time 𝑡 ∈ [0,∞) under treatment strategy 𝑥𝑖. Given strategy 𝑥𝑖,
ealization 𝑠(⋅, 𝑥𝑖) and 𝑗 ∈ {1,… , 𝑖}, let 𝑡𝑗 (𝑠(⋅, 𝑥𝑖)) denote the time at
hich the patient arrives in 2(𝑗). Whenever it does not cause confusion
e suppress the argument and write only 𝑡𝑗 to denote the time of arrival

n this state. We note that for realizations in which the patient dies
efore completing the planned treatment, i.e. transitions from a state
(𝑖′) to state 3 with 𝑖′ < 𝑖, then we take 𝑡𝑗 = ∞ or all 𝑗 ∈ {𝑖′ + 1,… , 𝑖}.
ext, let the time of administering treatment round 𝑗 be denoted by
𝑗 (𝑠(⋅, 𝑥𝑖)) (to take place in state 2(𝑗−1)); as before, whenever it does
ot cause confusion, we write 𝜏𝑗 . Again, we take 𝜏𝑗 = ∞ for all
reatment rounds that the patient does not receive, either by the choice
f treatment strategy, or by transitioning to state 3 sooner.

Taking therapy is costly. Each time the patient accepts therapy he
r she incurs an instantaneous cost 𝑐. This may represent the monetary
ost to pay for one round, lost income, or temporary discomfort caused
y the therapy. Unlike the therapy’s effects, which are delayed in the
ense that the patient does not transition out of the detectable cancer
tate immediately upon choosing the round of therapy, the cost of a
ound of therapy is incurred the exact instant the patient decides to
ake that round. This assumption is made for analytic tractability and
s relaxed in Section 3.
4

We assume that the patient has a preference for earlier rewards,
odeled via exponential discounting with a patient-specific discount

actor 𝜌 > 0.4
Given a strategy 𝑥𝑖 and realization 𝑠(⋅, 𝑥𝑖), the patient’s payoffs are

iven as

(𝑠(⋅, 𝑥𝑖)) = ∫

∞

0
e−𝜌𝑡𝑞(𝑠(𝑡, 𝑥𝑖))d𝑡 −

𝑖
∑

𝑗=1
𝑐e−𝜌𝜏𝑗 . (1)

e note that for any treatment strategy 𝑥𝑖 with therapy (𝑖 > 1), we
ave 𝜏1 = 𝑡0 = 0. Due to 𝜌 > 0, 𝑈 (𝑠(⋅, 𝑥𝑖)) is finite for every realization
f the stochastic process if a finite strategy 𝑥𝑖 is chosen and for almost
very realization if 𝑥∞ is chosen.

For 𝑗 ≤ 𝑖 let

𝑗 (𝑠(⋅, 𝑥𝑖)) = ∫

∞

𝑡𝑗
e−𝜌(𝑡−𝑡𝑗 )𝑞(𝑠(𝑡, 𝑥𝑖))d𝑡 −

𝑖
∑

𝑗′=𝑗+1
𝑐e−𝜌(𝜏𝑗′−𝑡𝑗 )

enote the future payoffs of a patient who evaluates his or her prospect
tarting from state 2(𝑗), thus starting the game at time 𝑡𝑗 which, if the
atient accepts the next round of therapy, coincides with 𝜏𝑗+1.

The patient chooses 𝑥𝑖 to maximize his or her expected payoffs given
y

(𝑥𝑖) = E𝑠(⋅,𝑥𝑖)𝑈 (𝑠(⋅, 𝑥𝑖)). (2)

s before, for 𝑗 ≤ 𝑖 we let
𝑗 (𝑥𝑖) = E𝑠(⋅,𝑥𝑖)𝑈

𝑗 (𝑠(⋅, 𝑥𝑖))

enote the expected payoff of a patient who starts evaluating their
rospects from state 2(𝑗).

From these formulations we derive main result of this section.

roposition 2.1 (Recursive evaluation). For a fixed treatment strategy 𝑥𝑖
ith 𝑖 > 0, the expected future payoffs in round 𝑗 < 𝑖 is given as follows:

𝑗 (𝑥𝑖) =
𝑣

𝛼𝑗 + 𝜌
+

𝜆𝑗
𝛼𝑗 + 𝜌

⋅
1
𝜌
+

𝛽𝑗
𝛼𝑗 + 𝜌

(

𝑢
𝛿𝑗+1 + 𝜌

+
𝛿𝑗+1

𝛿𝑗+1 + 𝜌
𝑉 𝑗+1(𝑥𝑖)

)

+
𝛾𝑗

𝛼𝑗 + 𝜌
𝑉 𝑗+1(𝑥𝑖) − 𝑐, (3)

𝑉 𝑖(𝑥𝑖) =
𝑣

𝜔𝑖 + 𝜌
, if 𝑖 is finite. (4)

Proposition 2.1 allows for the evaluation of the patient’s payoffs in
any state for any finite treatment through a linear recursive system.
The right hand side of (3)’s five components are (1) the discounted
expected payoff the patient collects in state 2(𝑗) before transitioning to
any other state, (2) the discounted expected value of reaching state
0 (3) the discounted expected value of transitioning to state 1(𝑗+1)

followed by a transition into state 2(𝑗+1), (4) discounted expected value
of a direct transition to state 2(𝑗+1), and (5) the instantaneous cost of
he treatment. In (4), as there are no further rounds of therapy and the
atient will progress to state 3. Thus the right hand side contains only
he discounted expected value the patient collects in state 2(𝑖) before
eath. In the appendix we calculate each component and formally
rove this result.

If for two treatment strategies, 𝑥𝑖, 𝑥𝑗 , we have 𝑉 (𝑥𝑖) ≥ 𝑉 (𝑥𝑗 )
𝑉 (𝑥𝑖) > 𝑉 (𝑥𝑗 )) we say that the patient (strictly) prefers 𝑖 to 𝑗 and denote
t by 𝑥𝑖 ≿ 𝑥𝑗 (𝑥𝑖 ≻ 𝑥𝑗). We say that 𝑥𝑖 is optimal if 𝑥𝑖 ≿ 𝑥𝑗 for every 𝑗.

Proposition 2.1 allows for optimal treatment strategies to be derived
efficiently even though, due to the time-heterogeneity of the transition
rates, a closed form of (3) cannot be given. However, (3)–(4) can be

4 Note that there is a mathematical equivalence between patients having
xplicit preferences for earlier rewards over later ones expressed by exponen-
ial discounting with rate 𝜌 and between patients maximizing expected payoffs

without time preferences but assuming a constant non-cancer-related mortality
rate of 𝜌.
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transformed into a straightforward comparison between two ‘‘succes-
sive’’ strategies 𝑥𝑖 and 𝑥𝑖+1. This allows for a myopic condition of
topping or continuing therapy that is shown in the next proposition.

roposition 2.2 (Myopic stopping condition). For a finite 𝑖 we have 𝑥𝑖 ≿
𝑖+1 if and only if
𝛼𝑖 − 𝜔𝑖
𝜔𝑖 + 𝜌

+ 𝑐(𝛼𝑖 + 𝜌) ≥ 𝑢
𝛽𝑖

𝛿𝑖+1 + 𝜌
+ 𝑣 1

𝜔𝑖+1 + 𝜌

(

𝛽𝑖𝛿𝑖+1
𝛿𝑖+1 + 𝜌

+ 𝛾𝑖

)

+
𝜆𝑖
𝜌
. (5)

Under the myopic strategy, the patient compares stopping now in
state 2(𝑖) with a strategy of taking therapy now and then stopping at
the next detectable state 2(𝑖+1). The advantage of stopping treatment
(left-hand-side of (5)) comes from the extra value from spending time
in 2(𝑖) (𝑣 term, possibly negative if no therapy results in spending less
time in expectation), plus the normalized saved cost of the treatment.
The advantage of maintaining therapy for one more detectable state
(right-hand-side of (5)) comes from the value of spending time in 1(𝑖+1)
(𝑢 term), the value of spending time in 2(𝑖+1), either indirectly through
1(𝑖+1) or by a direct transition (𝑣 terms), and the value of possibly
ecoming cured.

Proposition 2.2 can be used to determine if, at any point, stopping
herapy immediately is better than continuing for one more round
ith the intention of stopping therapy after that state. A sequence
f such successive comparisons allows for a local optimization of the
reatment strategy, but it may not result in a global optimum. The
yopic optimization strategy will miss a better treatment strategy if,

or instance, stopping treatment is better than continuing for one more
ound, but worse than continuing for two.

Under certain plausible monotonicity conditions, such local com-
arisons will produce the global optimum, e.g. if continuing for one
ore round is always better than stopping, then treatment should
ever be stopped. The last result of this section provides sufficient
onotonicity conditions under which the optimal treatment strategy

an be calculated through the myopic strategy.
Take the following homogeneity/monotonicity conditions:

• (H1): 𝑢 = 𝑣 = 1,
• (H2): 𝛿𝑖 = 𝛿, 𝜔𝑖 = 𝜔,
• (M1): 𝑀(𝑖) ≤ 𝑀(𝑖 + 1),
• (M2): 𝑀(𝑖) ≥ 𝑀(𝑖 + 1),

or all 𝑖 ∈ N, and

(𝑖) =
𝛽𝑖

𝛼𝑖 + 𝜌
⋅

𝜔
𝛿 + 𝜌

+
𝜆𝑖

𝛼𝑖 + 𝜌
⋅
𝜔
𝜌
+

𝜔 − 𝜇𝑖
𝛼𝑖 + 𝜌

.

he value 𝑀(𝑖) is a measure of the advantage of taking therapy at state
(𝑖); it is a weighted sum of the progression rates corresponding to at
east partial therapy success (i.e. leading to states 1(𝑖+1) and 0) and the
ifference between the death rate without and with therapy.

The first condition pertains to the patient’s preferences. Under (H1)
he patient maximizes discounted life expectancy by spending as much
ime in states other than 3 as possible. Under (H2), the rate of pro-

gression from undetectable cancer to detectable, and the rate of death
while living with untreated cancer, are constants and independent of 𝑖,
the prior or current state of the disease. Under monotonicity condition
(M1) the patient is improving under continuous therapy, transition
probabilities become more favorable with each round. Under (M2) the
reverse holds, the patient’s prognosis worsens with each round.

Proposition 2.3 (Myopic optimization). Assume (H1) and (H2).

(1) Under (M1) there exists an 𝑖′ ∈ N∪{∞} such that for every 𝑗 < 𝑖 ≤ 𝑖′
we have 𝑥𝑖 ≺ 𝑥𝑗 and for every 𝑖 > 𝑗 ≥ 𝑖′ we have 𝑥𝑖 ≿ 𝑥𝑗 .

(2) Under (M2) there exists an 𝑖′ ∈ N∪{∞} such that for every 𝑗 < 𝑖 ≤ 𝑖′
we have 𝑥𝑖 ≻ 𝑥𝑗 and for every 𝑖 > 𝑗 ≥ 𝑖′ we have 𝑥𝑖 ≾ 𝑥𝑗 .

The proof of Proposition 2.3 relies on the successive comparisons of
Proposition 2.2. Under the first set of conditions, 𝑉 (𝑥𝑖) is quasi-convex
in 𝑖, while under the second it is quasi-concave. In either case we can
5

provide the optimal treatment strategy, as shown by the next corollary.
Table 1
For Example 2.5, we fixed 𝜌 at 0.05 and randomized the transition parameters 𝛿, 𝛽,
𝛾, and 𝜇 between 0.1 and 0.2. We then set 𝜔 = 𝜇, under which a decreasing 𝑀(𝑖)
s guaranteed as long as 𝜆𝑖 is also decreasing with 𝑖 which we have due to assuming
𝑖 = 𝜆𝑖+1 for various levels of 𝜆.
Parameter 𝜌 𝛿 𝛽 𝛾 𝜇 𝜔

Value 0.05 0.15 0.15 0.12 0.13 0.13

Corollary 2.4 (Myopic optimization). Assume (H1) and (H2).

(1) Under (M1), if 𝑉 (𝑥0) > 𝑉 (𝑥∞), then 𝑥0 is the only optimal treatment
strategy, if 𝑉 (𝑥0) < 𝑉 (𝑥∞), then 𝑥∞ is an optimal treatment strategy,
in case of equality both are optimal.

(2) Under (M2), there exists 𝑗′ ≥ 𝑖′ such that 𝑥𝑖′ , 𝑥𝑖′+1,… , 𝑥𝑗′ are all
optimal treatment strategies.

To approximate 𝑉 (𝑥∞), one may take the sequence 𝑖 = {1, 2,…}
and evaluate 𝑉 (𝑥𝑖) through (3)–(4). As we have a positive discount
rate, (𝜌 > 0), 𝑉 (𝑥∞) will be the limit the sequence 𝑉 (𝑥𝑖)∞𝑖=1. In the
second statement we find an optimal 𝑖′ through a sequence of pairwise
comparisons. As long as continuing therapy for one more round is
weakly better than stopping immediately, the patient should continue.
In this situation, a myopic strategy will identify the globally optimal
treatment strategy, or a series of them.

Corollary 2.4 applies only if the homogeneity and monotonicity
conditions (H1), (H2), and one of (M1) or (M2) hold. With (M1), the
likelihood of cure or undetectable disease first decreases with each
round, then increases after passing a threshold, meaning that either the
treatment strategy 𝑥0 or 𝑥∞ is optimal. The latter case may arise when
progressive disease states manifest as shrinkage of the overall tumor
burden, elimination of the most life-threatening tumors or metastases,
or therapy increases in efficacy.

With (M2), ceasing therapy at some point becomes optimal. Past the
threshold, with each round the tumor burden, number of metastases,
and resistance to therapy is increasing. This means that the rate of
adding QALYs declines with therapy in each progressive disease state
𝑖. For instance, if continued therapy only kills sensitive cells while
leaving resistance cancer cells unharmed, then therapy, in time, results
in diminishing returns. Under this condition, there exists an interior
optimal treatment strategy beyond which further treatment is to the
detriment of the patient.

Example 2.5 (Overtreatment). To illustrate the model, we simulated the
effects of overtreatment and calculated the loss of overall quality of life.
To reduce the number of key factors we introduce a final homogeneity
condition, (H3): 𝛽𝑖 = 𝛽, 𝛾𝑖 = 𝛾, 𝜇𝑖 = 𝜇. Under (H3), only cure rate 𝜆𝑖,
depends on the patient’s progressive disease state 𝑖. We let 𝜆𝑖 = 𝜆𝑖+1 for
some initial value 𝜆. Table 1 gives the values for the time-homogeneous
parameters of this simulation. The effects of varying 𝜆 and 𝑐 are shown
in Fig. 2. As expected, the optimal duration of therapy increases with
𝜆 and decreases with 𝑐.

For 𝜆 = 0.4 and 𝑐 = 3 the parameters satisfy (M2) and the
unique optimal strategy is 𝑥2. Expected values of treatment strategies
𝑥0 through 𝑥7 are reported in Table 2 in relative terms to a healthy
patient’s payoff.5

As shown by Table 2, any treatment strategy that begins with
therapy (𝑥𝑖, 𝑖 > 0) is better than no therapy at all (𝑥0)). The strategy
of only having therapy in the first two progressive states (𝑥2) is the
unique optimal strategy. However, as the cure rate, 𝜆𝑖 declines sharply
in 𝑖, most patients who are not cured in the first two rounds lose the

5 A healthy individual remains in state 0 and thus collects a payoff of 1
indefinitely. Taking into account time-discounting, this person has an absolute
payoff of 1∕𝜌 = 20.
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Table 2
Expected values of treatment strategies 𝑥0 to 𝑥7 evaluated at different points of disease progression relative
to a healthy individual’s total payoffs with 𝜆 = 0.4 and 𝑐 = 3. Taking 2 rounds is optimal, but further rounds
diminish the present value (period 0) payoffs only marginally. Patients under continuous therapy who reach
round 3 and beyond, if overtreated, have significantly lower prospects than patients who stop therapy.
𝑉 𝑗 (𝑥𝑖) 𝑗

0 1 2 3 4 5 6 7

𝑥𝑖

𝑥0 27.78%
𝑥1 49.95% 27.78%
𝑥2 52.24% 36.16% 27.78%
𝑥3 52.17% 35.88% 27.04% 27.78%
𝑥4 51.91% 34.95% 24.59% 22.36% 27.78%
𝑥5 51.74% 34.31% 22.93% 18.69% 20.27% 27.78%
𝑥6 51.64% 33.96% 21.99% 16.62% 16.03% 19.39% 27.78%
𝑥7 51.59% 33.77% 21.49% 15.51% 13.77% 14.92% 19.04% 27.78%
Table 3
A simulated cohort’s survival statistics under ‘always treat’ with 𝜆 = 0.4 up to state 2(5).
Round 0 1 2 3 4 5

Cure rate 0.40 0.16 0.06 0.03 0.01 0.00

Cure probability 50.00% 28.57% 13.79% 6.02% 2.50% 1.01%
Death probability 16.25% 23.21% 28.02% 30.55% 31.69% 32.17%
Progression probability 33.75% 48.21% 58.19% 63.44% 65.82% 66.82%

Cohort size 100.00% 33.75% 16.27% 9.47% 6.01% 3.95%
Cured 0.00% 50.00% 59.64% 61.89% 62.46% 62.61%
Dead 0.00% 16.25% 24.08% 28.64% 31.54% 33.44%
Fig. 2. Optimal number of treatment rounds in the cost-based model for parameter
values shown in Table 1. Gray areas show the regions in which more than 9 rounds
of therapy is optimal. The progressive disease state at which the patient should cease
therapy increases with the likelihood of cure and decreases with the cost to the patient
in terms of money, lost income or ill-health from therapy.

opportunity to do so in future rounds (Table 3).6 For such patients,
the cost of future therapy rounds is higher than the present value of
the gains of postponing progression to state 3. If the standard of care
is continuing therapy indefinitely, patients who survive beyond state
2(2) are being overtreated and incur significant payoff losses. Patients
in state 2(2) lose 6.29% points under strategy 𝑥7 when compared to
the then-optimal 𝑥2, patients in 2(3) lose 12.27%, while patients who
in 2(4) lose the most at 14.01% of a healthy person’s lifetime payoffs.
Treatment strategies 𝑥1 through 𝑥7 all provide very similar ex-ante

6 Note that this does not mean that subsequent rounds of therapy offer no
enefits as patients under therapy have a longer life expectancy then those
ho are not even if 𝜆 = 0.
6

𝑖

evaluations despite the staggering payoff losses described above. This
happened for two reasons: (1) the losses affect a minority of the
population (only 9.47% of the cohort is neither cured nor dead after
the third round, 6.01% after the fourth, 3.95% after the fifth), (2) the
losses occur with a time delay starting at the time of reaching 2(2),
hence the differences are in the discounted future expected payoffs.
Thus, the losses that occur due to overtreatment are obscured, delayed,
and concentrated on a minority of patients making policy change to
move away from the ‘always treat’ strategy in the standard of care very
difficult.

It should also be noted that, while in our model and simulation,
overtreatment is costly in lifetime payoff terms, the fraction of patients
cured are larger the more rounds of therapy are taken. The strategy
𝑥2 results in 59.64% of patients cured, while 𝑥7 results in 62.66%
(treatment strategies with more rounds of treatment offer only minus-
cule increases to the total cure rate). Furthermore, a payoff-maximizing
patient who stops after reaching 2(2) forgoes the cure percentage of
13.79% of the next round, showcasing that the objectives of oncolo-
gists and patients might differ and lead to highly different choices of
treatment strategy; oncologists who maximize cure rate or expected pa-
tient survival time will choose ‘always treat’, while payoff-maximizing
patients will abandon treatment relatively early.

Finally, we highlight the importance of the patient-specific decision
parameters, particularly the discount rate, 𝜌. For large values of 𝜌, 𝑥0
is optimal as the costs of even a single treatment are not recouped
by the present values of higher expected QALYs. For 𝜌 = 0.097, 𝑥1
is optimal, then, as 𝜌 decreases, treatment strategies with more and
more treatment rounds become optimal with each treatment strategy
being rationalizable with the right 𝛿 (Table 4). As 𝜌 approaches zero,
the optimal treatment strategy approaches the ‘always treat’ strategy.

3. Toxicity-dependent payoffs

In our first model (Section 2), the cost of therapy was a constant
and accrued only when therapy was being administered. This applies
when the cost is monetary or under the simplifying assumption that
the onset and cessation of any ill-health caused by the drug’s toxicity
switches instantly. Under these circumstances, the patient decides on
which progressive disease state to cease therapy. Immediately upon
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Table 4
Intervals of the patient’s discount factor 𝜌 with the
corresponding optimal treatment strategy.
Optimal strategy Upper bound Lower bound

𝑥0 0.098
𝑥1 0.097 0.072
𝑥2 0.071 0.048
𝑥3 0.047 0.031
𝑥4 0.030 0.018
𝑥5 0.017 0.011
𝑥6 0.010 0.006
𝑥7 0.005

progressing to the next detectable disease state the patient chooses
whether or not to immediately undergo therapy for the duration of the
detectable disease state. The disease transition rates changed only when
the patient entered a new state.

Here we extend the model by separating the cost of therapy between
the material cost and those directly affecting the patient’s quality of life
via therapy toxicity. We do this by considering the more realistic case
where drug-induced malaise starts with therapy, and then declines with
time upon ceasing therapy. In particular, when a round of therapy is
unsuccessful in curing the disease, the lasting side-effects of the therapy
can influence the decision to continue with therapy. The patient’s level
of therapy-induced toxicity negatively influences QALYs even when
therapy has stopped.

Because of cumulative toxicity effects, a patient may decide on the
timing of receiving therapy upon entering a new disease state. Drug
holidays, for instance, provide a reprieve for the patient. The patient,
upon entering a new disease state may delay the resumption of therapy.
For our model, this means the patient spends some time experiencing
the no therapy rate of progression before deciding to take the next
round of treatment, after which the therapy transition rules apply. By
including cumulative effects of drug toxicity, our next model captures
the rational motivation behind taking drug holidays. We seek to find
the optimal time for the patient to delay therapy upon entering the
next detectable disease state, 2(𝑖).

We will add cumulative toxicity to the model by assuming that each
ound of therapy adds to toxicity, while its level decays exponentially
ver time. Let 𝑖(𝑡) denote the number of rounds of therapy taken up to

time 𝑡. For 𝑧0, �̂� ≥ 0 and 𝜁 > 0 we define

(𝑧0, 𝑡) = 𝑧0e−𝜁𝑡 +
𝑖(𝑡)
∑

𝑖=1
�̂�e−𝜁 (𝑡−𝜏𝑖), (6)

The value 𝑧(𝑧0, 𝑡) is called the patient’s toxicity level, a negative
ayoff component to the patient’s quality of life. Each round of therapy
dds a fixed amount �̂� to the patient’s toxicity. Its starting level is
enoted by 𝑧0 and it decays exponentially with a constant rate 𝜁 .

As an important component of the patient’s well-being, the patient’s
hoice on whether to continue therapy at the next detectable disease
tate, 2(𝑖), and when to start that therapy will be contingent on their
urrent level of toxicity. Upon entering a state 2(𝑖), instead of a binary
hoice of take therapy or not, the patient chooses the to time delay
herapy. By delaying for a time 𝑡, during that time, the patient obeys
he progression rule as if the no therapy choice was taken, i.e. moves to
tate 3 at rate 𝜔𝑖. If the patient does not progress during this time, then
hey transition through the game tree in accordance with the therapy
hoice, i.e. moves to state 0, 1(𝑖+1), 2(𝑖+1), and 3 at rates 𝜆𝑖, 𝛽𝑖, 𝛾𝑖, and
𝑖, respectively.

Formally, the patient’s strategy is now described by a function
∶ {2(𝑖)}∞𝑖=0 × [0,∞) → [0,∞]. For round 𝑖 and toxicity level 𝑧 the
alue 𝑥(𝑖, 𝑧) is the duration of the drug holiday in state 2(𝑖) before re-
tarting therapy. If this value is 0, then therapy begins immediately
pon entering this disease state, if it is infinity, then the patient ceases

(𝑖)
7

aking therapy upon progressing to state 2 .
We now have two consistency conditions. First, as before, we restrict
ttention to strategies such that if for some 𝑖 we have 𝑥(𝑖, 𝑧) = ∞ for

every 𝑧, then for every 𝑗 > 𝑖 and every 𝑧′ we have 𝑥(𝑗, 𝑧′) = ∞ as
well, meaning that if the patient rejects therapy in state 2(𝑖), then the
patients also rejects therapy in all future detectable diseases states. We
call a treatment strategy finite if there exists 𝑖 such that 𝑥(𝑖, 𝑧) = ∞ for
every 𝑧, i.e. the patient stops therapy after a finite number of rounds.

Second, we restrict attention to treatment strategies that are inter-
nally consistent within treatment rounds. Given treatment strategy 𝑥,
f the patient arrives in a state 2(𝑖) with toxicity level 𝑧, the patient will
ake the 𝑖 + 1th round of therapy with a delay of 𝑥(𝑖, 𝑧). If this is a
inite, positive value, then the patient will wait and take the treatment
ound once his or her toxicity reaches a threshold value. During the
ait the patient’s toxicity will decrease and thus, pass through decision
oints with the same state 2(𝑖) and some lower toxicity levels 𝑧′ < 𝑧.
ur internal consistency restriction makes sure that the choices 𝑥(𝑖, 𝑧′)
onform to the original decision 𝑥(𝑖, 𝑧). In a way, we interpret the
reatment strategies’ waiting times as the patient’s commitment to take
he next round of therapy after that time has elapsed without changing
is or her mind.

To formalize this idea, let 𝑖 be given. We say that a treatment
trategy 𝑥 is internally consistent in treatment round 𝑖 if for all 𝑧 > 0
(𝑖, 𝑧) = 𝑡 < ∞ implies

(𝑖, 𝑧′) = 𝑡 − 1
𝜁
ln
( 𝑧
𝑧′
)

,

for all 𝑧′ ∈ [𝑧e−𝜁𝑡, 𝑧]. Intuitively, this amounts to assuming that the
atient will indeed take the prescribed therapy after the waiting time
as elapsed without making any decisions during the wait that would
e inconsistent with this.

A treatment strategy 𝑥 is internally consistent if it is internally
onsistent in all treatment rounds. In the remainder of this section we
estrict attention to treatment strategies 𝑥 that satisfy both consistency
onditions. Note that if 𝑥(𝑖, 𝑧) = 0 for some 𝑧, the condition is vacuous.
his is because in this case the patient immediately takes the next
ound of therapy (hence paying the instantaneous cost and incurring
he toxicity penalty right away) and thus could not change his/her
ind during the waiting period. As a result, there is no restriction

n the value of 𝑥(𝑖, 𝑧′) for any 𝑧′ < 𝑧. We further note that assuming
nternal consistency of the patient’s treatment strategies is without loss
f generality as the Markovian nature of the patient’s problem means
hat all optimal treatment strategies will automatically satisfy it, but
estricting the set of treatment strategies to internally consistent ones
akes writing the patient’s payoffs substantially easier.

The patient’s instantaneous payoff function when affected by toxicity,
∶𝑆 × [0,∞) → R, is given as

(𝑠, 𝑧) =
{

1 − 𝑧 if 𝑠 ∈ {0, {1(𝑖)}∞𝑖=0, {2
(𝑖)}∞𝑖=0}

0 if 𝑠 = 3.

The patient collects a payoff of 1 in any health state other than 3, minus
the amount of toxicity he or she currently has. We note that we allow
for this value to be negative, indicating extreme discomfort for the
patient, something that he or she may temporarily be willing to accept
in the hopes of future recovery. In state 3, the patient collects a payoff
of zero. We therefore replace the state-dependent quality-of-life-terms
under therapy of our base model, 𝑢 and 𝑣, with the toxicity-adjusted
uality of life, 1 − 𝑧.

Given a treatment strategy 𝑥, state-realization 𝑠(⋅, 𝑥) and initial
oxicity level 𝑧0, the patient’s instantaneous payoff when affected by
oxicity is given by

(𝑠(⋅, 𝑥), 𝑧0) = ∫

∞

0
e−𝜌𝑡𝑞(𝑠(𝑡, 𝑥), 𝑧(𝑧0, 𝑡))d𝑡 −

∞
∑

𝑗=1
𝑐e−𝜌𝜏𝑗 , (7)

here, as before 𝜏𝑗 denotes the time of administering the 𝑗th round of
herapy. Due to 𝜌 > 0, 𝑈 (𝑠(⋅, 𝑥), 𝑧(⋅, 𝑥), 0) is finite for every realization
n every finite strategy and almost every realization for every strategy.
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We define a patient’s prospects starting in a general state 2(𝑖), at
time 𝑡′ conditional on the fact that their current toxicity level equals 𝑧𝑖
efore the 𝑖 + 1th round of therapy is taken as

𝑖(𝑠(⋅, 𝑥), 𝑧𝑖, 𝑡′) = ∫

∞

𝑡′
e−𝜌(𝑡−𝑡′)𝑞(𝑠(𝑡, 𝑥), 𝑧(𝑧𝑖, 𝑡))d𝑡 −

∞
∑

𝑗=𝑖+1
𝑐e−𝜌(𝜏𝑗−𝑡′), (8)

Given 𝑧0, the patient chooses 𝑥 to maximize their discounted expected
payoff :

𝑉 (𝑥, 𝑧0) = E𝑠(⋅,𝑥)𝑈 (𝑠(⋅, 𝑥), 𝑧0).

patient starting in state 2(𝑖) at time period 𝑡′ with toxicity level 𝑧𝑖
aces prospects given as
𝑖(𝑥, 𝑧𝑖) = E𝑠(⋅,𝑥)𝑈

𝑖(𝑠(⋅, 𝑥), 𝑧𝑖, 𝑡′),

e note, that, due to the Markovian nature of the model, given the
atient’s chosen treatment strategy, starting state, and starting toxicity
evel, the expected payoff is independent of 𝑡′.

In the following proposition we establish how to evaluate a treat-
ent strategy of a patient affected by toxicity.

roposition 3.1 (Evaluation of treatment strategies under toxicity). At
isease state 2(𝑖), for a treatment strategy 𝑥, with starting toxicity level 𝑧𝑖 and
here the patient waits time 𝑡 before taking round 𝑖+1 (i.e. 𝑥(𝑖, 𝑧𝑖) = 𝑡), the
atient’s discounted expected payoff is calculated by the following recursive
ormula:

𝑖(𝑥, 𝑧𝑖) =
1 − e−(𝜔𝑖+𝜌)𝑡

𝜔𝑖 + 𝜌
−

𝑧𝑖
(

1 − e−(𝜔𝑖+𝜌+𝜁 )𝑡
)

𝜔𝑖 + 𝜌 + 𝜁

+e−(𝜔𝑖+𝜌)𝑡

(

−𝑐 + 1
𝛼𝑖 + 𝜌

−
𝑧𝑖e−𝜁𝑡 + �̂�
𝛼𝑖 + 𝜌 + 𝜁

(9)

+𝜆𝑖

(

1
𝜌(𝛼𝑖 + 𝜌)

−
𝑧𝑖e−𝜁𝑡 + �̂�

(𝜌 + 𝜁 )(𝛼𝑖 + 𝜌 + 𝜁 )

)

+
𝛾𝑖
𝛼𝑖 ∫

𝑉 𝑖+1(𝑥, 𝑧𝑖e−𝜁 (𝜏+𝑡) + �̂�)e−𝜌𝑦𝑓 (𝑦)d𝑦

+
𝛽𝑖
𝛼𝑖

(

𝛼𝑖
(𝛼𝑖 + 𝜌)(𝛿𝑖+1 + 𝜌)

−
𝛼𝑖(𝑧𝑖e−𝜁𝑡 + �̂�)

(𝛼𝑖 + 𝜌 + 𝜁 )(𝛿𝑖+1 + 𝜌 + 𝜁 )

+ ∫ 𝑉 𝑖+1(𝑥, 𝑧𝑖e−𝜁 (𝑦+𝑡) + �̂�)e−𝜌𝑦𝑔(𝑦)d𝑦
))

.

with probability measures

𝑓 (𝑦) = 𝛼𝑖e−𝛼𝑖𝑦, for 𝑦 ≥ 0,

𝑔(𝑦) =

{ 𝛿𝑖+1𝛼𝑖
𝛿𝑖+1−𝛼𝑖

(

e−𝛼𝑖𝑦 − e−𝛿𝑖+1𝑦
)

if 𝛼𝑖 ≠ 𝛿𝑖+1
𝛼2𝑖 𝑦e

−𝛼𝑖𝑦 if 𝛼𝑖 = 𝛿𝑖+1
, for 𝑦 ≥ 0.

Proposition 3.1 shows the relationship between the payoffs gener-
ted by treatment strategies in successive detectable disease states. The
irst component is the expected payoff the patient collects while waiting
or the next round of therapy. The second component is the sum of
hree parts: the expected payoff of transitioning to state 0, the expected
ayoff of a direct transition to state 2(𝑖+1), and the expected payoff of a
ransition to state 2(𝑖+1) via state 1(𝑖+1).

It is clear that the cumulative toxicity model allows for significantly
ess analytic tractability than the instantaneous cost model of Section 2.
his is most apparent when comparing the recursive formulae of Propo-
itions 2.1 and 3.1. While the former shows a simple linear dependence
n successive disease states, the latter necessitates numerical methods
f approximation. At the end of this section we examine a numerical
xample relying on such methods.

In special cases the toxicity model does provide analytically tractable
esults. Namely, a myopic calibration of the next round’s delay, with
he assumption that no further rounds will be taken. Thus, in the
ext lemma we evaluate finite treatment strategies close to the end
f treatment. These provide optimal stopping conditions for myopic
8

a

reatment strategies, and provide insights into a global optimization
f treatment strategies. For 𝑖 ∈ N let 𝑋𝑖 = {𝑥∶ 𝑥(𝑖, 𝑧) = ∞ for all 𝑧}, i.e.

treatment stops after 𝑖 rounds. Due to the first consistency restriction
these sets are nested, i.e. 𝑋𝑖 ⊆ 𝑋𝑖+1 for every 𝑖.

Let

𝐴𝑖(𝜌) =
1

𝛼𝑖 + 𝜌

(

1 +
𝜆𝑖
𝜌

+
𝛾𝑖

𝜔𝑖 + 𝜌
+ 𝛽𝑖

(

1
𝛿𝑖+1 + 𝜌

+
𝛿𝑖+1

(𝛿𝑖+1 + 𝜌)(𝜔𝑖 + 𝜌)

))

,

nd

𝑖(𝜌) =
1

𝜔𝑖 + 𝜌
.

he following lemma gives an evaluation of three special strategies that
orm the cornerstones of myopic calibration of optimal delay.

emma 3.2 (Evaluating treatment strategies). 1. For 𝑥 ∈ 𝑋𝑖

𝑉 𝑖(𝑥, 𝑧𝑖) = 𝐵𝑖(𝜌) − 𝑧𝑖𝐵𝑖(𝜌 + 𝜁 ). (10)

. For 𝑥 ∈ 𝑋𝑖+1 with 𝑥(𝑖, 𝑧𝑖) = 0

𝑖(𝑥, 𝑧𝑖) = 𝐴𝑖(𝜌) − (𝑧𝑖 + �̂�)𝐴𝑖(𝜌 + 𝜁 ) − 𝑐. (11)

. For 𝑥 ∈ 𝑋𝑖+1 with 𝑥(𝑖, 𝑧𝑖) = 𝑡

𝑖(𝑥, 𝑧𝑖) = 𝐵𝑖(𝜌)
(

1 − e−(𝜔𝑖+𝜌)𝑡
)

− 𝑧𝑖𝐵𝑖(𝜌 + 𝜁 )
(

1 − e−(𝜔𝑖+𝜌+𝜁 )𝑡
)

+ e−(𝜔𝑖+𝜌)𝑡
(

𝐴𝑖(𝜌) − (𝑧𝑖e−𝜁𝑡 + �̂�)𝐴𝑖(𝜌 + 𝜁 ) − 𝑐
)

. (12)

Lemma 3.2 shows straightforward evaluations of three treatment
trategies for a patient currently in disease state 2(𝑖): (1) therapy is
eased immediately (i.e., after a total 𝑖 previous rounds), (2) the final
ound of therapy (the 𝑖+ 1th) is applied immediately, and (3) the final
ound of therapy (the 𝑖+1th) is applied with a delay of 𝑡 (i.e, the patient
akes a drug holiday of duration 𝑡). This result allows us to formulate a
alibration of the optimal delay before the next round of therapy under
he myopic assumption that no further rounds will be taken, as shown
n the next proposition:

roposition 3.3 (Myopic calibration of delay). Of the strategies with at
ost 𝑖 rounds of therapy:
1. If 𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐 and 𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 ) are both

egative, then the optimal time to administer the last round of therapy is to
ait until the patient’s toxicity level reaches a threshold 𝑧 with

𝑧 =
𝐵𝑖(𝜌 + 𝜁 )
𝐵𝑖(𝜌)

⋅
𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐

𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 )
,

or, if the patient’s toxicity is below this level, then administer the last round
of therapy immediately.

2. If 𝐵𝑖(𝜌)−𝐴𝑖(𝜌)+ �̂�𝐴𝑖(𝜌+𝜁 )+𝑐 > 0 and 𝐵𝑖(𝜌+𝜁 )−𝐴𝑖(𝜌+𝜁 ) < 0, then
topping at the 𝑖 − 1th round is better than continuing with the 𝑖th round.
3. If 𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐 < 0 and 𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 ) > 0,

hen treatment should be administered immediately.
4. If 𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐 and 𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 ) are both

ositive, then treatment should be administered immediately if the patient’s
oxicity is above the threshold 𝑧′ and never if it is below it, with

′ =
𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐

𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 )
.

Proposition 3.3 plays a similar role as Section 2’s Proposition 2.2.
t identifies a myopically optimal stopping condition at a particular
isease state without an intention of resuming therapy in subsequent
isease states. Moreover, it determines the myopically optimal waiting
ime through analytic methods. Under condition (1) treatment is to be
elayed until toxicity is sufficiently diminished, under (2) it is to be
anceled no matter the patient’s toxicity level, under (3) it is to be
dministered immediately no matter the patient’s toxicity level, and
inally, under (4) it is to be administered only for patients with high
oxicity level. The final point shows a perverse case, resulting from the
act that patients with high negative instantaneous payoffs prefer to im-
ediately receive the next round even though the transition parameters
re such that doing so decreases the patient’s life expectancy.
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Table 5
The calibration of Example 3.4.

Parameter 𝜌 𝛿 𝛽 𝛾 𝜇 𝜔

Value 0.05 0.1 0.1 0.2 0.3 0.2

Example 3.4. In this example we demonstrate the value gained from
calibrating the duration of the treatment holiday in a detectable disease
state. As in Example 2.5, we let 𝜆𝑖 = 𝜆𝑖+1 for an initial value 𝜆. Consider
he transition parameters shown in Table 5.

For a benchmark, we first consider the no toxicity case with 𝜆 =
0.67, meaning that we evaluate this example through Section 2’s model.
Then, as in Example 2.5, (M2) is satisfied. In Table 6, for each treatment
strategy 𝑥0 through 𝑥8, we report the corresponding range of the
treatment costs, 𝑐 that lead produce it as the unique payoff-maximizing
strategy.

Now consider the case of toxicity. To showcase its effect we set
𝑐 = 0, i.e. the incentive of stopping treatment comes solely from the
patient’s decreased quality of life due to toxicity. We take 𝑧0 = 0,
̂ = 0.5, and 𝜁 = 0.03. Under these parameters, the total payoff-
reduction of one round of therapy from toxicity is �̂�∕(𝜌+𝜁 ) = 6.25, called
its present cost. However, this cost is realized in full only by patients
with a death rate of zero as patients who move to state 3 experience
the quality-of-life reduction from toxicity for a shorter time. Patients
in non-absorbing states face a constant death rate of 𝜇 = 𝜔 = 0.2 and
hence face an expected present cost of �̂�∕(𝜌+𝜁+𝜔) = 1.79. As such, based
on Table 6 we can expect at least 2 rounds of therapy, and at most 6.

Through Proposition 3.3, we can analytically derive a myopically
optimal treatment plan, i.e. the optimal waiting times before each
round under the assumption that there will be no further rounds of
therapy attempted. As the benefits of therapy are declining with each
round, the globally optimal strategy will be to delay therapy in future
rounds more and more, thus the myopic assumption that therapy will
cease after the current round under consideration will matter less and
less. As such, myopic optimization will produce increasingly accurate
estimates of the globally optimal treatment strategy as the patient takes
more rounds. In Table 7 we report the threshold levels of toxicity in
each round. With 𝑧0 = 0 and �̂� = 0.5 the first two rounds are delivered
as soon as possible to the patient as the threshold of round 1 is 0.87,
while that of round 2 is 0.76, and the maximum toxicity that the
patient can have after round 1 is 0.5. From round 3 onward, however,
the patient may be better off delaying, if their toxicity exceeds the
threshold corresponding to round 𝑖 + 1’s at the time of arrival to state
2(𝑖).

For a specific case consider a patient in state 2(2), deciding on
the delay of the third round. This patient has taken therapy in two
detectable disease states and their toxicity level increased twice by
�̂� = 0.5, however, in the intermittent times of waiting for the transitions
(in states 2(0), 2(1), possibly visiting 1(1) or 1(2) or both as well), the
patient’s toxicity level has declined. In our example we set 𝑧2 = 0.73.
The patient is facing a cure rate of 𝜆3 = 0.3. By Table 7, this patient’s
payoff is maximized by waiting until the toxicity level reaches 0.65 to
take the third round. The patient’s present value, depending on their
delay of taking the third round is shown in Fig. 3.

We note that the patient’s decision to delay the third round may
seem surprising, considering that the probability of cure is still high
(0.33), and that during the waiting time of 3.86 their probability of
death is even higher (e−3.86𝜔 = 0.54). It is clear that such a decision is
not supported by practices that maximize probability of cure or survival
time. The decision to delay is cast in a more favorable light by consider-
ing that receiving the toxicity hit of the third round immediately would
yield a quality of life of −0.23. Even at the threshold toxicity of 0.65
the patient’s quality of life turns temporarily negative. The delay lowers
the patient’s present cost of therapy enough for a payoff-maximizing
9

patient to resume therapy.
Fig. 3. The patient’s payoffs relative to a healthy individual’s after completing two
rounds as a function of round 3’s delay with toxicity rate 𝑧2 = 0.73 and facing a cure
rate of 𝜆2 = 0.3. Expected payoffs are maximized at a delay of 𝑡3 = ln(𝑧2∕�̄�)∕𝜁 = 3.86.

Example 3.4 showcases both the possible benefits of delaying ther-
apy (Fig. 3) and a myopically optimal patient’s behavior (Table 7). It
also highlights the comparison between the models of Sections 2 and
3. The former prescribes the number of treatment rounds based on
the flat one-time cost the patient incurs per round, while the latter
prescribes the timing of these rounds. Note, however, that unlike in
Section 2, where we were able to derive a condition that ensured
that the myopically optimal behavior produces the globally optimal
one (Proposition 2.3), there is no analogous result to guarantee that
Table 7’s results correspond to the globally optimal behavior in the tox-
icity model. In the next example, we evaluate the same calibration via
a numerical approximation and show that its results are in agreement
with the myopically optimal waiting times.

Example 3.5. Consider the same transition parameters as shown in
Table 5. As in Example 3.4, we take 𝜆 = 0.67, �̂� = 0.5 and 𝜁 = 0.03 with
𝑧0 = 0. Table 8 reports the expected optimal delays of a maximum of six
treatment rounds through a numerical approximation (see the appendix
for a summary of the methodology of the approximation).

The interpretation of the prescribed treatment strategy starting
at round 0 (first row of Table 8) is as follows: Given the patient’s
toxicity level of 𝑧0 = 0, in expectation, the patient is advised to wait
time 𝑡𝑖 before receiving the 𝑖 + 1th round of therapy. Note that the
rescribed waiting times for distant treatment rounds are subject to
hange. At the onset, they are merely an expected time of optimal delay
iven the patient’s expected progression, on which, based on backwards
nduction, the optimal time of delay of the first round, 𝑡0 = 0, can be

calculated. Thus, only this first delay is actionable information. Should
the patient reach the next decision node, their toxicity level may be
quite different from the expected levels, hence, subsequent decisions
need to be taken according to the realized toxicity levels.

To illustrate, we report three re-optimized treatment strategies
given toxicity levels 𝑧1 = 0.32, 0.40, and 0.48 after round 1 (rows 2
to 4 of Table 7). This large divergence in toxicities is based on the fact
that patients who do not respond to the treatment (and thus progress
to state 2(1) directly) are expected to have larger toxicity levels than
hose who do (and thus reach 2(1) indirectly through 1(1)), as the latter
roup’s toxicity is allowed to decline for a longer time.7 As shown in
he table, these patients are all advised to take round 2 immediately,
ut their expected delays in future rounds, as well as their expected
ayoffs, diverge.

Those patients who progress further again need to re-optimize
ased on their realized levels of toxicity. We approximate optimal
reatment strategies for patients who start after round 2 with toxicity

7 The expected time spent in state 1(𝑖) is 1∕𝛿 = 10 in this example, while
toxicity level upon leaving state 1(𝑖) if it was at level 𝑧′ upon entering it is
𝑧′𝛿∕(𝛿 + 𝜁 ), so an initial toxicity level of around 0.5 decreases to around 0.38.
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Table 6
Payoff-maximizing treatment strategies for various cost ranges, their corresponding ex-ante payoff ranges
relative to a healthy individual, and total cure percentages.
Cost range Optimal strategy Payoff range (% of healthy) Total cured (%)

0.84–1.13 𝑥8 64.13%–62.28% 65.90%
1.14–1.55 𝑥7 62.22%–59.61% 65.90%
1.56–2.13 𝑥6 59.55%–55.93% 65.89%
2.14–2.92 𝑥5 55.87%–50.92% 65.84%
2.93–3.94 𝑥4 50.85%–44.47% 65.69%
3.95–5.20 𝑥3 44.40%–36.58% 65.12%
5.21–6.65 𝑥2 36.52%–27.87% 62.87%
6.66–8.22 𝑥1 27.81%–20.01% 52.76%
8.23+ 𝑥0 20.00% 0.00%
Table 7
Threshold toxicity levels below which the next round of treatment can be delivered
under myopically optimal treatment strategies. Above this level, a payoff-maximizing
myopic patient waits until toxicity drops to the threshold level before taking therapy.

Round Cure rate Cure probability Threshold toxicity

1 0.67 0.53 0.87
2 0.45 0.43 0.76
3 0.30 0.33 0.65
4 0.20 0.25 0.48
5 0.14 0.18 0.22
6 0.09 0.13 Negative

levels 𝑧2 = 0.60, 0.68, 0.76, 0.84, and 0.92. At this stage, the prescribed
delays before taking round 3 are different, hence the different patients’
payoff-maximizing behavior diverges. The approximate delay times of
the next round line up with the myopically optimal ones (retrieved
from Proposition 3.3) up to the 3rd decimal point, indicating that the
approximate optimal solution and the myopically optimal one agree
closely, provided that 𝜆𝑖 is decreasing.

. Discussion

In this paper we develop a decision-making tool of cancer therapy.
e model the development of the disease as a random, Markovian

rocess, capturing the prognosis-relevant data with four types of health
tates (cure, undetectable tumor burden, detectable burden and death).
his approach unifies the more classical Markovian models of cancer
herapy (Cooper et al., 2003, 2004) with the novel game theoretic
nalysis of cancer (Orlando et al., 2012; Staňková et al., 2019), adding
he element of patient choice to the former, and simplifying cancer’s
volutionary dynamics to a stochastic, Markovian process in the lat-
er. This framing of cancer strategies in response to therapy allows
s to focus on the patient’s choices. We then rely on classic results
rom Markov Decision Processes for the existence of a unique optimal
reatment strategy.

The model’s main disease-specific inputs are estimates of transition
ates associated with and without therapy. These rates consider transi-
ions from detectable disease to cure, death, undetectable disease, and
he next detectable progressive disease state; and transitions from un-
etectable disease to a detectable disease state. Such data would need
o be estimated from large patient cohorts that consider cure, complete
esponses, partial responses, stable disease states, disease progression
nd mortality from therapeutic regimens. These regimens could include
he application of the same therapeutics regardless of disease state, or
hanges to the therapies in response to changed disease state. Sources
f data can include clinical trials, patient outcome data compiled by
overnments, and published peer-reviewed papers on specific cancers
sing large patient cohorts (e.g. breast cancer, (Urru et al., 2018); lung
ancer, (Sun et al., 2016); pancreatic cancer, (He et al., 2020)). For
nstance, The National Cancer Database sponsored by the American
ollege of Surgeons and the American Cancer Society can be used to
nalyze cancer patients, their treatments, and outcomes. With more
10

han 34 million records, the database accrues more than 70 percent of
newly diagnosed cancer cases within the United States (National Cancer
Database (facs.org)). The Children’s Oncology Group, supported by the
National Cancer Institute, provides access to data on childhood and
adolescent cancers from cancer centers across North America (>14,000
new patients per year), Australia, New Zealand, and Europe.

The patient-specific inputs include the patient-specific perceptions
of the cost of therapy. These can include financial hardships (Ell
et al., 2008; McNulty and Khera, 2015; Smith et al., 2021), emo-
tional stress (Delgado-Guay et al., 2015; Traeger et al., 2009) and
toxicity (Cleeland et al., 2012). For our model, challenges exist in
terms of patients revealing or perceiving these costs. Surveys exist
for evaluating these costs. Examples include for immune-checkpoint
therapies (Hansen et al., 2020), for breast cancer patients undergoing
diverse therapies (Mokhatri-Hesari and Montazeri, 2020; Bjelic-Radisic
et al., 2020), and for thyroid cancer treated with lenvatinib (Giani et al.,
2021). Additionally, the model requires patients to reveal or have a
sense for how they discount time (see Vaughn et al. (2020) for the case
of breast cancer patients).

With knowledge of transition rates of disease states and patient-
specific parameters regarding time discounting and therapy costs, our
first model provides a simple recursive formula to analytically evaluate
the performance of various treatment strategies. This tool then allows
the patient to choose their preferred therapy duration. Under some
monotonicity and homogeneity assumptions, a myopic (looking just
one disease state ahead) evaluation of the treatment strategies also pro-
duces the globally optimal outcome, further simplifying the decision-
making progress. In a second model, where the patient’s instantaneous
payoffs were determined by their current toxicity levels from therapy,
the evaluation of treatment strategies becomes more complicated and
requires numerical tools. Nevertheless, optimal duration of therapy
and optimal timing of treatment rounds can be estimated. Myopically
optimizing the next round’s delay can be performed analytically, and
can provide a good approximation to a globally optimal treatment
strategy if the cure rate in future detectable disease states decreases.

We raise four discussion points on the modeling choices made in
the paper. The first is the decision to include no more than four types
of health states. One reason for this is to keep our models tractable.
A second reason is that a practical application of a model with more
health states requires more cohort data. Given the same amount of
cohort data, calibrating a model with more than four health states
comes with a loss of statistical power. In the case of large cohorts,
collecting patient data of a given cancer type, this may not be a
problem. However, in the case of cohorts stratified by age, sex, or by
other variables, diluting the data in favor of including a larger number
of health states may not be desirable. We further argue that more
health states raises classification problems, while the four present in
our paper is the lowest number that is needed. In cases where data are
abundant and classification unproblematic, our model may be extended
to include more state types in a straightforward manner.

Secondly, we reflect upon one of our model’s main limitations,
its Markovian nature. Particularly, upon the fact that the transition
probabilities between states are time-independent. In reality this is
not necessarily the case for the parameters of disease progression. In
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Table 8
Delay times and payoffs of approximate optimal strategies, 𝑥∗(𝑖, 𝑧𝑖) conditional on starting therapy in round 𝑖 with toxicity
level 𝑧𝑖. Bold numbers are actionable choices, all other delays are expected values subject to change. A patient progressing
through the disease states re-optimizes in each detectable state and tailors their behavior based on the current level of toxicity.

Round 0 1 2 3 4 5

Cure rate 0.67 0.45 0.30 0.20 0.14 0.09
𝑖 𝑧𝑖 Payoff Cure perc. 52.76% 42.80% 33.39% 25.14% 18.37% 13.10%

0 0.00 42.70% 0 0 0 11.27 20576 ∞

1 0.32 24.12% 0 0 13.76 17.67 ∞
1 0.40 21.16% 0 0.84 13.76 118.88 ∞
1 0.48 18.28% 0 3.68 13.91 13.77 ∞

2 0.60 11.09% 0 15.44 176.77 ∞
2 0.68 8.62% 1.44 16.96 22.31 ∞
2 0.76 6.73% 5.14 16.96 22.19 ∞
2 0.84 5.13% 8.48 16.96 21.88 ∞
2 0.92 3.63% 11.51 16.96 24.12 ∞
some cases, the likelihood of progressing increases with time spent in
the disease state, and vice-versa (see Cleophas and Van Ouwerkerk
(2007) for a discussion of the issue of using exponential models in
clinical research). For our purposes, it is a necessary assumption for
us to apply Markovian methods and models, and it represents the first
order approximation of time dependent transition rates. Furthermore,
these transition rates will be highly patient specific and depend on
age, sex, time at which the disease was first detected, disease burden
at detection, genetic predispositions, immune competency, etc. Hence,
a given detectable cancer state for one patient may be quite different
from another requiring appropriate adjustments to the transition rates.
Yet, there may be pools of patients that provide cohorts from which to
generally estimate these rates, at least for common cancers.

Thirdly, we raise the issue of personalized medicine. As we state
above, the transition rates of our model are to be calibrated from cohort
data. The ability to personalize our model depends on the availability
cohort data corresponding to the patient’s characteristics. For some
cancers and for some strata this cannot be taken as given. In these
cases, our models can still serve as useful benchmarks against which
the patient and their physician may evaluate their options given the
patient’s own characteristics and responses. Even when the ability to
personalize our model’s transition rates is low, some of our model’s
variables such as the patient’s instantaneous payoff parameters and
discount rate can be calibrated to match the patient’s preferences and
characteristics. When personalization is high, the differences between
these patient-specific traits may still mean that two patients belonging
to the same demographic will favor different treatment strategies.

Fourthly, we address the relationship of the patient’s toxicity level
in our second model and the transition rates. In our model, these are
mathematically independent in the sense that after a given number of
rounds of therapy, progression rates are not affected by toxicity. In
practice, toxicity caused by therapy is strongly related to the patient’s
prognosis. This mismatch is caused by the fact that our model combines
‘‘objective’’ parameters regarding disease prognosis with ‘‘subjective’’
ones that reflect the patients’ preferences. Toxicity of therapy is related
to both. We therefore use the abstract term toxicity to reflect on the
subjective aspect, measuring the patient’s quality of life under therapy.
Introducing explicit dependence between toxicity and transition would
be problematic both for the tractability of the model and in mixing
the objective concerns with subjective ones. For example, two patients
may be very similar in their disease progression but may report varying
levels of discomfort due to therapy, or vice versa, which may influence
their choice of treatment. As the transition rates do depend on the
number of rounds of therapy, our toxicity measure and the patient’s
prognosis are statistically not independent.

Finally, we reflect on our stated goal, to address the dilemmas
arising from the difficulty in finding a suitable measure of success
of cancer therapy. Our approach, maximizing the patient’s discounted
11

expected QALYs is rooted in a classic economic approach that treats
individuals as rational utility maximizers. As such, we propose it as
a good candidate to evaluate cancer therapy in a way that explicitly
captures the patients’ well-being. As an additional value, even if such
an approach cannot be adopted in oncology formally, a model such as
this can help identify and understand points of disagreement between
cancer patients and their treating physicians in selecting a treatment
strategy.

The model has several key utilities. First, there can be circumstances
where a patient’s optimal choice is to cease therapy even when cure
may still be possible. This may pose ethical dilemmas for the physi-
cian. Generally, quantity versus quality of life tradeoffs come most
into play when therapy is palliative and the disease state is assessed
as incurable. In the model, a patient’s willingness to cease therapy
may be in part due to financial distress (Beeler et al., 2020). This
creates health disparities between those with and without access to
inexpensive health care, or employer supported sick leave. Second,
the model can predict, on a patient to patient basis, the duration and
timing of drug holidays. Current practice often has a pre-determined
protocol for taking breaks in therapy regardless or patient preferences,
or manages them haphazardly based on the patient’s level of discomfort
or abnormal bloodwork.

Our approach inherits the limitations and criticism of its two main
components, QALYs and expected utility maximization. The former
includes difficulty in measurement, interpersonal comparison, and eq-
uity concerns. Similarly, expected utility theory has its detractors, both
in static settings (such as the well-known Allais, Ellsberg, and St.
Petersburg paradoxes) and dynamic ones (such as time-inconsistent
preferences). Addressing the former in the cancer context is part of a
deeper discussion on the appropriateness of using QALYs. We argue
that, while its shortcomings do not make it suitable to replace less
controversial measures, such as survival time, considering QALYs in ad-
dition to survival time has significant added value. Addressing the latter
in our setting requires a deeper mapping of the individual decision-
making process. Methods of behavioral economics, psychology, and
other decision sciences use model and tools based explicitly on expected
utility theory. Thus, our model and its predictions, can serve as useful
benchmarks for future research in the decision theory of cancer.
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Appendix

Proposition 2.1

We first show the second part of the statement, that is:
𝑖(𝑥𝑖) =

𝑣
𝜔𝑖 + 𝜌

,

for a finite 𝑖.
The patient collects a constant stream of instantaneous payoffs 𝑣

while still in state 2(𝑖), and 0 after he or she transitions to state 3. Let 𝜉
enote the time the patient spends in 2(𝑖). As 𝜉 ∼ Exp(𝜔𝑖), we have

𝑖(𝑥𝑖) = E𝜉

(

∫

𝜉

0
𝑣e−𝜌𝑡d𝑡

)

= ∫

∞

0 ∫

𝜉

0
𝑣e−𝜌𝑡d𝑡 𝜔𝑖e−𝜔𝑖𝜉d𝜉

= 𝑣𝜔𝑖 ∫

∞

0

[

− e−𝜌𝑡
𝜌

]𝜉

0
e−𝜔𝑖𝜉d𝜉

=
𝑣𝜔𝑖
𝜌 ∫

∞

0

(

1 − e−𝜌𝜉
)

e−𝜔𝑖𝜉d𝜉 =
𝑣𝜔𝑖
𝜌

(

1
𝜔𝑖

− 1
𝜔𝑖 + 𝜌

)

= 𝑣
𝜔𝑖 + 𝜌

.

o show the first part we calculate each of the following four compo-
ents separately: (1) the discounted payoffs collected in state 2(𝑗) before
ransitioning; (2) those collected after transitioning to state 0; (3) those
ollected after transitioning to state 1(𝑗+1), followed by transitioning to
tate 2(𝑗+1); (4) those collected after a direct transition to 2(𝑗+1).

Calculating (1) amounts to evaluating

𝜉

(

∫

𝜉

0
𝑣e−𝜌𝑡d𝑡

)

= ∫

∞

0 ∫

𝜉

0
𝑣e−𝜌𝑡d𝑡 𝛼𝑗e−𝛼𝑗 𝜉d𝜉 = 𝑣

𝛼𝑗 + 𝜌
,

ith very similar steps as before, where now we have 𝜉 ∼ Exp(𝛼𝑗 ).
To calculate (2) we need to evaluate

𝜉

(

∫

∞

𝜉
e−𝜌𝑡d𝑡

)

= ∫

∞

0 ∫

∞

𝜉
e−𝜌𝑡d𝑡 𝛼𝑗e−𝛼𝑗 𝜉d𝜉 = 𝛼𝑗 ∫

∞

0

[

− e−𝜌𝑡
𝜌

]∞

𝜉
e−𝛼𝑗 𝜉d𝜉

=
𝛼𝑗
𝜌 ∫

∞

0
e−𝜌𝜉e−𝛼𝑗 𝜉d𝜉 =

𝛼𝑗
𝜌

1
𝛼𝑗 + 𝜌

as once more we have 𝜉 ∼ Exp(𝛼𝑗 ). Multiplying by 𝜆𝑗∕𝛼𝑗 , the probability
that state 0 is reached, we get

1
𝜌
⋅

𝜆𝑗
𝛼𝑗 + 𝜌

.

Component (3) has two parts: the payoffs collected while the patient
is in state 1(𝑗+1), and the payoff he or she collects after transitioning to
(𝑗+1). Taking 𝜉 ∼ Exp(𝛼𝑗 ) and 𝜉′ ∼ Exp(𝛿𝑗+1), the former amounts to

E𝜉,𝜉′

(

∫

𝜉+𝜉′

𝜉
𝑢e−𝜌𝑡d𝑡

)

= ∫

∞

0 ∫

∞

0 ∫

𝜉+𝜉′

𝜉
𝑢e−𝜌𝑡d𝑡 𝛼𝑗e−𝛼𝑗 𝜉d𝜉 𝛿𝑗+1e−𝛿𝑗+1𝜉

′d𝜉′ = 𝑢𝛼𝑗𝛿𝑗+1 ∫

∞

0 ∫

∞

0
[

− e−𝜌𝑡
𝜌

]𝜉+𝜉′

𝜉
e−𝛼𝑗 𝜉d𝜉 e−𝛿𝑗+1𝜉′d𝜉′

=
𝑢𝛼𝑗𝛿𝑗+1

𝜌 ∫

∞

0 ∫

∞

0

(

e−(𝛼𝑗+𝜌)𝜉 − e−(𝛼𝑗+𝜌)𝜉e−𝛿𝑗+1𝜉′
)

d𝜉 e−𝛿𝑗+1𝜉′d𝜉′

=
𝑢𝛼𝑗𝛿𝑗+1

𝜌
⋅

1
𝛼𝑗 + 𝜌 ∫

∞

0

(

e−𝛿𝑗+1𝜉′ − e−(𝜌+𝛿𝑗+1)𝜉′
)

d𝜉′

=
𝑢𝛼𝑗𝛿𝑗+1

𝜌
⋅

1
𝛼𝑗 + 𝜌

(

1
𝛿𝑗+1

− 1
𝛿𝑗+1 + 𝜌

)

=
𝛼𝑗

𝛼𝑗 + 𝜌
⋅

𝑢
𝛿𝑗+1 + 𝜌

.
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h

This, multiplied by the probability of reaching state 1(𝑗+1), 𝛽𝑗∕𝛼𝑗 gives

𝛽𝑗
𝛼𝑗 + 𝜌

⋅
𝑢

𝛿𝑗+1 + 𝜌
.

he second part, the payoff the patient receives after transitioning to
(𝑗+1) amounts to receiving a payoff of 𝑉 𝑗+1(𝑥𝑖) with time delay 𝜉 + 𝜉′,
hat is, in expectation:
𝛼𝑗

𝛼𝑗 + 𝜌
⋅

𝛿𝑗+1
𝛿𝑗+1 + 𝜌

𝑉 𝑗+1(𝑥𝑖).

ultiplying by the probability of reaching state 1(𝑗+1) (from which
eaching state 2(𝑗+1) is certain), we get
𝛽𝑗

𝛼𝑗 + 𝜌
⋅

𝛿𝑗+1
𝛿𝑗+1 + 𝜌

𝑉 𝑗+1(𝑥𝑖).

he sum of the two parts gives the third component of (3) as desired.
In component (4), a direct transition to state 2(𝑗+1) provides a payoff

f 𝑉 𝑗+1(𝑥𝑖) with a delay of 𝜉 with 𝜉 ∼ Exp(𝛼𝑗 ), equaling
𝛼𝑗

𝛼𝑗 + 𝜌
𝑉 𝑗+1(𝑥𝑖).

ultiplied by the probability of reaching 2(𝑗+1) directly, 𝛾𝑗∕𝛼𝑗 , we get
𝛾𝑗

𝛼𝑗 + 𝜌
𝑉 𝑗+1(𝑥𝑖).

inally, subtracting the cost of a round of therapy, 𝑐, incurred immedi-
tely, we get the right hand side of (3).

roposition 2.2

As the two treatment strategies are identical in the first 𝑖 periods,
(𝑥𝑖) ≥ 𝑉 (𝑥𝑖+1) if and only if 𝑉 𝑖(𝑥𝑖) ≥ 𝑉 𝑖(𝑥𝑖+1). By Proposition 2.1 the

eft hand side amounts to 𝑣∕(𝜔𝑖 + 𝜌), while the right hand side is

𝑖(𝑥𝑖+1) =
𝑣

𝛼𝑖 + 𝜌
+

𝜆𝑖
𝛼𝑖 + 𝜌

⋅
1
𝜌
+

𝛽𝑖
𝛼𝑖 + 𝜌

(

𝑢
𝛿𝑖+1 + 𝜌

+
𝛿𝑖+1

𝛿𝑖+1 + 𝜌
𝑉 𝑖+1(𝑥𝑖+1)

)

+
𝛾𝑖

𝛼𝑖 + 𝜌
𝑉 𝑖+1(𝑥𝑖+𝑖) − 𝑐.

By plugging in 𝑉 𝑖+1(𝑥𝑖+1) = 𝑣∕(𝜔𝑖+1 + 𝜌) we have that 𝑉 𝑖(𝑥𝑖) ≥ 𝑉 𝑖(𝑥𝑖+1)
f and only if

𝑣
𝜔𝑖 + 𝜌

≥ 𝑣
𝛼𝑖 + 𝜌

+
𝜆𝑖

𝛼𝑖 + 𝜌
⋅
1
𝜌
+

𝛽𝑖
𝛼𝑖 + 𝜌

(

𝑢
𝛿𝑖+1 + 𝜌

+
𝛿𝑖+1

𝛿𝑖+1 + 𝜌
𝑣

𝜔𝑖+1 + 𝜌

)

+
𝛾𝑖

𝛼𝑖 + 𝜌
⋅

𝑣
𝜔𝑖+1 + 𝜌

− 𝑐.

Multiplying by 𝛼𝑖+𝜌 and rearranging produces the inequality stated by
he proposition.

roposition 2.3

Applying (H1) and (H2) to (5), by Proposition 2.2 we have 𝑥𝑖 ≾ 𝑥𝑖+1
f and only if
𝛽𝑖 + 𝛾𝑖 + 𝜆𝑖 + 𝜇𝑖 − 𝜔

𝜔 + 𝜌
+ 𝑐(𝛼𝑖 + 𝜌) ≤

𝛽𝑖
𝛿 + 𝜌

+ 1
𝜔 + 𝜌

(

𝛽𝑖𝛿
𝛿 + 𝜌

+ 𝛾𝑖

)

+
𝜆𝑖
𝜌
.

Multiplying by (𝜔 + 𝜌)∕(𝛼𝑖 + 𝜌) and rearranging gives

≤ 1
𝜔 + 𝜌

(

𝛽𝑖
𝛼𝑖 + 𝜌

⋅
𝜔

𝛿 + 𝜌
+

𝜆𝑖
𝛼𝑖 + 𝜌

⋅
𝜔
𝜌
+

𝜔 − 𝜇𝑖
𝛼𝑖 + 𝜌

)

= 1
𝜔 + 𝜌

𝑀(𝑖). (13)

. Let 𝑖′ ∈ N be the smallest number such that 𝑥𝑖′ ≾ 𝑥𝑖′+1. Then we
ave 𝑐 ≤ 𝑀(𝑖′)∕(𝜔 + 𝜌). Under (M1) 𝑀(𝑖) is increasing in 𝑖, thus every
uccessive treatment strategy with more than 𝑖′ rounds is no worse than
he one preceding it, hence for every 𝑖 > 𝑗 ≥ 𝑖′ we have 𝑥𝑗 ≾ 𝑥𝑖. By the
hoice of 𝑖′, for every 𝑗 ≤ 𝑖′ > 0 we have then 𝑥𝑗 ≺ 𝑥𝑗−1, implying that
or every 𝑖 < 𝑗 ≤ 𝑖′ we have 𝑥𝑗 ≺ 𝑥𝑖.

2. Let 𝑖′ ∈ N be the smallest number such that 𝑥𝑖′ ≿ 𝑥𝑖′+1. Then we
′
ave 𝑐 ≥ 𝑀(𝑖 )∕(𝜔 + 𝜌). Under (M2) 𝑀(𝑖) is decreasing in 𝑖, thus every
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successive treatment strategy with more than 𝑖′ rounds is no better than
the one preceding it, hence for every 𝑖 > 𝑗 ≥ 𝑖′ we have 𝑥𝑗 ≿ 𝑥𝑖. By the
choice of 𝑖′, for every 𝑗 ≤ 𝑖′ > 0 we have then 𝑥𝑗 ≻ 𝑥𝑗−1, implying that
for every 𝑖 < 𝑗 ≤ 𝑖′ we have 𝑥𝑗 ≻ 𝑥𝑖.

Proposition 3.1

The value is the sum of five values: (1) the payoff received in
state 2(𝑖) while waiting for the next round of therapy. We calculate the
positive part of the payoff (i.e, without toxicity). Take 𝜉 ∼ Exp(𝜔𝑖), then

E𝜉 ∫

min{𝜉,𝑡}

0
e−𝜌𝑡d𝑡 = ∫

𝑡

0
𝜔𝑖e−𝜔𝑖𝜉

∫

𝜉

0
e−𝜌𝑡d𝑡d𝜉 + ∫

∞

𝑡
𝜔𝑖e−𝜔𝑖𝜉

∫

𝑡

0
e−𝜌𝑡d𝑡d𝜉

= 1
𝜌

(

1 − e−𝜔𝑖𝑡 +
𝜔𝑖

𝜔𝑖 + 𝜌

(

e−(𝜔𝑖+𝜌)𝑡 − 1
)

+ e−𝜔𝑖𝑡 − e−(𝜔𝑖+𝜌)𝑡
)

= 1 − e−(𝜔𝑖+𝜌)𝑡

𝜔𝑖 + 𝜌
.

With very similar calculations we may get the negative (toxicity) part
of this component:

E𝜉 ∫

min{𝜉,𝑡}

0
𝑧𝑖e−(𝜌+𝜁 )𝑡d𝑡 =

𝑧𝑖
(

1 − e−(𝜔𝑖+𝜌+𝜁 )𝑡
)

𝜔𝑖 + 𝜌 + 𝜁
.

(2), the payoff received in state 2(𝑖) after taking therapy but before
ransitioning to any of the states 0, 1(𝑖+1), 2(𝑖+1), or 3 as a result. Again,

just taking the positive component, with 𝜉 ∼ Exp(𝛼𝑖) this is

E𝜉 ∫

𝜉+𝑡

𝑡
e−𝜌𝑡d𝑡 = e−𝜌𝑡 ∫

∞

0
𝛼𝑖e−𝛼𝑖𝜉 ∫

𝜉

0
e−𝜌𝑡d𝑡d𝜉 = e−𝜌𝑡 1

𝛼𝑖 + 𝜌
.

For the toxicity component that the patient started with, we get

E𝜉 ∫

𝜉+𝑡

𝑡
𝑧𝑖e−(𝜌+𝜁 )𝑡d𝑡 = e−(𝜌+𝜁 )𝑡

𝑧𝑖
𝛼𝑖 + 𝜌 + 𝜁

.

Adding the toxicity caused by therapy �̂� at time 𝑡 we get

𝜉 ∫

𝜉+𝑡

𝑡
�̂�e−𝜌𝑡e−𝜁 (𝑡−𝑡)d𝑡 = �̂�e−𝜌𝑡E𝜉 ∫

𝜉

0
e−(𝜌+𝜁 )𝑡d𝑡 = e−𝜌𝑡 �̂�

𝛼𝑖 + 𝜌 + 𝜁
.

dding these three and multiplying with the probability of the patient
eaching the time to take therapy, e−𝜔𝑖𝑡 we get

−(𝜔𝑖+𝜌)𝑡

(

1
𝛼𝑖 + 𝜌

−
𝑧𝑖e−𝜁𝑡 + �̂�
𝛼𝑖 + 𝜌 + 𝜁

)

.

(3), the payoff received upon a transition to state 0. Again, with 𝜉 ∼
E(𝛼𝑖) this is (positive and negative parts together):

E𝜉 ∫

∞

𝜉+𝑡
e−𝜌𝑡 − 𝑧𝑖e−(𝜌+𝜁 )𝑡 − �̂�e−𝜌𝑡−𝜁 (𝑡−𝑡)d𝑡

= 𝛼𝑖e−𝜌𝑡
(

1
𝜌(𝛼𝑖 + 𝜌)

−
𝑧𝑖e−𝜁𝑡 + �̂�

(𝜌 + 𝜁 )(𝛼𝑖 + 𝜌 + 𝜁 )

)

.

ultiplying with the probability reaching the time to administer round
, e−𝜔𝑖𝑡, and by the probability of transitioning to state 0 given that the

patient receives round 𝑖, 𝜆𝑖∕𝛼𝑖, we get

𝑖e−(𝜔𝑖+𝜌)𝑡

(

1
𝜌(𝛼𝑖 + 𝜌)

−
𝑧𝑖e−𝜁𝑡 + �̂�

(𝜌 + 𝜁 )(𝛼𝑖 + 𝜌 + 𝜁 )

)

.

(4), the payoff received upon a transition to state 2(𝑖+1). This amounts
to the expected present value of 𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉′)) with delay 𝜉′ where
𝜉′ = 𝜉 + 𝑡 for 𝜉 ∼ Exp(𝛼𝑖). This equals

E𝜉′
(

e−𝜌𝜉′𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉′))
)

= e−𝜌𝑡E𝜉
(

e−𝜌𝜉𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉 + 𝑡))
)

.

Multiplying by the probability of reaching the time to administer round
𝑖, and by the probability of transitioning directly to state 2(𝑖+1) given
that the patient receives round 𝑖, 𝛾𝑖∕𝛼𝑖 and substituting in 𝑧(𝑧𝑖, 𝜉 + 𝑡) =
𝑧𝑖e−𝜁 (𝜉+𝑡) + �̂� we get
𝛾𝑖 e−(𝜔𝑖+𝜌)𝑡 e−𝜌𝜉𝑉 𝑖+1(𝑥, 𝑧𝑖e−𝜁 (𝜉+𝑡) + �̂�)𝑓 (𝜉)d𝜉.
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𝛼𝑖 ∫ a
(5), the payoff received upon a transition to state 1(𝑖+1) followed by
a transition to state 2(𝑖+1). With 𝜉1 ∼ Exp(𝛼𝑖) and 𝜉2 ∼ Exp(𝛿𝑖+1), the
ormer amounts to

𝜉1 ,𝜉2 ∫

𝜉1+𝜉2+𝑥𝑖(𝑧𝑖)

𝜉1+𝑡
e−𝜌𝑡 − 𝑧𝑖e−(𝜌+𝜁 )𝑡 − �̂�e−𝜌𝑡−𝜁 (𝑡−𝑡)d𝑡

= 𝛼𝑖e−𝜌𝑡
(

1
(𝛼𝑖 + 𝜌)(𝛿𝑖+1 + 𝜌)

−
𝑧𝑖e−𝜁𝑡 + �̂�

(𝛼𝑖 + 𝜌 + 𝜁 )(𝛿𝑖+1 + 𝜌 + 𝜁 )

)

.

ultiplying by the probability of reaching the time to administer round
, and by the probability of transitioning to state 1(𝑖+1) from 2(𝑖), 𝛽𝑖∕𝛼𝑖,
e get

𝑖e−(𝜔𝑖+𝜌)𝑡

(

1
(𝛼𝑖 + 𝜌)(𝛿𝑖+1 + 𝜌)

−
𝑧𝑖e−𝜁𝑡 + �̂�

(𝛼𝑖 + 𝜌 + 𝜁 )(𝛿𝑖+1 + 𝜌 + 𝜁 )

)

.

Finally, upon reaching state 2(𝑖+1) from 1(𝑖+1) the patient receives the
resent expected value of 𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉′)) with a delay of 𝜉′ where
′ = 𝜉1 + 𝜉2 + 𝑡. Substituting 𝜉 = 𝜉1 + 𝜉2 we get

𝜉′
(

e−𝜌𝜉′𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉′))
)

= e−𝜌𝑡E𝜉
(

e−𝜌𝜉𝑉 𝑖+1(𝑥, 𝑧(𝑧𝑖, 𝜉 + 𝑡))
)

.

ultiplying by the probability of reaching the time to administer round
, and by the probability of transitioning directly to state 1(𝑖+1) (from
hich reaching state 2(𝑖+1) is certain) given that the patient receives

ound 𝑖, 𝛽𝑖∕𝛼𝑖 and substituting in 𝑧(𝑧𝑖, 𝜉 + 𝑡) = 𝑧𝑖e−𝜁 (𝜉+𝑡) + �̂� we get

𝛽
𝛼𝑖

e−(𝜔𝑖+𝜌)𝑡
∫ e−𝜌𝜉𝑉 𝑖+1(𝑥, 𝑧𝑖e−𝜁 (𝜉+𝑡) + �̂�)𝑔(𝜉)d𝜉,

as 𝑔(⋅) is the density function of 𝜉1 + 𝜉2 by definition.
Summing up components (1) through (5) and adding the cost of one

ound of therapy, 𝑐 with delay 𝑡 multiplied by the probability of paying
t gives the formula stated by the proposition.

emma 3.2

1. (10) is obtained from (9) by setting 𝑡 = ∞.
2. To calculate positive component of the payoff (without toxicity

nd costs), we substitute 𝑡 = �̂� = 𝑧𝑖 = 𝑐 = 0 into (9) to obtain

𝑉 𝑖(𝑥, 0) = 1
𝛼𝑖 + 𝜌

+
𝜆𝑖

𝜌(𝛼𝑖 + 𝜌)
+

𝛾𝑖
𝛼𝑖 ∫

𝑉 𝑖+1(𝑥, 0)e−𝜌𝜉𝑓 (𝜉)d𝜉

+
𝛽𝑖

(𝛼𝑖 + 𝜌)(𝛿𝑖+1 + 𝜌)
+

𝛽𝑖
𝛼𝑖 ∫

𝑉 𝑖+1(𝑥, 0)e−𝜌𝜉𝑔(𝜉)d𝜉.

By point 1, we may substitute 𝑉 𝑖+1(𝑥, 0) = 𝐵𝑖(𝜌). Evaluating the
integrals gives

= 1
𝛼𝑖 + 𝜌

+
𝜆𝑖

𝜌(𝛼𝑖 + 𝜌)
+

𝛾𝑖
𝜔𝑖 + 𝜌

⋅
1

𝛼𝑖 + 𝜌
+

𝛽𝑖
(𝛼𝑖 + 𝜌)(𝛿𝑖+1 + 𝜌)

+
𝛽𝑖

𝛼𝑖 + 𝜌
⋅

𝛿𝑖+1
𝛿𝑖+1 + 𝜌

⋅
1

𝜔𝑖 + 𝜌

= 1
𝛼𝑖 + 𝜌

(

1 +
𝜆𝑖
𝜌

+
𝛾𝑖

𝜔𝑖 + 𝜌
+ 𝛽𝑖

(

1
𝛿𝑖+1 + 𝜌

+
𝛿𝑖+1

(𝛿𝑖+1 + 𝜌)(𝜔𝑖 + 𝜌)

))

= 𝐴𝑖(𝜌).

By similar calculations the payoffs from toxicity equal (𝑧𝑖 + �̂�)𝐴𝑖(𝜌+ 𝜁 ),
hile the cost is a lump-sum −𝑐. Adding these together gives (11).

3. Calculating the positive components amounts to substituting �̂� =
𝑖 = 𝑐 = 0 into (9). This yields

𝑖(𝑥, 0) = 𝐵𝑖(𝜌)(1 − e−(𝜔𝑖+𝜌)𝑡) + e−(𝜔𝑖+𝜌)𝑡𝐴𝑖(𝜌)

here the second component follows from the calculations of the
ositive component of 2. The toxicity can be deduced as

𝑧𝑖𝐵𝑖(𝜌 + 𝜁 )(1 − e−(𝜔𝑖+𝜌+𝜁 )𝑡) − e−(𝜔𝑖+𝜌)𝑡(𝑧𝑖e−𝜁𝑡 + �̂�)𝐴𝑖(𝜌 + 𝜁 ).

dding these together with the lump-sum cost −𝑐, factoring in the delay
nd the probability of paying the cost leads to (12) as stated.



Journal of Theoretical Biology 551-552 (2022) 111237P. Bayer et al.

g

t

e

T
d

𝑡

p

t
i

h

h

t
r
𝑡
o

𝑧

i

o

2

𝑇

T
t
a
t
t
t

𝑍

T

𝑎

Proposition 3.3

We take a treatment strategy 𝑥 ∈ 𝑋𝑖+1 and evaluate it in state 2(𝑖)

iven toxicity level 𝑧𝑖. To find the optimal 𝑥(𝑖, 𝑧𝑖) = 𝑡 we differentiate
𝑉 𝑖+1(𝑥, 𝑧𝑖) (deduced from Lemma 3.2) with respect to 𝑡 to give

𝜕𝑉 𝑖(𝑥, 𝑧𝑖)
𝜕𝑡

= e−(𝜔𝑖+𝜌)𝑡 − 𝑧𝑖e−(𝜔𝑖+𝜌+𝜁 )𝑡 + e−(𝜔𝑖+𝜌)𝑡

𝐵𝑖(𝜌)
(

�̂�𝐴𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌) + 𝑐
)

+ e−(𝜔𝑖+𝜌+𝜁 )𝑡

𝐵𝑖(𝜌 + 𝜁 )
𝐴𝑖(𝜌 + 𝜁 ).

Multiplying by e(𝜔𝑖+𝜌+𝜁 )𝑡 and rearranging, the sign of the derivative is
he same as that of

𝜁𝑡

𝑑1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

1 −
𝐴𝑖(𝜌)
𝐵𝑖(𝜌)

+
�̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐

𝐵𝑖(𝜌)

)

+𝑧𝑖

−𝑑2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝐴𝑖(𝜌 + 𝜁 )
𝐵𝑖(𝜌 + 𝜁 )

− 1
)

= 𝑑1e𝜁𝑡 − 𝑑2𝑧𝑖.

here are four cases: 1. If 𝑑1 and 𝑑2 are both negative, then the
erivative equals zero if

̂ = 1
𝜁
ln
(

𝑧𝑖
𝑑2
𝑑1

)

,

rovided that 𝑧𝑖 > 𝑑1∕𝑑2. If so, then 𝜕(𝑉 𝑖(𝑥, 𝑧𝑖))2∕𝜕𝑡2 is negative due to
𝑑1 being negative, hence 𝑡 is indeed a maximizer, and 𝑧𝑖e−𝜁𝑡 = 𝑑1∕𝑑2 =
𝑧, thus the patient waits until toxicity falls to 𝑧. If 𝑧𝑖 < 𝑑1∕𝑑2, then
he first derivative is always negative, hence taking the next round
mmediately is optimal.

2. If 𝑑1 > 0 and 𝑑2 < 0, then the first derivative is positive for all 𝑡,
ence 𝑡 = ∞ is optimal.

3. If 𝑑1 < 0 and 𝑑2 > 0, then the first derivative is negative for all 𝑡,
ence 𝑡 = 0 is optimal.

4. If 𝑑1 and 𝑑2 are both positive, then if 𝑧𝑖 < 𝑧, then the first
derivative is positive for all 𝑡, meaning that 𝑡 = ∞ is optimal. If 𝑧𝑖 > 𝑧,
hen the first derivative starts negative at 𝑡 = 0, then turns positive and
emains positive as 𝑡 approaches infinity, meaning that either 𝑡 = 0 or
̂ = ∞ is optimal. Comparing the payoffs, we get that 𝑡 = 0 is best if and
nly if

𝑖 >
𝐵𝑖(𝜌) − 𝐴𝑖(𝜌) + �̂�𝐴𝑖(𝜌 + 𝜁 ) + 𝑐

𝐵𝑖(𝜌 + 𝜁 ) − 𝐴𝑖(𝜌 + 𝜁 )
= 𝑧′,

which is a stronger condition than 𝑧𝑖 > 𝑧.

Approximation method of Example 3.5

All transition parameters with the exception of the cure rate, 𝜆𝑖, are
ndependent if 𝑖. We assume a maximum number of treatments, 𝑁 , that

is, we set 𝑡𝑁 = ∞.

𝑉 𝑖(𝑥, 𝑧𝑖) =
𝑁
∑

𝑘=𝑖

(

𝑏(𝜌, 𝑘) − 𝑏(𝜌 + 𝜁, 𝑘)�̃�𝑘
)

e−(𝜔+𝜌)�̃�𝑘

+
𝑁−1
∑

𝑘=𝑖

(

𝑎(𝜌, 𝑘) − 𝑎(𝜌 + 𝜁, 𝑘)�̃�𝑘+1
)

e−(𝜔+𝜌)�̃�𝑘+1 . (14)

The components in (14) are as follows: We denote by 𝑡𝑘 the time of
delay before treatment round 𝑘 with 𝑡𝑁 = ∞. The series 𝑇𝑘 denotes
the times at which the patient’s toxicity increases as a result of the 𝑘th
round of treatment, which takes place time 𝑡𝑘 after the patient enters
2(𝑘). 𝑇𝑖 is taken to be 0, while for 𝑘 > 𝑖 we have

𝑇𝑘 =
𝑘−1
∑

𝑗=𝑖
𝜙𝑘 +

𝑘
∑

𝑗=𝑖
𝑡𝑗 ,

with 𝜙𝑘 being the random variable denoting the length of the 𝑘th
round of therapy from its initiation (i.e. when toxicity increases) to its
termination, conditional on the fact that the patient proceeds to state
2(𝑘+1).

To get an approximation, we replace 𝑇𝑘 in (14) by its expected
̃

14

value, 𝑇𝑘, leading to an unbiased estimate of it. Given the patient’s
strategy, the waiting times 𝑡𝑗 are fixed, while the expected value of 𝜙𝑘
is given by

1
𝜆𝑘 + 𝛽 + 𝛾 + 𝜇

+
𝛽

𝛿(𝛽 + 𝛾)
,

f which the first component is the expected time spent in state 2(𝑘)

while waiting for the 𝑘th round to take effect and the second is the
expected time spent in state 1(𝑘+1), waiting for progression to state
(𝑘+1), leading to 𝑇𝑖+1 = 𝑡𝑖

̃𝑘 =
𝑘−1
∑

𝑗=𝑖

(

1
𝜆𝑗 + 𝛽 + 𝛾 + 𝜇

+
𝛽

𝛿(𝛽 + 𝛾)

)

+
𝑘
∑

𝑗=𝑖
𝑡𝑗 .

he estimate �̃�𝑘 denotes the approximation of the patient’s toxicity at
he time of receiving the 𝑘th therapy, i.e. at time 𝑇𝑘. For simplicity
nd computational ease, we approximate the patient’s toxicity level at
he time of entering state 2(𝑘) by substituting the expected time into
he toxicity Eq. (6), giving a slightly biased estimate of the patient’s
oxicity8:

̃𝑘 = 𝑧(𝑧𝑖, 𝑇𝑘).

he two major components in (14) are

(𝜌, 𝑘) =
(

1 +
𝜆𝑘
𝜌

+
𝛽

𝛿 + 𝜌

)

(

𝛾𝑘
∏𝑘

𝑗=1(𝛼𝑗 + 𝜌)

)

(

𝛽
𝛾

𝛿
𝛿 + 𝜌

+ 1
)𝑘

(15)

and

𝑏(𝜌, 𝑘) = 1
𝜔 + 𝜌

(

1 − 𝑒−(𝜔+𝜌)𝑡𝑘+1
)
⎛

⎜

⎜

⎝

𝛾𝑘
∏𝑘−1

𝑗=1 (𝛼𝑗 + 𝜌)

⎞

⎟

⎟

⎠

(

𝛽
𝛾

𝛿
𝛿 + 𝜌

+ 1
)𝑘

. (16)

To get a visual intuition in deriving (14), from Fig. 1, imagine that we
fix the maximum number of treatments at 𝑁 , reducing the model to a
finite series of states. We descend 𝑁 layers in the figure, then calculate
all the possibilities to arrive at either state 0 or state 3 after at most
𝑁 treatments by simply counting the number of paths. Each new layer
can be reached one of two ways, either a direct transition from state
2(𝑖) to 2(𝑖+1) with rate 𝛾, or an indirect one from 2(𝑖) to 1(𝑖+1) at rate 𝛽,
then from 1(𝑖+1) to 2(𝑖+1) at rate 𝛿.

The approximations of Table 8 are therefore results of numerically
maximizing (in Wolfram Mathematica) equations of the form (14),
subject to 𝑡𝑘 ≥ 0, and entering 𝜆𝑘 = 𝜆𝑘+1 into (15).
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