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A B S T R A C T   

Natural hazards may rapidly lead to a massive domino chain in chemical industrial parks (CIPs). This work 
develops a high-efficiency and systematic analytical framework that is applicable to a broad range of uncertain 
and time-varying factors related to the evolution process of natural hazard-induced domino chain (NHDC). 
Specifically, the evolution mechanism of NHDC is revealed from a macro-systemic perspective. An event-driven 
disaster chain evolution system is developed, of which the system state transition is formulated by a Markov 
decision process and a temporal-difference learning algorithm. A system dynamic risk model is proposed to 
analyze the dynamic risk associated with NHDC. An earthquake-induced Na-tech scenario is adopted to 
demonstrate the methodology. Computational results indicate that the proposed methodology is competitive in 
simulating large-scale system state transition spaces. The involvement of natural hazards would lead to a more 
complex and severe evolution pattern. Five distinctive stages of the whole NHDC were identified. We found that 
the value of system dynamic risk is likely to surge in the deterioration stage. Our methodology can dynamically 
identify the critical system temporal intervals and units at each evolution stage, which has the potential to 
support the prevention and mitigation of such catastrophic chain events.   

1. Introduction 

With the advancement of Industry 4.0, chemical industrial parks 
(CIPs) are becoming larger and more complicated to achieve a higher 
level of technical functionality [1–3]. A CIP is a typical accident-prone 
safety-critical system. Natural hazards such as hurricanes, lightning, 
earthquakes and floods may rapidly lead to a series of loss of contain-
ment (LOC) events in CIPs, causing fires, explosions, or toxic cloud 
emissions [4]. These technological accidents triggered by natural di-
sasters are termed as Na-tech events, which was first coined by Show-
alter and Myers [5]. Numerous previous studies [6–9] have shown that 
there appears to be an increase in frequency and severity of Na-tech 
events. More alarmingly, to realize mutual cooperation, division and 
modern production, a large amount of hazardous materials are stored, 
transported, and processed in CIPs, of which a LOC event can cause 

domino effects and multiple hazards [10]. Up to now, domino effects 
triggered by natural hazards have imposed tremendous challenges on 
society, environment, and economy [11]. The typical examples include: 
the Great East Japan Earthquake in 2011, which caused serious fires and 
explosions in Sendai and Chiba [9,12]; the Wenchuan earthquake in 
2008, which caused the release of over 100 tons of liquid ammonia in 
Shifang city [13]; and hurricanes “Katrina” and “Rita” in 2005, which 
caused multiple damages to about 611 industrial installations in Gulf of 
Mexico [14]. Thus, the analysis of the natural hazard-induced domino 
chain (NHDC) is essential to ensure safety and continuous production 
within the chemical process industry. 

Recently, the increasing catastrophic destruction associated with Na- 
tech events has raised the awareness of industries, government and 
academia [13]. Several countries and regions adopted specific regula-
tions to address Na-tech events, such as Seveso Directives III [15], 
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California Accidental Release Prevention [16] and OECD Guiding Principles 
for Chemical Accident Prevention, Preparedness and Response [13]. At 
present, studies on Na-tech events mainly focus on historical accident 
statistical analysis [5–7], vulnerability assessment [8,17,18], risk anal-
ysis [2,19,20], accident prevention and mitigation [19,21], etc. Ad-
vances in lessons learned from past Na-tech events have led to the 
development of many useful approaches that specifically address 
hurricane-related Na-tech events, lightning-related Na-tech events, 
earthquake-related Na-tech events and floods-related Na-tech events [2, 
13,20]. According to the past accident analysis, the characteristics of 
domino chains triggered by different primary hazards are stated in 
Table 1. 

As shown in Table 1, the primary accident scenarios of NHDC may 
consist of multiple simultaneously failing hazardous installation units 
(HIUs) [9,12]. The combination of primary accident scenarios is 
extremely complex and highly uncertain. Moreover, natural disasters 
can not only cause destructive damage to hazardous installation units 
(HIUs), but also destroy safety barriers and exacerbate the evolution of 
domino chains [22]. Thus, the NHDC usually propagates faster than 
other types of catastrophe chains, which entail the loss of life and 
property along with negative environmental impacts [1,10]. The acci-
dent statistics [23] show that the most frequent technological scenarios 
in CIPs caused by natural disasters include fires and explosions, of which 
domino effects are easily triggered. However, most of above research 
only focuses on installation failures caused by natural disasters and their 
secondary technological accidents, and rarely considers the propagation 
of subsequent domino accidents. The main characteristic of domino ef-
fects is the expansion and escalation of accident scenarios, linking a 
primary scenario with one or several higher level scenarios [24]. The 
traditional quantitative domino risk assessment framework [25] only 
considers the first propagation level of domino effects. Numerous studies 
[20,26] have pointed out however that the risk of high-level domino 
propagation cannot be ignored. 

To cope with the complexity of higher level propagations, existing 
studies were mainly developed on the network graph, of which each 
involved units can be regarded as a network node, interactions between 
nodes are modeled by various forms of network arcs [11,27,28]. 
Another common class of methodologies were based on stochastic 
simulation, of which the Monte Carlo method [12,26,27,29,30] has been 
widely used to cope with the complexity of high-level domino propa-
gations. An overview of representative studies for modeling the evolu-
tion of domino chains is shown in Table 2. As show in Table 2, research 
on fire-related accident evolution is abundant. Little attention has been 
paid to the spatial-temporal evolution of NHDC. Preventing and miti-
gating such catastrophic chain events are still challenging problems, as 
the evolution process of NHDC is associated with high uncertainty and 
complicated dynamic conditions. To sum up, defects in the current 
research field are mainly reflected in the hereunder detailed three as-
pects. Firstly, with the expansion of the accident scenarios, two or more 
hazards (such as earthquakes, hurricanes, floods, fires, explosions, and 
toxic cloud emissions) may be combined in an isolated, simultaneous, or 

Table 1 
The characteristics of domino chains triggered by different primary hazards.  

Accident Type Traditional domino chain Natural hazard-induced 
domino chain 

Hazards Mechanical failure, Human 
error, Equipment aging, etc. 

Earthquake, floods, hurricane, 
etc. 

Primary 
Accident 
Scenarios 

Single failure unit Multiple failure units 

Escalation 
factors 

Thermal radiation, Shock 
wave overpressure, Propellant 
fragments 

Thermal radiation, shock 
wave overpressure, propellant 
fragments 

Protection 
measures 

Safety barriers functioning Safety barriers not available  

Table 2 
An overview of representative studies for modeling the evolution of domino 
chains.  

Authors 
(Year) 

Probabilistic 
Models 

Accident 
Scenarios 

Spatial- 
temporal 
Characteristics 

Main Work 

Khakzad 
and 
Reniers 
[28] 

Graph 
metrics 

Domino 
accidents 
triggered by 
fire 

Spatial The vulnerability 
of process plants 
was analyzed by 
graph metrics 
such as 
betweenness, 
out-closeness, 
and in-closeness 
in directed 
graphs, and 
closeness in 
undirected 
graphs. The out- 
closeness metric 
was adopted to 
model the 
importance of an 
installation unit 
to the evolution 
of domino chain. 

Chen 
et al.  
[24] 

Dynamic 
Graph 

Domino 
accidents 
triggered by 
fire 

Spatial- 
temporal 

A methodology 
involving a 
domino 
evolution graph 
model and a 
minimum 
evolution time 
algorithm was 
developed to 
model the 
spatial-temporal 
evolution of 
domino 
accidents 
triggered by fire. 
The synergistic 
effects and 
parallel effects of 
the spatial 
evolution were 
considered. 

Kamil 
et al.  
[31] 

Petri-nets Domino 
accidents 
triggered by 
fire 

Spatial- 
temporal 

A generalized 
stochastic Petri- 
net model was 
developed to 
model the 
extension 
likelihood of 
domino 
scenarios, which 
can handle time- 
dependent 
failure behavior 
of the process 
component in 
combined 
loading. 

Zeng 
et al.  
[32] 

Dynamic 
Bayesian 
Network 

Domino 
accidents 
triggered by 
fire 

Spatial- 
temporal 

The dynamic 
bayesian 
network was 
adopted to model 
the spatial- 
temporal 
propagation 
pattern of 
domino effects, 
of which the 
impact of add-on 
(active and 
passive) safety 
barriers and the 

(continued on next page) 
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chain reaction manner, resulting in the formation of complex domino 
chains. The involvement of multiple primary accident sources will 
further aggravate the accident, and the accident scenario will be more 
complex. The current studies cannot fully address the severe and com-
plex multi-hazard scenarios caused by NHDC. 

Secondly, the evolution of NHDC can be regarded as the combination 
of the danger of hazard-formative factors, the sensitivity of hazard- 
formative environment, and the vulnerability of hazard-affected ob-
jects, which introduce a lot of uncertainties and dynamic conditions into 
the system response process [3,11]. It is still challenging to incorporate 
the existing methodologies into the simulation of large-scale system 
state transition spaces. To cope with the complex and uncertain propa-
gation process of domino effects, a large number of iterations need to be 
carried out, which is very time-consuming. At last, many existing studies 
mainly focus on the release of hazardous materials caused by equipment 
structural damage, ignoring the difference in the accident consequences 
caused by the failure of different HIUs. 

To solve the research gaps mentioned above, this paper aims to 
provide a high-efficiency and systematic analytical framework that is 

Table 2 (continued ) 

Authors 
(Year) 

Probabilistic 
Models 

Accident 
Scenarios 

Spatial- 
temporal 
Characteristics 

Main Work 

synergistic effect 
of multiple fires 
were considered. 

Huang 
et al.  
[12] 

Monte Carlo 
Simulation 

Domino 
accidents 
triggered by 
earthquake 

Spatial The Monte Carlo 
simulation was 
adopted to model 
the complicated 
domino accident 
scenarios under 
earthquake. 
Domino 
probabilities at 
different levels 
were analyzed 
for specific 
primary scenario 
and overall 
scenarios. 

Ovidi 
et al.  
[29] 

Monte Carlo 
Simulation 

Domino 
accidents 
triggered by 
fire 

Spatial A agent-based 
stochastic 
simulation 
method was 
proposed to 
model the 
evolution of 
domino effect in 
the contexts of 
add-on 
protections. The 
transient 
evolution of 
multiple 
scenarios and 
related 
synergistic 
effects, and the 
effect of safety 
barriers were 
considered. 

Huang 
et al.  
[26] 

Monte Carlo 
Simulation 

Domino 
accidents 
triggered by 
fire 

Spatial- 
temporal 

A matrix 
calculation- 
based Monte 
Carlo simulation 
method was 
proposed to 
analyze dynamic 
evolution process 
of domino 
effects. 

Chen 
et al.  
[27] 

Dynamic 
Graph Monte 
Carlo 

Multi-hazard 
accident 
scenarios 
(fires, 
explosions, 
and toxic gas 
diffusion) 

Spatial- 
temporal 

A dynamic graph 
Monte Carlo 
method was 
proposed to 
model the 
evolution of 
multi-hazard 
accident 
scenarios and 
assess the 
vulnerability of 
humans and 
installations 
exposed to such 
hazards. The 
potential 
contribution of 
explosions in the 
accident 
evolution process 
was specifically 
concerned. 

Zeng 
et al.  
[20] 

Stochastic 
Simulation 

Domino 
accidents 

Spatial A comprehensive 
procedure was 
developed based  

Table 2 (continued ) 

Authors 
(Year) 

Probabilistic 
Models 

Accident 
Scenarios 

Spatial- 
temporal 
Characteristics 

Main Work 

triggered by 
flood 

on the 
characteristics of 
domino effects 
triggered by 
floods, and the 
fragility model, 
simulation of 
flow 
interference, 
escalation 
probability 
estimation, and 
risk 
recomposition 
were combined. 

Lan et al. 
[11] 

Static Graph Domino 
accidents 
triggered by 
hurricane 

Spatial A network-based 
approach was 
developed to 
model the Na- 
tech related 
domino effect, 
which adopted 
escalation and 
probability 
thresholds to 
reduce the 
computational 
complexity. 

Men et al. 
[30] 

Stochastic 
Simulation 

Domino 
accidents 
triggered by 
natural 
hazards 

Spatial Inspired by the 
multi-source 
multi-level 
propagation 
pattern of 
domino chain, a 
Markov process- 
based accident 
propagation 
model was 
proposed to cope 
with the 
uncertain and 
complex accident 
scenarios 
associated with 
the evolution 
process of 
natural hazard- 
induced domino 
chain.  
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applicable to a broad range of uncertain and time-varying factors related 
to NHDC. In this promotion, an event-driven disaster chain evolution 
system (ED-DCES) is developed to clarify the accident propagation 
characteristics. Through capturing a series of discrete system events, the 
event-driven mechanism of ED-DCES can discretize the complex evo-
lution process into a set of system state sequences with a limited number 
of timestamps. Then, the Markov decision process is proposed to 
formulate the accident evolution process, which provides a probabilistic 
methodology for modeling a discrete-time state-based accident evolu-
tion in situations where there are sequential uncertainties. Moreover, a 
dynamic risk analysis is developed for the system dynamic response 
process. The reward of each system state is determined by the system 
risk of the corresponding accident scenario. To overcome the dimension 
explosion caused by enormous systems states and actions, a temporal- 
difference learning algorithm (TDLA) is used to obtain the optimal 
evolution policy. TDLA inherits the advantages of dynamic program-
ming and Monte Carlo simulation, which does not require a complete 
state sequence for optimization [33]. Although modeling the 
spatial-temporal evolution of NHDC in CIPs is the main motivation of 
this work, the proposed methodology has the potential for application to 
many other complex safety-critical systems. For these complex 
safety-critical systems, the disturbances in one sub-system may spread to 
the other one, leading to a disruptive avalanche of subsequent failures 
[2,3]. Through capturing the dynamic response process of a system 
subjected to disturbance, the proposed methodology can quickly iden-
tify the critical system units and temporal intervals, which can provide 
support for the enhancement of the safety and reliability of complex 
safety-critical systems. 

The rest of this paper is stated as follows. The development of the ED- 
DCES is expounded in Section 2. Section 3 introduces the proposed 
probabilistic methodology. Section 4 provides a case study to demon-
strate the proposed methodology. At last, conclusions are drawn in 
Section 5. This paper an additional Appendix. A list of nomenclature and 
methodology verification results are available in the Appendix. 

2. Event-driven disaster chain evolution system 

To analyze the spatial-temporal characteristics of domino effects 
triggered by natural hazards, an ED-DCES is proposed in this section. 
The general system dynamic response process is illustrated in Fig. 1. The 
system activation conditions are equivalent to the occurrence conditions 
of NHDC. Based on the accident-causing theory [34], the occurrence and 
development process of industrial accidents affected by natural disasters 
are analyzed, and the system activation conditions are stated as follows: 

(1). Natural hazards are regarded as the primary disasters causing fail-
ures of HIUs and generating secondary technological hazards; (2). Sec-
ondary technological hazards cause adverse effects to adjacent HIUs; 
(3). The failure energy of hazard units exceeds the failure threshold of 
HIUs. 

As indicated in Fig. 1, natural hazards can produce LOC events in 
HIUs that store hazardous materials, causing fires, explosions, or toxic 
cloud emissions [13,23]. The technological hazards such as heat radia-
tion, shock waves, and propellant fragments generated by fires and ex-
plosions can easily cause damage to the adjacent HIUs, triggering a 
domino chain of accident [2,3,30]. Compared with traditional domino 
chains, the coupling effect of technological accidents and natural di-
sasters can cause more severe casualties, property losses, and environ-
mental pollution [2,3]. For example, natural disasters may damage the 
safety protection system. Moreover, other critical infrastructures (such 
as safe passages) and lifelines (such as water supply systems, power 
systems, etc.) in the accident area may also be affected by natural di-
sasters, which will greatly hinder the efficiency and effectiveness of 
emergency management [9,12]. The various features of ED-DCES de-
signs are stated in next sub-sections, including the System Units in 
Section 2.1, the System State in Section 2.2, the Event-driven mecha-
nism in Section 2.3. 

2.1. System units 

The proposed ED-DCES consists of an operational hazardous instal-
lation unit set (U 1), a hazard unit set (U 2), a vulnerable unit set (U 3) 
and an environment unit set (U 4), i.e.: 

ED⋅DCES = 〈U 1,U 2,U 3,U 4〉 (1)  

where U 1 refers to the operational HIUs that may cause technological 
hazards; U 2 refers to the hazard units which can cause adverse effects to 
vulnerable units and HIUs; U 3 refers to the objectives affected and 
damaged by hazards, which mainly includes various human crowds; U 4 
is closely related to the derivation of hazards, referring to the relation-
ship among the natural environment, the human environment, and the 
industrial environment, such as meteorological conditions, personnel 
distribution, management factors, and land-use layout. 

2.2. System state 

In CIPs, domino effects are mainly propagated among the HIUs [35]. 
According to the potential technological hazards associated with HIUs 

Fig. 1. The general system dynamic response process.  
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[27,36], five states of HIUs are defined in Table 3. 
Suppose that H = {hi|i = 1, 2,…|H|} is the HIU set containing |H|

HIUs. The state of system units can be expressed by a state vector S = (s1,

s2,…, s|H|) ∈ S . S is the state space of the proposed ED-DCES. 

si =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, the state of hi is operational
1, the state of hi is Release
2, the state of hi is Fire
3, the state of hi is Explosion
4, the state of hi is Extingueshed

i = 1, 2,…, |H| (2)  

where si is the state of HIU hi; the operational hazardous installation unit 
set U 1 = {hi|si = 0}; the hazard unit set U 2 = {hi|si = 1 ∨ si = 2 ∨ si =

3}. System units U 1 and U 2 can be obtained by the state vector S. 

2.3. Event-driven mechanism 

2.3.1. System event type 
In this study, the system dynamic response process is driven by a 

series of discrete system events. The occurrences of system events cause 
the corresponding state transition, which in turn updates the system 
units. According to the event trees provided by Vílchez et al. [36], seven 
types of events Φ = {φ0,φ1,φ2,φ3,φ4,φ5,φ6} that may occur during the 
evolution process of NHDC are given in Table 4. The relationship be-
tween various system events and system state transitions is shown in 
Fig. 2. 

2.3.2. Discretization procedure of system evolution time 
The system evolution time period of ED-DCES Θ is discretized into a 

set of non-equipotent intervals. 

Θ = {t0, t1, t2,…tK} (3)  

tk+1 = tk + Δk, ∀tk, tk+1 ∈ Θ (4)  

Δk = min
{

τk
i

⃒
⃒i= 1, 2,…, |H|

}
, k = 0, 1, 2,…,K, ∀τk

i ≥ 0 (5)  

where Θ is the time domain of the whole system dynamic response 
process; t0 = 0 is the activation time of ED-DCES; tK is the termination 
time of ED-DCES. The above discretized time nodes t0, t1, t2,…tK ∈ Θ are 
used to record the occurrence time of system events. For ∀hi ∈ H, τk

i is its 
duration of the current state sk

i . The corresponding event will occur only 
when the duration of the current state is exhausted. Thus, the system 
state remains constant for a certain period of time Δk, and Δ0,Δ1,Δ2,… 
,ΔK− 1 are denoted as the non-equipotent intervals. 

The thermal radiation and shock wave caused by fires and explosions 
are the main escalation factors with the propagation of domino effects 
[20]. The technological hazards generated by fires, explosions and 
leakages are respectively denoted as F k, E k and Z k, F k, E k,

Z k ∈ U k
2. Specifically, the synergistic effect of multiple fires is consid-

ered. The thermal radiation intensity μk
f and shock wave overpressure μk

e 

received by HIU hi at time node tk can be calculated as follows: 

μk
f (hi) =

∑

hj∈F k

fji, hi ∈ U
k
1 (6)  

μk
e(hi) = max{eli|hl ∈ E k}, hi ∈ U

k
1 (7)  

where fji is the thermal radiation intensity received by HIU hi from fire 
hazard hj ∈ Fk; eli is the shock wave overpressure received by HIU hi 

from explosion hazard hl ∈ E k. Assume that fft(hi) and eft(hi) are the 
fire-related escalation threshold and explosion-related escalation 
threshold associated with HIU hi, the HIU may fail only when the cor-
responding thermal radiation intensity μk

f (hi) or the corresponding shock 
wave overpressure μk

e (hi) exceed the escalation thresholds of possible 
domino effects [37,38]. The following illustrative example shown in 
Fig. 3 is adopted to demonstrate the fire-related domino effects propa-
gation process. 

Illustrative example: Suppose that HIU hi starts receiving effective 
heat radiation (μk

f (hi) ≥ fft(hi), μk
e (hi) < eft(hi)) at time node tk. The 

negative effects associated with fire usually persist for a long time [20]. 
ttf is the “time to failure” of the installation suffering the heat radiation 
caused by fires. The duration (min) of HIU hi ∈ U k

1 can be obtained as 
follows [35]: 

Table 3 
Five states of HIUs.  

System Event 
Type 

Event Description 

Operational The HIU is not failed. 
Release The HIU is physically damaged, resulting in the release of 

hazardous materials. 
Fire The HIU is on fire, causing heat radiation 
Explosion The LOC event of the HIU induces an explosion, causing heat 

radiation, causing shock wave overpressure and propellant 
fragments. 

Extinguished The HIU is failed but does not produce any technological 
hazards.  

Table 4 
Seven types of system events.  

Event Type Event Description 

Maintain φ0 The state of HIU does not change at the next time. 
Release φ1 The state of HIU changes from ‘Operational’ to ‘Release’ at the 

next time. 
Immediate Ignition 

φ2 

The state of HIU changes from ‘Operational’ to ‘Fire’ at the 
next time. 

Immediate 
Explosion φ3 

The state of HIU changes from ‘Operational’ to ‘Explosion’ at 
the next time. 

Delayed Ignition φ4 The state of HIU changes from ‘Release’ to ‘Fire’ at the next 
time. 

Delayed Explosion 
φ5 

The state of HIU changes from ‘Release’ to ‘Explosion’ at the 
next time. 

Extinguish φ6 The state of HIU changes from ‘Release’/’Fire’/’ Explosion’ to 
‘Extinguished’ at the next time.  

Fig. 2. The relationship between system events and system state transitions.  

Fig. 3. An illustration of the fire-related domino effects propagation process.  
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τk
i = ttf =

exp
(

aVi
b + cln

(
μk

f (hi)
)
+ d
)

60
(8)  

where Vi is the volume of HIU hi; the values of a, b, c, d are stated in 
Table 5 [35]. 

According to the superimposed effect model [24], the duration τk+1
i 

at the next time node can be obtained as follows: 

τk+1
i =

(
μk+1

f (hi)

μk
f (hi)

)c
(
τk+1

i − Δk
)

(9) 

As shown in Fig. 2, if τk+1
i = 0, four system events φ0,φ1,φ2,φ3 are 

available for HIU hi. If HIU hi is not physically damaged at time node 
tk+1, i.e., the occurrence of φ0, the duration remains zero until the state 
changes. As mentioned above, large-scale natural hazards may greatly 
hinder the efficiency and effectiveness of emergency management. Thus, 
if HIU hi is physically damaged at time node tk+1 and causes a fire, i.e., 
sk+1
i = 2, the duration is the burnout time of the fire (ttb(hi)) without 

human intervention. When the fire duration reaches ttb, the corre-
sponding HIU immediately converts to “Extinguished”. For explosion 
accident sk+1

i = 3, sk+2
i is transitioned to “Extinguished” instantaneously, 

i.e., Δk+1 = 0, tk+1 = tk+2, sk+2
i = 4. The state of extinguished HIUs will 

not change during the subsequent accident expansion, i.e., τk+2
i = ∞. 

An explosion is a rapid expansion in volume associated with an 
extremely vigorous outward release of energy, usually travels via shock 
waves [39]. The negative effects of explosions are usually brief and 
sharp. Thus, if μk

e (hi) ≥ eft(hi), HIU hi ∈ U k
1 may be physically damaged 

immediately, i.e., τk
i = 0. If HIU hi is physically damaged at time node tk 

and causes a release accident, i.e., sk
i = 1, then τk

i is equal to the ignition 
time itk

i . Usually, itk
i is regarded as a random variable [27]. If the ignition 

time is greater than the release time rt(hi), then the subsequent fire or 
explosion will not occur. 

Thus, the evolution process of the NHDC can be modeled by the 
following state matrix S : 

S =

⎛

⎝
S1
⋮

SK

⎞

⎠

K×|H|

(10)  

where Sk, k = 1, 2,3,…,K is the system state at time node tk, specifically 
S1 is the primary accident scenario caused by Na-tech event; SK is the 
termination state of the NHDC. The termination state condition is 
defined as follows: 

If (F k =∅) ∨ (E k =∅), then tk = tK (11)  

3. Probabilistic methodology 

The proposed ED-DCES can discretize the complex evolution process 
into a set of system state sequences with limited number of timestamps. 
In this section, the sequential uncertainties associated with the discrete- 
time state-based system dynamic response process can be easily modeled 
by the Markov decision process. According to the characteristics of 
multilevel propagation pattern of domino chain [24,30,40], the system 
dynamic response process can be regarded as a stochastic process with 
Markov property [30,41], of which the probability distribution of future 
system states is only determined by the present system state. The inde-
pendence between non-adjacent system states in the discrete system 

state sequence can avoid a lot of computational redundancy, which 
greatly simplifies the difficulty of uncertainty analysis in such dynamic 
environment. 

Formally, the following Assumption 1 is stated. 

Assumption 1. Suppose that the evolution process of NHDC is a 
Markov process {X(t)|t ∈ Θ}, S is the stated space, 
∀ t1 < t2 < … < tk < t, x1,x2,…,xk,x ∈ S , the system state X(t) is only 
related to X(tk) = xk. Thus, the evolution process of NHDC satisfies the 
Markov property [30,41], i.e.: 

P{X(t)= x|X(tk)= xk,…,X(t1)= x1} = P{X(t)= x| X(tk)= xk} (12)  

According to Assumption 1, the system state transition is modeled by 
the Markov decision process (MDP). 

3.1. Markov decision process 

MDP provides a probabilistic methodology for modeling a discrete- 
time state-based accident evolution in situations where there are 
sequential uncertainties. The proposed MDP consists of six model tuples, 
which is formulated as follows: 

MDP = 〈S ,A ,P ,R ,G , π〉 (13)  

where S is the system state space mentioned above; A is the action 
space, the occurrence of system event work as the action, ∀ a ∈ A de-
notes a specific system event set, S →a S′ ; P is the action state probability 
space; R is the reward; G is the return. π is the event occurrence policy. 
The following illustrative case shown in Fig. 4 is adopted to demonstrate 
the proposed MDP. 

Illustrative case: Suppose that H = {h1, h2, h3, h4} is a HIU set con-
taining four HIUs. The system state at time node tk ∈ Θ is denoted as 
Sk = (0,1,3,2). Ak is denoted as the available system action set at time 
node tk. Different actions taken by the system at time node tk will result 
in different system states at time node tk+1. When action ak = (φ0,φ4,φ6,

φ0) is adopted, the system state at time node tk+1 ∈ Θ is Sk+1 = (0,2,4,2). 
When ak = (φ0,φ2,φ6,φ6) is adopted, the system state at time node 
tk+1 ∈ Θ is Sk+1 = (2,2,4,4). With the available system action set Ak and 
the system state Sk, the event occurrence policy π is defined as follows: 

π(a|S) = P(ak = a|Sk = S), tk ∈ Θ (14)  

where P(ak = a|Sk = S) is the probability of taking action a ∈ Ak in state 
S. According to the action taken by the system at time node tk, the system 

Table 5 
The values of a, b, c, d [35].  

HIU Type a b c d 

Atmospheric − 2.67e-5 1.00 − 1.13 9.9 
Pressurized 8.845 0.032 − 0.95 0  Fig. 4. An illustration of Markov decision process.  
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state will be updated accordingly at time node tk+1, i.e. S →a S′ . At the 
same time (tk+1), the system will receive a reward for taking action a. In 
this study, the objective of MDP is to determine the optimal event 
occurrence policy π∗, that is, to identify the riskiest accident evolution 
pattern. The optimal event occurrence policy π∗ can be obtained by 
maximizing the value function vπ(S). 

The value function vπ(S) is defined as follows: 

vπ(S) = Eπ
(
Rk+1 + γRk+2 + γ2Rk+3 +… + γK− k− 1RK |Sk = S

)
= Eπ(Gk|Sk = S)

(15)  

where vπ(S) is an expect function used to represent the value after taking 
action in the case of policy π and state S; Rk+1 is the delayed reward for 
taking action at time node tk; γ ∈ [0,1] is the discounted factor. The 
accumulation of discounted rewards with subsequent state sequence 
{Sk, Sk+1,…, SK} is denoted as the return Gk = Rk+1 + γRk+2 + γ2Rk+3 +

…+ γK− k− 1RK. To introduce the value impact of the system action, the 
action value function is defined as follows: 

qπ(S, a) = Eπ(Gk|Sk = S, ak = a) (16) 

According to the formulation of value function vπ(S), the following 
Bellman equation can be obtained: 

vπ(S) =
(
Rk+1 + γRk+2 + γ2Rk+3 +… + γK− k− 1RK |Sk = S

)
(17.1)  

= Eπ
(
Rk+1 + γ

(
Rk+2 + γRk+3 +… + γK− k− 2RK

)
|Sk = S

)
(17.2)  

= Eπ(Rk+1 + γGk+1|Sk = S) (17.3)  

= Eπ(Rk+1 + γvπ(Sk+1)|Sk = S) (17.4) 

According to the Bellman equation, the recursive relation between 
adjacent system states Sk, Sk+1 can be obtained. Similarly, the action 
value function can be rewritten as follows: 

qπ(S, a) = Eπ(Rk+1 + γqπ(Sk+1, ak+1)|Sk = S, ak = a) (18) 

In the context of the event occurrence policy π, the value function 
vπ(S) is actually the expectation of all the action value functions qπ(S,a). 
Thus, the following transformation equations can be obtained: 
{ vπ(S) =

∑

a∈Ak

π(a|S)qπ(S, a)

qπ(S, a) = R(S
′

|S) + γP(S
′

|S, a)vπ(S
′

)

, S →a S′ (19)  

where P (S′

|S, a) refers to the probability of state S passing to state S′

after taking action a. In this study, the state transitions for the corre-
sponding actions are fixed, S →a S′ , thus, P (S′

|S,a) = 1. We have: 

vπ(S) =
∑

a∈A

π(a|S)(R (S′

|S) + γvπ(S
′

)), S →a S′ (20)  

where R (S′

|S) = E(Rk+1|S, a) is the immediate reward for taking action a 
in state S. In this study, the objective of MDP is to determine the optimal 
event occurrence policy π∗ so as to maximize the value function. 

vπ∗ (S) = argmax
π∗

vπ(S) (21)  

3.2. State transition probability 

In reality, uncertainty is one of the basic attributes of accident evo-
lution. As a result, many probabilistic models [2,17,25,35] have been 
developed to present a more realistic assessment by incorporating 
random characteristics of various risk factors. During the expansion and 
escalation of accident scenarios, the current system state at time node 
tk ∈ Θ has a probability of reaching each future system state at tk+1 ∈ Θ, 
and the probability is called as a transition probability PA(Sk+1|Sk). 
These basic probabilistic models [2,17,25,35] are adopted to obtain 

state transition probability values. 

3.2.1. The primary accident scenario 
According to the system activation conditions mentioned in Section 

2, it is assumed that the initial state of the system is safe, i.e.: 

S0 = O1 ×|H| (22)  

where S0 is the initial state of the system, all the entries in the vector S0 
are 0. 

For an Na-tech event, HIUs suffer from negative effects imposed by 
natural hazards. Suppose that N is a natural hazard unit, the failure 
probability of HIU hi ∈ H under the influence of natural hazard N is 
given as follows: 

P0
F(hi) = P(hi|N ) (23)  

where P(hi|N ) is the failure probability derived from the vulnerability 
model. Generally, the vulnerability assessment model [17] is deter-
mined by comparing the relationship between the intensity of natural 
hazards and the resistance of HIUs, which can be expressed as follows: 

P(hi|N ) = F(I(N )>R(hi)) (24)  

where F(⋅) is the mapping relation of the vulnerability model; I(N ) is the 
intensity of natural hazard unit N ; R(hi) is the resistance of HIU hi. The 
probabilities of hi being in five predefined states in the primary accident 
scenario is given as follows: 

PNa(S1(i))= {

1 − P0
F(hi), S1(i) = 0

P0
F(hi)PT(hi|R), S1(i) = 1

P0
F(hi)PT(hi|F), S1(i) = 2

P0
F(hi)PT(hi|E), S1(i) = 3

0, S1(i) = 4

(25)  

where PT(hi|R), PT(hi|F) and PT(hi|E) are the probabilities of three ac-
cident scenarios (release, fire and explosion) after installation failure. In 
practical engineering application, PT(hi|R), PT(hi|F) and PT(hi|E) can be 
obtained by the event tree analysis [36]. To sum up, the transition 
probability of the primary accident scenario can be formulated as 
follows: 

PA(S1 =(S1(1), S1(2),…, S1(|H|))|S0) =
∏|H|

i=1
PNa(S1(i)) (26)  

where PA(S1|S0) is the state transition probability (from S0 to S1), S1(i),
i = 1,2,…, |H| is the state of hi at time node t1, t1 = 0 is the activation 
time of ED-DCES. 

3.2.2. The domino accident scenario 
The technological hazards that can trigger the domino effects are 

mainly thermal radiation and shock wave overpressure generated by 
fires and explosions. The domino extension probability can be obtained 
by the classical Probit model [25]. During the propagation of domino 
effects (tk ∈ Θ, k ≥ 1), for the operational HIU hi ∈ U k

1, its failure 
probability Pk

F(hi) can be calculated as follows: 

Pk
F(hi) =

1̅̅
̅̅̅

2π
√

∫Y − 5

− ∞

e−
x2
2 dx (27)  

where Pk
F(hi) is the failure probability of HIU hi at time node tk; Y is the 

probit variable, the probit variable of an “average” installation can be 
calculated using Table 6 [25,35]. The fire included domino effect 
propagation probability Pk

fi and the explosion included domino propa-
gation probability Pk

ex of hi can be obtained by inserting μk
f (hi) and μk

e (hi)

into the Eq. (27). 
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Thus, the failure probability of HIU hi at time node tk can be re- 
formulated as follows: 

Pk
F(hi) = 1 −

(
1 − Pk

fi

)(
1 − Pk

ex

)
, ∀hi ∈ U

k
1 (28) 

Similarly, the probabilities of the operational HIU hi ∈ U
k
1 being in 

five predefined states at the next time node tk+1 can be calculated as 
follows: 

PD1 (Sk+1(i))= {

1 − Pk
F(hi), Sk+1(i) = 0

Pk
F(hi)PT(hi|R), Sk+1(i) = 1

Pk
F(hi)PT(hi|F), Sk+1(i) = 2

Pk
F(hi)PT(hi|E), Sk+1(i) = 3

0, Sk+1(i) = 4

, k ≥ 1, hi ∈ U
k
1, τk

i = 0 (29) 

For these units in the “Release” state Z k = {hj
⃒
⃒Sk(j) = 1}, their state 

transition probabilities can be calculated as follows: 

PD2 (Sk+1(j))= {

PT(hi|NC), Sk+1(i) = 1
PT(hi|DF), Sk+1(i) = 2
PT(hi|DE), Sk+1(i) = 3

, k ≥ 1, hi ∈ Z k, τk
i = 0 (30)  

where PT(hi|DF) and PT(hi|DE) are probabilities of delayed ignition and 
delayed explosion events, PT(hi|NC) is the probability of no subsequent 
deterioration after the occurrence of a release accident. Three proba-
bility parameters can be obtained by using event tree analysis [36]. 

To sum up, the transition probability of can be formulated as follows: 

PA(Sk+1|Sk) =
∏

hi∈U k
1

PD1 (Sk+1(i))
∏

hj∈Z k

PD2 (Sk+1(j)), k ≥ 1 (31) 

It is worth mentioning that the shock wave overpressure caused by 
the explosion is a kind of instantaneous damage. For the unit in the 
explosion state, it will be directly converted to the extinguished state in 
the next level of the accident scenario, and it will no longer participate in 
the subsequent accident evolution process. 

3.3. Model reward 

The evolution process of NHDC is often accompanied by the ampli-
fication of uncontrolled energy. Uncontrolled energy may cause serious 
damage to vulnerable units. According to the traditional quantitative 
risk assessment (QRA) framework [25], a risk value can be quantified as 
the product of accident consequence and accident probability. To 
involve the negative effects of associated with NHDC, the reward of MDP 
is defined as follows: 

R (Sk+1 = S′

|Sk = S) = PA(Sk+1 = S′

|Sk = S)PH(Sk+1 = S′

) (32)  

PH(Sk+1 = S
′

) =
1

|U 3|

∑

ui∈U 3

(
1 −

(
1 − Pfdeath

)
(1 − Pexdeath)(1 − Ptodeath)

)
(33)  

where the state transition probability PA(Sk+1 = S′

|Sk = S) can be ob-
tained by Eqs. (26) and (31); Pfdeath, Pexdeath and Ptodeath are the death 

probabilities of vulnerable unit, suffering fires, explosions and toxic 
cloud emissions; PH(Sk+1 = S′

) is the average individual death proba-
bility under the influence of a hazard unit set U k+1

2 , the probit variable 
of human injury Y is stated in Table 7 [25]. 

According to the value function mentioned above, the proposed MDP 
comprehensively considers the current reward and subsequent delayed 
rewards. Thus, the riskiest accident evolution pattern is obtained in 
terms of the accident probability and the accident consequence. 

3.4. System dynamic risk model 

This work expands the traditional QRA framework to further analyze 
the dynamic risk associated with the system dynamic response process. 
Following the Markov property mentioned in Assumption 1, the value of 
system dynamic risk at time tk ∈ Θ is determined by the riskiest system 
state Sk+1 at next time node tk+1 ∈ Θ. Thus, the following system dy-
namic risk model is defined: 

Risk(Sk = S) = max {PH(Sk+1 = S′

)PA(S
′

|S)|a ∈ Ak}, S →a S′

; S, S′

∈ S (34)  

where Risk(Sk = S) is the system dynamic risk at time tk ∈ Θ; PA(S
′

|S) is 
the system state transition probability from S to S′ ; PH(Sk+1 = S′

) is the 
average individual death probability caused by the system state S′ at 
time node tk+1, which is adopted to measure the consequence associated 
with S′ . According to the available system action set Ak at time node tk, 
all potential system states at time node tk+1 can be obtained. Through 
comparing the product of state transition probability PA(S

′

|S) and death 
probability PH(Sk+1 = S′

), the riskiest system state Sk+1 at next time node 
tk+1 ∈ Θ can be identified, and the corresponding product is regarded as 
the value of system dynamic risk at current time node tk. 

3.5. Temporal-difference learning algorithm 

To overcome the dimension explosion caused by enormous systems 
states and actions, a temporal-difference learning algorithm (TDLA) is 
used to obtain the optimal evolution policy. TDLA is a model-free al-
gorithm, which inherits the advantages of dynamic programming and 
Monte Carlo to predict the state value and optimal policy [33]. The 
purpose is to obtain the optimal policy. Specially, the return Gk is 
approximate as follows: 

Gk = Rk+1 + γv(Sk+1) (35)  

where Rk+1 is the reward at time node tk+1; v(Sk+1) is the state value of 
Sk+1. 

Since TDLA does not require a complete state sequence, the iterative 
equations for the value function are defined as follows: 

v(Sk) = v(Sk) + α(Gk − v(Sk)) (36)  

q(Sk,Ak) = q(Sk,Ak) + α(Gk − q(Sk,Ak)) (37)  

where α ∈ [0, 1] is the step size. According to the above equations, when 
TDLA reaches the next state Sk+1, the state value of Sk can be estimated. 

Table 6 
Probit of domino effects.  

Hazard Type Installation Type Probit variable 

Heat Radiation Atmospheric Vessel Y = 9.25 − 1.85D1(tff)
Pressure Vessel Y = 9.25 − 1.85D2(tff)

Shock Wave Atmospheric Vessel Y = − 9.36 − 1.43ln(μe)

Pressure Vessel Y = − 14.44+ 1.82ln(μe)

μe is the peak static overpressure, kpa; 
D1(tff) = − 1.128ln(μf ) − 2.667 × 10− 5V + 9.87; D2(tff) = − 0.97ln(μf ) −

8.835V 0.032; μf is the heat radiation intensity, kw/m2; V is the volume of the 
installation, m3.  

Table 7 
Probit of human injury.  

Hazard Type Probit variable 

Heat Radiation Y = − 14.9+ 2.56ln(6 × 10− 3μf
1.33τe)

Shock Wave Y = 5.13+ 1.37ln(μe)

Toxic Cloud Emission Y = α+ βln(Cθτe)

Y is the probit variable of human injure. C is the concentration of toxic gasses, 
ppm; τe is the exposure time, minute. α, β and θ are constants describing the 
toxicity.  
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4. Case study 

An illustrative case study is stated in this section. As shown in Fig. 5, 
a chemical storage tank farm extracted from an industrial cluster in 
South China is adopted to be the application scenario. The abandoned 
tank area in Fig. 5 is not considered in this case study. Thus, ten internal 
floating roof tanks (T1-T10) are considered in the case study. The 
geographical distribution of the ten tanks is shown in Fig. 5, of which the 
ten tanks are labeled as T1-T10 in Fig. 5. The information of the ten 
storage tanks is stated in Table 8. Moreover, a vulnerable unit is 
considered in the case study, and the vulnerable unit is located at the 
yellow dot in Fig. 5. An earthquake-induced accident scenario is adopted 
to demonstrate the proposed methodology. 

The relevant parameters are set as follows: the annual average 
temperature is 21.3 ◦C; the annual average wind speed is 1.5 m/s; the 
average annual relative humidity is 83%; the atmospheric stability is B; 
the peak ground acceleration (PGA) of earthquake is 0.4 g. According to 
the damage probability model provided by Campedel et al. [42], the 
fragility of equipment under the predefined PGA is stated in Table 8. 
Results indicate that the primary accident scenario damaged by an 
earthquake most likely includes multiple simultaneous accidents. Three 
primary accident scenarios are developed for comparison. The proposed 
methodology is performed on Matlab R2021a under a computer that is 
equipped with Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz and 8.00 
GB RAM. After some preliminary observations, the step size of TDLA is 
set to 0.01. 

4.1. Accident consequence intensity calculation 

The flash point of diesel is close to 55 ◦C at room temperature, which 
is a flammable, low volatility liquid material. Delayed ignition is not 
considered because flammable clouds are not generated, due to the low 
volatility [43]. The flash point of gasoline is less than 22 ◦C at room 
temperature, which is thus a flammable and volatile liquid. In the event 
of delayed ignition a flash fire or explosion can occur [36]. The corre-
sponding event trees are shown in Fig. 6. The pool fire scenario and 
vapor cloud explosion scenario are adopted to quantify accident con-
sequences, the related heat radiation intensity and shock overpressure 
are obtained by using the PHAST 8.21 consequence modeling software. 
Calculation results are shown in Tables 9 and 10. 

4.2. System event timeline analysis 

In this work, the accident propagation process is represented by a 
series of discrete system events. The proposed methodology can provide 
a clear-cut system event timeline to capture the spatial-temporal char-
acteristics of NHDC. The corresponding system event timelines are 
shown in Fig. 7. As shown in Fig. 7(a), for primary accident scenario I, 
T5 failed under the influence of earthquake, causing a fire, i.e. S1 = (0,0,
0,0,2,0,0,0,0,0), t1 = 0 min. At system evolution time t2 = 5.91 min, T4 
failed due to the thermal radiation from T5, resulting in a release 

accident. At system evolution time t3 = 5.97 min, a delayed ignition 
event occurred at T4, resulting in a fire accident. At system evolution 
time t4 = 6.16 min, T6 failed due to the thermal radiation from T5 and 
T4, resulting in a release accident. At system evolution time t5 =

6.46 min, a delayed ignition event occurred at T6, resulting in a fire 
accident. At system evolution time t6 = 7.47 min, T2 failed due to the 
thermal radiation from T5, T4 and T6, resulting in a release accident. No 
immediate ignition event occurred after the failure of T2. For diesel tank 
T2, a delayed ignition is not considered because flammable clouds are 
not generated, due to the low volatility [43]. Thus, in the subsequent 
evolution, T2 was regarded to be in the extinguished state. At system 
evolution time t7 = 9.20 min, T3 failed due to the thermal radiation 
from T5, T4 and T6, resulting in a release accident. At system evolution 
time t8 = 9.86 min, a delayed ignition event occurred at T3, resulting in 
a fire accident. At system evolution time t9 = 9.87 min, T1 failed due to 
the thermal radiation from T5, T4, T6 and T3, resulting in a release 
accident. At system evolution time t10 = 19.77 min, a delayed ignition 
event occurred at T1, resulting in a fire accident. In the subsequent 
evolution process (t11∼15), the accidents extinguished gradually, and all 
the failed tanks convert to the extinguished state at t15 = 1914.77 min. 
The final accident scenario I included 6 failed tanks (T1–T6) with 5 fires. 

As shown in Fig. 7(b), for primary accident scenario II, T5 and T10 
failed under the influence of the earthquake, causing 2 simultaneous 
fires, i.e. S1 = (0,0,0,0,2,0,0,0,0,2), t1 = 0 min. As shown in Fig. 7(c), 
for primary accident scenario III, T4, T6 and T10 failed under the in-
fluence of earthquake, causing 3 simultaneous fires, i.e. S1 = (0,0,0,2,0,
2, 0, 0, 0, 2). Similarly, diesel tanks (T2, T7 and T8) that do not ignite 
immediately after failure were regarded to be extinguished. Both final 
accident scenario II and III included 10 failed tanks (T1–T10) with 7 
fires. According to the event trees shown in Fig. 6, in this case study, the 
probability of immediate ignition event is low so as the explosion acci-
dent. Thus, there are almost no immediate ignition events and explosion 
accidents in the obtained system event timelines. 

According to the spatial-temporal characteristics of NHDC, the whole 
evolution process is divided into five distinctive stages: the Na-tech stage 
E0, the derivation stage E1, the domino stage E2, the deterioration stage 
E3 and the extinguish stage E4. At the Na-tech stage E0, natural hazards 
produced LOC events, resulting in primary accident scenarios that may Fig. 5. Chemical Storage Tank Farm.  

Table 8 
Information of the storage tanks (Unanchored).  

No. Storage 
Materials 

Volume Storage 
temperature, 
pressure 

Filling 
Ratio 

Fragility 
(≥ DS2) 

Fragility 
(DS3) 

T1 Gasoline 20,000 
m3 

NPT 0.72 0.931 0.236 

T2 Diesel 20,000 
m3 

NPT 0.54 0.931 0.236 

T3 Gasoline 5000 
m3 

NPT 0.85 0.931 0.236 

T4 Gasoline 5000 
m3 

NPT 0.91 0.931 0.112 

T5 Gasoline 3000 
m3 

NPT 0.85 0.931 0.236 

T6 Gasoline 3000 
m3 

NPT 0.65 0.931 0.236 

T7 Diesel 20,000 
m3 

NPT 0.64 0.931 0.236 

T8 Diesel 20,000 
m3 

NPT 0.70 0.931 0.236 

T9 Gasoline 20,000 
m3 

NPT 0.82 0.931 0.236 

T10 Diesel 20,000 
m3 

NPT 0.56 0.931 0.236 

NPT: Normal Pressure and Temperature; DS is the damage state of storage tanks, 
DS1, corresponding to a minor release; DS2, corresponding to a relevant release 
of hazardous materials; and DS2, for a sudden loss of containment of the entire 
vessel inventory.  
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include multiple simultaneous technological hazards. At the derivation 
stage E1, the adjacent HIUs were exposed to the heat radiation, shock 
waves, and propellant fragments generated by fires and explosions, but 
no domino accident occurred for the time being. At the domino stage E2, 
the primary accident propagated to nearby HIUs, triggering one or more 
secondary events resulting in overall sequences more severe than those 
of the primary accident. At the deterioration stage E3, a delayed ignition 
event occured, which accelerated the expansion and escalation of 
domino effects. At the extinguish stage E4, the accident scenario tended 
to be stable, and each hazard unit gradually changed into the extin-
guished state. 

The time interval of evolution stage is shown in Table 11. For sce-
nario I, the time interval of E1 is 0–5.91 min; the time interval of E2 is 
5.91–9.87 min; the time interval of E3 is 6.46–19.77 min; the time in-
terval of E4 is 19.77–1914.77 min. For Scenario II, the time interval of E1 
is 0–5.52 min; the time interval of E2 is 5.59–18.60 min; the time in-
terval of E3 is 6.82–18.60 min; the time interval of E4 is 18.60–1905.75 
min. For Scenario III, the time interval of E1 is 0–2.73 min; the time 
interval of E2 is 2.73–15.94 min; the time interval of E3 is 3.25–15.94 
min; the time interval of E4 is 15.94–1901.99 min. 

Since the main escalation and expansion of accident scenario 
occured at evolution stages E1, E2 and E3, the system evolution time 

associated with the accident expansion is stated in Fig. 8. At the end of 
the accident evolution, the system states of scenario II and Scenario III 
are the same. However, the evolution of scenario III is more intense, 
which is reflected in the system evolution time shown in Fig. 7(c). This 
indicates that the primary accident scenario has a significant impact on 
the accident evolution pattern. 

As mentioned above, natural hazards such as hurricanes, lightning, 
earthquakes and floods may rapidly lead to a series of LOC events in 
CIPs. At the Na-tech stage E0, the primary accident scenario caused by 
natural hazards usually consists of multiple primary accident sources. 
The variation trend of heat radiation intensity received by different 
tanks is stated in Fig. 9. The increase of heat radiation intensity shows a 
tendency to become more and more intense. This suggests that the 
propagation process of domino effects is intensifying as the accident 
evolves. The experimental results indicate that the synergistic effects 
associated with multiple simultaneous technological hazards can 
significantly accelerate the evolution of accidents. The proposed meth-
odology can effectively handle the severe and complex multi-hazard 
scenarios caused by NHDC. 

Fig. 6. The corresponding event trees of diesel and gasoline [36], (a) diesel; (b) gasoline.  

Table 9 
Heat radiation intensity received by Tj or Vulnerable Unit (VU) from Ti (kW/m2).  

Ti/Tj T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 VU 

T1 / 12.19 13.76 11.20 8.72 5.03 1.50 0.61 0.83 1.92 2.96 
T2 10.83 / 5.16 9.11 12.67 13.55 2.12 0.94 1.47 4.69 7.46 
T3 12.23 5.16 / 27.92 9.11 5.04 0.74 0.54 0.54 0.94 1.47 
T4 11.20 10.47 31.43 / 31.43 11.54 1.04 0.61 0.83 1.92 2.39 
T5 8.72 14.26 10.47 31.43 / 31.43 1.05 0.61 1.04 2.86 3.35 
T6 5.03 15.25 5.90 11.54 31.43 / 1.26 0.65 1.26 4.21 3.78 
T7 1.33 2.12 0.74 0.74 0.94 0.94 / 11.17 4.92 6.58 4.02 
T8 0.54 0.94 0.54 0.54 0.54 0.55 11.17 / 9.35 4.22 1.82 
T9 0.83 1.71 0.61 0.83 1.04 1.26 5.77 10.66 / 12.58 2.86 
T10 1.52 4.69 0.94 1.52 2.35 3.57 6.58 4.22 11.17 / 9.35  

Table 10 
Overpressure received by Tj or Vulnerable Unit (VU) from Ti (kPa).  

Ti/Tj T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 VU 

T1 / 17.55 20.24 15.93 12.13 7.70 3.68 2.50 2.65 4.19 5.43 
T2 / / / / / / / / / / / 
T3 11.82 5.26 / 30.25 8.66 5.17 1.62 1.17 1.33 2.02 2.41 
T4 6.53 6.01 19.98 / 21.61 6.72 1.22 0.89 1.08 1.77 2.05 
T5 6.06 10.15 7.21 26.58 / 28.99 1.60 1.17 1.49 2.64 2.98 
T6 3.41 9.49 3.77 7.03 24.72 / 1.44 1.09 1.50 2.98 2.77 
T7 / / / / / / / / / / / 
T8 / / / / / / / / / / / 
T9 2.79 4.17 2.34 2.77 3.13 3.62 8.84 15.89 / 19.25 5.52 
T10 / / / / / / / / / / /  
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4.3. System dynamic risk analysis 

In this section, the proposed system dynamic risk model is adopted to 
further analyze the dynamic risk associated with the system dynamic 

response process, and analysis results are stated in Tables 12–14. The 
risk value less than 1.000e-20 is approximate to 0. For scenario I shown 
in Table 12, at system evolution time t2 = 5.91 min, the critical system 
unit is T4, as it has received effective thermal radiation for more than its 

Fig. 7. System event timeline, (a) Scenario I; (b) Scenario II; (c) Scenario III.  

J. Men et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 226 (2022) 108723

12

ttf . According to the available system action set A2 at time node t2, six 
system events φ0,φ1,φ2,φ3,φ4,φ5 may occur to change the state of T4. 
Through comparing the product of state transition probability 
PA(S2 = S′

|S1 = (0,0, 0,0, 2,0, 0, 0,0, 0)) and death probability PH(S2 =

S′

), the riskiest event is immediate ignition φ2 and the riskiest system 
state S2 is identified to be S2 = (0,0,0,2,2,0,0,0,0,0). The corresponding 
product PH(S2)PA(S2|S1) = 1.541e − 14. It is worth noting that S2 = (0,
0, 0, 2,2, 0,0, 0,0, 0) is regarded as the riskiest system state without the 
consideration of subsequent evolution process, as it can only be used to 
determine the value of system dynamic risk at time t1. 

According to the event trees shown in Fig. 6, the probability of the 
immediate ignition event is relatively low compared to the delayed 
ignition event. To obtain the riskiest accident evolution pattern, the 
accumulation of discounted rewards with subsequent state sequence is 
involved in the value function vπ(S). Thus, in the obtained system event 
timeline shown in Fig. 7(a), S2 = (0, 0, 0, 1, 2, 0, 0, 0, 0, 0). At system 
evolution time t3 = 5.97 min, the critical system unit is still T4. Ac-
cording to the available system action set A3 at time node t3, two system 
events φ4,φ5 may occur to change the state of T4. Through comparing 
the product of state transition probability 
PA(S3 = S′

|S2 = (0,0, 0,1, 2,0, 0, 0,0, 0)) and death probability PH(S3 =

S′

), the riskiest event is delayed ignition φ3 and the riskiest system state 
S3 is identified to be S3 = (0,0,0,2,2,0,0,0,0,0). The delayed ignition 
event of the failure unit is also taken into account when calculating the 
risk. Thus, the corresponding risk value rapidly increases to 4.958e-03. 
As shown in Tables 12–14, such risk surge caused by delayed ignition 
events generally occurs during the evolution of NHDC. For diesel tanks 
T2, T7 and T8, the delayed ignition event is not considered, thus the 
corresponding risk values are relatively low. The risk analysis results are 
consistent with the obtained system event timelines. The deterioration 
stage E3 is the critical temporal interval for the prevention and mitiga-
tion of the NHDC, and the gasoline tanks (T5, T6, T1, T9, T4, T3) with 
high risk values should be allocated more emergency resources. 

In reality, the evolution mechanism of NHDC is very complex and 
associated with high uncertainty and spatio-temporal dynamics. Ac-
cording to the experimental results, the proposed methodology can 
model the spatio-temporal evolution of the entire NHDC in 20–30 s. 
Therefore, in practical applications, we can quickly identify the critical 
system units and temporal intervals according to real accident scenarios. 

5. Conclusion 

Domino effects triggered by natural hazards are one of the emerging 
threats in CIPs. In reality, the evolution process of NHDC is very complex 
and associated with high uncertainty and spatio-temporal dynamics, 

Table 11 
Analysis of spatio-temporal characteristics of system dynamic response.  

Evolution 
stages 

Scenario I Scenario II Scenario III 

E1 0–5.91 min 0–5.52 min 0–2.73 min 
E2 5.91–9.87 min 5.59–18.60 min 2.73–15.94 min 
E3 6.46–19.77 min 6.82–18.60 min 3.25–15.94 min 
E4 19.77–1914.77 

min 
18.60–1905.75 
min 

15.94–1901.99 
min  

Fig. 8. System evolution time for different primary accident scenario.  

Fig. 9. Heat radiation intensity received by tanks in different accident exten-
sion levels, (a) Scenario I; (b) Scenario II; (c) Scenario III. 

Table 12 
System dynamic risk analysis results (Scenario I).  

System Evolution Time (Min) Critical System Units Risk Values 

t2 = 5.91 Tank 4 Risk(S1) = 1.541e − 14 
t3 = 5.97 Tank 4 Risk(S2) = 4.958e − 03 
t4 = 6.16 Tank 6 Risk(S3) = 1.827e − 12 
t5 = 6.45 Tank 6 Risk(S4) = 1.218e − 01 
t6 = 7.47 Tank 2 Risk(S5) ≈ 0 
t7 = 9.20 Tank 3 Risk(S6) = 1.190e − 17 
t8 = 9.86 Tank 3 Risk(S7) = 1.616e − 05 
t9 = 9.86 Tank 1 Risk(S8) ≈ 0 
t10 = 19.76 Tank 1 Risk(S9) = 2.884e − 02  
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which brings great challenges to the prevention and mitigation of such 
catastrophic chain events. The involvement of natural hazards leads to a 
more complex and severe accident scenario. The synergistic effects 
associated with multiple simultaneous technological hazards can 
significantly accelerate the evolution of accidents. In this work, a high- 
efficiency and systematic analytical framework was developed to model 
the spatial-temporal evolution of NHDC from a macro-systemic 
perspective. The proposed methodology is applied to analyze a typical 
earthquake triggered domino scenario. The effectiveness and efficiency 
of the proposed methodology are verified in the Appendix. 

The proposed methodology is applicable to a broad range of uncer-
tain and time-varying factors related to NHDC, which can efficiently 
handle the simulation of large-scale system state transition spaces. Ac-
cording to the spatial-temporal characteristics of NHDC, five distinctive 
stages of the whole evolution process were identified: the Na-tech stage, 
the derivation stage, the domino stage, the deterioration stage and the 
extinguish stage. System dynamic risk analysis results indicate that the 
value of system dynamic risk is likely to surge in the deterioration stage. 
Protective measures should be taken as soon as possible to cut off the 
disaster chain. Since the evolution process is associated with significant 
spatio-temporal dynamic characteristics, single prevention measures 
cannot effectively contain the damage caused by such multi-hazard 
scenario. Specific prevention measures are required for each stage. 
Our methodology can dynamically identify the critical system temporal 
intervals and units at each evolution stage. Taking specific protective 
measures for the critical system units can effectively prevent and miti-
gate the loss caused by NHDC. Thus, our work can provide necessary 
support for preventing and mitigating the loss caused by NHDC. 

Finally, it must be admitted that there are still some issues in the 
present study that have not yet been resolved. The proposed method-
ology mainly focused on the release of hazardous material caused by the 
structural damage of equipment. However, for a complex safety-critical 
system, the accident evolution can also be initiated by the unavailability 
of auxiliary systems and utilities available in CIPs. Capturing the cross- 
system propagation characteristics of failures is still a challenging work. 

Moreover, the reliability of the analysis results is largely limited by the 
adopted basic probabilistic models. Most of these existing probabilistic 
models were driven by analytical and numerical approximations, which 
may lack a clear insight into the equipment damage caused by sequential 
or synchronous multiple hazards. 
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