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a b s t r a c t

The paper presents a coordinated day-ahead and intra-day approach for the scheduling of the resources
in a local energy community (LEC). The considered LEC consists of a collective of power prosumers
that can directly trade energy with each other in addition to the external provider. The scheduling
approach is based on the alternating direction method of multipliers and aims at minimizing the total
energy procurement costs, assuring that each participant has an economical advantage in being part of
the community. To cope with the uncertainties of the renewable power generation and consumption
during the day, a day-ahead multistage stochastic optimization approach is combined with an intra-day
rolling-horizon optimization procedure. The effectiveness of the approach is supported by numerical
simulations for several case studies in which the LEC prosumers are either connected to the same
low-voltage network or directly to the medium-voltage level.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivations and literature review

With the current energy transition based on renewable energy
ources and distributed generation, the regulatory framework
ecently implemented in several countries encourages the estab-
ishment of local energy communities (LECs), where the partic-
pants agree to exploit the available resources in a coordinated
ay [1]. Several issues and opportunities associated with the

mplementation of these transactive collectives have been studied
n the last years, as reviewed in e.g., [2,3], and references therein.

One of the main aspects to be considered for the successful
mplementation of a LEC is the definition of an automatic energy
anagement system (EMS) [4,5]. Three specific aspects emerge:

a) the use of distributed algorithms, (b) optimization under
ncertainty, and (c) integrated day-ahead offline/intra-day online
ecision-making.
Compared to centralized ones, distributed optimization ap-

roaches have gained special interest since they ensure a
eduction of the communication requirements, may be applica-
le to communities with a large number of participants, and
elp preserving the participants’ privacy and independence [6].
istributed approaches decompose the optimization procedure

∗ Corresponding author.
E-mail address: camilo.orozco2@unibo.it (C. Orozco).
ttps://doi.org/10.1016/j.segan.2021.100573
352-4677/© 2021 Elsevier Ltd. All rights reserved.
in several sub-problems, as shown in e.g., [4,7], by employ-
ing the alternating direction method of multipliers (ADMM),
whilst in [8] a distributed mechanism based on game theory is
proposed and in [9] both Nash equilibrium and Shapley value
techniques are adopted so that the total gains and costs are
distributed fairly among the participants of the LEC. Distributed
approaches can also exploit the implementation of blockchain or
other distributed ledger technologies (see, e.g., [10–12]).

Since the forecasts of both renewable power production and
energy consumption are affected by significant uncertainties, the
use of stochastic optimization approaches for day-ahead schedul-
ing is often proposed [13–15]. Optimization problems under un-
certainty are typically addressed by a sequence of multiple stages.
The day-ahead offline scheduling optimizes a probabilistic ob-
jective function: it determines a decision tree in which at each
stage a set of decisions is obtained considering multiple possible
future realizations. The intra-day online procedure repeatedly
provides the scheduling over time considering the revealed un-
certainty and updated forecasts. The integration of day-ahead
and intra-day scheduling is achieved by hierarchical and online
control approaches able to respond to the variations in the op-
erational conditions (as described in e.g., [16] and references
therein). In this framework, some recent papers on microgrids
and multi-microgrids investigate different approaches. In [17],
a hierarchical EMS adopts a multi-time scale link between the
day-ahead scheduling and the intra-day operation. In [18,19], the
day-ahead scheduling model considers the uncertainty of renew-
able energy generation, while a real-time dispatching model is

https://doi.org/10.1016/j.segan.2021.100573
http://www.elsevier.com/locate/segan
http://www.elsevier.com/locate/segan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2021.100573&domain=pdf
mailto:camilo.orozco2@unibo.it
https://doi.org/10.1016/j.segan.2021.100573
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employed to smooth out the fluctuations of generation and de-
mand during the day. In [20] an online EMS employs a stochastic
model to solve the optimal power flow of a microgrid. In [21],
the day-ahead clearing decisions for an energy community are
provided by an ADMM-based two-stage stochastic approach. Sub-
sequently, a real-time deterministic model is employed by each
participant in the community to perform the intra-day decisions,
while keeping the day-ahead commitments. In [22], a model pre-
dictive control (MPC) technique is proposed to coordinate, in real
time, the response of controllable resources of multi-networked
microgrids.

Notwithstanding the several approaches documented in the
iterature dealing with uncertainties and real-time control issues
n microgrids, this paper focuses on the development of a proce-
ure specifically conceived for energy communities. Within this
ontext, the typical assumption of participants’ selfish behavior in
he intra-day operation could affect vulnerable participants and
inally the entire community. Therefore, the intra-day scheduling
rocedure requires considering the specific collaborative nature
f a LEC, minimum human intervention, privacy requirements,
nd fair participation in the community providing economic ad-
antages to all the members, also to those without generation,
torage, or flexibility capabilities.
The procedure proposed in the current paper adopts the

DMM, which has the advantage to avoid auctions based on
roduction and demand biddings with respect to mechanisms of
nergy market participation (as described in, e.g., [23]). Instead,
y exploiting the collaborative characteristics of the community,
oth the scheduling of the energy resources and the prices of the
ransactions between LEC participants are obtained by the total
fficiency optimization.
A deterministic ADMM-based approach limited to day-ahead

cheduling was presented in [24]. This approach minimizes the
nergy procurement costs and guarantees that each participant
as an economic benefit in being part of the community with
espect to the case in which the prosumers can exchange only
ith the external energy provider (assumed to be the utility for
he sake of simplicity). In [25], a day-ahead multistage stochastic
cheme is adapted to the ADMM scheduling model of a LEC.
he day-ahead solution is used to implement recurrent decisions
uring the day. An intra-day selection procedure is implemented
hat, at the end of each stage, finds the best fit between the
evealed net power profiles for each prosumer and the scenarios
onsidered in the day-ahead procedure. In [25], the solution
uring the day is updated according to the conditions at the
nd of each stage. Nevertheless, the set values associated with
he possible solutions at each stage are limited to day-ahead
alculations.

.2. Contributions and paper organization

This paper combines and extends the work presented in pre-
ious papers [24,25] focusing on the development of a rolling-
orizon distributed optimization procedure for the intra-day
cheduling that is coordinated with the decision tree provided
y a multistage stochastic day-ahead scheduling. With respect to
he deterministic approach presented in [24], the current paper
onsiders the uncertainties associated with the forecasts of local
eneration and energy demand in the community during the
ay. For this purpose, the paper presents a multistage stochastic
rogramming approach for the day-ahead scheduling, coupled
ith a rolling-horizon intra-day procedure not considered in [25].
In the proposed scheme, a decision tree defines consecutive

ctions during the day in response to the possible realizations
f photovoltaic (PV) generation and energy consumption at each
tage (i.e., consecutive time steps grouped according to common
2

decisions). The implementation of such a multistage scheme al-
lows the intra-day procedure to select the operational schedule of
the LEC during the day by using updated information, in contrast
to a day-ahead solution based on forecast profiles, in which a
single scheduling is determined for the entire day. The intra-day
optimization procedure can mitigate the effect of the fluctuations
in energy generation and demand, although it is solved within
the fixed time limits and keeps the advantages provided by the
distributed structure.

This framework is suitable for the implementation in the
automatic EMS of a community.

The main contributions can be summarized as follows:

- an ADMM-based procedure is employed in all phases of the
optimization, preserving the collaboration objectives and
privacy requirements of LEC participants, with the guar-
antee that all LEC participants can reduce their costs or
increase their revenues;

- the day-ahead multistage stochastic optimization provides
a decision tree for the next day, allowing to divide the
optimization horizon into several stages in which the best
choices can be selected by using updated information with-
out compromising the overall daily cost minimization;

- at each time step t, the intra-day rolling-horizon optimiza-
tion provides the coordinated scheduling of battery energy
storage (BES) units and energy transactions inside the LEC
based on the uncertainty realization and updated predic-
tions for energy generation and load demand.

The approach can deal with prosumers equipped with differ-
nt types of generating/storage units and with consumers able
o offer some level of demand flexibility. Three different case
tudies of communities with several PV units and BES systems
re considered for testing. For each case study, the effectiveness
f the proposed intra-day approach has been studied by testing
ts performance under several operational conditions. Addition-
lly, the numerical tests included an analysis of the individual
erformance of each participant in the LEC.
The structure of the paper is as follows. Section 2 presents the

roposed approach. Section 3 focuses on the offline day-ahead
ultistage stochastic optimization of the LEC. Section 4 focuses
n the online intra-day scheduling of the energy resources in
he LEC. Section 5 presents the test results. Finally, Section 6
oncludes the paper.

. Scheme of the proposed approach

The considered LEC corresponds to a set of several prosumers
enoted as Ω = {1, 2, . . . , N}. The participants in the LEC are
quipped with PV units, BES units, and loads. Set T = {1, 2, . . . ,

tend} denotes the set of time steps t in the optimization horizon.
As in the deterministic day-ahead scheduling approach pre-

sented in [24], the objective function (OF ) to be minimized is
the daily energy procurement cost. In the centralized model, OF
is the cost associated with the power exchanges P t

buy_Grid i and
P t
sell_Grid i of each prosumer with the utility during the day, taking

into account the corresponding prices of buying and selling (π t
buy

and π t
sell, respectively). Thus, the centralized OF is given by

F =

∑
t∈T
i∈Ω

(
π t
buyP

t
buy_Grid i − π t

sellP
t
sell_Grid i

)
∆t (1)

where prices π t
buy and π t

sell are assumed to be known. The time
tep size is denoted as ∆t .
In the distributed optimization, based on the ADMM algorithm

arried out iteratively in a sequential manner [26], the OF is
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Fig. 1. Scheme of the coordinated day-ahead and intra-day strategy for the LEC scheduling.
ecomposed in local subproblems, one for each prosumer i:

Fi = minimize
Ptbuy_Grid i, P

t
sell_Grid i

Ptbuyi,j, P
t
sell i,j

∑
t∈T

×

⎡⎢⎣π
t
buyP

t
buy_Grid i∆t − π t

sellP
t
sell_Grid i∆t+∑

j∈Ω
j̸=i

λtj P
t
buyi,j∆t − λti

∑
j∈Ω
j̸=i

P t
sell i,j∆t + ℓti

⎤⎥⎦
(2)

here profiles P t
buy i,j and P t

sell i,j represent the power bought/sold
y prosumer i from/to prosumer j at each time step t, respectively.
agrangian multipliers λti and λ

t
j are associated to the equilibrium

etween energy sold and bought in each internal transaction.
erm ℓti penalizes the imbalances in the energy exchanges be-
ween i and every other prosumer by using parameter ρ and scale
actor m:
t
i = m · ρ · [

∑
j∈Ω
j̸=i

(P̂ t
buy j,i − P t

sell i,j)
2
+

∑
j∈Ω
j̸=i

(P t
buy i,j − P̂ t

sell j,i)
2
] (3)

here the P̂ t
buy j,i and P̂ t

sell j,i denote the resulting profiles of the
ocal optimization of prosumer j. As the ADMM is solved in series,
hese values are the most updated available at the current iter-
tion. The ADMM iteratively adjusts the Lagrangian multipliers
ntil the imbalances of (3) are lower than a predefined tolerance
.
For a detailed review of the prosumer model and convergence

onsiderations of the ADMM algorithm the reader is referred
o [24]. The model of each prosumer includes the following power
alance constraint

P t
PV i + P t

dis i + P t
buy_Grid i +

∑
j∈Ω
j̸=i

P t
buy i,j =

P t
Load i + P t

ch i + P t
sell_Grid i +

∑
j∈Ω
j̸=i

P t
sell i,j +

1
2

∑
b∈B L

t
b,i

t∈T , i ∈ Ω

(4)

Constraint (4) takes into account the PV production (P t
PV i), the

local load (P t
Load i), the battery charging and discharging power

(P t
ch i and P t

dis i, respectively), the transactions with other partic-
ipants (P t

sell i,j and P t
buy i,j), the power exchange with the external

grid (P t
buy_Grid i and P t

sell_Grid i) at each time step t and the estimation
of the losses Ltb,i in branch b due to transactions involving pro-
sumer i. Since each transaction is between two prosumers, only
half of the power loss is attributed to each prosumer. The cor-
responding loss estimates and their allocation to each prosumer
are obtained by the piece-wise linearization of the quadratic rela-
tionship between the Joule losses in a branch and the power flows
caused by all the transactions involving the considered prosumer
(constraints (12)–(16) in [24]). For each prosumer, simultaneous
3

buying and selling processes at each time step t are avoided by
indicator constraint (5) and binary variable ut

i :{
P t
buy_Grid i = 0 and P t

buy i,j = 0 if ut
i = 0

P t
sell_Grid i = 0 and P t

sell i,j = 0 if ut
i = 1

ut
i ∈ {1, 0}

i , j ∈ Ω
(5)

Furthermore, the stored energy in the BES unit i, denoted as
Et
BES i, is defined at each time step t considering charging and

discharging efficiencies (ηch i and ηdis i, respectively) by using the
following constraints:

Et
BES i = Et−1

BES i+(P t
ch i ηch i−P t

dis i/ηdis i)∆t i ∈ Ω, t ∈ T , t > 1 (6){
Et=1
BES i = Emax,i + (P t=1

ch i ηch i − P t=1
dis i/ηdis i)∆t i ∈ Ω

Etend
BES i = Emax

BES i i ∈ Ω
(7)

0 ≤ P t
dis i ≤ Pmax

BES i0 ≤ P t
ch i ≤ Pmax

BES i t ∈ T , i ∈ Ω (8)

Emin
BES i ≤ Et

BES i ≤ Emax
BES i t ∈ T , i ∈ Ω (9)

In constraint (8), the maximum value Pmax
BES i limits the dis-

charge and charge power. Constraint (9) limits the stored energy
between a minimum level Emin

BES i and a maximum level Emax
BES i.

In the present paper, the LEC scheduling is defined though the
coordination of the day-ahead and intra-day phases, as illustrated
in Fig. 1.

First, the day-ahead operational plan is modeled as a mul-
tistage stochastic optimization problem, in which the horizon
time (a day) is divided into various stages, i.e., consecutive time
steps grouped according to common decisions. In this phase, the
response to the uncertainties associated with the local generation
and loads are represented by a tree of decisions. The correspond-
ing multistage solution, which is obtained by using the ADMM
procedure, provides a set of decisions for the operation of the BES
units and energy transactions inside the LEC at each stage.

Then, during the intra-day phase, the solutions of the day-
ahead multistage model are used as an operational framework
for the online decision-making procedure, which is carried out
by the LEC during the day. Within this framework, the decisions
made at each time step t are defined by an online calculation that
involves a distributed rolling-horizon optimization (see, e.g. [27]).
The coordinated approach allows the LEC to adjust accurately its
set values according to the current operational conditions at each
time step t (based on measurements of PV generation and load).

The use of a multistage scheme allows the adoption of correc-
tive decisions at some predefined instants during the day to cope
with fluctuations in photovoltaic production and load consump-
tion. Indeed, the multistage stochastic solution provides a set of
feasible alternatives at the end of each stage that allow to adapt
the scheduling of the decision variables based on previous obser-
vations. The exploitation of this possibility is expected to provide
more efficient results with respect to approaches in which a
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single 24 hour scheduling decision is made at the beginning of
the day.

In the implemented approach, the 4-stage day ahead model
rovides a decision tree with an initial scheduling and a set of
lternative solutions at 8 a.m. and 4 p.m. The intra-day procedure
hen selects the best alternative path in the tree based on the
ealization of the stochastic processes (photovoltaic production
nd load consumption) and the available updated forecasts.
In the following sections, the implementation of the schedul-

ng approach during the day-ahead and intra-day phases, and
heir coordination are described.

. Day-ahead multistage stochastic scheduling

In order to deal with the uncertainties associated with the
istributed generation and loads consumption, the day-ahead
istributed model of [24] has been extended to a multistage
tochastic approach.
In the multistage model, an adequate representation of the

tochastic variables is required. This representation defines when
he decisions are to be made and when the observations are to
e revealed, while employing a finite number of scenarios to
aintain the tractability of the problem. The realization of the
tochastic processes in the LEC, during the day, is represented by
scenario tree.
For the numerical tests included in this paper the day-ahead

ime horizon has been divided into three decision stages, where
he decisions are made at the beginning of each stage (i.e., every
ight hours). Variables P t

ch i and P t
dis i are assumed as the decision

variables of the model. The other variables are calculated at the
end of each stage, for all time step t in stage s.

In the following, first the procedure adopted for the construc-
tion of the scenario tree is described. Then, the scenario tree is
used by the day-ahead multistage scheduling presented in this
section to obtain the corresponding decision tree. The online
intra-day scheduling is coordinated with the decision tree as
described in Section 4.

3.1. Scenario-tree model

We adopt for each prosumer a scenario generation technique
that applies a Markov-process considering the autocorrelation be-
tween consecutive observations starting with the forecast profiles
of PV production and load, as described in [28]. The scenario gen-
eration procedure limits the deviation of the stochastic variables
P t
Load i and P t

PV i to the ±20% of the given forecast profile at a given
time step t, for the 100% and 75% of the time, respectively. The
definition of these tolerance bands avoids unrealistic scenarios
and guarantees that the generated scenarios are coherent with
the forecast profiles.

Let us define a set of equiprobable scenarios for each pro-
sumer i denoted with Φi. Index ϕi denotes the scenario index
corresponding to i. From Φi, a scenario profile ξ tϕi is denoted as
the difference between PV production and load in scenario ϕi,
normalized by the difference of the relevant forecast profiles of i
at each time step t, namely

ξ tϕi =
P t
PV ϕi

− P t
Load ϕi

P t
PV i − P t

Load i
(10)

The prosumers share the obtained values of ξ tϕi with the com-
unity. In this way, the participant in the LEC does not reveal
rivate information, since neither the forecast values of PV gen-
ration nor demand are shared. Then, a set Γ of scenarios is
btained. Each one of these equiprobable N × T -dimensional
4

able 1
lbow method and silhouette coefficient metrics for the selection of the number
f clusters: Case A.
Number of clusters 3 4 5 6 7 8 9

Average SSE 98.9 79.1 72.1 63.9 52.5 47.1 40.4
Average s(ψϕ ) 0.54 0.53 0.52 0.50 0.53 0.50 0.51

scenarios (with N equal to the number of prosumers and T the
number of time steps) is defined by the structure

ψϕ =
[
ξ tϕ1 , ξ

t
ϕ2
, . . . , ξ tϕN

]
(11)

Next, a tree is obtained by a k-means clustering procedure
applied to the total set of initial scenarios, with the scenario
reduction technique described in [28]. The relevant probability of
each scenario in the tree at each stage corresponds to the summa-
tion of the probabilities of each ψϕ classified in the corresponding
cluster.

The structure of the obtained tree is influenced by the number
of initial scenarios. Therefore, a large number is used without
compromising the tractability of the clustering procedure.

The clustering procedure may be carried out by a coordinator
unit and then communicated to the participants or by each one
of the prosumers, obtaining the same common scenario tree for
all the participants and preserving the distributed scheme.

The choice of the number of clusters K is influenced by the
data structure (i.e., complexity and structure of the samples) and
the search for acceptable solution time and computational effort.
Typically, for this purpose, the so-called elbow method and the
silhouette coefficient are adopted. As described in, e.g., [29], the
elbow method looks for a reduction in the average distance of the
aggregated data to the relevant centroid (i.e., the average value of
sum of the squared errors SSE calculated for each scenario).

The silhouette coefficient for each scenario ψϕ is given by

s(ψϕ) =
b(ψϕ) − a(ψϕ)

max
(
a(ψϕ), b(ψϕ)

) (12)

where a(ψϕ) is the mean intra-cluster distance (i.e., distance of
a sample to the other samples in the cluster) and b(ψϕ) the
mean nearest-cluster distance (i.e., distance of a sample to all
the samples in the nearest-cluster) of each scenario. The average
value of s(ψϕ) shows how well the scenarios have been classified.

In contrast with the elbow method, which is based entirely on
intra-cluster calculations, the silhouette coefficient also considers
the separation with respect to the neighboring clusters, allowing
to better avoid misclassified samples. A high coefficient value is
desired to reduce the intra-cluster dissimilarities (i.e., good cohe-
sion) and to increase the inter-cluster dissimilarities (i.e., avoiding
the presence of outliers).

For illustrative purposes, Table 1 shows the values obtained for
the average SSE and the average of the silhouette coefficient for
the first eight hours of the day and for several number of clusters
in case study A, described in Section 5.

Although the average SSE decreases with the number of clus-
ters, the highest average value of the silhouette coefficient is
obtained by three clusters indicating that the accuracy of the
aggregation could be undermined by a high number of centroids.
This justifies the adoption of three centroids for the numerical
tests presented in this paper.

The multistage stochastic optimization of the day-ahead
scheduling decision model is based on the construction of the
scenario tree [30].

Fig. 2 shows the tree obtained for the LEC in case study A,
as well as the probability associated with each scenario ψϕ . The
scenarios indicated in parenthesis in Fig. 2 are the centroids
obtained by the clustering procedure. At stage 1 (beginning of
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he day) the actual state of the system is assumed to be known;
herefore, the tree has a single root; so a single decision should
e made for the first 8 hours. Such a decision is based on a
ingle centroid evaluated for the entire set of scenarios, which is
cenario 196 for the considered test case. The possible realization
f the stochastic variables in the first 8 hours is represented
y three centroids, namely Scen-174, Scen-196, and Scen-197.
he three states at stage 2, one for each centroid, represent
he states of the community at 8 a.m. when the second stage
ecision should be made. Analogously, for each of the 3 states at
a.m., namely (Scen-174,2), (Scen-196,2), and (Scen-197,2), the

tochastic model between 8 a.m. and 4 p.m. is described by three
entroids. For each of the states at 4 p.m., other three centroids
epresent the stochastic model between 4 p.m. and midnight.

The decisions of the multistage optimization described in the
ext Section 3.2 are made at the beginning of the day, time
tep 33 (8 a.m.), and time step 64 (4 p.m.). These decisions are
nticipative variables. In the considered test case, these variables
re the scheduling of the batteries (i.e., P t

ch i and P t
dis i) for the 32

ime steps following the decision. At each of the 3 × 32 = 96 time
teps, other variables are also calculated (such as the power flows,
nergy exchanges, costs, and revenues). These adaptive variables
epend on previous decisions and the observed outcomes of the
tochastic events. Since the total daily cost and revenues (i.e., the
alue of the objective function) are obtained at time step 96
midnight), Fig. 2 indicates 4 stages: the three that correspond

o the instants when the anticipative decisions are made and, as d

5

fourth stage, the instant when the value of the objective function
is obtained.

3.2. Multistage stochastic solution

The stochastic version of the LEC scheduling problem is given
by∑
ϕ

πϕ

(∑
i

OFϕi

)
(13)

where πϕ is the probability associated with each scenario ψϕ
included in the scenario tree. The solution for each one of these
scenarios is found by means of the ADMM procedure, where
the values of P t

PV i and P t
Load i are given by the corresponding

scenario ψϕ , and the resulting daily costs for each prosumer i are
epresented by OFϕi .

This solution provides the optimal set values of the deci-
ion and wait-and-see variables at each node of the tree. Non-
nticipativity constraints (see, e.g., [31]) bind the decision vari-
bles to be equal at every common node for those scenarios that
artially share the same path from the root to the leaf.
In view of the above, each node of the tree in Fig. 2, at stage 2

nd 3, represents an alternative decision obtained by the solution
f the multistage stochastic problem. The collection of all the
ecision variables values at each stage 1, 2, and 3 constitutes the
ecision tree for case study A.
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Fig. 3. Scheme for the coordinated scheduling of the LEC at each stage.
The intra-day solution procedure chooses the most appropri-
te decision by considering, at stage 2, the observed outcomes
efore 8 a.m. and, at stage 3, those observed before 16 h, as
escribed in the next section. In Fig. 2, the red dots represent
n example of the decisions provided by the intra-day decision-
aking procedure. For the first eight hours of the day, the LEC
onsiders the operational scenario denoted as Scen-196. Then,
he red dot at (Scen-174,2) represents the decision selected by
he intra-day solution for stage 2 if the actual realization of the
tochastic variables in the first 8 h is like scenario 174. Afterward,
he red dot in (Scen-155,3) indicates the decision selected by
he intraday procedure for stage 3 if the actual realization of
he stochastic variables in the interval 8 h–16 h is close to sce-
ario 155. The red dot at (Scen-191,4) indicates that the closest
cenario in the day-ahead tree to the actual realization of the
tochastic variables between 16 h and 24 h is scenario 191. The
bjective function value in node (Scen-191,4) indicates the daily
ost and revenues of the community in the considered example.

. Intra-day scheduling of the LEC based on rolling-horizon
nline optimization

The implementation of the multistage solution based on de-
isions at the end of each stage allows the LEC to respond in
flexible way to the fluctuations of the PV generation and the

oad throughout the day. However, for practical considerations,
he number of stages should be limited. To define an improved
ntra-day solution also in cases of significant deviations from
he day ahead forecasts, the intra-day decision-making procedure
oordinates the multistage day-ahead solution with an online
alculation that adjusts the operational set values also during the
tages, at every time-step t. The subset of T that contains the
uccessive time steps t in stage s is denoted as T s.
By means of the Euclidean distance, the intra-day decision-

aking procedure identifies the scenario of the tree that best
atches the profile of the difference between the local genera-

ion and the energy demand up to time step t. Each prosumer
performs its own comparison of the local profiles and shares the
corresponding distance with the others to make a joint decision
based on the structure of the common tree.

The operational scenario for each stage is defined by the ex-
pected profiles of P t

PV i and P t
Load i for all the time steps during the

stage, and the corresponding decision-variables values of the BES
units. Then, the online optimization is carried out for the current
step tm, based on the available measurement of PV generation and
load as illustrated in Fig. 3.

Like a rolling-horizon control or MPC strategy, the online opti-
mization considers the horizon from the current time step tm until
the last time step in T s and it is carried out by each prosumer.
Only the operational set values calculated for t are implemented.
m

6

The calculation and the implementation of the solutions is re-
peated for the following time steps up to the end of the stage. As
already mentioned, the online optimization employs an ADMM
distributed procedure, with the following characteristics:

- Implementation of a parallel scheme
A short calculation time in comparison with the duration of

each ∆t is obtained by a parallel scheme of the consensus ADMM
algorithm. For the online calculation, expression (3) is replaced by

ℓti = m · ρ · [

∑
j∈Ω
j̸=i

(P
t
exc j,i − P t

sell i,j)
2
+

∑
j∈Ω
j̸=i

(P t
buy i,j − P

t
exc i,j)

2
] (14)

where

P
t
exc i,j =

1
2
(P̂ t

buy i,j + P̂ t
sell j,i) (15)

In this case, parameters P̂ t
buy i,j and P̂ t

sell j,i are equal to the corre-
sponding profiles obtained at the previous iteration.

- Stored energy in the BES units at the end of each stage as an
operational condition

The stored energy in the BES units at the end of the stage are
fixed according to the result of the decision-making procedure.
At the end of each stage (e.g., 8 a.m. and 4 pm), the intra-day
decision-making procedure provides the scenario of the tree that
better fits the expected PV and load conditions during the next
stage (i.e., 8 h). The day-ahead multistage stochastic solution that
corresponds to the selected scenario provides the stored energy
at the end of the next stage. In this manner, the set values of the
day-ahead optimization are exploited as an operational condition
for the batteries during each stage. This reduces the number of
variables (i.e., the associated computational effort), while keeping
the good quality of the results. For such a purpose, in the intra-
day implementation, the initial and final energy in the BES unit
during the stage are constrained by{
E
t=ts1
BES i = E initials

BES i + (P
t=ts1
ch i ηch i − P

t=ts1
dis i /ηdis i)∆t

E
t=tsend
BES i = Efinals

BES i

(16)

where ts1 corresponds to the first time step of stage s; tsend repre-
sents the last time step of stage s; E initials

BES i and Efinals
BES i represent the

initial and final energy in BES unit i during s, respectively.

- Intra-stage update of the profiles of P t
PV i and P t

Load i
Each local subproblem defined by expression (2) at time step

tm employs the profile of PV generation and load for the remain-
ing time in the stage (i.e., ∀t ∈ T s , t > tm) together with the
current measurements to define the optimal operational values.
An updated forecast profile is used if available. Otherwise, the
available stochastic information of the decision tree is used. For
this purpose, the selection of the profiles at each time step t is
m
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given by the Euclidean distance criterion, applied for the branches
that originate from the same node of the tree (e.g., a red point in
Fig. 2).

- Warm start for the online calculation at each time step t
A warm start scheme is adopted in the online ADMM opti-

ization to initialize λti . Instead of using a default value of the
Lagrangian multipliers for all the time steps tm, the multipliers
are initialized to the corresponding values obtained by the day-
ahead multistage solution. The initial values of P̂ t

buy i,j and P̂ t
sell j,i

are defined in the same way to obtain a starting value for P
t
exc i,j.

The online optimization for each prosumer in the LEC de-
fines the scheduling of the BES unit, the energy exchange with
other prosumers and the corresponding energy exchange with
the external provider, in a coordinated way at each time step tm.

. Numerical tests

The presented procedures have been implemented in the
IMMS Developer environment and tested by using solver Cplex
12.9. The numerical results have been obtained on a 2.60 GHz
ntel Xeon two-processors computer with 64 GB of RAM, running
4 bit Windows 10. The MIQP (mixed integer quadratic program-
ing) solver has been employed to solve the ADMM procedures.
he numerical tests included in this paper consider three different
ase studies: Case A, which represents a low voltage network
ith 2 feeders and 10 prosumers; Case B, which represents a
edium voltage network with 3 feeders that connect 13 pro-
umers; Case C, which represents a medium voltage network with
1 feeders and 69 prosumers.

.1. Case A: 2-feeder low-voltage network with 10 prosumers

The case study corresponds to a set of ten prosumers dis-
ributed in two feeders connected to the same substation. Config-
ration, prosumers, load and PV production profiles, price profile
f the energy exchanges with the utility grid, and BES units
haracteristics are the same as in [24]. The forecasted total energy
emand during the day is 313 kWh and the PV energy generation
s 231 kWh (73.8% of the load). The total storage capacity installed
s equal to 30 kWh. The powers are expressed in kW and the
ptimization horizon corresponds to one day, which is divided
nto 96 steps of 15 min each (∆t equal to 0.25 h). For the scenario-
tree generation, a set of 200 scenarios has been generated for each
prosumer. The scenario and decision tree is shown in Fig. 2.

The value of stochastic solution (VSS) and the expected value
f perfect information (EVPI) are the typical performance metrics
sed to assess the effectiveness of a stochastic solution. According
o e.g., [32] the VSS and EVPI are calculated as follows:

- VSS is the difference between EEV and RP, where EEV is the
expected value solution and RP is the solution of the recourse
problem (i.e., of the stochastic problem with recourse that
allows corrective actions after random events have occurred).
To calculate EEV, at first, the values of the decision variables
for each t (P t

ch i, P
t
dis i, P

t
sell i,j and P t

buy i,j) are obtained by the
solution of the model (2) in which all input random variables
(P t

PV i and P t
Load i) are replaced by their expected values; then,

EEV is the value of objective function (13) with ℓti = 0 cal-
culated by solving a mixed integer linear programming (MILP)
problem, in which each prosumer i implements the previously
calculated values of the decision variables. The imbalances at
each time step t are compensated by the power exchange with
the external utility grid (P t

buy_Grid i and P t
sell_Grid i) to satisfy the

power balance constraint.
7

Table 2
Stochastic metrics for Case A.
Solution OF value (e) VVS (e) EVPI (e)

EEV 17.07
0.52 0.09RP 16.55

WS 16.46

- EVPI is the difference between RP and the wait and see (WS)
solution given by the calculation of the expected value of the
set of deterministic solutions, each relevant to one of the tree
scenarios (i.e., deterministic model (2) with perfect knowledge
of the PV and load profiles).

Table 2 presents the VSS and EVPI metrics calculated for case
A. The resulting VSS shows the potential advantage of using the
multistage solution over the implementation of the day-ahead
forecast-based solution (i.e., EEV ). EVPI indicates how close the
result of the stochastic solution is to the deterministic solution
assuming perfect knowledge of the PV and load profiles (i.e., WS).

For each scenario of the tree in Fig. 2, Fig. 4 shows the compar-
ison between the OF values (i.e., daily energy procurement costs)
calculated by using the day-ahead multistage solution (i.e., defin-
ing the set values at the beginning of the stage for all the time
steps during the corresponding stage) and those given by the day-
ahead scheduling that takes into account only the forecast profiles
(forecast-based) i.e., those obtained by applying the single strat-
egy for the entire day calculated by neglecting the uncertainties
of the forecasts. As expected, the multistage scheduling provides
better results with respect to a forecast-based solution. Fig. 4
also shows the OF values of the deterministic solution (i.e., with
perfect knowledge of the PV and load profiles) of the optimization
problem in Eq. (2).

To test the operation of the intra-day decision-making ap-
proach proposed in this paper, a set with 20 new intra-day
scenarios (i.e., operational conditions during the day different
from those used to calculate the day-ahead decision tree) has
been generated following the technique employed in Section 3.
These out-of-sample scenarios represent measurement values at
each time step t for P t

PV i and P t
Load i. A tolerance ε equal to 25 W

has been assumed for the day-ahead calculations. A lower value
of ε (10 W) is used in the intra-day optimization.

For each of these 20 new scenarios, the solutions of the intra-
day procedure are compared with:

(a) those obtained by using the multistage day-ahead schedul-
ing without further online optimization;

(b) those obtained by considering only the forecast profiles;
(c) those obtained by considering only the forecast profiles

and without allowing direct energy exchanges between the
prosumers (i.e., without LEC);

(d) those obtained by using a heuristic rule for charging and
discharging of the batteries (i.e., without optimization) and
without LEC.

Obviously, the results of all these approaches are less efficient
than those obtained by assuming the perfect knowledge of the
future (i.e., individual deterministic solution for each of the 20
scenarios).

For solutions (a) and (b), the same MILP model already de-
scribed for the EEV calculation has been adopted, in which the
decision variables are fixed, as provided by multistage day-ahead
and forecast-based scheduling, respectively.

For solutions (d), the implemented heuristic rule of charg-
ing and discharging actions of the individual BES units use the

knowledge of the current PV generation and load as follows:
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Fig. 4. Objective function value of the LEC for each scenario of the tree: Case A.
Table 3
OF average value in e per day obtained by employing different solutions and percentage increase with respect to the deterministic solution: Case A.
Solution Intra-day Multistage

day-ahead (a)
Forecast-based
(b)

Without LEC
(c)

Without
optimization (d)

OF average value (e) 17.27 17.87 17.96 21.29 31.62
Percentage increase with respect to
the deterministic solution

0.23 3.71 4.25 23.51 83.52
Table 4
Average cost in e per day for each prosumer (negative value indicates revenue): Case A.
Prosumer 1 2 3 4 5 6 7 8 9 10

Without optimization 7.13 1.38 1.85 −0.13 0.16 0.06 17.14 2.54 0.08 0.40
Without LEC 5.48 0.29 1.02 −0.88 −0.46 −0.18 16.32 1.70 −0.28 −1.73
Intra-day 5.19 0.03 0.85 −1.11 −0.72 −0.26 14.63 1.60 −0.48 −2.46
- at the beginning of the day, the BES units are assumed fully
charged.

- the minimal state of charge of the BES units is set equal to
10% until 6 pm that is around three hours before the PV
generation decreases to zero (according to the forecast in
Case A);

- after 6 pm, the minimal state of charge of the BES units
increases progressively at each time step t until it reaches
80%;

- at each time step t, each prosumer defines the values of
P t
buy_Grid i, P t

sell_Grid i, P t
ch i and P t

dis i to guarantee the local
power balance, with maximum use of the internal resources
during t . If PV generation is lower than demand, the charg-
ing action of the BES unit is avoided, whilst if PV generation
is higher than demand the discharging action of the BES unit
is avoided.

For each one of the mentioned solutions, Table 3 shows the
average value of the daily energy procurement cost and the
percentage increase with respect to the average value of the
deterministic solutions, which is equal to e 17.23.

Fig. 5 shows the comparison of the OF values obtained using:
the deterministic model that assumes a perfect knowledge of
the PV and load daily profiles, the day-ahead multistage solution
(i.e., with decisions corresponding to the day-ahead tree) and
the intra-day solution that includes the online rolling-horizon
optimization.

The results in Fig. 5 confirm the improved performance of
the coordinated scheduling strategy with respect to the multi-
stage solution. Additionally, Fig. 5 confirms that the coordinated
strategy effectively tackles the problem associated with uncer-
tainties in the LEC and achieves a cost-effective result very similar
to the one provided by the deterministic solution with perfect

knowledge of the PV and load profiles.

8

Since the number of variables and time horizon decrease con-
stantly until the end of each stage (from the characteristics of the
online calculation), the time employed by the online optimization
at each time step t varies, on average, from around 20 s at the
beginning of each stage to around a second at the end.

For the same 20 intra-day scenarios, Table 4 shows the average
cost per day for each prosumer obtained by: the calculation
without optimization, the optimization without LEC and the im-
plementation of the intra-day solution. The implementation of
the LEC, together with the intra-day approach, provides an eco-
nomic advantage for each one of the participants. The adoption
of the heuristic rules and the lack of internal transactions do not
allow to fully exploit the available resources.

5.2. Case B: 3-feeder medium-voltage network with 13 prosumers

The second test system considers the 14-bus network illus-
trated in Fig. 6 (adapted from [33]). The medium-voltage side of
the substation has constant rated voltage equal to 23 kV. The load
and PV production profiles of the prosumers, the price profiles
of the energy exchanges with the utility grid and the sizes of
the BES units are equal to the base case in [34]. The forecasted
total energy demand during the day is 195 MWh and the PV
energy generation is 56 MWh (28.7% of the load). The installed
storage capacity is equal to 5.5 MWh. All the calculations refer to
a time window of one day, divided into 24 steps. In this case,
the tolerance ε has been defined equal to 1 kW for both the
day-ahead and intra-day calculation.

Table 5 shows the resulting values of the elbow method and
the silhouette coefficient (calculated for the first eight hours of
the day). Three centroids have been selected to generate the
scenario tree. The structure of the obtained tree is like the one
of Fig. 2.
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Fig. 5. Objective function value of the LEC for 20 new scenarios: Case A.
Fig. 6. Case B configuration. Circles indicate the location of the prosumers.
Source: Adapted from [33].

Table 5
Elbow method and silhouette coefficient metrics for the selection of the number
of clusters: Case B.
Number of clusters 3 4 5 6 7 8 9

Average SSE 1.82 1.74 1.65 1.63 1.58 1.54 1.52
Average s(ψϕ ) 0.43 0.40 0.38 0.39 0.36 0.37 0.38

Table 6
Stochastic metrics for Case B.
Solution OF value (ke) VVS (ke) EVPI (ke)

EEV 45.29
0.13 0.02RP 45.16

WS 45.14

Table 6 presents the VSS and EVPI metrics calculated for case
and a tree obtained with three centroids, confirming the advan-
age of the stochastic solution over the forecast-based solution.

Fig. 7 shows for each one of the scenarios in the tree, the
omparison of the total OF values calculated by using the day-
head multistage solution and those given by the forecast-based
olution. As expected, the multistage scheduling provides better
esults with respect to the forecast-based solution. Fig. 7 also
hows the corresponding OF value provided by the deterministic
olution.
For a set of new 20 intra-day scenarios different from those

sed to obtain the day-ahead decision tree, Table 7 shows the

verage value of the OF value (total energy procurement cost

9

per day) obtained by: the intra-day solution, the day-ahead mul-
tistage solution, the forecast-based solution, the optimization
without energy exchanges inside the community (i.e., without
LEC), and the calculation without optimization (i.e., based on
basic rules for the operation of the BES units).

In the calculation without optimization, each prosumer de-
fines its own set values following basic rules like in Case A.
According to the forecast of PV generation in Case B, the minimal
state of charge of the BES units is set equal to 10% until 5 pm
(i.e., around three hours before the PV generation decreases to
zero).

Moreover, Table 7 shows, for each one of the considered
solutions, the percentage increase with respect to the average
value of the deterministic solution with perfect knowledge of the
PV and load profiles, which is equal to 44.58 ke.

Fig. 8 shows the comparison of the OF values obtained using:
the deterministic model, the day-ahead multistage decision tree,
and the intra-day rolling-horizon approach.

For the same set of 20 new scenarios, Fig. 8 confirms the
advantage of the coordinated day-ahead and intra-day schedul-
ing approach over the day-ahead multistage solution. The time
employed by the online optimization at each time step t varies,
on average, from around eight seconds to less than a second
depending on the corresponding time step at which it occurs.

Table 8 shows the average daily cost for each prosumer
without optimization, without internal transactions in the LEC
(i.e., without LEC) and by applying the intra-day approach. The
results in Table 8 show that the optimization approaches outper-
form the heuristic rules. Each prosumer achieves a cost reduc-
tion by participating in the LEC and implementing the intra-day
approach.

5.3. Case C: 11-feeder medium-voltage network with 69 prosumers

A third test system considers the 83-bus network shown in
Fig. 9 (adapted from [35]). The medium-voltage side of the sub-
station has constant rated voltage equal to 11.4 kV. The price
profiles of the energy exchanges with the utility grid is the
same as in [34], as well as the load and PV production pro-
files that are randomly associate to the various prosumers by
adapting the corresponding maximum values to the rated ones
indicated in [35]. The forecasted total energy demand during the
day is 238.77 MWh and the PV energy generation is 222.22 MWh
(93.06% of the load). The installed storage capacity is equal to
2.5 MWh. All the calculations refer to a time window of one
day, divided into 24 steps. In this case, the tolerance ε has been
defined equal to 10 kW for both the day-ahead and intra-day
calculation.
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Fig. 7. Objective function value of the LEC for each scenario of the tree: Case B.
Fig. 8. Objective function value of the LEC for 20 new scenarios: Case B.
able 7
F average value in e per day obtained by employing different solutions and percentage increase with respect to the deterministic solution: Case B.
Solution Intra-day Multistage

day-ahead
Forecast-based Without LEC Without

optimization

OF average value (ke) 44.71 44.86 44.91 48.04 52.16
Percentage increase with respect to
the deterministic solution

0.29 0.62 0.73 7.76 17.00
Table 8
Average cost in ke per day for each prosumer: Case B.
Prosumer 1 2 3 4 5 6 7 8 9 10 11 12 13

Without optimization 4.97 7.03 1.95 1.31 3.16 9.84 8.88 8.01 0.78 0.77 1.32 1.61 2.53
Without LEC 4.56 6.79 1.59 1.19 2.97 9.12 8.49 7.29 0.62 0.36 1.26 1.41 2.39
Intra-day 4.31 6.48 1.19 0.23 2.95 8.86 8.16 7.08 0.37 0.30 1.20 1.20 2.36
Three centroids have been selected to generate the scenario
ree. The structure of the obtained tree is like the one of Fig. 2
ith three centroids and 27 scenarios.
For each scenario in the tree, Fig. 10 shows the comparison

f the daily OF values calculated by using the day-ahead mul-
istage solution and those given by the forecast-based solution.
s expected, the multistage scheduling provides better results
ith respect to the forecast-based solution. Fig. 10 also shows the
orresponding OF value provided by the deterministic solution.
For a set of new 20 new intra-day scenarios not included in the

ree, Fig. 11 confirms the advantage of the coordinated day-ahead
nd intra-day scheduling approach over the day-ahead multistage
olution. The time employed by the online optimization at each
10
time step t varies, on average, from around 40 seconds to less
than a second depending on the corresponding time step at which
it occurs.

For the set of 20 new scenarios, the proposed intra-day ap-
proach gives, on average, a daily cost increment of 0.19% with
respect to the deterministic solution (which is on average equal
to 19.77 ke). The daily cost increment over the deterministic
solution is, on average, equal to 3.20% by adopting multistage
decisions based only on the day-ahead solution. Moreover, if the
internal transactions in the LEC are not allowed (i.e., case without
LEC), the corresponding average increment over the deterministic
solution is equal to 37.80%, confirming the advantage for each
participant when joining the LEC.
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Fig. 9. Case C configuration. The sizes of the BES units (in kWh) are equal to: 300 (bus 2), 500 (bus 9), 300 (bus 32), 600 (bus 38), 500 (bus 52) 300 (bus 78).
Fig. 10. Objective function value of the LEC for each scenario of the tree: Case C.
. Conclusions and future work

This paper has presented a coordinated day-ahead and intra-
ay approach to define a cost-oriented scheduling method for a
ocal energy community (LEC). The scheduling of the energy re-
ources is implemented by means of a distributed scheme based
n the alternating direction method of multipliers (ADMM). The
pproach preserves the distributed and cooperative nature of the
11
LEC throughout all the phases of the optimization, allowing each
prosumer to fairly achieve an economic benefit by participating
in the community.

The proposed approach has been suitably conceived to con-
sider the uncertainties of the photovoltaic generation and energy
consumption. For this purpose, a day-ahead multistage stochastic
optimization (i.e., with consecutive time steps grouped according
to common decisions) provides a decision tree for the next day.
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Fig. 11. Objective function value of the LEC for 20 new scenarios: Case C.
Subsequently, an intra-day rolling-horizon optimization defines
the scheduling of battery energy storage units and exchanges
of energy inside the LEC at each time step. This scheme al-
lows to divide the optimization horizon into several stages with-
out compromising the overall daily cost minimization. At each
time step in the stage, updated information of energy generation
and consumption are employed by the intra-day optimization
approach.

The day-ahead multistage stochastic scheduling approach pro-
vides improved results with respect to the corresponding
forecast-based solution for the LEC, which defines a single strat-
egy for the entire day. Indeed, the multistage approach exploits
the possibility take corrective decisions during the day. In the
considered cases, the implemented procedure adapts the set
values of the battery energy storage units and the energy trans-
actions among the prosumers at 8 a.m. and 4 p.m., according to
the current operational conditions during the day.

The intra-day procedure selects the best alternative path in the
tree based on the realization of the stochastic processes (photo-
voltaic production and load consumption) and updated available
forecasts. Indeed, in a coordinated way with the selected path
among the alternative day-ahead solutions, the online intra-day
procedure implements a distributed rolling-horizon optimiza-
tion approach to update the scheduling at each time step. The
computational time required for the intra-day optimization is
short enough to be suitably implemented in a real-time energy
management system.

A simple selection procedure that uses the decision tree pro-
vided by the day-ahead multistage stochastic solution can only
react at the end of each stage by minimizing the cumulative
difference between the profiles in the scenario tree and the
current conditions during the stage. In contrast, the proposed
rolling-horizon online optimization approach can also react to the
fluctuations in local generation and loads at each time step.

The implementation of a specific procedure to adapt the oper-
ation of the LEC in case of operational failures, like temporary or
permanent non-availability of a given resource or communication
link during the day would justify a further development.
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