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A B S T R A C T   

An analytical solution for the scattering of harmonic P1 and SV waves in a poroelastic half-plane with a shallow 
lined tunnel is obtained using the plane complex theory in elastodynamics. In light of the wave function ex
pansions, the wave fields of the poroelastic medium and the liner with unknown coefficients are obtained based 
on Biot’s theory and Helmholtz decomposition. Complex-valued expressions of the effective stresses, the fluid 
stress, and the displacements of the poroelastic medium and the liner are expressed by the complex variable 
function method and the conformal transformation technique. With the boundary conditions and the continuity 
of the medium-liner interface, the boundary value problem results in a series of algebraic equations. The un
known coefficients in the infinite set of algebraic equations can be solved numerically by truncating the series 
number. A parametric study for the incident SV waves is performed to investigate dynamic stress concentrations 
and fluid stress of the medium and the liner. Numerical results show that the embedment depth of the tunnel, the 
incident angle of the excitations, and the porosity of the medium have considerable influence on the dynamic 
responses of the medium and the liner. The shielding effect of the tunnel on the incident SV waves is obvious. For 
the big embedment depth of the tunnel, the scattered waves contribute little to the displacements and dynamic 
stress concentration of the medium and the liner. For a high porosity close to the critical value, the response of 
the medium-liner system to the incident waves is great.   

1. Introduction 

Scattering of earthquake waves by embedded inclusions or local 
topographies in a half-plane is a very important topic in seismology, 
geotechnical engineering, and acoustics. Site investigations and theo
retical studies indicate that additional dynamic stresses and displace
ments may occur due to the scattering of the incident and reflected 
waves by the embedded inclusions [1–3]. In order to simulate the 
scattering of waves in an elastic half-plane by the inclusions, a lot of 
literatures have been devoted in the latest decades by either analytical 
or numerical schemes. In the numerical solutions, the boundary element 
method (BEM) is widely used for the scattering of stress waves since the 
far-field radiation condition can be automatically satisfied [4–15]. 

In contrast to numerical methods, analytical solutions are limited to 
treating the linear elastodynamics with simple geometry. However, 
analytical solutions are served as the benchmark of the numerical 
methods as they are closed-form and require less numerical 

implementation. The precise analytical solutions for the scattering of 
elastic waves in a half-plane with a circular cavity may be early pre
sented by Gregory [16,17] and Martin [18,19]. Their results contain the 
singular integrals of the displacements and stresses of the medium, 
which are extremely difficult to be implemented. Later, Lin et al. [20] 
presented an analytical method to examine the zero-stress cylindrical 
wave functions around a circular cavity in a flat and elastic half-space. 
Apart from the precise solutions, the approximate analytical method is 
widely used to deal with the scattering of plane waves by a cavity in an 
elastic and poroelastic half-plane [21–31]. The key of the approximation 
is the replacing of the half surface with a convex or concave circular 
surface by a large radius. The large circular-arc approximation proposed 
firstly by Lee and Cao [21] is very useful and powerful in practical en
gineering since it simplified easily the transformation between the 
Cartesian and cylindrical coordinates by Graf’s addition theorem. Ac
cording to the essentials of special functions, the mathematical base of 
the treatment is the properties of Bessel functions that their values 
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approach zero when their kernels are large numbers [32,33]. Thus, the 
approximation of the zero-stress boundary conditions to the circle of the 
large radii indicates the relaxation of the zero-stress field conditions 
along the half surface. To improve the relaxation, Lin et al. [20] used the 
Hankel function integral representation to perform the transformation 
between the Cartesian coordinate and cylindrical coordinate, which was 
first conducted by Lamb [34]. Lee and Liu [35] re-examined the problem 
and proposed an analytical solution for the scattering of P and SV waves 
by a semi-circular canyon in an elastic half-plane. Zhang et al. [36] 
investigated site amplification of a half-plane with a radially layered 
circular canyon and a dam by the antiplane waves. Li et al. [37] inves
tigated the scattering and diffraction of the plane SV waves in an un
dersea lined tunnel by considering the dynamic interactions of 
fluid-soil-structure couplings. 

The dynamic response of a poroelastic half-plane with a shallow 
tunnel by the incident plane waves has been barely investigated by the 
analytical method except for the BEM solution [13]. In this paper, an 
analytical solution for the scattering of waves by an embedded circular 
lined tunnel in a poroelastic half-plane is presented by the plane com
plex variable method in elastodynamics. It is noted that the complex 
variable method was firstly extended to solve the dynamic response of 
an irregularly shaped cavity in an elastic space by Liu et al. [38]. 
Recently, the authors analyzed the scattering of earthquake waves by 
the lined tunnel in an elastic half-plane by using the complex variable 
method and conformal mapping [39]. The idea will be extended in this 
study to the scattering of plane waves by a circular lined tunnel in a 
poroelastic half-plane. The complex variable method and conformal 
mapping can convert the expressions of the scattered waves from the 
Cartesian coordinate to the cylindrical coordinate by the Möbius 
transformation to a concentric ring in the image plane. It is strict 
mathematically to meet fully the boundary conditions. Moreover, the 
singular integrals in the solution will be avoided in the method. The 
present solution is to solve Biot’s equations by the Helmholtz decom
position for the poroelastic medium first. In terms of the complex vari
able method, general complex expressions for the effective stresses, fluid 
stress, and displacements of the elastic medium and liner are obtained. 
Then, conformal transformation is adopted to map the medium and the 

shallow circular tunnel onto two concentric circles in the image plane. 
The boundary value problem will be formulated by the boundary con
ditions and the continuity of the medium-liner interface as an infinite 
linear algebraic system. Then, a parametric study will be performed to 
investigate the effects of the embedment depth of the tunnel, the inci
dent angle of the excitations and the porosity of the medium on the 
dynamic response of the medium-liner system. 

2. The model 

The cross-section of the two-dimensional problem of concern and the 
adopted coordinate systems are shown in Fig. 1. The fluid-saturated 
medium is homogenous, isotropic, and linearly elastic, which is simu
lated by Biot’s two-phase theory. The circular lined tunnel with inner 
radius R1 and outer radius R2 is located at depth h below the half surface. 
The liner is assumed to be elastic with Lamé constants λ2 and μ2 and 
density ρ2, respectively. The incident P1 and SV excitations are assumed 
to be harmonic with angle γ and the circular frequency ω. The harmonic 
time unit e− iωt will be understood and omitted in the following analysis. 
It is also assumed that the medium-liner interface is perfectly jointed, 
which indicates that there is no slippage at the interface. 

3. Biot’s theory for the poroelastic media 

Based on Biot’s theory [40], the equations of motion expressed by the 
solid displacement vector u and the displacement vector U for the pore 
fluid are 

μ1∇
2u + grad[(λ1 + μ1)e + Qϵ ] =

∂2

∂t2 (ρ11u + ρ12U) + b
∂
∂t
(u − U) (1)  

grad[Qe+Pϵ] =
∂2

∂t2 (ρ12u+ ρ22U) − b
∂
∂t
(u − U) (2)  

where e = divu and ϵ = divU are the dilatations in the solid matrix and 
fluid, respectively; λ1 and μ1 denote Lamé moduli of the saturated me
dium; Q and P are the measures of the elastic moduli; b is the dissipative 
coefficient; ρ11, ρ12 and ρ22 are dynamic effective mass coefficients, 

Fig. 1. The shallow circular tunnel in the poroelastic medium by the plane waves.  
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which can be defined by [42]. 

ρ11 = (1 − n)ρg + γ̂(1 − n)ρf (3)  

ρ12 = − γ̂(1 − n)ρf (4)  

ρ22 = nρf + γ̂(1 − n)ρf (5)  

where n is porosity; ρg is the density of the solid material; ρf is the density 
of the fluid; γ̂ is the coefficient of induced inertia by solid-fluid inter
action, which depends on the shape of the solid particles. When the solid 
skeletons are modeled as spherical particles, γ̂ = 0.5 [42]. 

The elastic moduli have been correlated by Biot and Wills [44] based 
on experimental measurements, which is supposed to be 

Q =
n
(
1 − n − Kdry

/
Kg

)

(
1 − n − Kdry

/
Kg

)
+ nKg

/
Kf

Kg (6)  

P =
n2

(
1 − n − Kdry

/
Kg

)
+ nKg

/
Kf

Kg (7)  

λ1 =
3ν1

1 + ν1
Kdry +

(
1 − n − Kdry

/
Kg

)2

(
1 − n − Kdry

/
Kg

)
+ nKg

/
Kf

Kg (8)  

μ1 =
3(1 − 2ν1)

2(1 + ν1)
Kdry (9)  

where ν1 is the Poisson’s ratio of the dry frame; Kg is the bulk modulus of 
a solid grain; Kf is the bulk modulus of fluid; Kdry is the bulk modulus of 
the frame and can be expressed as [45]. 

Kdry = Kcr + (1 − n / ncr)
(
Kg − Kcr

)
(10)  

where ncr is the critical porosity; Kcr is the critical bulk modulus for the 
dry frame. 

The stress-strain relationships of the saturated medium are [40]. 

σij = (λ1e+Qϵ)δij + 2μ1eij (11)  

pf = Qe + Pϵ (12)  

where σij and eij denote the effective stress and strain tensors in the solid, 
respectively; δij is the Kronecker delta; pf is the fluid stress. 

The stress due to the deformation of the solid skeleton is nominated 
as the effective stress, and practically denoted as σij. The total stress σ̂ ij is 
considered to be composed of the fluid stress and the effective stress in 
the medium as follow 

σ̂ ij = σij − nppδij = σij + pf δij (13)  

where pp = − pf/n denotes the pore pressure of the medium [49]. 

4. Potential functions and the governing equations for the 
poroelastic media 

The Helmholtz decomposition of the displacement vector is applied 
to solve the equation of motion for the case of small, two-dimensional 
and time-harmonic vibration of a homogeneous poroelastic contin
uum. Thus, the displacements fields u and U can be resolved by a pair of 
a scalar potential and a vector potential, which are respectively denoted 
as φ and ψ for the solid components and H and G for the fluid as 

u = ∇φ +∇× ψ (14)  

U = ∇H +∇× G (15) 

Substituting the above decomposition into the wave motion equa
tions by Eq. (1) and Eq. (2), the following Helmholtz equations can be 
obtained about the scalar potentials φf and φs, and vector potential ψ1 

∇2φf + k2
f φf = 0 (16)  

∇2φs + k2
s φs = 0 (17)  

∇2ψ1 + k2
t ψ1 = 0 (18)  

where φf and φs are the longitudinal potentials corresponding to the fast 
and slow P waves; φ = φf + φs; kf, ks and kt denote the complex wave- 
numbers of the fast longitudinal wave, the slow longitudinal wave and 
the transverse wave and can be obtained by [43]. 

k2
f ,s =

B ∓
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 − 4AC

√

2A
(19)  

k2
t =

C
D

(20)  

where 

A = (λ1 + 2μ1)P − Q2 (21)  

B = ω2[ρ11P + ρ22(λ1 + 2μ1) − 2ρ12Q] + iωb(λ1 + 2μ1 + 2Q+P) (22)  

C = ω2[ω2( ρ11ρ22 − ρ2
12

)
+ iωρ1b

]
(23)  

D = μ1
[
ρ22ω2 + iωb

]
(24)  

where ρ1 = (1 − n)ρg + nρf is the total density of the medium; b is a 
viscous coupling factor [43]. 

Furthermore, the potentials H and G can be derived as 

H = μf φf + μsφs (25)  

G = μtψ1 (26)  

where 

μf ,s =
ω2(ρ11P − ρ12Q) − k2

f ,s

[
(λ1 + 2μ1)P − Q2

]
+ iωb(Q + P)

ω2(ρ22Q − ρ12P) + iωb(Q + P)
(27)  

μt = −
ω2ρ12 − iωb
ω2ρ22 + iωb

(28)  

5. Total wave potentials of the medium and the liner 

5.1. Wave potentials of the poroelastic medium 

5.1.1. Wave potentials of the free field 

5.1.1.1. Incident P waves. For the obliquely incident P waves with angle 
γ and the amplitude φf0, the fast potentials are mostly considered in 
practical engineering [45]. In this case, the incident potentials φi

f , the 
reflected fast and slow P waves, φr

f and φr
s, and the reflected SV waves ψ r 

can be expressed as 

φi
f = φf 0exp

[
ikf (xsin γ + ycos γ)

]
(29)  

φr
f = af 1exp

[
ikf (xsin γ − ycos γ)

]
(30)  

φr
s = af 2exp[iks(xsin θα1 − ycos θα1)] (31)  

ψr = bf 1exp
[
ikt
(
xsin θβ1 − ycos θβ1

)]
(32)  

where θα1 = arcsin(kf sin γ/ks); θβ1 = arcsin(kf sin γ/kt); af1, af2 and bf1 
are the coefficients satisfying the traction-free boundary conditions at 
the saturated half-plane [45]. 
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5.1.1.2. Incident SV waves. For incident SV wave with amplitude ψ0, 
three cases occur potentially according to the comparison of the incident 
angle γ with the so-called critical angles θcr1 and θcr2, which are defined 
as 

θcr1 = arcsin
(
kf
/

kt
)

(33)  

θcr2 = arcsin(ks / kt) (34)  

Case I. γ ≤ θcr1 
In this case, the incident potentials ψ i

f of the amplitude ψ0 and the 
reflected fast and slow P waves φr

f and φr
s, and the reflected SV waves ψr 

can be respectively expressed as 

ψi = ψ0exp[ikt(xsin γ + ycos γ)] (35)  

φr
f = at1exp

[
ikf (xsin θα3 − ycos θα3)

]
(36)  

φr
s = at2exp

[
iks

(
xsin θβ3 − ycos θβ3

)]
(37)  

ψr = bt1exp[ikt(xsin γ − ycos γ)] (38)  

where θα3 = arcsin(kt sin γ/kf); θβ3 = arcsin(kt sin γ/ks); at1, at2 and bt1 
are the coefficients satisfying the traction-free boundary conditions at 
the saturated half-plane [45]. 

Case II. γ ≥θcr1 
When the incident angle reaches the first critical angle θcr1, the re

flected fast P wave turns to be surface waves and the reflected angle θα3 
turns to 90◦. The reflected slow P wave is described by Eq. (37), whereas 
the surface wave is given as [39]. 

φr
f = at1exp[ikx − γ1y] (39)  

where at1 is the coefficient of the surface wave which can be get from the 
traction-free condition, k = kt sin γ = kf sin θα3 = ks sin θβ3 is the 
apparent wave-number, and 

γ1 = ikf cos θα3 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − k2
f

√

(40)   

Case III. γ ≥θcr2 In unconsolidated soft solid frame, the velocity of the 
slow P waves is greater than that of the SV waves. When the incident 
angle reaches the second critical angle θcr2, the reflected slow P waves 
turns to be surface waves and the reflected angle θβ3 turns to 90◦. The 
surface wave transformed from the slow P wave is given as [41]. 

φr
s = at2exp[ikx − γ2y] (41)  

where at2 is the coefficient of the surface wave which can be get from the 
traction-free condition, k is the apparent wave-number, and 

γ2 = ikscos θβ3 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − k2
s

√

(42)   

5.1.2. The scattered potentials 
In the poroelastic half-plane, for the presence of the circular tunnel, 

the incident and the reflected waves will be scattered around the tunnel. 
The scattered waves should satisfy the equation of motion and Som
merfeld’s radiation conditions [46,47]. Therefore, the scattered waves 
by the tunnel and the half surface should be outgoing while not ingoing. 
The scattered P and SV waves are generated at the cavity are represented 
by φs

f1, φs
s1 and ψs

1. Due to the vibrations of the circular cavity, the 
scattered wave φs

f1, φs
s1 and ψ s

1 are reflected off the half surface and new 
waves are generated and can be represented by φs

f2, φs
s2 and ψs

2, 

respectively. Therefore, the scattered waves φs
f2, φs

s2 and ψs
2 can be 

simulated as scattering from origin O2, the image of origin O1. Accord
ingly, the scattered potentials φs

f1, φs
s1 and ψs

1 can be written as 

φs
f 1 =

∑∞

n=− ∞
anH(1)

n

(
kf r1

)
einθ1 (43)  

φs
s1 =

∑∞

n=− ∞
bnH(1)

n (ksr1)einθ1 (44)  

ψs
1 =

∑∞

n=− ∞
cnH(1)

n (ktr1)einθ1 (45) 

The additional scattered wave potentials φs
f2, φs

s2 and ψ s
2 at the half 

surface can be expressed as 

φs
f 2 =

∑∞

n=− ∞
dnH(1)

n

(
kf r2

)
einθ2 (46)  

φs
s2 =

∑∞

n=− ∞
enH(1)

n (ksr2)einθ2 (47)  

ψs
2 =

∑∞

n=− ∞
fnH(1)

n (ktr2)einθ2 (48)  

where H(1)
n ( ⋅) denotes the Hankel function of first kind and order n; an, 

bn, cn, dn, en, and fn are arbitrary coefficients; r1 and r2 are norms of 
vectors O1A̅̅→ and O2A̅̅→, respectively (see Fig. 1); θ1 and θ2 are the polar 
coordinate angles shown in Fig. 1 and can be calculated by 

eiθ1 =
O1A̅̅→

⃒
⃒
⃒O1A̅̅→

⃒
⃒
⃒
=

z + ih
|z + ih|

(49)  

eiθ2 =
O2A̅̅→

⃒
⃒
⃒O2A̅̅→

⃒
⃒
⃒
=

z + ih
|z + ih|

(50) 

Due to the scattering theory of earthquake waves in the elastody
namics, there are three kinds of field potentials in formation, the inci
dent, reflected and scattered wave potentials, respectively. The total 
wave potentials of the medium are the sum of the incident, reflected and 
scattered waves, which can be written as 

φf = φi
f + φr

f + φs
f 1 + φs

f 2 (51)  

φs = φi
s + φr

s + φs
s1 + φs

s2 (52)  

ψ1 = ψi + ψr + ψs
1 + ψs

2 (53)  

5.2. Wave potentials of the liner 

In the lined tunnel, scattered wave potentials occur due to the vi
bration of the poroelastic medium. The total wave fields φ2 and ψ2 are 
expressed as [39]. 

φ2 =
∑∞

n=− ∞

[
gnH(1)

n (kL2r1)+ hnH(2)
n (kL2r1)

]
einθ1 (54)  

ψ2 =
∑∞

n=− ∞

[
inH(1)

n (kT2r1)+ jnH(2)
n (kT2r1)

]
einθ1 (55)  

where kL2 = ω/cL2 and kT2 = ω/cT2 are the wave-numbers of P and SV 
waves of the liner, respectively; cL2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(λ2 + 2μ2)/ρ2

√
and cT2 =

̅̅̅̅̅̅̅̅̅̅̅̅
μ2/ρ2

√

are the wave velocities of P and SV waves, respectively; H(2)
n ( ⋅) denotes 

the Hankel function of second kind and order n; gn, hn, in, and jn are the 
unknown coefficients to be determined. 

6. Complex-valued expressions of the effective stresses, 
displacements and fluid stress 

6.1. The conformal mapping functions 

The mapping technique will be adopted to transform the physical 
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region onto the image region by variables ζ = ξ + iη and ζ = ξ − iη. As 
for the poroelastic medium, a Möbius transformation is introduced to 
map region Ω1 in Fig. 1 onto a ring region Γ1 in ζ plane (see Fig. 2) [48]. 

z1 = w1(ζ) = − it
1 + ζ
1 − ζ

(56)  

where t = h(1 − α2)/(1 + α2); α = h/R2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(h − R2)
2
− 1

√

. 
For the liner, different mapping function w2(ζ) is applied to map 

region Ω2 (see Fig. 1) onto a ring region Γ2 [39] 

z2 = w2(ζ) = − ih +
R2ζ
α (57) 

This kind of treatment for the problem of concern has been intro
duced to consider the continuum along with the interface between the 
elastic medium and the liner. As shown in Fig. 2, it is seen that ring Γ1, 
corresponding to the elastic medium, is bounded by two concentric 
circles, |ζ| = α and |ζ| = 1, respectively. Likewise, ring Γ2 is bounded by 
two concentric circles, |ζ| = α and |ζ| = α1 = αR1/R2, respectively. There 
is a jointed boundary |ζ| = α by regions Γ1 and Γ2. Circles |ζ| = 1, |ζ| = α, 
|ζ| = α1 in the image domain correspond monotonously to the half 
surface, the medium-liner interface and the inner surface of the liner, 
respectively. 

6.2. General expressions of the effective stresses and displacements 

The displacements of the poroelastic medium expressed by Eqs. (14) 
and (15) can be converted to the following forms 

u1 =
∂φf

∂x
+

∂φs

∂x
+

∂ψ1

∂y
(58)  

v1 =
∂φf

∂y
+

∂φs

∂y
−

∂ψ1

∂x
(59)  

Ux = μf
∂φf

∂x
+ μs

∂φs

∂x
+ μt

∂ψ1

∂y
(60)  

Uy = μf
∂φf

∂y
+ μs

∂φs

∂y
− μt

∂ψ1

∂x
(61) 

Applying the Helmholtz decomposition, the displacement of the liner 
can be written as 

u2 =
∂φ2

∂x
+

∂ψ2

∂y
(62)  

v2 =
∂φ2

∂y
−

∂ψ2

∂x
(63) 

The complex variables z = x + iy and z = x − iy are introduced to 
transform the expressions of the displacements and effective stresses of 
the medium. Based on Helmholtz equations and the constitutive model, 
the combinations of the displacements and stresses of the poroelastic 
medium can be given as 

u1 + iv1 = 2
∂
∂z

(
φf +φs − iψ1

)
(64)  

u1 − iv1 = 2
∂
∂z

(
φf +φs + iψ1

)
(65)  

ur1 + ivθ1 = 2
∂
∂z

(
φf +φs − iψ1

)
e− iχ1 (66)  

ur1 − ivθ1 = 2
∂
∂z

(
φf +φs + iψ1

)
eiχ1 (67)  

Δr = ur1 − Ur =
∂
∂z

(

ηf φf + ηsφs + iηtψ1

)

eiχ1

+
∂
∂z

(

ηf φf + ηsφs − iηtψ1

)

e− iχ1

(68)  

σy1 + iσxy1 = δf φf + δsφs − 4μ1
∂2

∂z2

(
φf +φs + iψ1

)
(69)  

σy1 − iσxy1 = δf φf + δsφs − 4μ1
∂2

∂z2

(
φf +φs − iψ1

)
(70)  

σr1 + iσrθ1 = δf φf + δsφs + 4μ1
∂2

∂z2

(
φf +φs − iψ1

)
e− 2iχ1 (71)  

σr1 − iσrθ1 = δf φf + δsφs + 4μ1
∂2

∂z2

(
φf +φs + iψ1

)
e2iχ1 (72)  

pf = − αf k2
f φf − αsk2

s φs (73)  

where αf,s = Q + μf,sP; δf ,s = [n(Q + μf ,sP) − (λ1 + μ1)]k2
f ,s; ηf,s,t = 1 − μf,s, 

t; χ1 denotes the rotation angle from the coordinate system xoy to system 
ρoθ. 

The combinations of the displacement and stress of the liner can be 
given as 

ur2 + ivθ2 = 2
∂
∂z

(φ2 − iψ2)e
− iχ2 (74)  

ur2 − ivθ2 = 2
∂
∂z

(φ2 + iψ2)e
iχ2 (75)  

σr2 + iσrθ2 = − (λ2 + μ2)k
2
L2φ2 + 4μ2

∂2

∂z2 (φ2 − iψ2)e
− 2iχ2 (76)  

σr2 − iσrθ2 = − (λ2 + μ2)k
2
L2φ2 + 4μ2

∂2

∂z2 (φ2 + iψ2)e
2iχ2 (77) 

The rotating angle χi, (i = 1, 2) can be given by the mapping function 
as 

eiχi =
ζ
ρ

w′

i(ζ)
|w′

i(ζ)|
(i= 1, 2) (78)  

where ζ = ρeiθ, ρ and θ presents the polar coordinate after conformal 
mapping. Fig. 2. The geometry of the proposed model [39].  
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After conformal mapping, the displacements and effective stresses in 
z-plane can be rewritten by ζ and ζ as 

u1 + iv1 = 2
1

w′

1(ζ)
∂
∂ζ

(
φf +φs − iψ1

)
(79)  

u1 − iv1 = 2
1

w′

1(ζ)
∂
∂ζ

(
φf +φs + iψ1

)
(80)  

ur1 + ivθ1 = 2
ζ

ρ|w′

1(ζ)|
∂
∂ζ

(
φf +φs − iψ1

)
(81)  

ur1 − ivθ1 = 2
ζ

ρ|w′

1(ζ)|
∂
∂ζ

(
φf +φs + iψ1

)
(82)  

△r = ur1 − Ur =
ζ

ρ|w’
1(ζ)|

∂
∂ζ

(
ηf φf + ηsφs + iηtψ1

)

+
ζ

ρ|w’
1(ζ)|

∂
∂ζ

(
ηf φf + ηsφs − iηtψ1

)
(83)  

σy1 + iσxy1 = δf φf + δsφs

− 4μ1
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(

φf + φs + iψ1

)] (84)  

σy1 − iσxy1 = δf φf + δsφs

− 4μ1
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs − iψ1

)
] (85)  

σr1 + iσrθ1 = δf φf + δsφs

+4μ1
ζ2

ρ2

1
w’

1(ζ)
∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs − iψ1

)
] (86)  

σr1 − iσrθ1 = δf φf + δsφs

+4μ1
ζ2

ρ2
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs + iψ1

)
] (87)  

pf = − αf k2
f φf − αsk2

s φs (88)  

ur2 + ivθ2 = 2
ζ

ρ|w′

2(ζ)|
∂
∂ζ

(φ2 − iψ2) (89)  

ur2 − ivθ2 = 2
ζ

ρ|w′

2(ζ)|
∂
∂ζ

(φ2 + iψ2) (90)  

σr2 + iσrθ2 = − (λ2 + μ2)k2
L2φ2

+4μ2
ζ2

ρ2

1
w’

2(ζ)
∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 − iψ2)

] (91)  

σr2 − iσrθ2 = − (λ2 + μ2)k2
L2φ2

+4μ2
ζ2

ρ2
1

w’
2(ζ)

∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 + iψ2)

] (92)  

7. Formulations of the boundary value problem 

Along with the half surface, it exhibits traction-free field conditions. 
It is convenient to present the stress conditions in a Cartesian coordinate 
system xoy as follows: 

σxy1 = σy1 = 0, (y= 0) (93) 

In addition, the fluid stress for the drained case will vanish. There
fore, the boundary condition results in the form 

pf = 0 (94) 

Along the circumference of the internal surface of the liner, the 

stress-free boundary conditions can be expressed as 

σr2 = σrθ2 = 0, (r1 =R1) (95) 

The fluid stress for the drained case along the medium-liner interface 
will disappear, which remains the same formulation as Eq. (94). 

For the undrained case, the displacement △r of the fluid relative to 
the solid will be zero 

△r = 0 (96) 

The continuity of the stress and displacement at the medium–liner 
interface (r1 = R2) results in 

ur1 = ur2 (97)  

vθ1 = vθ2 (98)  

σr1 = σr2 (99)  

σrθ1 = σrθ2 (100) 

The boundary value problem can be solved directly if the effective 
stresses and displacements along the boundary are prescribed. In this 
article, the stress boundary conditions along with the half surface are 

σy1 + iσxy1 = δf φf + δsφs

− 4μ1
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs + iψ1

)
]

= 0
(101)  

σy1 − iσxy1 = δf φf + δsφs

− 4μ1
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs − iψ1

)
]

= 0
(102) 

Substituting Eq. (88) into Eq. (94), we obtain the boundary condition 
of the fluid stress along the half surface for the drained case 

pf = − αf k2
f φf − αsk2

s φs = 0 (103) 

Along the circumference of the internal surface of the liner, the 
stress-free boundary conditions are 

σr2 + iσrθ2 = − (λ2 + μ2)k2
L2φ2

+4μ2
R2

2ζ2

R2
1α2

1
w’

2(ζ)
∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 − iψ2)

]

= 0
(104)  

σr2 − iσrθ2 = − (λ2 + μ2)k2
L2φ2

+4μ2
R2

2ζ2

R2
1α2

1
w’

2(ζ)
∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 + iψ2)

]

= 0
(105) 

For the drained case, the fluid stress will remain in the form of Eq. 
(103). On the other hand, the pore boundary condition for the undrained 
case along with the medium-liner interface can be obtained by 
substituting Eq. (83) into Eq. (96) as 

△r =
ζ1

α|w’
1(ζ1)|

∂
∂ζ1

(
ηf φf + ηsφs + iηtψ1

)

+
ζ1

α|w’
1(ζ1)|

∂
∂ζ1

(
ηf φf + ηsφs − iηtψ1

)
= 0

(106) 

Likewise, substituting Eqs. (81), (82) and (89)–(90) into Eqs. (97) 
and (98), we obtain 

ur1 + ivθ1 = 2
ζ1

α|w’
1(ζ1) |

∂
∂ζ1

(
φf + φs − iψ1

)

= ur2 + ivθ2 = 2
ζ

α|w’
2(ζ) |

∂
∂ζ

(φ2 − iψ2)

(107)  

ur1 − ivθ1 = 2
ζ1

α|w’
1(ζ1) |

∂
∂ζ1

(
φf + φs + iψ1

)

= ur2 − ivθ2 = 2
ζ

α|w’
2(ζ) |

∂
∂ζ

(φ2 + iψ2)

(108) 
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where ζ1 = αeiθ′ denotes the complex argument of point B1 in the image 
plane and θ′ is the polar angle of ζ1. 

Substituting Eqs. (86)- Eqs. (87) and (91)- (92) into Eqs. (99) and 
(100) yields 

σr1 + iτrθ1 = δf φf + δsφs + 4μ1
ζ2

1

α2
1

w’
1(ζ1)

∂
∂ζ1

[
1

w’
1(ζ1)

∂
∂ζ1

(
φf + φs − iψ1

)
]

= σr2 + iτrθ2 = − (λ2 + μ2)k
2
L2φ2 + 4μ2

ζ2

α2
1

w’
2(ζ)

∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 − iψ2)

]

(109)  

σr1 − iτrθ1 = δf φf + δsφs + 4μ1
ζ2

1

α2
1

w’
1(ζ1)

∂
∂ζ1

[
1

w’
1(ζ1)

∂
∂ζ1

(
φf + φs + iψ1

)
]

= σr2 − iτrθ2 = − (λ2 + μ2)k
2
L2φ2 + 4μ2

ζ2

α2

1
w’

2(ζ)
∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 + iψ2)

]

(110) 

Because functions w1(ζ) by Eq. (56) and w2(ζ) by Eq. (57) are 
different from each other, point at the medium-liner interface will be 
mapped to different locations on the image plane. For example, point B 
at the interface in Fig. 1 corresponds to B2 for the liner and B1 for the 
poroelastic medium in the image plane, respectively (see Fig. 2). The 
polar angle θ of vector OB2

̅̅→ remains the same value of O1B̅̅→ in Fig. 1. 
However, the polar angle of vector OB1

̅̅→ is θ′ after mapping by Eq. (56) as 
shown in Fig. 2, which is different from θ. The relationship between θ 
and θ′ is given by 

θ
′

(θ) = arg
[

iR2eiθ + h − t
iR2eiθ + h + t

]

(111) 

In Eqs. (101)-(110), it is obvious that ur1, vθ1, σr1 and σrθ1 are func
tions of θ′, while ur2, vθ2, σr2 and σrθ2 are funtions of θ. Substituting Eqs. 
(51)-(55) into Eqs. (101)-(110) and considering Eqs. (111), we obtain 
∑10

i=1

∑∞

n=− ∞
Ei,jnXi

n = Rj, (j= 1,…, 10) (112)  

where X1
n = an, X2

n = bn, X3
n = cn, X4

n = dn, X5
n = en, X6

n = fn, X7
n = gn, 

X8
n = hn, X9

n = in, X10
n = jn; Ei,jn and Rj are presented in Appendix A. 

It shows that Ei,jn and Rj are the functions of the polar angele of θ in 
the image plane. Multiplying both sides of Eqs. (112) with e− isθ and 
integrating over the interval [ − π, π], we get 

∑10

i=1

∑∞

n=− ∞
Es

i,jnXi
n = Rs

j , (j = 1, ..., 10, s = 0,±1,±2, ...) (113)  

where Es
i,jn =

∫ π
− π Ei,jne− isθdθ/(2π) and Rs

j =
∫ π
− π Rje− isθdθ/(2π)

Obviously, Eq. (113) contains a set of infinite linear algebraic sys
tems with respect to the unknown expansion coefficients and may be 
solved straightforwardly. Since the total wave potentials are expressed 
by the infinite series, the accuracy of the present solution depends 
greatly on the truncating of order n to N. Therefore, the series number N 
should be carefully chosen to ensure the convergence and accuracy of 
the solution. All results can be obtained easily on a desktop computer in 
15 s with 3.19 GHz Intel(R) Core(TM) i7-8700 CPU and 32.00 GB RAM 
under Windows 10 21H1 environment. 

8. Validation 

To verify the accuracy of the proposed method, comparisons of the 
results by the present solution with those available methods by the in
direct boundary integral method will be carried out. For the convenience 
of demonstration, two non-dimensional parameters, the dynamic stress 
concentration factor σ∗

θi (i= 1, 2) (DSCF) in the medium and the liner, 
and the non-dimensional fluid stress p∗f , are defined as 

σ∗
θi =

σθi

σ0
(114)  

p∗
f =

pf

p0
(115)  

where σθi is the tangential stress of the medium and liner; σ0 = Re[ −
(λ1 + 2μ1)k2

f φ0]; p0 = Re[ − αf k2
f φf0]. 

The tangential stresses of the medium σθ1, the outer and inner sur
faces of the liner, σO

θ2 and σI
θ2, are obtained as 

σθ1 = − (λ1 + μ1)
(

k2
f φf + k2

s φs

)
−
(
δf φf + δsφs

)

− 2μ1
ζ2

α2
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs − iψ1

)
]

− 2μ1
ζ2

α2
1

w’
1(ζ)

∂
∂ζ

[
1

w’
1(ζ)

∂
∂ζ

(
φf + φs + iψ1

)
]

(116)  

σO
θ2 = − (λ2 + μ2)k2

L2φ2

− 2μ2
ζ2

α2

1
w’

2(ζ)
∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 − iψ2)

]

− 2μ2
ζ2

α2
1

w’
2(ζ)

∂
∂ζ

[
1

w’
2(ζ)

∂
∂ζ

(φ2 + iψ2)

]

(117)  

σI
θ2 = − 2(λ2 + μ2)k

2
L2φ2 (118) 

Fig. 3 shows a comparison of the hoop stresses along the unlined 
cavity in an elastic half-plane by the proposed solution with those by 
Luco and de Barros [6] for a vertically incident fast P wave and SV wave 
(γ = 0). To match the parameters by Luco and de Barros [6], the 
following geometric and material properties are adopted: h = 7.5 m, R1 
= 4.99 m, R2 = 5.0 m, ncr = 0.36, Kcr = 50 MPa, Kg = 87.02 MPa, Kf =

2000 MPa, ρg = 1932 kg/m3, ρf = 1000 kg/m3, ̂γ = 0.5, n = 0.0005, ν1 =

1/3, λ2 = 0.67 MPa, μ2 = 1.0 MPa, ρ2 = 1.0 kg/m3, ω = 40.81, b = 0. 
From the above parameters, we obtain: λ1 = 6.52 × 107Pa, μ1 = 3.26 ×
107Pa, ρ1 ≈ 1932 kg/m3. In Fig. 3, Upf = ikfφf0 and Us = iktψ0. It should 
be noted that n = 0.0005 corresponds to the medium with a very low 
porosity which can be reduced to the pure elastic medium. Good 
agreements of the comparisons enhance the accuracy of the proposed 
approach for scattering of plane waves by the unlined cavity in an elastic 
half-plane. 

Fig. 4 shows a comparison of the displacements along the half surface 
of the shallow lined tunnel by the proposed solution with those by Liu 
et al. [13] for an obliquely incident fast P waves (γ = 30◦). The following 
parameters for the poroelastic medium and the liner are adopted: h = 30 
m, R1 = 10.0 m, R2 = 10.35 m ncr = 0.36, Kcr = 200 MPa, Kg = 36000 
MPa, Kf = 2000 MPa, ρg = 2650 kg/m3, ρf = 1000 kg/m3, γ̂ = 0.5, n =
0.3, ν1 = 0.25, b = 0, ρ2 = 2500 kg/m3, λ2 = 9583.3 MPa, μ2 = 14375 
MPa. The comparison indicates that the present results agree well with 
the indirect boundary element method except for several locations of the 
surface. It is observed that good agreements in the comparison can be 
achieved for not only low but also high frequency waves. 

9. Results and discussions 

In this section, the effects of the embedment depth ratio χ = h/R2 and 
the porosity of the medium on the dynamic response of the medium- 
tunnel system are demonstrated. Permeable hydrodynamic conditions 
at the half surface and undrained condition along with the medium-liner 
interface are considered, respectively. If not specifically mentioned, the 
parameters of the poroelastic medium and the liner are chosen as the 
same as those in the comparison with Liu et al. [13]. The circular fre
quency of the vertically incident SV waves is set to be ω = 420.973. The 
radii of the outer and inner surfaces of the liner are R1 = 5.0 m, R2 =

5.35 m, respectively. 
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9.1. The effect of the liner’s embedment depth 

9.1.1. Vertical incidence 
Fig. 5 shows the displacements at the half surface with different 

embedment ratios of the liner with γ = 0. It is seen that the horizontal 
displacements are larger than the vertical displacements. This can be 
explained that the response of the medium along with the horizontal 
direction exhibits intensively because the excitations are vertically 
incident. Moreover, it indicates that shadows of the half surface behind 
the liner display resonance and extra displacements occur. Recalling the 
general understanding that displacements along the half surface caused 
by the incident and reflected waves are constant, additional 

displacements are contributed from the scattered wave potentials by the 
liner and half surface. When the embedment ratio χ is small, the effect of 
the scattered waves on the half surface is great. However, the influence 
of the scattered waves on the half surface turns to be weak when the 
liner is embedded deeply, resulting in the flat and wide displacement 
curves correspondingly. 

Fig. 6 shows the DSCFs along the cavity of the medium σ∗
θ1, and the 

outer and inner surfaces of the liner, σO∗
θ2 and σI∗

θ2, and the fluid stress 
along the outer of the liner, p∗f , respectively. It is observed that the 
shapes of DSCFs of σ∗

θ1, σO∗
θ2 and σI∗

θ2 are almost identical for the same 
embedment ratio. Moreover, the DSCFs along the liner are greater than 
those along the cavity of the medium. This can be understood that the 

Fig. 3. Comparisons of the present results with those by Luco and de Barros [6] for vertically incident fast P waves (a) and SV-waves (b).  

Fig. 4. Comparisons of the present results with those by Liu et al. [13] for obliquely incident P-waves. (γ = 30◦).  

Fig. 5. Horizontal and vertical displacements at half surface by vertically incident SV waves with different χ. n = 0.3.  
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big rigidity of the liner in a great response to the incident waves. It is also 
interesting that the fluid stress at the upper part of the liner are greater 
than those of the lower part. This is due to the fact that the effect of the 
scattered waves from the half surface on the upper part of the liner is 
bigger than that on the lower part. 

9.1.2. Oblique incidence 
Fig. 7 shows the effect of the obliquely incident angle on the dis

placements of the half surface to the excitations. It indicates that the 
influence of the incident angle on the displacements of the half surface is 
significant compared to Fig. 4. Displacements at the left side of the 
surface with shallow embedment ratio vibrate frequently. This is un
derstood that the scattered waves from the inclusion contribute much 
more to the half surface. Moreover, the displacements at the right side of 

the half surface turn to be gentle due to the shielding effect of the in
clusion to the incident waves. As shown in Fig. 6(b), it is observed the 
vertical displacements at origin for different embedment ratios are not 
zero, which is totally different from Fig. 4(b). 

Fig. 8 predicted the DSCFs of σ∗
θ1, σO∗

θ2 , σI∗
θ2, and p∗f by obliquely 

incident SV waves, respectively. It is seen that the response of the me
dium is weaker than that of the liner. Moreover, resonance occurs in the 
shadows behind the inclusion along the direction of the incident waves. 
This can be understood that the scattered waves generate from the half 
surface contribute greatly to the region of the shadow. 

Fig. 6. Distributions of DSCFs and fluid stress by vertically incident SV wave along the cavity and liner with n = 0.3. (Solid line, χ = 1.5; dash line, χ = 3; dot line, χ 
= 6; dash dot line, χ = 9). 

Fig. 7. Horizontal and vertical displacements by obliquely incident SV wave along the half surface with different embedment depth ratio χ. (Solid line, χ = 1.5; dash 
line, χ = 3; dot line, χ = 6; dash dot line, χ = 9). 
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9.2. The effect of the porosity 

9.2.1. Vertical incidence 
Fig. 9 shows the horizontal and vertical displacements along the half 

surface with different porosities by vertically incident SV waves. It is 
seen that the displacements at the half surface within the shadow one 
time the tunnel radius are almost irrelevant to the porosity when its 
value is small. However, the effect of the porosity on the horizontal 
displacements of the half surface is significant for big porosity. It is also 
interesting that the displacements for very small porosity vibrate 
frequently along the surface. This can be understood that small porosity 
results in small wavenumbers of SV waves indicating small wavelength 
within a given distance. 

Fig. 10 shows the DSCFs along the cavity and liner and the fluid stress 

for different porosities of the medium. It is seen that dynamic stresses are 
concentrated mainly at the arch waists of the back of the inclusion to the 
incident waves. However, different trends of the DSCFs along the cavity 
of the medium and liner can be observed. With the increase of the 
porosity, the DSCFs increase in the shadow of the cavity. It is seen that 
opposite trends can be observed for the liner. The effect of the porosity 
on the fluid stress in the shadow of the cavity is very similar to that of the 
DSCFs. 

9.2.2. Oblique incidence 
Fig. 11 shows the horizontal and vertical displacements along the 

half surface with different porosities by obliquely incident SV waves. A 
comparison of Fig. 10 with Fig. 8 indicates that the incident angle has a 
great influence on the displacements of the half surface. The shielding 

Fig. 8. Distribution of DSCFs and fluid stress by obliquely incident SV wave along the cavity wall with different embedment depth. (Solid line, χ = 1.5; dash line, χ =
3; dot line, χ = 6; dash dot line, χ = 9). 

Fig. 9. Horizontal and vertical displacements by vertically incident SV wave along the half surface with different porosity n. (Solid line, n = 0.05; dash line, n = 0.1; 
dot line, n = 0.2; dash dot line, n = 0.3). 
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effect of the inclusion to the incident waves is obvious. Moreover, the 
effect of the porosity on the vertical and horizontal displacements is 
small. For high porosity n = 0.3, displacements on the left side of the 
surface are large, whereas small on the right side. 

Fig. 12 shows the DSCFs of σ∗
θ1, σO∗

θ2 , σI∗
θ2, and p∗f by obliquely incident 

SV waves with different porosities of the medium, respectively. A similar 
effect of porosity on DSCFs of σ∗

θ1 can be observed as shown in Fig. 10. A 
high value of porosity n = 0.3 has significant influence on the dynamic 
stress concentration of the cavity. This may be due to the fact that the 
porosity n = 0.3 is very close to the critical porosity ncr = 0.36. However, 
the DSCFs of the outer and inner surfaces of the liner increase with the 
increase of the porosity. Moreover, the shapes of σO∗

θ2 and σI∗
θ2 are basi

cally identical though the amplitudes of the inner part are greater than 

those of the outer. The response of the liner is greater than that of the 
medium. Furthermore, it is seen that great fluid stress occur in the 
shadow behind the tunnel along the direction of the incident waves. 

10. Conclusions 

Scattering of harmonic plane P1 and SV waves by a circular lined 
tunnel in a poroelastic half-plane is investigated in this paper. An 
analytical approach is developed based on the complex variable function 
method and conformal mapping technique. In terms of the wave func
tion expansions, the wave fields in the poroelastic medium and the liner 
are obtained for the displacements, effective stresses and fluid stress. 
Conformal mappings are introduced to transform the physical planes 
into two rings in the image plane for the medium and the liner, 

Fig. 10. Distribution of DSCFs and fluid stress by vertically incident SV wave along the cavity wall with different porosity. (Solid line, n = 0.05; dash line, n = 0.1; 
dot line, n = 0.2; dash dot line, n = 0.3). 

Fig. 11. Horizontal and vertical displacements by obliquely incident SV wave along the half surface with different porosity n. (Solid line, n = 0.05; dash line, n = 0.1; 
dot line, n = 0.2; dash dot line, n = 0.3). 
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respectively. The boundary value problem is formulated by the bound
ary conditions and the continuity of the medium-liner interface as an 
infinite linear algebraic system. The convergence of the proposed 
method should be implemented by truncating the series number. The 
following conclusions can be drawn by a parametric study of the inci
dent SV waves: 

(1) The embedment depth of the tunnel has a significant influence on 
the displacements of the half surface. The shielding effect on the half 
surface by the tunnel is obvious to the incident SV waves. 

(2) For the shallow tunnel, the effect of the embedment depth ratio 
on the DSCFs of the medium-liner interface and the liner and the fluid 
stress in the medium is great. When the embedment depth is big, the 
scattered waves contribute little to the displacements and the DSCFs of 
the liner. 

(3) For a small porosity of the medium, its effect on the displace
ments of the half surface is weak. When the porosity is close to the 
critical value ncr, the porosity contributes greatly to the response of the 
medium-liner system. 
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Appendix A 

E1,1n = δf H(1)
n

(
kf
⃒
⃒w1 + ih

⃒
⃒
)
(

w1 + ih
|w1 + ih|

)n

− μ1k2
f H(1)

n− 2
(
kf
⃒
⃒w1 + ih

⃒
⃒
)
(

w1 + ih
|w1 + ih|

)n− 2

(A.1)  

E1,2n = δsH(1)
n (ks|w1 + ih|)

(
w1 + ih
|w1 + ih|

)n

− μ1k2
s H(1)

n− 2(ks|w1 + ih|)
(

w1 + ih
|w1 + ih|

)n− 2

(A.2) 

Fig. 12. Distribution of DSCFs and fluid stress by obliquely incident SV wave along the cavity wall with different porosity. (Solid line, n = 0.05; dash line, n = 0.1; 
dot line, n = 0.2; dash dot line, n = 0.3). 
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