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A B S T R A C T   

The present study focuses on reliability analysis of linear discretized structures with uncertain 
mass and stiffness parameters subjected to stationary Gaussian multi-correlated random excita-
tion. Under the assumption that available information on the uncertain parameters is poor or 
incomplete, the interval model of uncertainty is adopted. The reliability function for the extreme 
value stress process is evaluated in the framework of the first-passage theory. Such a function turns 
out to have an interval nature due to the uncertainty affecting structural parameters. The aim of 
the analysis is the evaluation of the bounds of the interval reliability function which provide a range 
of structural performance useful for design purposes. To limit detrimental overestimation caused 
by the dependency phenomenon, a sensitivity-based procedure is applied. The main advantage of 
this approach is the capability of providing appropriate combinations of the endpoints of the 
uncertain parameters which yield accurate estimates of the bounds of the interval reliability 
function for the extreme value stress process as long as monotonic problems are dealt with. Two 
case studies are analyzed to demonstrate the accuracy and efficiency of the presented method.   

1. Introduction 

The actual values of parameters involved in any engineering design are affected by several sources of uncertainties ensuing from 
manufacturing inaccuracies, model or measurement errors etc. (see e.g., [1–3]). Such uncertainties have been traditionally incor-
porated into structural reliability analysis using well-established probabilistic approaches. Failure probabilities are highly sensitive to 
the assumed probabilistic distribution of the input parameters, especially in the tails [4,5]. This entails that the outcomes of the 
classical probabilistic reliability analysis may be considered accurate as long as sufficient information is available to define the 
probability density function of the uncertain parameters. If only vague, incomplete or fragmentary data are available, the use of non- 
probabilistic approaches (see e.g., [6,7]) is deemed more appropriate to retrieve reliable predictions of the safety level. This issue has 
been first addressed by Ben-Haim [4] who introduced a non-probabilistic concept of reliability in the context of the convex model of 
uncertainty. The underlying idea was to define a range of structural performance rather than deriving a single value of the failure 
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probability. 
The awareness of possible limitations of traditional probabilistic methods [8] has motivated the use of non-probabilistic uncer-

tainty descriptions, such as the interval model [9,10], convex models [11] or fuzzy-sets [12], in conjunction with classical methods for 
structural reliability analysis (see e.g., [13–27]) and reliability-based optimization (see e.g., [28,29]). Over the last decade, several 
studies have also been devoted to structural safety assessment in the presence of hybrid uncertainties, i.e. aleatory and epistemic (see e. 
g., [30–35]). 

Besides the unavoidable uncertainty of design parameters, another key factor influencing structural safety assessment is the 
inherent random nature of environmental loads, such as earthquake ground motion, sea waves or gusty winds (see e.g., [36–39]). 
Studies relying on the traditional probabilistic uncertainty model have shown that reliability analysis becomes quite challenging when 
uncertainties affecting geometrical and/or mechanical properties and the random nature of excitations are simultaneously taken into 
account (see e.g., [39–41]). From a computational viewpoint, the main difficulty lies in the need to consider two nested loops on the 
uncertain parameters and random excitation. 

To the best of the authors’ knowledge, in literature only a few studies have focused on reliability analysis of structures subjected to 
random excitation with uncertain structural parameters described using non-traditional models. Among these, the most popular 
approach is the interval model which describes the uncertain parameters as interval variables with given lower bound and upper 
bound [9,10], while no information on the probability of occurrence between such bounds is given. Under this assumption, the sta-
tistics of structural response in the presence of random excitation have an interval nature and the measure of structural performance is 
provided by a lower and upper value of reliability or failure probability, rather than by a single value. To estimate the range of the 
interval reliability, all possible combinations arising between the lower bound and upper bound of the uncertain parameters need to be 
explored for any sample of the random excitation. This approach requires tremendous computational effort and proves to be unfeasible 
for real engineering problems with a large number of degrees-of-freedom and uncertain parameters. It follows that efficient procedures 
able to predict the influence of both random excitations and interval parameters on structural safety need to be developed. In this 
context, the dynamic response and reliability of truss systems with fuzzy-random parameters under stationary stochastic excitation 
have been analyzed by Ma et al. [42] by applying a novel two-factor method. An improved particle swarm optimization algorithm for 
evaluating the range of dynamic reliability of structures with interval design parameters and interval safe bounds under stationary 
random excitation has been proposed by Do et al. [43]. Muscolino et al. [44–46] addressed the reliability analysis of linear discretized 
structures with interval stiffness properties subjected to stationary Gaussian random excitation by interval extension of the formulation 
of the first-passage problem, under the Poisson assumption of independent up-crossings of a prescribed threshold [36,38]. As a result of 
interval uncertainties, the cumulative distribution function (CDF) of the extreme value response process, also called reliability function, is 
described by an interval function which depends on the interval mean-value and interval spectral moments of zero- and second-order 
of the selected stationary random response process. In this context, the aim of reliability analysis is the evaluation of the lower bound 
and upper bound of the interval reliability function which define a probability-box (p-box) [47] representative of the range of structural 
performance under prescribed variations of the uncertain parameters within their respective intervals. By applying the so-called In-
terval Rational Series Expansion (IRSE) [48], first an approach based on first-order interval Taylor series expansion [44] has been proposed, 
later on, approximate explicit bounds of the interval reliability function [45] and of the interval fractile of order p [46] have been derived 
by considering suitable combinations of the endpoints of the interval mean-value and spectral moments of zero- and second-order of 
the response process. In both cases, interval uncertainties have been described by means of the Improved Interval Analysis via Extra 
Unitary Interval (IIA via EUI) [49] in order to limit conservatism affecting computations based on the Classical Interval Analysis (CIA) 
[9,10]. Such conservatism is caused by the so-called dependency phenomenon which is related to the inability of the CIA to treat multiple 
occurrences of the same interval variables in a mathematical expression as dependent ones. Furthermore, in Ref. [44–46] structural 
failure has been assumed to occur when a displacement component firstly exceeds a critical value. Assuming a selected stress process as 
the response measure responsible of structural failure is much more challenging due to the high overestimation of the range of stress- 
related interval functions which typically affects structural analysis based on the rules of the CIA. Indeed, stresses are more sensitive to 
the dependency phenomenon than displacements since their expression involves multiple occurrences of the same interval variables. 
Recently, this issue has been successfully addressed by Sofi et al. [50] who proposed a sensitivity-based procedure for estimating the 
bounds of the interval reliability function for structures with interval axial stiffness assuming the axial stress at a critical location as 
responsible of structural failure. Recent efforts in literature have been devoted to the solution of the interval first-passage problem 
taking into account epistemic uncertainties in the stochastic loading model [51,52]. 

The main purpose of the present study is the extension of the sensitivity-based procedure proposed by Sofi et al. [50] to general 
finite element models involving both mass and stiffness uncertainties subjected to stationary Gaussian multi-correlated random 
excitation with deterministic parameters. The formulation is developed in the context of the first-passage theory, under the Poisson 
assumption of independent up-crossings of a prescribed threshold [36,38]. It is assumed that the structure fails as soon as a selected 
stress process at a critical location firstly exceeds a prescribed safe domain. The issue of overestimation is tackled by describing interval 
uncertainties affecting the mass and stiffness matrices of the structure through the IIA via EUI [49]. The key idea of the sensitivity- 
based approach is to examine the sign of sensitivities of the interval reliability function with respect to the uncertain parameters in 
order to identify suitable combinations of the endpoints of interval uncertainties which yield accurate estimates of its bounds as long as 
monotonic problems are dealt with. Thus, the lower bound and upper bound of the interval reliability function are evaluated by per-
forming two stochastic analyses of the randomly excited structure one for each of the two sets of uncertain parameters identified by 
sensitivity analysis. The same approach is applied to estimate the bounds of the interval fractile of order p of the selected stress process. 
The knowledge of the sensitivities of the interval reliability function is also exploited to analyze the relative importance of the uncertain 
parameters on structural performance. To enhance the computational efficiency, only the most influential uncertain parameters can be 
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conveniently modeled as interval variables while the remaining parameters can be set to their nominal values. 
For validation purpose, a steel telecommunication antenna mast and a ten-story shear-type frame under wind excitation are 

selected as case studies. 
The rest of the paper is organized as follows. In Section 2, first some basic notions on the interval model of uncertainty [9,10], with 

special focus on the IIA via EUI [49], are given, then the problem formulation is presented. Sections 3 and 4 outline the evaluation of 
the bounds of the interval reliability function and of the interval fractile of order p of the selected stress process by means of the proposed 
sensitivity-based procedure. In Section 5, two numerical examples are presented to assess the effectiveness of the presented method. 

2. Problem formulation 

2.1. Interval model of uncertainty 

The interval model may be viewed as the most popular among non-probabilistic approaches for representing uncertainties 

occurring in engineering problems. The key idea is to describe the i − th uncertain parameter as an interval variable αI
i =

[

αi,αi

]

∈ IR 

[9,10], where the apex I denotes interval variables; IR indicates the set of all closed real interval numbers, while αi and αi are the lower 
bound (LB) and upper bound (UB) of αI

i , respectively. No information on the likelihood of occurrence of parameter values between the LB 
and UB is provided. The i − th real interval variable αI

i , also referred to as uncertain-but-bounded, is characterized by the midpoint 
value and the deviation amplitude, defined, respectively, as [9,10]: 

α0i =
αi + αi

2
; Δαi =

αi − αi

2
. (1a,b) 

The main drawback of the Classical Interval Analysis (CIA) [9,10] lies in the overestimation of the interval solution range caused by 
the so-called dependency phenomenon which arises when the same interval variable occurs more than once in a mathematical 
expression. To reduce conservatism in the framework of interval structural analysis, the so-called Improved Interval Analysis (IIA) via 
Extra Unitary Interval (EUI) has been proposed by Muscolino and Sofi [49]. According to this approach, the i − th interval variable αI

i is 
expressed in the following affine form: 

αI
i = α0i + Δαi êI

i (2)  

where ̂eI
i ≜ [− 1,+1] is a particular unitary interval, called EUI, which does not obey the rules of the CIA. An EUI is associated with each 

interval variable, so that uncertainties can be traced throughout computations. If αI
i is a symmetric interval variable, Eq. (2) reduces to 

αI
i = Δαi ê

I
i since αi = − αi and, therefore, α0i = 0. 

In the framework of interval symbolism, a generic interval-valued function f and a generic interval-valued matrix function A of the 
interval vector αI will be denoted in equivalent form, respectively, as: 

f I ≡ f
(
αI)⇔ f (α), α ∈ αI =

[
α,α

]
;

AI ≡ A
(
αI)⇔ A(α), α ∈ αI =

[
α,α

] (3a,b)  

2.2. Equations of motion 

Let us consider a linear-elastic structure subjected to a stationary Gaussian multi-correlated stochastic process F(t). The structure is 
discretized into N(e) finite elements (FEs) resulting into a n-DOFs model. Young’s modulus and mass density of the i-th FE are assumed 
uncertain and are described as interval variables by means of the IIA via EUI [49], i.e. 

E(i)( αI
(K)i

)
= E(i)

0
(
1 + αI

(K)i

)
= E(i)

0

(

1 + Δα(K)i ê
I
(K)i

)

, i = 1, 2,…, rK (4)  

and 

ρ(i)( αI
(M)i

)
= ρ(i)

0
(
1 + αI

(M)i

)
= ρ(i)

0

(

1 + Δα(M)i êI
(M)i

)

, i = 1, 2,…, rM (5)  

where the subscripts K and M mean that the uncertain Young’s moduli and mass densities affect the stiffness and mass matrices of the 
structure; rK⩽N(e) and rM⩽N(e) denote the number of FEs with uncertain stiffness and mass matrix, respectively; αI

(K)i and αI
(M)i are 

symmetric interval variables denoting the dimensionless fluctuations of Young’s modulus and mass density around the nominal values 
E(i)

0 and ρ(i)
0 , respectively; Δα(K)i, Δα(M)i and êI

(K)i, ê
I
(M)i represent the associated deviation amplitudes and EUIs. It is assumed that the 

fluctuations αI
(K)i and αI

(M)i vary independently. 
Taking into account Eq. (4), the elastic matrix of the i-th FE can be expressed as: 
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E(i)( αI
(K)i

)
=

(

1 + Δα(K)i êI
(K)i

)

E(i)
0 (6)  

where E(i)
0 is the element elastic matrix with nominal Young’s modulus E(i)

0 . 
Let αI ∈ IRr be a bounded interval vector, defined as 

αI =
[
α,α

]
=
[ (

αI
K

)T (
αI

M

)T
]T

(7)  

where the apex T denotes the transpose matrix operator; αI
K ∈ IRrK and αI

M ∈ IRrM are interval vectors collecting the fluctuations αI
(K)i 

and αI
(M)i, such that αI

i = αI
(K)i if i⩽rK and αI

i = αI
(M)i if i > rK, with r = rK +rM being the total number of uncertain parameters; the 

symbols α and α denote the vectors gathering the LB and UB of the interval parameters αI
i (i = 1,2,…,r = rK + rM), respectively, such 

that α⩽α⩽α. The midpoint values and the deviation amplitudes of αI
i , α0i and Δαi, are collected into the vectors α0 and Δα, respec-

tively. For the sake of simplicity, it is assumed that rK = rM = N(e), so that the number of uncertain parameters is r = rK + rM = 2N(e). 
It is worth mentioning that uncertain material properties generally exhibit a spatial variability which requires a suitable mathe-

matical representation. To this aim, within the interval framework, the interval field model has been developed [53]. This model 
describes spatially dependent properties as a superposition of suitable basis functions representing the spatial character, weighted by 
independent interval coefficients accounting for uncertainty. The interval field description of an uncertain property can be incorpo-
rated into the standard FEM by applying a suitable discretization procedure, which reduces the spatially dependent property to a set of 
independent interval variables [54]. This entails that the present formulation can be readily extended to the case of uncertain 
properties modelled as interval fields. 

Let x = [ x1 x2 x3 ]
T indicate the position vector of a generic point referred to a Cartesian coordinate system O(x1, x2, x3). 

Following the standard displacement-based FE formulation, the interval displacement field within the i-th FE can be approximated as 
follows: 

u(i)( αI , x, t
)
= N(i)(x)d(i)( αI , t

)
(8)  

where N(i)(x) denotes the shape-function matrix; d(i)(αI, t) is the nodal displacement vector of the i-th FE depending both on time t and 
on the interval fluctuations collected into the vector αI (see Eq. (7)). 

The strain–displacement equations and the linear-elastic constitutive equations yield the following expressions of the interval strain 
and stress fields within the i-th FE: 

ε(i)
(
αI , x, t

)
= B(i)(x)d(i)( αI , t

)
(9)  

and 

σ(i)( αI , x, t
)
= E(i)( αI

(K)i

)
ε(i)
(
αI , x, t

)
=

(

1 + Δα(K)i êI
(K)i

)

E(i)
0 B(i)(x)d(i)( αI , t

)
(10)  

where B(i)(x) is the strain–displacement matrix and the definition of the interval elastic matrix E(i)(αI
(K)i) in Eq. (6) has been taken into 

account. 
The stiffness matrix of the i-th FE is an interval matrix, formally analogous to the one pertaining to the deterministic FE, i.e.: 

k(i)( αI
(K)i

)
=

∫

V(i)
B(i)T(x)E(i)( αI

(K)i

)
B(i)(x)dV (i) =

(

1 + Δα(K)i êI
(K)i

)

k(i)
0 (11)  

where V(i) is the volume of the i-th FE; k(i)
0 = k(i)(α(K)i)

⃒
⃒
⃒
α(K)i=0 

is the nominal element stiffness matrix and E(i)(αI
(K)i) is the interval elastic 

matrix given by Eq. (6). 
The mass matrix of the i-th FE is an interval matrix as well, defined as: 

m(i)( αI
(M)i

)
=

∫

V(i)
ρ(i)( αI

(M)i

)
N(i)T(x)N(i)(x)dV (i) =

(

1 + Δα(M)i êI
(M)i

)

m(i)
0 (12)  

where m(i)
0 = m(i)(α(M)i)

⃒
⃒
α(M)i=0 is the nominal element mass matrix. 

Notice that the interval stiffness and mass matrices of the i-th FE in Eqs. (11) and (12) depend only on the i-th uncertain Young’s 
modulus and mass density, respectively, through the associated EUIs. Such a feature plays a crucial role in order to reduce over-
estimation in the context of interval FE analysis since the generic uncertain physical property is linked to the pertinent FE by means of 
the associated EUI. This allows us to treat multiple occurrences of the same interval variable as dependent ones both in the assembly 
and solution phases of interval FE analysis [55]. 

The nodal displacement vector of the i-th FE, d(i)(αI, t), can be related to the global nodal displacements collected into the interval 
vector U(αI, t) as: 
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d(i)( αI , t
)
= L(i)U

(
αI , t

)
(13)  

where L(i) is a Boolean matrix defined so as to take into account the boundary conditions. Then, assuming for the sake of simplicity that 
all the quantities are referred to the global coordinate system, the standard assembly procedure yields the following interval global 
equations of motion: 

MI ÜI
(t)+CIU̇I

(t)+KIUI(t) = F(t) (14)  

where UI(t) ≡ U(αI, t) is the interval stationary Gaussian vector process of global nodal displacements; a dot over a variable denotes 
differentiation with respect to time t; KI and MI are the interval global stiffness and mass matrices, defined as: 

KI ≡ K
(
αI

K

)
= K0 +

∑rK

i=1
KiΔα(K)i ê

I
(K)i (15)  

and 

MI ≡ M
(
αI

M

)
= M0 +

∑rM

i=1
MiΔα(M)i ê

I
(M)i (16)  

where K0 = K(αK)|αK=0 and M0 = M(αM)|αM=0 are the nominal global stiffness and mass matrices, respectively; and the matrices Ki 

and Mi are given by: 

Ki =
∂K
(
αI

K

)

∂α(K)i

⃒
⃒
⃒
⃒

αK=0
= L(i)Tk(i)

0 L(i); Mi =
∂M
(
αI

M

)

∂α(M)i

⃒
⃒
⃒
⃒

αM=0
= L(i)Tm(i)

0 L(i). (17a,b) 

Notice that both the interval matrices in Eqs. (15) and (16) are expressed as sum of the nominal value plus an interval deviation 
given by the superposition of the contributions of the pertinent uncertain parameters which are identified by the associated EUIs. 

By adopting the Rayleigh model, the global damping matrix CI turns out to be an interval matrix as well, defined as: 

CI ≡ C
(
αI) = c0MI + c1KI = C0 + c0

∑rM

i=1
MiΔα(M)i êI

(M)i + c1

∑rK

i=1
KiΔα(K)i êI

(K)i (18)  

where C0 = c0M0 +c1K0 is the nominal damping matrix; c0 and c1 denote the Rayleigh damping constants, herein evaluated setting the 
uncertain parameters equal to their nominal values. 

As customary, the external load vector F(t) in Eq. (14) can be expressed as sum of the mean-value μF = E〈F(t)〉, with E〈 ⋅ 〉 denoting 
the stochastic average operator, plus a zero-mean random fluctuating component X̃F(t), i.e. F(t) = μF + X̃F(t). Thus, in the frequency 
domain, the full probabilistic characterization of the external load vector F(t) requires the knowledge of the mean-value vector, 
μF = E〈F(t)〉, and of the one-sided Power Spectral Density (PSD) function matrix G

X̃FX̃F
(ω) of the fluctuating component X̃F(t). 

2.3. Interval stationary Gaussian stochastic response process 

The interval stationary Gaussian stochastic response process UI(t), ruled by the equations of motion in Eq. (14), is completely 
characterized in the frequency domain by the interval mean-value vector: 

μI
U ≡ μU

(
αI

K

)
= E

〈
UI(t)

〉
= K− 1( αI

K

)
μF (19)  

and by the interval one-sided PSD function matrix, GI
UU(ω) ≡ GUU(αI,ω), defined as follows: 

GI
UU(ω) ≡ GUU

(
αI ,ω

)
= H*( αI ,ω

)
G

X̃FX̃F
(ω)HT( αI ,ω

)
(20)  

where the asterisk means complex conjugate, and H(αI,ω) is the interval Frequency Response Function (FRF) matrix, or Transfer Function 
matrix, given by: 

HI(ω) ≡ H
(
αI ,ω

)
=
[
− ω2MI + jω CI + KI]− 1 (21) 

with j =
̅̅̅̅̅̅̅
− 1

√
denoting the imaginary unit. 

The generic response quantity of interest (e.g., displacement, strain or stress at a critical point), can be determined from the 
knowledge of the vector UI(t) ≡ U(αI, t) of global nodal displacements. 

Attention is herein focused on the j-th component of the interval stationary Gaussian random stress vector process σ(h)(αI, x, t) (see 
Eq. (10)) at a given position x within the h-th FE: 
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Y(h)I
j (t) ≡ σ(h)

j
(
αI , x, t

)
=

(

1 + Δα(K)h êI
(K)h

)

r(h)Tj (x)U
(
αI , t

)
(22)  

where r(h)Tj (x) is the j-th row of the n × n matrix 

R(h)(x) = E(h)
0 B(h)(x)L(h). (23) 

To simplify the notation, the dependence of r(h)j on x is hereinafter omitted since the stress is evaluated at a given position. 

By inspection of Eq. (22), it is readily inferred that the interval variable αI
(K)h = Δα(K)h êI

(K)h occurs more than once. It follows that 
quantities related to interval stresses are more vulnerable to the dependency phenomenon than displacements. 

The interval stationary Gaussian stress random process in Eq. (22) can be expressed as sum of the interval mean-value , μI
Y(h)

j
, plus a 

zero-mean random fluctuation, Ỹ
(h)I
j (t), i.e. Y(h)I

j (t) = μI
Y(h)

j
+ Ỹ

(h)I
j (t). Its complete probabilistic characterization in the frequency 

domain thus requires the knowledge of the interval mean-value, μI
Y(h)

j
, and of the interval one-sided PSD function, 

GI

Ỹ
(h)

j Ỹ
(h)

j

(ω) ≡ GI
Y(h)

j Y(h)
j
(ω), of the zero-mean random fluctuation process Ỹ

(h)I
j (t). The interval mean-value μI

Y(h)
j 

can be evaluated by 

applying the stochastic average operator to both sides of Eq. (22), i.e.: 

μI
Y(h)

j
≡ μY(h)

j

(
αI

K

)
= E

〈
Y(h)I

j (t)
〉
=

(

1 + Δα(K)h êI
(K)h

)

r(h)Tj μU
(
αI

K

)
(24)  

where μU(αI
K) is the interval mean-value of the displacement vector given in Eq. (19), which obviously does not depend on the 

fluctuations αI
M of the uncertain mass densities. 

Based on Eqs. (20) and (22), the interval one-sided PSD function GI

Ỹ
(h)

j Ỹ
(h)

j

(ω) ≡ GI
Y(h)

j Y(h)
j
(ω) of the interval stress random process 

Y(h)I
j (t) takes the following form: 

GI
Y(h)

j Y(h)
j
(ω) ≡ GY(h)

j Y(h)
j

(
αI ,ω

)
=

(

1 + Δα(K)h êI
(K)h

)2

r(h)Tj H*( αI ,ω
)
G

X̃FX̃F
(ω)HT( αI ,ω

)
r(h)j . (25) 

Notice that the same interval variables occur more than once in the previous equation. This implies that the statistics of the interval 
stress random process may be affected by serious overestimation due to the dependency phenomenon. 

3. Bounds of the interval reliability function 

3.1. Interval reliability function 

Failure or unsatisfactory performance of a structural system is herein identified with the first-passage failure which occurs when the 
extreme value random process for some response measure (e.g., displacement, strain or stress) firstly exceeds a prescribed safe domain 
within a specified time interval [0,T]. Specifically, it is assumed that the structure fails in a first-passage sense if the j-th component of 
the interval stationary Gaussian random stress vector process σ(h)(αI, x, t) (see Eq. (10)) at a given position x within the h-th FE, i.e. 
Y(h)

j (αI, t) (see Eq. (22)), reaches a prescribed threshold. 

The extreme value random process of Y(h)
j (αI,t), over the time interval [0,T], has an interval nature and is mathematically defined as: 

Y(h)I
j,max(T) ≡ Y (h)

j,max
(
αI ,T

)
= max

0⩽t⩽T

⃒
⃒
⃒Y (h)

j
(
αI , t

)⃒⃒
⃒ (26)  

where the symbol | ⋅ | denotes absolute value. 
The probability that Y(h)

j,max(αI,T) is equal to or less than the critical level b > 0 within the time interval [0,T] is defined by the 
cumulative distribution function (CDF), also called reliability function, which has an interval nature as well: 

LI
Y(h)

j,max
(b, T) ≡ LY(h)

j,max

(
αI , b, T

)
= Pr

[
Y (h)

j,max
(
αI ,T

)
⩽b
]
=

[

LY(h)
j,max

(b, T), LY(h)
j,max

(b,T)
]

(27) 

The LB (or right bound) and UB (or left bound) of the interval CDF define a probability box (p-box) [47] representative of the range 
of structural performance under prescribed variations of the uncertain parameters within their respective intervals. 

For stochastic processes having mean-value different from zero, it is known that the interval CDF, LY(h)
j,max

(αI, b,T), of the extreme value 

random process Y(h)
j,max(αI,T) formally coincides with the interval CDF of the extreme value random process Ỹ

(h)
j,max(αI, T) =

max
0⩽t⩽T

⃒
⃒
⃒
⃒Ỹ

(h)
j (αI, t)

⃒
⃒
⃒
⃒ = Y(h)

j,max(αI,T) −
⃒
⃒
⃒μY(h)

j
(αI)

⃒
⃒
⃒, where Ỹ

(h)
j (αI, t) denotes the zero-mean interval stationary stochastic process describing 
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the random fluctuation of Y(h)
j (αI, t) around the interval mean-value μI

Y(h)
j 

(see e.g., [56]). 

If the Poisson assumption of independent up-crossings of a prescribed threshold is applied, then the interval CDF for unit initial 
probability can be expressed as (see e.g., [36]): 

LI
Y(h)

j,max
(b, T) = Pr

[
Y (h)

j,max
(
αI ,T

)
⩽b
]
≈ exp

⎧
⎪⎨

⎪⎩
− T ν+

Y(h)
j

(
αI)exp

⎡

⎢
⎣ −

(
b −

⃒
⃒
⃒μY(h)

j
(αI)

⃒
⃒
⃒

)2

2λ0,Y(h)
j
(αI)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(28)  

where 

ν+

Y(h)
j

(
αI) =

1
2 π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2,Y(h)

j
(αI)

λ0,Y(h)
j
(αI)

√
√
√
√ (29)  

is the mean up-crossing rate at level 
⃒
⃒
⃒μ Y(h)

j
(αI)

⃒
⃒
⃒; λ0,Y(h)

j
(αI) and λ2,Y(h)

j
(αI) are the interval spectral moments of zero- and second-order, 

respectively, of the interval stress random process, Y(h)I
j (t), given by 

λℓ,Y(h)
j

(
αI) =

∫ ∞

0
ωℓ GY(h)

j Y(h)
j

(
αI ,ω

)
dω, (ℓ = 0, 2) (30)  

where GY(h)
j Y(h)

j
(αI,ω) is the one-sided interval PSD function of Y(h)I

j (t) defined in Eq. (25). 

Once the interval CDF is known, the interval probability of failure can be evaluated as follows: 

PI
f ,Y(h)

j,max
(b, T) ≡ Pf ,Y(h)

j,max

(
αI , b, T

)
= Pr

[
Y (h)

j,max
(
αI , T

)
> b
]
=

[

P f ,Y(h)
j,max

(b, T), Pf ,Y(h)
j,max

(b, T)
]

(31)  

where the LB and UB are given by: 

P f ,Y(h)
j,max

(b, T) = 1 − LY(h)
j,max

(b, T); P f ,Y(h)
j,max

(b, T) = 1 − LY(h)
j,max

(b, T). (32a,b)  

3.2. Proposed sensitivity-based procedure 

Reliability analysis of structures with interval parameters under random excitation leads to a range of structural performance rather 
than providing a crisp value of the reliability or failure probability. In the context of the first-passage theory, the aim of reliability 
analysis is the evaluation of the LB and UB of the interval reliability function defined by Eq. (28). This might be a challenging task when 
the response measure responsible of structural failure is a stress component at some critical location. Indeed, interval stress-related 
quantities are more affected by overestimation than displacements. In order to reduce conservatism, which may be detrimental in 
reliability analysis, the bounds of the interval reliability function of the extreme value stress random process Y(h)

j,max(αI,T) are herein 
evaluated by applying a sensitivity-based procedure. The key idea of this procedure is to perform a preliminary sensitivity analysis to 
identify suitable combinations of the endpoints of the interval parameters which provide accurate estimates of the LB and UB of the 
interval CDF as long as monotonic problems are dealt with. 

The chain rule of differentiation yields the following expression of the sensitivity of the CDF of the extreme value stress random 
process Y(h)

j,max(αI,T) with respect to the uncertain parameters αi ∈ αI
i (i = 1,2,…, r) [50]: 

SL
Y(h)j,max

, i (b, T) =
∂LY(h)

j,max
(α, b, T)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

= CY(h)
j
(b,T)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
(

b −

⃒
⃒
⃒μ(0)

Y(h)
j

⃒
⃒
⃒

)

⃒
⃒
⃒
⃒μ

(0)
Y(h)

j

⃒
⃒
⃒

μ(0)
Y(h)

j

Sμ
Y(h)j

,i +

⎡

⎢
⎢
⎢
⎣

(
b −

⃒
⃒
⃒μ(0)

Y(h)
j

⃒
⃒
⃒

)2

λ(0)
0,Y(h)

j

− 1

⎤

⎥
⎥
⎥
⎦

Sλ
0,Y(h)j

,i +

λ(0)
0,Y(h)

j

λ(0)
2,Y(h)

j

Sλ
2,Y(h)j

,i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(33)  

where μ(0)
Y(h)

j 
and λ(0)

ℓ,Y(h)
j 

(ℓ = 0 ,2) denote the nominal mean-value and spectral moments of the selected stress process, given by Eqs. (24) 

and (30) with α = 0; the function CY(h)
j
(b,T) is defined as follows: 
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CY(h)
j
(b, T) = −

T
4 π

λ(0)
2,Y(h)

j

λ(0)
0,Y(h)

j

L(0)
Y(h)

j,max
(b,T)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ(0)
0,Y(h)

j
λ(0)

2,Y(h)
j

√ exp

⎡

⎢
⎢
⎢
⎣
−

(

b −

⃒
⃒
⃒
⃒μ

(0)
Y(h)

j

⃒
⃒
⃒
⃒

)2

2λ(0)
0,Y(h)

j

⎤

⎥
⎥
⎥
⎦

(34)  

with L(0)
Y(h)

j,max
(b,T) = LY(h)

j,max
(α, b,T)

⃒
⃒
⃒
α=0 

denoting the nominal CDF. Furthermore, in Eq. (33) Sμ
Y(h)

j
,i is the sensitivity of the mean-value 

μY(h)
j
(αK) of the interval stress random process (see Eq. (24)) with respect to the uncertain parameter αi = α(K)i, which can be eval-

uated as: 

if i = h then Sμ
Y(h)j

,i =

∂μY(h)
j
(αK)

∂αi

⃒
⃒
⃒
⃒
⃒

αK=0

= μ(0)
Y(h)

j
− r(h)Tj K− 1

0 Kh K− 1
0 μF (35)  

if i ∕= h then Sμ
Y(h)j

,i =

∂μY(h)
j
(αK)

∂αi

⃒
⃒
⃒
⃒
⃒

αK=0

= − r(h)Tj K− 1
0 Ki K− 1

0 μF (36)  

where K0 is the nominal stiffness matrix; Ki is given by Eq. (17a); and K− 1
0 Ki K− 1

0 μF is the i − th sensitivity of μU(αK) (see Eq. (19)). 
Finally, in Eq. (33), Sλ

ℓ,Y(h)j
,i denotes the sensitivity of the spectral moment of order ℓ of the interval stress random process Y(h)

j (αI, t)

with respect to the i − th parameter αi: 

Sλ
ℓ,Y(h)j

,i =
∂λℓ,Y(h)

j
(α)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

=

∫ ∞

0
ωℓSG

Y(h)j Y(h)j
,i(ω) dω, (ℓ = 0, 2) (37) 

In the previous expression, SG
Y(h)j Y(h)j

,i(ω) is the i − th sensitivity of the one-sided PSD function GY(h)
j Y(h)

j
(αI,ω) (see Eq. (25)) which has 

to be evaluated distinguishing the following two cases. 
Case 1: αi = α(K)i 

if i = h then SG
Y(h)j Y(h)j

,i(ω) =
∂GY(h)

j Y(h)
j
(α,ω)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

= 2G(0)
Y(h)

j Y(h)
j
(ω) + r(h)Tj Ph(ω)r(h)j (38)  

if i ∕= h then SG
Y(h)j Y(h)j

,i(ω) =
∂GY(h)

j Y(h)
j
(α,ω)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

= r(h)Tj Pi(ω)r(h)j (39) 

where G(0)
Y(h)

j Y(h)
j
(ω) is the nominal one-sided PSD function of the selected stress process, given by Eq. (25) with α = 0. Furthermore, in 

the previous equations the matrix Pi(ω) is defined as 

Pi(ω) = S*
i (ω)G

X̃FX̃F
(ω)HT

0 (ω) + H*
0(ω)GX̃FX̃F

(ω)ST
i (ω) (40)  

with 

Si(ω) =
∂H(α,ω)

∂α(K)i

⃒
⃒
⃒
⃒

α=0
= − (1 + jc1ω)H0(ω) Ki H0(ω) (41)  

where Ki is given by Eq. (17a) and 

H0(ω) =
[
− ω2M + jω C0 + K0

]− 1 (42)  

is the nominal FRF matrix. 
Case 2: αi = α(M)i 

SG
Y(h)j Y(h)j

,i(ω) =

∂GY(h)
j Y(h)

j
(α,ω)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

= r(h)Tj Qi(ω)r(h)j (43)  

where 

Qi(ω) = T*
i (ω)G

X̃FX̃F
(ω)HT

0 (ω) + H*
0(ω)GX̃FX̃F

(ω)TT
i (ω) (44)  

with 
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Ti(ω) =
∂H(α,ω)

∂α(M)i

⃒
⃒
⃒
⃒

α=0
= −

(
jc0ω − ω2)H0(ω) Mi H0(ω) (45) 

Mi being defined by Eq. (17b). 
Once SG

Y(h)j Y(h)j
,i(ω) is evaluated (Eqs., (38), (39), or (43)), substitution into Eq. (37) yields the i − th sensitivity of the spectral mo-

ments of the interval stress random process Y(h)
j (αI, t). 

The knowledge of the sensitivity SL
Y(h)

j,max
, i defined in Eq. (33) allows us to predict the influence of a small variation of the i − th 

uncertain parameter αi on the interval reliability function LY(h)
j,max

(αI, b,T). Specifically, within a small range around α = 0, LY(h)
j,max

(αI, b,T)

is a monotonic increasing or decreasing function of αi ∈ αI
i =

[

αi,αi

]

depending on whether SL
Y(h)

j,max
, i > 0 or SL

Y(h)
j,max

, i < 0, and its 

bounds, therefore, correspond to suitable combinations of the endpoints of the uncertain parameter, αi and αi. Relying on the 
monotonic increasing or decreasing behaviour predicted by studying the sign of sensitivities, the combinations of the extreme values of 
the uncertain parameters which yield accurate estimates of the LB and UB of the interval reliability function LY(h)

j,max
(αI, b,T), denoted as 

α(LB)
Y(h)

j,max ,i 
and α(UB)

Y(h)
j,max ,i

, (i = 1,2,…, r), can be identified as follows: 

if SL
Y(h)j,max

, i > 0, then α(UB)
Y(h)

j,max ,i
= αi, α(LB)

Y(h)
j,max ,i

= αi;

if SL
Y(h)j,max

, i < 0, then α(UB)
Y(h)

j,max ,i
= αi, α(LB)

Y(h)
j,max ,i

= αi.
(46a,b) 

Such combinations can be collected into the following two vectors: 

α(LB)
Y(h)

j,max
=
[

α(LB)
Y(h)

j,max ,1
α(LB)

Y(h)
j,max ,2

… α(LB)
Y(h)

j,max ,r

]T
;

α(UB)
Y(h)

j,max
=
[

α(UB)
Y(h)

j,max ,1
α(UB)

Y(h)
j,max ,2

… α(UB)
Y(h)

j,max ,r

]T
.

(47a,b) 

Finally, the LB and UB of the interval reliability function for the interval stress random process Y(h)I
j (t) can be obtained by evaluating 

Eq. (28) for α = α(LB)
Y(h)

j,max 
and α = α(UB)

Y(h)
j,max

, respectively: 

LY(h)
j,max

(b, T) ≈ exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− T ν+

Y(h)
j

(
α(LB)

Y(h)
j,max

)
exp

⎡

⎢
⎢
⎢
⎣
−

(
b −

⃒
⃒
⃒μY(h)

j

(
α(LB)

Y(h)
j,max

)⃒
⃒
⃒

)2

2λ0,Y(h)
j

(
α(LB)

Y(h)
j,max

)

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

;

LY(h)
j,max

(b, T) ≈ exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− T ν+

Y(h)
j

(
α(UB)

Y(h)
j,max

)
exp

⎡

⎢
⎢
⎢
⎣
−

(
b −

⃒
⃒
⃒μY(h)

j

(
α(UB)

Y(h)
j,max

)⃒
⃒
⃒

)2

2λ0,Y(h)
j

(
α(UB)

Y(h)
j,max

)

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(48a,b) 

Summarizing, the sensitivity-based procedure requires only two stochastic analyses of the structure for assigned values of the 
uncertain parameters given by Eqs. (47a), (47b) in order to evaluate the mean-value and spectral moments of zero- and second-order of 
the interval stress random process Y(h)

j (αI, t) entering the definition of the CDF (see Eq. (28)). 
Equations (48a), (48b) provide the right bound and left bound of the p-box (see Eq. (27)) which defines the range of the interval 

reliability function resulting from the fluctuations of the uncertain Young’s moduli and mass densities within their intervals. 
The worst-case scenario, which guarantees a conservative design, corresponds to the LB of the interval CDF (see Eq. (48a)) and the 

associated UB of the interval failure probability. The latter can be evaluated substituting Eq. (48a) into Eq. (32b), i.e.: 

P f ,Y(h)
j,max

(b, T) = 1 − LY(h)
j,max

(b, T) = 1 − LY(h)
j,max

(α, b, T)
⃒
⃒
⃒

α=α(LB)

Y(h)j,max

(49) 

The knowledge of the sensitivities of the interval CDF of the extreme value stress random process Y(h)
j,max(αI,T) in Eq. (33) can also be 

exploited to enhance the computational efficiency of the proposed procedure. As known, sensitivity analysis allows us to identify the 
most influential parameters on the response quantity of interest. To this aim, the so-called function of sensitivity of the CDF LI

Y(h)
j,max

(b,T) is 

evaluated: 

φ(Q)i,L
Y(h)j,max

(b, T)(%) =

SL
Y(h)j,max

, i (b,T)

L(0)
Y(h)

j,max
(b, T)

Δα(Q)i × 100, Q = K,M (50) 
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where SL
Y(h)j,max

, i (b,T) is the i − th sensitivity of the interval CDF LY(h)
j,max

(αI, b,T), defined in Eq. (33); L(0)
Y(h)

j,max
(b,T) is the CDF pertaining to the 

nominal system; Δα(Q)i denotes the deviation amplitude of the i − th interval parameter αI
i = Δα(Q)i ê

I
i where the subscript in parenthesis 

identifies the stiffness (Q = K) and mass parameters (Q = M). The function of sensitivity represents a percentage measure of the 
influence of the generic interval variable αI

i on the CDF of the selected extreme value stress process. This implies that the crucial un-
certain parameters are those characterized by higher values of the function of sensitivity. The least influential parameters can be 
reasonably assumed deterministic and set equal to their nominal values. 

It is worth remarking that, for randomly excited structures, the assumption of monotonic dependency of response statistics on the 
mass and stiffness parameters is not always satisfied, especially when resonance conditions occur (see e.g., [36,52]) and large degrees 
of uncertainty are considered. In such situations, which are not very common in practical engineering, the accuracy of the proposed 
approach might worsen since the bounds of the interval CDF of the selected response process are attained for intermediate values of the 
interval parameters. As a preliminary step of the presented procedure, the monotonic behaviour of the response quantity of interest 
with respect to the i-th uncertain parameter αi ∈ αI

i = [αi,αi] should be checked by verifying that the sign of the sensitivity to αi remains 
unchanged over the pertinent interval (see e.g., [57]). 

4. Bounds of the interval fractiles 

For structures with uncertain-but-bounded parameters, the so-called fractile of order p, i.e. the response level which has a specified 
probability, p, of not being exceeded during the observation time [0,T], has an interval nature as well [46,50]. 

The LB and UB of the interval fractile of order p, ZI
Y(h)

j,max
(p,T) ≡ ZY(h)

j,max

(
αI, p,T

)
, of the interval stress random process Y(h)

j (αI, t) can be 

computed by solving the following nonlinear equations [46,50]: 

p = LY(h)
j,max

(
ZY(h)

j,max
(p,T), T

)
; p = LY(h)

j,max

(

ZY(h)
j,max

(p, T), T

)

(51a,b)  

where LY(h)
j,max 

and LY(h)
j,max 

are the UB and LB of the interval CDF (see Eqs. (48a,b)). 

Alternatively, the interval fractile of order p can be defined by interval extension of the approximate analytical expression holding 
under the Poisson assumption of independent up-crossings [58], i.e.: 

ZI
Y(h)

j,max
(p,T) ≡ ZY(h)

j,max

(
αI , p,T

)
= ψY(h)

j

(
p, T;αI)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ0,Y(h)

j
(αI)

√
+

⃒
⃒
⃒μY(h)

j

(
αI)
⃒
⃒
⃒ (52)  

where 

ψI
Y(h)

j
(p,T) ≡ ψY(h)

j

(
p, T;αI) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(

ν+

Y(h)
j
(αI)T

)√

−
ln[ − ln(p)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(

ν+

Y(h)
j
(αI)T

)√ . (53) 

Notice that Eq. (52) involves only the mean-value and spectral moments of zero- and second-order of the interval stress random 
process Y(h)

j (αI, t). 
The sensitivity-based procedure outlined above for the interval reliability function is herein applied to evaluate the LB and UB of the 

interval fractile of order p defined by Eq. (52). 
By applying the chain rule of differentiation, the following expression of the i − th sensitivity of the interval fractile of order p is 

obtained [50]: 

SZ
Y(h)j,max

,i =

∂ZY(h)
j,max

(α, p, T)

∂αi

⃒
⃒
⃒
⃒
⃒

α=0

=
1

2
̅̅̅̅̅̅̅̅̅̅̅

λ(0)
0,Y(h)

j

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(

ν+(0)
Y(h)

j
T
)

√

×

⎧
⎨

⎩
2ln
(

ν+(0)
Y(h)

j
T
)
− 1 − ln[ − ln(p)]

⎡

⎣1 +
1

2ln
(

ν+(0)
Y(h)

j
T
)

⎤

⎦

⎫
⎬

⎭
Sλ

0,Y(h)j
,i

+

̅̅̅̅̅̅̅̅̅̅̅

λ(0)
0,Y(h)

j

√

2λ(0)
2,Y(h)

j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(

ν+(0)
Y(h)

j
T
)

√

⎡

⎣1 +
ln[ − ln(p)]

2ln
(

ν+(0)
Y(h)

j
T
)

⎤

⎦Sλ
2,Y(h)j

,i +

⃒
⃒
⃒
⃒μ

(0)
Y(h)

j

⃒
⃒
⃒

μ(0)
Y(h)

j

Sμ
Y(h)j

,i

(54)  

where Sμ
Y(h)j

,i and Sλ
ℓ,Y(h)j

,i (ℓ = 0 ,2) are the i − th sensitivities of the interval mean-value and spectral moments of Y(h)I
j (t) defined in the 
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Fig. 1. Flowchart of the proposed sensitivity-based procedure for interval reliability analysis.  
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previous section; μ(0)
Y(h)

j 
and λ(0)

ℓ,Y(h)
j 

(ℓ = 0 ,2) denote the nominal mean-value and spectral moments of the selected stress process; and 

ν+(0)
Y(h)

j 
is defined by Eq. (29) for α = 0. 

The combinations of the extreme values of the uncertain parameters which provide accurate estimates of the bounds of the interval 
fractile of order p of the interval stress random process Y(h)I

j (t), herein denoted by α(LB)
Z

Y(h)
j,max

,i 
and α(UB)

Z
Y(h)

j,max
,i
, (i = 1,2,…,r), can be evaluated by 

examining the sign of the pertinent sensitivities SZ
Y(h)j,max

,i 
(Eq. (54)), as follows: 

if SZ
Y(h)j,max

,i > 0, then α(UB)
Z

Y(h)j,max
,i = αi, α(LB)

Z
Y(h)j,max

,i = αi;

if SZ
Y(h)j,max

,i < 0, then α(UB)
Z

Y(h)j,max
,i = αi, α(LB)

Z
Y(h)j,max

,i = αi.
(55a,b) 

Such combinations can be gathered into the following two vectors: 

α(LB)
Z

Y(h)j,max

=
[

α(LB)
Z

Y(h)j,max
,1 α(LB)

Z
Y(h)j,max

,2 … α(LB)
Z

Y(h)j,max
,r
]T
;

α(UB)
Z

Y(h)j,max

=
[

α(UB)
Z

Y(h)j,max
,1 α(UB)

Z
Y(h)j,max

,2 … α(UB)
Z

Y(h)j,max
,r
]T
.

(56a,b) 

The LB and UB of the interval fractile of order p of the interval stress random process YI
h(t) can be estimated by evaluating Eq. (52) for 

α = α(LB)
Z

Y(h)j,max 

and α = α(UB)
Z

Y(h)j,max

, respectively: 

ZY(h)
j,max

(p, T) = ψY(h)
j

(

p, T;α(LB)
Z

Y(h)j,max

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ0,Y(h)
j

(

α(LB)
Z

Y(h)j,max

)√

+

⃒
⃒
⃒
⃒μY(h)

j

(

α(LB)
Z

Y(h)j,max

) ⃒
⃒
⃒
⃒;

ZY(h)
j,max

(p,T) = ψY(h)
j

(

p,T;α(UB)
Z

Y(h)j,max

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ0,Y(h)
j

(

α(UB)
Z

Y(h)j,max

)√

+

⃒
⃒
⃒
⃒μY(h)

j

(

α(UB)
Z

Y(h)j,max

)⃒
⃒
⃒
⃒

(57a,b) 

These bounds enclose the values of the interval stress random process Y(h)I
j (t) having probability p of not being exceeded during the 

observation time [0,T]. In order to ensure a conservative design, the worst-case scenario, corresponding to the UB of the selected fractile 
of order p, should be considered. 

The flowchart in Fig. 1 summarizes the proposed sensitivity-based procedure for evaluating the bounds of the interval reliability 
function and of the interval fractile of order p of the selected response process. 

5. Numerical applications 

The effectiveness of the proposed procedure is assessed by performing first-passage reliability analysis of two structures with in-
terval uncertainties subjected to wind excitation modelled as a stationary Gaussian multi-correlated random process: a steel tele-
communication antenna mast and a ten-story shear-type frame. 

The model of wind loads assumed for both the selected case studies is briefly summarized in the following. The along wind force 
(x-direction) exerted on the i-th node at height zi of the discretized structure is defined by the well-known formula [59]: 

Fx,i(zi, t) =
1
2

ρCDAiw2
s (zi)+ ρCDAiW̃(zi, t)ws(zi) (58)  

where the contribution of the nodal velocities of the structure and the square of the fluctuating component of wind speed have been 
neglected. In Eq. (58), ρ = 1.25 kg/m3 is the air density; CD is the drag coefficient; Ai is the tributary area of the i-th node; ws is the 
mean wind velocity which is assumed to vary with the elevation z following a power law, i.e.: 

ws(z) = ws,10

( z
10

)γ
(59)  

where ws,10 is the mean wind speed measured at height z = 10 m above ground and γ is a coefficient depending on surface roughness, 
herein taken equal to ws,10 = 25 m/s and γ = 0.3, respectively. Furthermore, W̃(z, t) denotes the fluctuating component of wind ve-
locity field, which is modelled as a zero-mean stationary Gaussian random field, fully described from a probabilistic point of view by 
the one-sided PSD function [60]: 

G
W̃W̃

(ω) = 4K0w2
s,10

χ2

ω(1 + χ2)
4/3 (60)  

where K0 is the non-dimensional roughness coefficient, herein set equal to K0 = 0.03, and χ = b1ω/(πws,10) with b1 = 600 m. The 
vector W̃(t) collecting wind velocity fluctuations at the wind-exposed nodes located at different heights zi is characterized from a 
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probabilistic point of view by the one-sided PSD function matrix G
W̃W̃

(ω). If the imaginary part (q-spectrum) [59] is neglected, the 
cross-PSD components of G

W̃W̃
(ω) can be expressed as follows: 

G
W̃iW̃j

(zi, zj;ω) = G
W̃W̃

(ω)fij(ω) (61)  

where fij(ω) is the so-called coherence function, defined as 

fij(ω) = exp

⎧
⎨

⎩
−

|ω|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
z

(
zi − zj

)2
√

π
[
ws(zi) + ws

(
zj
)]

⎫
⎬

⎭
(62)  

with Cz denoting an appropriate decay coefficient to be determined experimentally, herein set equal to Cz = 10. 
Preliminary numerical investigations, omitted for conciseness, have shown that, for the selected case studies, the spectral moments 

of the response quantity of interest are monotonic functions of each uncertain mass and stiffness parameter. Thus, the presented 
sensitivity-based procedure is expected to provide very accurate results. For validation purposes, the proposed bounds of the interval 
reliability function and of the interval fractiles of order p of the selected stress process are compared with those provided by the vertex 
method [61] which is a computationally intensive combinatorial procedure able to provide the exact bounds of the solution when the 
latter is a monotonic function of the uncertain parameters. In the context of first-passage reliability analysis, the vertex method requires 
to evaluate the reliability function for all the 2r possible combinations of the endpoints of the r uncertain parameters. Then, for each 
barrier level b, the LB and UB of the interval reliability function are obtained as the minimum and maximum among the 2r values 
pertaining to the vertex analysis. 

5.1. Steel telecommunication antenna mast under wind excitation 

The first case study is represented by the 28.50 m high steel telecommunication antenna mast subjected to wind excitation shown in 
Fig. 2a. The antenna is discretized into N(e) = 19 two-node Euler-Bernoulli beam FEs resulting in a n = 38 DOFs system (Fig. 2b). A 
lumped mass model is assumed. The properties of the FE model of the antenna are listed in Table 1, where the masses lumped at nodes 
and the tributary areas Ai entering the definition of wind loads Fx,i(zi, t) (see Eq. (58)) are also reported. The nominal Young’s modulus 
is set equal to E0 = 210 GPa for the whole structure. The values c0 = 0.149575 s− 1 and c1 = 0.00316358 s are assumed for the 
Rayleigh damping constants in Eq. (18) in such a way that the modal damping ratio of the first and third modes of the nominal structure 
is ζ0 = 0.01. The fundamental period of the nominal structure is T0 = 0.723 s. 

It is assumed that Young’s modulus of the material is affected by uncertainty. In a first stage, in order to make comparisons with the 
vertex method computationally feasible, only the first rK = 12 FEs (see Fig. 2b) are assumed to be characterized by interval Young’s 

moduli i.e. E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,rK = 12), where the same deviation amplitude is considered. Under this assumption, 

the application of the vertex method involves 2rK = 212 stochastic analyses of the structure while the proposed method requires to 
evaluate the reliability function only twice, regardless of the number of uncertain parameters. The maximum interval axial stress, 
Y(1)I

1 (t), at the antenna base section, i.e. at node 1 of FE 1, is assumed as the response quantity responsible of structural failure. To 
predict the range of structural performance, the bounds of the interval reliability function, LI

Y(1)
1,max

(b,T), (see Eq. (28)) and of the interval 

failure probability PI
f ,Y(1)

1,max
(b,T) (see Eq. (31)) are evaluated. The observation time is assumed equal to T = 1000T0, T0 being the 

fundamental period of the structure with nominal Young’s moduli. 
In Figs. 3 and 4, the proposed LB and UB of LI

Y(1)
1,max

(b,T) and PI
f ,Y(1)

1,max
(b,T) (the latter in semi-logarithmic scale) are compared with 

those provided by the vertex method. Two different deviation amplitudes of the uncertain parameters, Δα = 0.10 and Δα = 0.20, are 
considered. The nominal CDF, L(0)

Y(1)
1,max

(b,T), and failure probability, P(0)
f ,Y(1)

1,max
(b,T), are also reported. An excellent agreement between the 

proposed sensitivity-based procedure and the vertex method can be observed. As expected, the region describing structural performance 
becomes wider as the degree of uncertainty increases. The deviation of the LB and UB of both the CDF and failure probability from the 
nominal solution proves that assuming the nominal value of Young’s moduli may lead to misleading predictions of structural safety 
level. 

In order to provide a measure of the dispersion of structural performance around the midpoint value, the so-called coefficient of 
interval uncertainty of the interval CDF LI

Y(1)
1,max

(b,T) can be estimated, i.e.: 

c.i.u.
[
LI

Y(1)
1,max

(b, T)
]
=

LY(1)
1,max

(b,T) − LY(1)
1,max

(b, T)

LY(1)
1,max

(b,T) + LY(1)
1,max

(b, T)
. (63) 

For instance, assuming a barrier level b = 90.00 MPa, based on the proposed bounds of the interval CDF LI
Y(1)

1,max
(b,T), shown in Figs. 3 

and 4, the c.i.u.[LI
Y(1)

1,max
(b,T)] takes the values 0.05 and 0.11 for Δα = 0.10 and Δα = 0.20, respectively. 
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Table 1 
Properties of the telecommunication antenna mast.  

Node Height[m] Outer diameter[m] Thickness[m] Lumped mass [t] Tributary area [m2] 

2  1.50  0.9148  0.008  0.3050  1.3722 
3  3.00  0.9148  0.008  0.3050  1.3722 
4  4.50  0.9148  0.008  0.2754  1.2957 
5  6.00  0.8128  0.0071  0.2458  1.2192 
6  7.50  0.8128  0.0071  0.2458  1.2192 
7  9.00  0.8128  0.0071  0.2211  1.143 
8  10.50  0.7112  0.0063  0.1964  1.0668 
9  12.00  0.7112  0.0063  0.1964  1.066 
10  13.50  0.7112  0.0063  0.1760  0.9906 
11  15.00  0.6096  0.0056  0.1530  0.9144 
12  16.50  0.6096  0.0056  0.1505  0.9144 
13  18.00  0.6096  0.0056  0.1288  0.8382 
14  19.50  0.508  0.005  0.2671  0.762 
15  21.00  0.508  0.005  0.1071  0.762 
16  22.50  0.508  0.005  0.1650  0.526275 
17  24.00  0.1937  0.0045  0.0429  0.29055 
18  25.50  0.1937  0.0045  0.1329  0.29055 
19  27.00  0.1937  0.0045  0.0429  0.29055 
20  28.50  0.1937  0.0045  0.0214  0.145275  

Fig. 2. Steel telecommunication antenna mast under wind excitation: a) 2D model; b) FE discretization.  
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In order to predict the influence of a small change of Young’s moduli on the performance of the telecommunication antenna mast, 
the function of sensitivity of the CDF LI

Y(1)
1,max

(b,T) is evaluated (see Eq. (50)) under the assumption that all Young’s moduli are described 

by intervals. In Fig. 5, the functions of sensitivity φ(K)i,L
Y(1)1,max

(b, T) of LI
Y(1)

1,max
(b,T) with respect to the fluctuations αI

(K)i = ΔαêI
(K)i of a 

selected number of interval Young’s moduli EI
i = E0(1+ αI

(K)i) = E0(1+ ΔαêI
(K)i), (i = 1,2,…,8,12,13,14,16,17) versus the deter-

ministic barrier level b are plotted (Δα = 0.10). For the sake of clarity, the functions of sensitivity with respect to the fluctuations of the 
remaining Young’s moduli are omitted. It is observed that the most influential Young’s moduli are those of FEs 1 and 16 for any value 
of the barrier level. A close inspection of Fig. 5 also shows that a small increase of Young’s moduli of the first eight FEs would produce 
an increment of structural reliability since the pertinent functions of sensitivity are positive. Conversely, a small increase of Young’s 
moduli of FEs 12,13,14,16,17 would lead to a lower safety level. 

Fig. 6 shows the values of the function of sensitivity φ(K)i,L
Y(1)1,max

(b, T) of the CDF LI
Y(1)

1,max
(b,T) with respect to the fluctuations αI

(K)i =

ΔαêI
(K)i (i = 1,2,…,19) of Young’s moduli of all the FEs for a given barrier level b = 89.44 MPa, selected as the one having a probability 

p = 0.50 of not being exceeded during the observation time T = 1000T0 when all the uncertain parameters are set equal to the nominal 
value. The results reported in Fig. 6 allow us to rank the uncertain parameters from the most to the least influential ones based on the 
corresponding absolute value of the function of sensitivity. It can be readily inferred that the least influential parameters are Young’s 
moduli of FEs 11, 9, 15, 18, 10, 19, listed in decreasing order of importance. Thus, in order to enhance the computational efficiency of 
the proposed method, such parameters can be reasonably set equal to their nominal values and only rK = 13 uncertain parameters, 

E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,8,12,13,14,16, 17) (see Fig. 6), out of rK = N(e) = 19 might be retained in reliability analysis. 

In Fig. 7, the bounds of the interval reliability function LI
Y(1)

1,max
(b,T) evaluated by applying the proposed sensitivity-based approach 

Fig. 3. UB and LB of the a) interval CDF and b) interval failure probability (semi-logarithmic scale) of the extreme value axial stress process Y(1)I
1,max(T) of 

the telecommunication antenna with uncertain Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…, rK = 12): comparison between the proposed 

procedure, the vertex method (Δα = 0.10) and the nominal solution. 

Fig. 4. UB and LB of the a) interval CDF and b) interval failure probability (semi-logarithmic scale) of the extreme value axial stress process Y(1)I
1,max(T) of 

the telecommunication antenna with uncertain Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…, rK = 12): comparison between the proposed 

procedure, the vertex method (Δα = 0.20) and the nominal solution. 
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considering Young’s moduli of all the rK = N(e) = 19 FEs as uncertain (full) are contrasted with the ones computed retaining only the 
rK = 13 most influential uncertain parameters (reduced) identified by sensitivity analysis (see Fig. 6). For comparison purpose, the 

bounds pertaining to the structure with the first rK = 6 most influential uncertain Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,3,

4,5,16), are also plotted. Also in this case, two different deviation amplitudes of the uncertain parameters, Δα = 0.10 and Δα = 0.20, 
are considered. It can be observed that the left and right bounds of the p-box describing structural performance obtained considering 
only the first rK = 6 uncertain parameters are enclosed by the bounds pertaining to full uncertainty. This entails that some of the 
neglected parameters play a crucial role in the prediction of the safety level. Conversely, the region of the interval CDF predicted 

Fig. 5. Functions of sensitivity of the interval reliability function of the extreme value axial stress process Y(1)I
1,max(T) of the telecommunication antenna 

with respect to the fluctuations of Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,8,12,13,14,16,17), versus the deterministic barrier level b 

(Δα = 0.10, T = 1000T0). 

Fig. 6. Functions of sensitivity of the interval reliability function of the extreme value axial stress process Y(1)I
1,max(T) with respect to the fluctuations of 

Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1, 2, …, 19), evaluated for the barrier level b having a probability p = 0.50 of not being exceeded 

(Δα = 0.10, T = 1000T0). 

Fig. 7. UB and LB of the interval CDF of the extreme value axial stress process Y(1)I
1,max(T) of the telecommunication antenna provided by the proposed 

procedure considering Young’s moduli of all the 19 FEs as uncertain (full) and retaining only the first rK = 6 and rK = 13 most influential uncertain 
parameters (reduced): a) Δα = 0.10 and b) Δα = 0.20 (T = 1000T0). 
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retaining rK = 13 uncertain Young’s moduli is almost coincident with the one obtained performing full uncertainty analysis. This 
implies that the dimension of the uncertainty input space can be reduced to rK = 13 without significantly affecting the accuracy of the 
results. 

In Fig. 8, the bounds of the interval fractiles of order p = 0.50 and p = 0.95 of the extreme value stress process Y(1)I
1,max(T) versus the 

deviation amplitude of the interval Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,rK = 12), of the first rK = 12 FEs (see Fig. 2) 

are plotted. As expected, the proposed estimates of the LB and UB are in excellent agreement with the ones provided by the vertex 
method. Furthermore, the region of the interval fractiles broadens as the degree of uncertainty of Young’s moduli increases. 

5.2. Ten-story shear-type frame under wind excitation 

As second case study, the ten-story shear-type frame under wind excitation depicted in Fig. 9 is considered. The geometrical 
properties of the frame are reported in Fig. 9 and Table 2. The mass of the structure is assumed lumped on each floor with nominal 
value m0i = m0 = 60 t (i = 1,2,…,10). The structure is made of concrete with nominal Young’s modulus E0 = 25 GPa. Wind loads 
Fx,i(zi, t) exerted at each floor located at height zi are defined by Eq. (58) with tributary areas Ai = 12.00 m2, (i = 1,2,…,9), and A10 =

6.00 m2. The values c0 = 0.483378 s− 1 and c1 = 0.00315051 s are assumed for the Rayleigh damping constants in Eq. (18) in such a 
way that the modal damping ratio of the first and third modes of the nominal structure is ζ0 = 0.05. The fundamental period of the 
nominal structure is T0 = 1.055 s. 

Young’s modulus of the material of two columns at the same floor is assumed to be described by the same interval variable E(i)I =

E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,rK = 10), as a result of the actual concrete casting. Floor masses are also described as interval variables 

m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1,2,…, rM = 10). For the sake of simplicity, the same deviation amplitude is assumed for all the un-

certain parameters. 
The shear stress at the base of column 2, Y(2)I

2 (t), is assumed as critical response quantity. The aim of the analysis is the evaluation of 
the range of the interval reliability function, LI

Y(2)
2,max

(b,T), and of the interval fractiles of orderp = 0.50,0.95, ZI
Y(2)

2,max
(p,T), of the extreme value 

process Y(2)I
2,max(T), where the observation time is assumed equal to T = 1000T0, T0 being the fundamental period of the nominal 

structure. 
First, the relative importance of the uncertain mass and stiffness parameters on structural performance is investigated by per-

forming sensitivity analysis. Fig. 10a and 10b display the functions of sensitivity of the interval reliability function LI
Y(2)

2,max
(b,T) (see Eq. 

(50)) with respect to the fluctuations of Young’s moduli and floor masses, respectively. As expected, the various structural parameters 
have a different impact on the CDF. In particular, it is observed that Young’s modulus of the columns of the third floor and the mass of 
the tenth floor are the most influential ones on the CDF LI

Y(2)
2,max

(b,T). Also in this case, it is worth remarking that positive values of the 

functions of sensitivity entail that a small increase of the pertinent parameters would produce an increment of structural reliability. 
Fig. 11a and b show the values of the functions of sensitivity φ(K)i,L

Y(2)2,max

(b, T) and φ(M)i,L
Y(2)2,max

(b, T) of the CDF LI
Y(2)

2,max
(b,T) with respect 

to the fluctuations αI
(K)i = ΔαêI

(K)i and αI
(M)i = ΔαêI

(M)i, (i = 1,2,…,10), of Young’s moduli and floor masses for a given barrier level b =

211.92 MPa which has a probability p = 0.50 of not being exceeded during the observation time T = 1000T0 when all the uncertain 
parameters are assumed equal to their nominal values. Based on the results reported in Fig. 11a, the uncertain Young’s moduli can be 
ranked from the most to the least influential ones as follows: E(i)I, i = 3,4,1,5,2,10,6,9,7,8. Similarly, by inspection of Fig. 11b, the 
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Fig. 8. UB and LB of the interval fractiles of order a) p = 0.50 and b) p = 0.95 (T = 1000T0) of the extreme value axial stress process Y(1)I
1,max(T) of the 

telecommunication antenna provided by the proposed procedure and the vertex method versus the deviation amplitude Δα of the interval Young’s 

moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1, 2,…, rK = 12). 
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uncertain floor masses may be listed in decreasing order of influence as follows: m(i)I, i = 10,1,9,2,3,4,5,6,8,7. 
A close inspection of Fig. 11a and b shows that the functions of sensitivity of LI

Y(2)
2,max

(b,T) with respect to fluctuations of Young’s 

moduli and masses of the same floor have opposite sign which implies contrasting effects on the reliability of the frame structure. In 
particular, up to the seventh floor, a small increase of Young’s moduli would produce an increment of structural reliability; conversely 
a small increase of floor masses would lead to a lower safety level. The opposite holds for the parameters associated with the remaining 
floors. This behaviour is consistent with the impact of a small variation of each uncertain Young’s modulus and mass floor on the zero- 
order spectral moment of the shear stress random process Y(2)

2 (t), as can be inferred from Figs. 12 and 13. Indeed, these figures 
highlight that small increments of the i-th Young’s modulus and of the i-th mass floor around the nominal value, while all the 
remaining parameters are kept fixed to the nominal value, have an opposite impact on the zero-order spectral moment of the shear 
stress random process Y(2)

2 (t), except for the parameters associated with the eighth floor. 
Relying on the information provided by sensitivity analysis, in order to validate the proposed approach by comparison with the 

vertex method, the first rK = 6 Young’s moduli E(i)I, (i = 1,2,3,4,5,10), and rM = 6 masses m(i)I, (i = 1,2,3,4,9,10), having the highest 
influence on the interval CDF LI

Y(2)
2,max

(b,T) are modelled as interval variables while the remaining parameters are set equal to their 

nominal values. 

Fig. 9. Ten-story shear-type frame under wind excitation.  

Table 2 
Cross-section of the columns of the frame 
structure.  

Floor Columns (cm) 
1–2 30× 80  
3–4 30× 70  
5–6 30× 60  
7–10 30× 50   
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Figs. 14 and 15 display the comparison between the proposed LB and UB of the interval CDF LI
Y(2)

2,max
(b,T) and failure probability 

PI
f ,Y(2)

2,max
(b,T) (the latter in semi-logarithmic scale) with those provided by the vertex method, for two different deviation amplitudes of 

the uncertain parameters, Δα = 0.10 and Δα = 0.20. Also in this case, an excellent matching between the proposed sensitivity-based 
procedure and the vertex method is observed. The width of the region enclosed by the bounds of the interval CDF and failure probability 
consistently increases as a higher degree of uncertainty is considered. 

Fig. 16 shows the bounds of the interval fractiles of order p = 0.50 and p = 0.95 of the extreme value stress process Y(2)I
2,max(T) versus 

the deviation amplitude of the interval Young’s moduli and floor masses. The comparison with the bounds obtained by applying the 

Fig. 10. Functions of sensitivity of the interval reliability function of the extreme value shear stress process Y(2)I
2,max(T) of the frame structure with respect 

to the fluctuations of a) Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,rK = 10), and of b) floor masses m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1,2,…,

rM = 10), versus the deterministic barrier level b (Δα = 0.10, T = 1000T0). 

Fig. 11. Functions of sensitivity of the interval reliability function of the extreme value shear stress process Y(2)I
2,max(T) of the frame structure with respect 

to the fluctuations of a) Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1,2,…,rK = 10), and of b) floor masses m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1,2,…,

rM = 10), evaluated for the barrier level b having a probability p = 0.50 of not being exceeded (Δα = 0.10, T = 1000T0). 

Fig. 12. Zero-order spectral moment of the shear stress random process Y(2)
2 (t): a) comparison between the nominal spectral moment and the one 

evaluated assuming all the uncertain parameters equal to the nominal values except the i-th Young’s modulus which is set equal to its UB i.e. E(i) =

E0(1 + Δα), (i = 1, 2,…,10) for Δα = 0.10; b) enlargement for i⩾2. 
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vertex method proves the accuracy of the proposed sensitivity-based approach. 
The outcomes of sensitivity analysis are also exploited to enhance the computational efficiency of the proposed approach by 

reducing the dimension of uncertainty. In Fig. 17, the bounds of the interval reliability function LI
Y(2)

2,max
(b,T) evaluated assuming all 

Young’s moduli and floor masses (rK = rM = 10) as uncertain (full) are contrasted with the ones computed retaining only the first rK =

rM = 6 and rK = rM = 7 most influential uncertain Young’s moduli and floor masses (reduced) based on the ranking established by 
sensitivity analysis. In all cases, the bounds are estimated using the proposed sensitivity-based procedure, for two different deviation 
amplitudes of the uncertain parameters, Δα = 0.10 and Δα = 0.20. The bounds of the p-box predicted retaining rK = 7 uncertain 
Young’s moduli and rM = 7 uncertain masses are in excellent agreement with those provided by full uncertainty analysis. It can be 

Fig. 13. Zero-order spectral moment of the shear stress random process Y(2)
2 (t): comparison between the nominal spectral moment and the one 

evaluated assuming all the uncertain parameters equal to the nominal values except the mass of the i-th floor which is set equal to its UB i.e. m(i) =

m0(1 + Δα), (i = 1,2,…,10) for Δα = 0.10. 

Fig. 14. UB and LB of the a) interval CDF and b) interval failure probability of the extreme value shear stress process Y(2)I
2,max(T) of the frame structure 

with uncertain Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1, 2, 3, 4, 5, 10), and floor masses m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1, 2, 3, 4, 9, 10): 

comparison between the proposed procedure, the vertex method (Δα = 0.10) and the nominal solution. 

Fig. 15. UB and LB of the a) interval CDF and b) interval failure probability of the extreme value shear stress process Y(2)I
2,max(T) of the frame structure 

with uncertain Young’s moduli E(i)I = E0

(

1 + ΔαêI
(K)i

)

, (i = 1, 2, 3, 4, 5, 10), and floor masses m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1, 2, 3, 4, 9, 10): 

comparison between the proposed procedure, the vertex method (Δα = 0.20) and the nominal solution. 
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observed that the region of structural performance pertaining to the frame structure with rK = 6 uncertain Young’s moduli and rM = 6 
uncertain masses is slightly less accurate. 

6. Conclusions 

A sensitivity-based procedure for reliability analysis of finite element modeled structures with interval mass and stiffness subjected 
to stationary Gaussian multi-correlated random excitation is presented. The formulation is developed in the context of the first-passage 
theory under the Poisson assumption of independent up-crossings of a prescribed threshold. The presented procedure basically consists 
in identifying suitable combinations of the endpoints of the uncertain structural parameters which yield accurate estimates of the 
bounds of the interval reliability function or cumulative distribution function (CDF), and of the interval failure probability for the selected 
stress process, as long as monotonic problems are dealt with. This task is achieved by performing a preliminary sensitivity analysis of 
the reliability function. The same approach can be pursued to evaluate the bounds of the interval fractile of order p of the critical stress 
process. 

The main features of the proposed sensitivity-based procedure may be summarized as follows: i) the bounds of the interval CDF of 
the selected stress process are obtained by performing only two stochastic analyses of the structure wherein the uncertain parameters 
are set equal to the combinations identified by sensitivity analysis; ii) for monotonic problems, the presented procedure yields results 
in excellent agreement with the ones provided by the vertex method in spite of the much higher computational efficiency; iii) reliability 
analysis of arbitrary finite element modeled structures involving both mass and stiffness uncertainties can be performed; iv) sensitivity 
analysis provides a deep insight into the impact of mass and stiffness fluctuations on structural performance allowing the identification 
of the least influential parameters which may be set equal to the nominal values to enhance the computational efficiency. 

Overall the present study provides an efficient tool to define the range of the interval reliability function and interval failure probability 
of structures subjected to stationary Gaussian multi-correlated random excitation when only the possible ranges of variability of the 
uncertain mass and stiffness properties are known with sufficient confidence. Furthermore, the proposed uncertainty propagation 
strategy can be efficiently implemented with the aid of commercial finite element software. 

Ongoing research is aimed at gaining a deeper insight into the interval first-passage problem for situations entailing a non-monotonic 
dependence of the response on the uncertain parameters e.g., resonance conditions or imprecise random loadings (see e.g., [51,52]). 

Fig. 16. UB and LB of the interval fractiles of order p = 0.50 a) and b) p = 0.95 (T = 1000T0) of the extreme value shear stress process Y(2)I
2,max(T) of the 

frame structure provided by the proposed procedure and the vertex method versus the deviation amplitude Δα of the interval Young’s moduli E(i)I =

E0

(

1 + ΔαêI
(K)i

)

, (i = 1, 2,3, 4,5, 10), and floor masses m(i)I = m0

(

1 + ΔαêI
(M)i

)

, (i = 1, 2, 3,4, 9,10). 

Fig. 17. UB and LB of the interval CDF of the extreme value shear stress process Y(2)I
2,max(T) of the frame structure provided by the proposed procedure 

considering all Young’s moduli and floor masses as uncertain (full) and retaining only the first rK = rM = 6 and rK = rM = 7 most influential un-
certain parameters (reduced): a) Δα = 0.10 and b) Δα = 0.20 (T = 1000T0). 
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