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CROP-GROWTH DRIVEN FORWARD-MODELING OF SENTINEL-1 OBSERVABLES USING
MACHINE-LEARNING

Tina Nikaein, Vineet Kummer, Susan Steele-Dunne and Paco Lopez-Dekker

Geoscience and Remote Sensing, Delft University of Technology, 2628 CN Delft, The Netherlands

ABSTRACT

This paper presents an approach to implement a forward
model for Sentinel-1 co-pol and cross-pol backscatter and co-
herence using crop bio-geophysical parameters namely leaf
area index, biomass, canopy height, soil moisture and root
zone moisture as inputs for the maize. These required input
parameters are generated using Decision Support System for
Agrotechnology Transfer (DSSAT), one of the state-of-the-art
crop growth models. The predicted SAR signal is generated
using Support Vector Regression (SVR) over all the maize
fields in an agricultural region, Flevoland, Netherlands. The
correlation between simulated signal and observed signal is
evaluated.

Index Terms— Crop, DSSAT, Sentinel-1, SAR, simula-
tion, forward-model

1. INTRODUCTION

In general, crop models are simplified representations of the
vegetation in real world. Models help us understand the dy-
namic interaction between environment variables and crop
development. Crop growth models can be classified into two
categories: statistical and dynamic models. The applicability
of statistical models is limited to cases in which the operating
conditions are consistent with those used during the devel-
opment of the model. Dynamic models need more input pa-
rameters but have the advantage of being able to simulate the
evolution of the crop, and in particular its yield, in situations
that have not been previously observed [1]. Crop models play
an important role for sustainable management, irrigation, fer-
tilization, etc. The accuracy of the input data determines the
certainty of the model. In this paper, decision support sys-
tem for agrotechnology transfer (DSSAT) that is a dynamic
model, has been used to estimate a number of variables, in-
cluding leaf area index (LAI), dry biomass, soil moisture and
canopy height.

Remote sensing satellites provide the potential to moni-
tor vegetated areas and soil conditions at a range of tempo-
ral and spatial resolutions. Several studies have shown value
of combining crop growth models and remote sensing data.
For example, the assimilating soil water index (SWI) derived
from coarse resolution satellite into crop model using Ensem-

ble Kalman filter (EnKF) has been studied in [2]. Also, op-
tical and radar data assimilation into crop growth model to
improve the simulated parameters were explored in [3].

The objective of this study is to have a forward operator
in order to simulate SAR observations (backscatter and co-
herence) from vegetation and soil characteristics provided by
a crop growth model. The vegetation characteristics such as
LAI, canopy height, biomass and soil properties such as sur-
face and root zone moisture simulated by DSSAT model are
used as input to support vector regression (SVR) to estimate
the SAR observables.

2. STUDY AREA

Maize is a crucial fodder crop in the Dutch agricultural land-
scape and accounts for approximately 10% of the total agri-
cultural land. Maize parcels in the Flevopolder region of the
Netherlands are selected for this study. Flevopolder region is
a reclaimed flat land dominated by clay loam soil type with a
high water holding capacity.Typical summer crop cultivation
season starts with the field preparation activities in March,
sowing in between mid-April to mid-May. Harvesting takes
place between mid-September and early October. Maize par-
cel information of the region is attributed from Basisregis-
tratie Gewaspercelen (BRP) of the Netherlands. During the
2017, maize was grown in around 539 parcels of the study
area. Figure 1 shows all agricultural fields in Flevoland with
maize fields marked red.

3. DATA AND METHODS

3.1. Input data for DSSAT

The minimum required data to execute the DSSAT model is
weather, soil and crop field management practices. This study
uses CERES (Crop-Environment Resource Synthesis)-Maize
crop module of DSSAT v4.7 to simulate the maize growth
variables from the sowing to the harvest period in a daily
step. The standard weather inputs, namely daily solar radi-
ation (SRAD), precipitation, and maximum and minimum air
temperature, were prepared using Royal Dutch Meteorologi-
cal Institute (KNMI) weather data. KNMI collects meteoro-
logical information from 50 weather stations over the Nether-
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Fig. 1. Spatial distribution of maize parcels in the Flevoland
province (Black polygon) of the Netherlands. Red polygons
represent maize parcels. Gray polygons are other crop type
parcels.

lands. Two weather stations are located in the studied area
which cover north and south part of the province. Inverse
Distance Weighting (IDW) spatial interpolation was applied
to extract parcel-level weather information. Figure 2 shows
the time series of weather data ingested into DSSAT simula-
tion.

Gridded soil data were obtained at 250-m resolution
from ISRIC’s global Soil Information System (SoilGrids)
[4]. Three soil layers are considered, 0-5, 5-15 and 15-30
cm. Several required soil data that was not available in Soil-
Grids250m, was obtained from HarvestChoise HC27 which
includes 27 different soil profiles that are generated based on
only three criteria: soil texture, soil organic carbon content
and rooting depth [5]. In order to provide information about
soil water movement, soil hydraulic properties need to be
estimated. The soil hydraulic parameters are computed by
pedo-transfer functions in [6].

Crop management inputs such as planting, emergence and
harvest information are provided based on in-situ informa-
tion collected during the field campaign. In the Flevopolder
region, silage maize is typically grown under rainfed condi-
tions. The default model values are considered for the re-
maining crop management inputs such as tillage, fertilizer,

Fig. 2. DSSAT input data. (Top) Maximum and minimum of
temperature, (Middle) Solar radiation and (bottom) cumula-
tive rainfall.

chemical applications and organic amendments.

3.2. Sentinel-1 SAR data

In this study, parcel-level Sentinel-1 SAR interferometric
wide (IW) swath mode observations from Agricultural Sand-
boxNL [7] database were used. This database consists of
spatially averaged parcel-level backscatter (VV and VH)
and interferometric coherence values over the Netherlands.
The backscatter and interferometric coherence values are
extracted after applying standard pre-processing on Ground
Range Detected (GRD) and Single-look Complex (SLC) data,
respectively. 6-day interval Sentinel-1 observations from rel-
ative orbit no-88, which is an ascending pass, are used.

3.3. Support Vector Regression

In order to map the vegetation states to the observables, we
use a supervised machine learning SVR [8] as forward oper-
ator. SVR has been used in studies for different application,
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for instance in [9], the result shows that SVR outperforms
a semiempirical water cloud model (WCM) in predicting
the backscatter. Additionally, in [10] the theoretical integral
equation (IEM) and the semi-empirical Oh models were com-
pared with SVR for soil moisture retrieval and they showed
potential of SVR to retrieve soil moisture.

SVR is used with LAI, height, biomass, and soil mois-
ture as input data to model SAR observable as the outputs.
SVR is first trained using 80% of data and then tested with
the remaining data. SVR is implemented in Python us-
ing the scikit-learn package [11] and data normalized in
pre-processing step. To address the concern of overfitting,
hyper-parameter tuning was applied by grid search and k-fold
cross validation to separate the observation to training set
and a validation set. Radial basis kernel (RBF), C=100 are
considered as the optimum parameters. We tried to maximize
the R-Squared value between simulated and observed SAR
features, defined as

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − y)2
, (1)

where yi is observed values, y is the mean of the observed data
and fi represents the modeled value. In an ideal but unrealistic
case of a perfect model R2 would be 1.

4. RESULTS AND DISCUSSION

Weather, soil and management data are provided in daily steps
for each maize field in a readable format for DSSAT software
as it is discussed in 3.1 by Python and it runs through batch
processing. Canopy height and LAI outputs are presented in
Figure 3 for four arbitrary maize fields based on day of the
year (DoY). LAI values as we expected are between 3 to 4
over the Flevoland area, with the height about 1.2 to 1.4 meter.
The figure illustrates that fields with higher height also have
higher LAI values.

The simulated results including backscatter and coherence
in both polarization from DSSAT outputs are compared to
Sentinel-1 observations in Table 1. R2 score and Pearson
correlation represents desirable fit between simulated and ob-
served signals. Figure 4 shows satellite-based observations
and the simulated ones to evaluate the performance of SVR.
The values are averaged over all maize fields for each time
and the transparent buffer shows the 20th-80th percentiles.

5. CONCLUSION

SAR observables (backscatter and coherence) in co-pol and
cross-pol are modeled by combining crop growth model with
machine learning. We use weather, soil and management data
as inputs into DSSAT to simulate maize growth variables.
The simulated LAI, biomass, height and soil moisture from
DSSAT have been used to model SAR observable using SVR.

Fig. 3. LAI and canopy height from DSSAT model. Four
lines show four different maize fields.

Table 1. R2 score and Pearson correlation between simulated
and observed SAR features.

Simulated feature R2 Pearson
Amplitude VH 0.75 0.87
Amplitude VV 0.68 0.83
Coherence VH 0.67 0.83
Coherence VV 0.64 0.80

The performance is accessed by statistical parameters which
shows the capability of combining DSSAT and SVR. This ap-
proach can be used to assimilate SAR observables into crop-
growth models in order to improve the simulation results.
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Fig. 4. Comparison of SAR features between SVR simulated and Sentinel-1 observations.(Left) Amplitude and (Right) Coher-
ence in both polarizations. Solid lines represent the average value of the feature and bounded area shows 20th-80th percentiles.
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