

Delft University of Technology

Memory-Disaggregated In-Memory Object Store Framework for Big Data Applications

Abrahamse, Robin ; Hadnagy, Ákos; Al-Ars, Zaid

DOI
10.1109/IPDPSW55747.2022.00211
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW)

Citation (APA)
Abrahamse, R., Hadnagy, Á., & Al-Ars, Z. (2022). Memory-Disaggregated In-Memory Object Store
Framework for Big Data Applications. In L. O'Conner (Ed.), Proceedings of the 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 1228-1234). Article 9835332
(Proceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2022). IEEE. https://doi.org/10.1109/IPDPSW55747.2022.00211
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IPDPSW55747.2022.00211
https://doi.org/10.1109/IPDPSW55747.2022.00211

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Memory-Disaggregated In-Memory Object Store

Framework for Big Data Applications

Robin Abrahamse

Accelerated Big Data Systems

Delft University of Technology

Delft, The Netherlands

R.Abrahamse@student.tudelft.nl

Ákos Hadnagy

Accelerated Big Data Systems

Delft University of Technology

Delft, The Netherlands

A.Hadnagy@tudelft.nl

Zaid Al-Ars

Accelerated Big Data Systems

Delft University of Technology

Delft, The Netherlands

Z.Al-Ars@tudelft.nl

Abstract—The concept of memory disaggregation has recently
been gaining traction in research. With memory disaggregation,
data center compute nodes can directly access memory on
adjacent nodes and are therefore able to overcome local memory
restrictions, introducing a new data management paradigm for
distributed computing. This paper proposes and demonstrates
a memory disaggregated in-memory object store framework for
big data applications by leveraging the newly introduced Thymes-
isFlow memory disaggregation system. The framework extends
the functionality of the pre-existing Apache Arrow Plasma object
store framework to distributed systems by enabling clients to
easily and efficiently produce and consume data objects across
multiple compute nodes. This allows big data applications to
increasingly leverage parallel processing at reduced development
costs. In addition, the paper includes latency and throughput
measurements that indicate only a modest performance penalty
is incurred for remote disaggregated memory access as opposed to
local (∼6.5 vs ∼5.75 GiB/s). The results can be used to guide the
design of future systems that leverage memory disaggregation as
well as the newly presented framework. This work is open-source
and publicly accessible at https://doi.org/10.5281/zenodo.6368998.

Index Terms—Memory Disaggregation, Apache Arrow Plasma,
ThymesisFlow

I. INTRODUCTION

Big data workloads are often limited in scale by the memory

volume available to local systems. Expanding memory volume

in data center servers is associated with super-linear costs [1]

and consequently, a scale-out approach is commonly used to

scale data center applications for larger data volumes. In a

scale-out approach, vast amounts of data are sent over the local

network and copied to local memory (Figure 1a), contending

for network bandwidth and often harming performance by

thrashing memory across the compute nodes [1].

In this paper, we propose a framework that leverages

memory disaggregation technology to mitigate these issues

by providing direct access to large memory volumes over

a custom network (Figure 1b), relaxing the need to utilize

scarce local network bandwidth and the burden to evict data

from memory in order to copy. This framework also allows

distributed systems to increase their ability to parallelize data

processing.

Memory disaggregation refers to the decoupling of di-

rectly accessible memory from individual compute nodes (e.g.

servers in a data center rack). Specifically, it entails the

integration of hardware-enabled systems which allow compute

nodes to directly access memory from other – remote – com-

pute nodes and therefore increase effective memory volume

(Figure 1b).

By enabling compute nodes to access and modify both

local and remote disaggregated memory concurrently, without

duplicating data, memory disaggregation has the potential to

improve application performance. Compute nodes could for

example operate on local in-memory data while utilizing in-

memory data from the other nodes in the network (i.e. wide-

dependency operations). This increases the ability of data

center applications to process data in a parallel manner.

CPU

RAM

CPU

RAM

Server 1 Server 2

Copying

(a) Scale-out

CPU

RAM

CPU

RAM

Server 1 Server 2

(b) Memory Disaggregated

Fig. 1: Distributed Computation Scaling Approaches

The current work proposes a memory disaggregated frame-

work for big data applications and evaluates its performance.

This paper contains the following main contributions:

• The proposal and implementation of a memory disag-

gregated in-memory object store framework prototype,

which enables easy and efficient production and con-

sumption of data objects across distributed compute

nodes.

• A set of microbenchmarks and respective results for mea-

suring latency and throughput of creating and retrieving

data objects from the proposed object store framework.

• Considerations and recommendations for future work on

the newly proposed framework and memory disaggrega-

tion technology in general.

The paper researches the performance-enhancing potential and

application of memory disaggregation for big data analytics

with ThymesisFlow [2] and provides a stepping stone for

future work.

This paper is organized as follows: first, Section II outlines

related work. Section III provides additional background in-

1228

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00211

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

97
47

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

55
74

7.
20

22
.0

02
11

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

formation on the used memory disaggregation prototype and

workloads. Then, Section IV presents the proposed memory

disaggregated object store framework and corresponding set

of microbenchmarks. Lastly, Section V discusses the results

and future work before Section VI concludes.

II. STATE OF THE ART AND RELATED WORK

A. ThymesisFlow

At the time of writing, the field of memory disaggregated

big data analytics is still in an exploratory phase but is

already gaining traction in research [1], [3], [4]. Pre-existing

technologies have thus far only demonstrated varying results

on smaller systems. However, recent work by IBM introduced

a promising memory disaggregation framework for data center

infrastructures, called ThymesisFlow [2]. ThymesisFlow al-

lows servers to transparently access memory from adjacent

servers through a custom network, bypassing local memory

volume restrictions.

ThymesisFlow offers an initial step towards scalable mem-

ory disaggregation for big data applications [5]. It presents

an early opportunity to test the potential of memory dis-

aggregation for acceleration of data center workloads. This

could guide the design of future server-scale and rack-scale

hardware systems as well as novel programming models and

applications.

Through efficient pooling of processing and memory re-

sources, this technology has the potential to increase data

center utilization rates, decrease total cost of data center

ownership, and improve both performance and cost of devel-

opment for applications [2]. Consequently, it can contribute to

improving the efficiency of data center workloads generally

and big data workloads in particular. Additionally, due to the

simple memory sharing interface, workloads could be scaled

and parallelized more easily.

In fact, similar technology is already being incorporated

in the next generation of data center processors. IBM has

announced an improved memory disaggregation function to

be integrated into upcoming IBM POWER10 processors under

the name ’Memory Inception’ [6].

B. Plasma Object Store

Big data applications often consume data from external

sources and acquire this data by querying the source. A single

source may have multiple consumers querying it. The Apache

Arrow framework [7] aims to standardize this consumer-

supplier dynamic in an efficient way by providing tools to

share in-memory data between applications without serializa-

tion overhead. Part of this framework is the Plasma in-memory

object store, which is used to store and access immutable data

objects within a system in which multiple data suppliers and

consumers may exist.

The Plasma object store lives as a separate process to which

clients of the store may commit and ’seal’ data objects with

an object identifier. The store manages the objects’ locations

in shared memory and makes them available to other clients

upon sealing. Sealing an object prompts the store to make

it immutable, such that race conditions cannot occur. Big

data applications often do not require mutability of the source

data and can therefore benefit from the reduced concurrency

complexity, e.g. the Resilient Distributed Dataset (RDD) of

Apache Spark [8] is also built on this premise.

Plasma store clients can access the existing sealed objects

by querying the store for the object identifiers. The store then

provides the client with a read-only buffer containing the ob-

ject data, which the client can consecutively consume. Sharing

through system memory ensures that both object commitment

and access incur only marginal latency penalties. Moreover,

the standardized format of the store eliminates serialization

overhead between processes which improves performance and

efficiency. The framework is already being leveraged in exist-

ing big data workloads [9].

III. TECHNOLOGICAL BACKGROUND

ThymesisFlow was developed for POWER9 [10] archi-

tectures and leverages the OpenCAPI [11] interface. The

system builds on FPGA accelerators that interface between

the ThymesisFlow network and the Linux operating system

kernel. The disaggregated memory is exposed to the operating

system as a memory region, which is accessible through the

ThymesisFlow system such that it becomes transparent to

applications [2].

Figure 2 shows a schematic representation of the effective

physical flow of data in ThymesisFlow. Memory sharing

happens through the FPGA accelerators, leveraging the Open-

CAPI FPGA stack. OpenCAPI [11], is an interface architecture

that enables accelerators to cache-coherently access system

memory. This means that the FPGA accelerator can access

memory from the host in a cache-coherent way.

CPU

RAM

CPU

RAM

Server 1 Server 2

F
P

G
A

F
P

G
A

Fig. 2: ThymesisFlow Schematic Representation

For ThymesisFlow, this entails that a portion of local system

memory is marked as disaggregated and made available to

remote compute nodes. The system’s FPGA accelerator then

mimics a memory controller of sorts for remote disaggregated

memory regions. Load and store instructions targeting the

disaggregated memory region are relayed to the FPGA, which

translates memory addresses and requests the appropriate

memory regions from remote compute nodes. The remote

compute node’s FPGA then uses the OpenCAPI interface to

retrieve cache-coherent data from the desired memory regions

and returns this data to the requesting node. This completes

the call to remote disaggregated memory.

As it stands currently, memory disaggregation with Thymes-

isFlow is subject to several drawbacks as well. For exam-

ple, calls to disaggregated memory carry an inherent latency

1229

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

penalty due to the extra distance data has to travel off-chip

relative to local data. This penalty has been observed to be

non-negligible [2], thus local memory remains of importance

for performant applications [1]. This extra distance has to be

traversed in scale-out approaches as well and, with efficient

custom hardware and network protocols, memory disaggrega-

tion could even reduce this latency penalty with respect to

traditional local networking.

Moreover, compute nodes using ThymesisFlow could poten-

tially suffer from increased cache-coherency and synchroniza-

tion issues related to the distributed nature of disaggregated

memory fetching. When multiple processes are accessing and

modifying the same memory region, cached changes need to

be accessible to all processes. Usually, cache-coherency among

shared-memory processes is handled by the operating system

kernel, however, with memory disaggregation multiple oper-

ating systems are involved. Cache-coherency in this setting is

not supported by common operating systems and eliminating

caching completely – which would require the development

of custom kernel modules – comes at a cost. Additionally, the

increased latency of disaggregated memory calls begs extra

caution with race conditions.

The cache-coherency concerns arise from the data flow

within ThymesisFlow and have important implications for

its usage. The OpenCAPI [11] interface ensures that reading

remote disaggregated memory is cache-coherent (Figure 3a).

Alternatively, writing to remote disaggregated memory is

cache-coherent with the local system, but not necessarily with

the remote system to which is being written. Explicitly, this

means that data written to remote disaggregated memory is

not necessarily immediately available to applications on the

remote system. The written data will be flushed to the remote

disaggregated memory, however, the remote system may have

cached a previous value (Figure 3b). This has implications

for the memory disaggregated Plasma store, which will be

discussed in the next section. Note that Figure 3 is only a

conceptual schematic representation.

CPU

RAM

Server 1 Server 2

Cache

CPU

RAM

Cache

Cache

Coherent

(a) Remote Read

CPU

RAM

Server 1 Server 2

Cache

CPU

RAM

Cache

Cache

Coherent

(b) Remote Write

Fig. 3: Cache-Coherency in ThymesisFlow Transactions

IV. MEMORY DISAGGREGATED OBJECT STORE

The Apache Arrow Plasma object store [7] is currently

restricted by the fact that it only supports local object storage.

This means that the availability of both memory volume and

processing units is limited. Memory disaggregation provides

an opportunity to enable Plasma to access significantly larger

volumes of memory and increase the number of available

processing units.

The goal of the current work is to propose and evaluate

a variant of the Apache Arrow Plasma object store [7] that

leverages memory disaggregation through ThymesisFlow [2].

The object store uses a strategy similar to sharding to leverage

disaggregated memory, where objects are distributed over sev-

eral servers and clients can directly retrieve objects from their

memories. The development was conducted in two distinct

stages:

1) Integration of ThymesisFlow into the original Plasma

framework.

2) Benchmarking of the novel Plasma framework.

This paper predominantly focuses on the first stage to provide

a theoretical basis for the proposed framework. The details of

the two stages will be elaborated on further in this section. The

source code can be found at https://doi.org/10.5281/zenodo.

6368998.

A. ThymesisFlow Plasma Store Integration

The integration of ThymesisFlow in Plasma can be achieved

in two separate steps:

1) Disaggregated memory allocation; allows the Plasma

store to allocate objects in local disaggregated memory

such that they can be accessed by remote clients without

resorting to slow scale-out approaches or network strain.

2) Remote object sharing; sharing the objects contained in

Plasma stores allows them to be retrieved by clients on

all compute nodes.

1) Disaggregated Memory Allocation: As an initial step,

the Plasma store was modified to allocate objects in local

disaggregated memory. Since the Plasma store is essentially

a memory bookkeeping service for Plasma data objects, it

requires sufficiently performant memory allocation. Originally,

Plasma uses the Doug Lea Malloc library (dlmalloc) [12] for

this purpose, together with a file descriptor system to coordi-

nate memory-mapping across Plasma store and clients. This

ensures portability, among other desirable aspects, but does

not suit the purpose of allocating in disaggregated memory.

Since ThymesisFlow is inherently Linux-based, the loss of

portability by substitution of dlmalloc is not a limiting factor.

Hence, dlmalloc was replaced by a simple allocation algorithm

that receives the memory-mapped local disaggregated memory

region and uses it to allocate Plasma objects. The algorithm

simply allocates a chunk of memory to the first available

region that can accommodate it. By using an ordered map

data structure with logarithmic time look-up to keep track of

the sizes of available regions, performance should not suffer

critically. The replacement allocator does not consider e.g.

locality, alignment, and fragmentation in memory allocation

and thus surrenders some benefits to the original dlmalloc

library [12]. It should, however, suffice for exploring the

performance of memory disaggregated systems.

2) Remote Object Sharing: Plasma conducts Inter-Process

Communication (IPC) between Plasma store and clients

through Unix domain sockets. This means that Plasma clients

cannot directly communicate with remote Plasma stores as the

1230

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

latter exist in different operating systems, unreachable by the

Unix domain sockets. An additional infrastructure could be

created to accommodate for this, however, that would require

all clients to connect with remote Plasma stores and would

cause large amounts of duplicate data to be sent over the

network. Therefore, it is more efficient to interconnect Plasma

stores. Additionally, this means that the distributed nature can

largely remain hidden to Plasma clients.

Sharing remote Plasma objects between stores introduces

several additional constraints to the system. Obviously, Plasma

stores must be able to communicate with each other about

currently existing objects. Two significant new constraints

were identified:

• Identifier uniqueness; object identifiers must be unique

across the system of all connected Plasma stores to

prevent ambiguity.

• Distributed object-usage sharing; Plasma stores should

have up-to-date information about which of their local

objects are in use by clients system-wide.

The requirement for identifier uniqueness is an immediate

consequence of the distributed nature of the proposed frame-

work. If object identifiers are not unique across all connected

Plasma stores, then this may introduce ambiguity in client

requests for objects such that clients will not be able to retrieve

all objects available in the Plasma stores.

The distributed object-usage sharing constraint relates to

a Plasma store’s internal policy about evicting objects when

needed. Locally, the Plasma store keeps track of which objects

are in use by its connected clients. In-use objects will not be

evicted, because clients might still be reading from memory

and evicting the objects would likely corrupt their data. Object-

usage tracking should be extended to adopt this functionality

across multiple Plasma stores. In the scope of the current work,

this constraint was considered, however, was not limiting for

demonstrative purposes and no solution was implemented yet.

A rough subdivision can be made in the possible approaches

used to share Plasma object information across the system:

• A shared data structure in disaggregated memory; Plasma

stores can share their data structure that maps object

identifiers to their corresponding buffers.

• Messaging via disaggregated memory; Plasma stores can

perform point-to-point messaging between each other

through disaggregated memory.

• Sharing via LAN; Plasma stores can communicate over

the local network using common networking techniques.

The type of approach has far-reaching implications for the

system architecture. These implications will be discussed next.

The first approach would allow remote Plasma stores to

efficiently look up whether an object already exists and find its

corresponding buffer. This approach requires handling issues

specific to the usage of shared memory data structures such

as preventing (local) heap allocation. Moreover, since this is a

one-way (local Plasma store polls remote Plasma store) com-

munication system, there is no efficient way for the local store

to feed back information on currently in-use objects for the

eviction policy. The latter relates to the previously discussed

fact that writing to remote disaggregated memory may lead

to cache-coherency issues on the remote compute node and

doing so regardless would open the door to unfavorable race

conditions. This could be accommodated by designing a kernel

module to disable the memory caching behavior, but that is

outside the scope of the current work.

For the second approach, a messaging system could be im-

plemented, similar to the system suggested in [5]. Messaging

in traditional shared memory is a simple task, however, the

cache-coherency characteristics of ThymesisFlow introduce

additional complexity. This would require developing a robust

messaging system using both local and remote disaggregated

memory. Any potential performance gain relative to using

existing LAN techniques would be marginal considering com-

munication protocol overhead and would incur significant

additional development costs. A hybrid system that combines

disaggregated memory hash map look-up with messaging

could yield more favorable results, but this is also outside the

scope of the current work.

Lastly, the third approach could be implemented in several

ways as well. A simple, robust, and performant approach to

do this is based on the Remote Procedure Call (RPC) concept.

In this concept, an application can call a function through

an RPC client as if it was executed by a remote applica-

tion, hiding the networking complexity from the application.

An efficient implementation for HPC is gRPC [13], which

is a high-performance RPC based on Protocol Buffers and

HTTP/2 [14]. Internally, a gRPC client connects a stub to

a remote gRPC server and relays the local function call to

the server, which executes the call and returns the result [13].

This RPC functionality could be used to satisfy the constraints

outlined before by allowing servers to look up objects remotely

(Figure 4).

Stub

Plasma Store

RPC Client

Stub

Plasma Store

RPC Server

RPC Server RPC Client

Fig. 4: gRPC Functionality

Considering the previously discussed drawbacks of dis-

aggregated memory communication and the simplicity and

performance of LAN communication, gRPC (version 1.38.0)

was used to share objects between Plasma stores. This has

implications for the remainder of the system.

The gRPC protocol was configured in synchronous mode

due to its favorable servicing latency. As a result, the gRPC

server requires a dedicated thread to service all calls syn-

chronously. Additionally, gRPC was configured in unary mode

to minimize protocol overhead for the messages being sent

around.

The gRPC functionality works as follows: upon a client

request for a remote object, the local Plasma store makes an

1231

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

RPC call to look up the object identifier(s) in the remote store,

which contains a map data structure for object identifiers. Con-

sequently, the local Plasma store retrieves the corresponding

object buffer(s) and passes them on to the client. Similarly, on

object creation, RPC calls are used to ensure the uniqueness

of object identifiers.

This multithreaded look-up introduces the need for thread-

safety mechanisms as both the Plasma store main thread and

gRPC server thread may attempt to access the local object

identifier map concurrently. Mutex functionality was built in to

ensure thread-safety and eliminate race conditions that might

otherwise occur.

A schematic block diagram with full the proposed system

can be found in Figure 5.

 Plasma Store

Unsealed

Objects

Sealed

Objects

Plasma

Client

Free

Capacity

Memory

Allocator

Disaggregated Memory

L
o

c
a

l O
b

je
c
ts

R
e
m

o
te

 O
b

je
c
ts

RPC

Client

Object Buffer

Handler

Remote
Buffers

Local
Buffers

RPC
Server

Remote System
Disaggregated

Memory

Request/Reply
Object Buffers

Fig. 5: Memory Disaggregated Plasma Framework

B. Benchmarking

The current work includes a set of microbenchmarks to

quantify the difference in latency and throughput between local

and remote Plasma object consumption. The benchmarks are

designed to test a system of at least 2 Plasma stores.

The benchmarks commit Plasma objects with random data

to one of the Plasma stores, after which both local and remote

clients will then request these objects’ buffers from their local

Plasma stores. The clients then receive the corresponding

object buffers from the local Plasma store and retrieve their

data sequentially. The data contents of the objects should not

influence the system performance.

In this process, several distinct measurements are done.

Firstly, creation, writing, and sealing of the objects is mea-

sured. The consequent retrieval of object buffers by the client

and reading of these object buffers are then measured sep-

arately. The benchmarks provide information about system

performance and aim to guide the design of future systems

leveraging memory disaggregation and Plasma.

6 different microbenchmarks were included to investigate

performance in different scenarios, each repeated 100 times to

monitor the effect of jitter in the system. The benchmarks test

the Plasma framework with different orders of magnitude in

object sizes and also vary the number of objects created. This

way, they can capture differences in local and remote memory

performance and variability of full-system performance with

different object sizes. The number of objects is varied to

mitigate any potential influence of caching of smaller objects.

The specifications for each benchmark can be found in Table I.

Number of

Objects

Object Size

(kB)

1 1000 1

2 500 10

3 200 100

4 100 1000

5 50 10000

6 10 100000

TABLE I: Benchmark Specifications

V. RESULTS & DISCUSSION

A. Benchmarks

The microbenchmarking experiment was run on two IBM

Power System IC922 in combination with Alpha Data ADM-

PCIE-9V3 FPGAs. All the benchmarks described in Sec-

tion IV-B were run on a single thread.

Figure 6 plots the total object buffer retrieval latency per

benchmark as measured from the time of the request to the

reception of the last buffer. For local objects, the latency scales

with the number of requested objects, ranging from 1.885 ms

for 1000 objects to 0.075 ms for 10 objects. Remote objects

incur a larger latency penalty due to the gRPC communication,

ranging from 5.049 ms for 1000 objects to 2.624 ms for 100

objects. The complexity for the latter does also scale with

the number of requested objects but the total latency is likely

dominated by gRPC and its inherent network jitter, hence this

is not clearly represented in the figure.

Fig. 6: Plasma object buffer retrieval performance comparison

Figure 7 plots the throughput distribution per benchmark

of consecutively reading the data from the requested buffers,

including access latency. The results stabilize at 6.5 GiB/s for

local objects and 5.75 GiB/s for remote objects in benchmarks

4-6. Benchmarks 1-3 display more variation (ranging from 5.5

to 7.1 GiB/s), which might indicate that the smaller objects

in these benchmarks do not saturate bandwidth. Since the

benchmarks run single-threadedly, they do not saturate full

1232

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

local and remote bandwidth completely anyway [2], however,

the results are still competitive with the throughput of compa-

rable state-of-the-art technology such as switched InfiniBand

RDMA [15].

Fig. 7: Plasma object buffer reading performance comparison

(benchmark numbering in accordance with Table I)

As such, the results demonstrate that the proposed system

can provide reading throughput of remote objects close to local

performance (approximately 11.5% difference). The fact that

the penalty of remote disaggregated memory access is similar

to comparable RDMA technology, means that the system de-

livers promising performance for big data applications. Object

retrieval incurs a latency penalty in the order of milliseconds

and marks a notable opportunity for improvement.

B. Future work

Although the microbenchmarks show promising results, the

value of the system can be further demonstrated by extending

our benchmarks to measure the system’s performance in fully

integrated solutions. Especially wide-dependency operations –

commonly used in big data application – pose an interesting

subset for performance evaluation due to the ability of several

nodes to operate on the distributed data in parallel.

As already outlined in Section IV, several additional func-

tionalities could improve the proposed framework. Firstly, a

feedback mechanism for remote stores to exchange infor-

mation about e.g. object usage will improve reliable oper-

ation. As previously discussed, tracking which objects are

in use by clients shapes the object eviction policy, but this

is not currently maintained across remote Plasma clients. A

modified kernel module and disaggregated memory solution

for exchanging remote object information could achieve this.

Alternatively, additional RPC functionality could be added to

attain the same functionality.

Moreover, in addition to the current RPC solution, which

performs a remote call on every client request for unknown ob-

ject identifiers, a caching mechanism for previously requested

remote objects could be implemented. This would increase

the performance of repeated requests for identifiers, which

is dependent on system usage. This caching would require

caution with tracking object usage by remote clients for the

eviction policy and could result in corrupted object buffers if

not handled carefully.

Furthermore, the currently presented system is implemented

to accommodate a 2 node system. For rack-scale solutions, this

needs to be modified to accommodate multiple nodes. The

current system design allows for this modification.

In addition, there are several opportunities to further im-

prove performance. Firstly, the simple replacement memory al-

locator was sufficient for demonstrative purposes but improved

allocators generally have substantial impact [16]. Additionally,

the performance of remote object sharing could potentially be

improved with an elaborate solution leveraging shared data

structures in disaggregated memory. This allows direct look-up

of remote objects in disaggregated memory and would likely

improve performance but requires additional work.

Lastly, the proposed Plasma system was designed for

ThymesisFlow, however, it is expected that novel future mem-

ory disaggregation systems such as IBM’s Memory Incep-

tion [6] could carry significant performance improvements [2].

The modular design of the proposed system ensures that

integration with future memory disaggregation technologies

is possible.

VI. CONCLUSION

As the topic of memory disaggregation in data centers

continues to gain relevance, the demand for software frame-

works that leverage the technology and quantify its potential

increases. The current work set out to propose and demonstrate

a novel type of in-memory object store based on the Apache

Arrow Plasma API, which leverages memory disaggregation

with the ThymesisFlow framework. The proposed Plasma

framework pioneers the field of memory disaggregation in

big data analytics by novel programming models for handling

very large data volumes in memory and leveraging distributed

computing in an efficient and application-transparent manner.

The results demonstrate that the proposed system can deliver

competitive single-thread throughput for remote disaggregated

memory access with respect to local memory access (∼6.5

vs ∼5.75 GiB/s) and state-of-the-art RDMA technology. As

such, the potential of the memory disaggregated object store

framework is emphasized. Nevertheless, in its current state,

there is a tremendous opportunity for improvements and future

research in different forms. For example, the introduction of

closely integrated memory disaggregation technology such as

Memory Inception in IBM POWER10 and further integration

into server- and rack-scale system designs. Further potential

improvements for the proposed Plasma framework and its

performance in fully integrated applications have been outlined

for future investigation.

ACKNOWLEDGMENT

We thank Felix Eberhardt and Andreas Grapentin (Oper-

ating Systems and Middleware Group of the Hasso Plattner

Institute) for assisting in conducting our experiments and for

providing comments on our work.

1233

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, and Y. Wu. Memory
disaggregation: Research problems and opportunities. In 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS),
pages 1664–1673. IEEE, 2019.

[2] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Ka-
trinis, and H. P. Hofstee. Thymesisflow: A software-defined, hw/sw
co-designed interconnect stack for rack-scale memory disaggregation.
In 2020 53rd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 868–880. IEEE, 2020.
[3] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient

memory disaggregation with infiniswap. In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17), pages
649–667, 2017.

[4] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont. Welcome to
zombieland: Practical and energy-efficient memory disaggregation in a
datacenter. In Proceedings of the Thirteenth EuroSys Conference, New
York, NY, USA, 2018. Association for Computing Machinery.

[5] Pinto C. and H. P. Hofstee. Latest trends in memory dissagregation
[webinar]. IBM, 2021, March 25.

[6] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and J. E. Moreira. Ibm’s
power10 processor. IEEE Micro, 41(2):7–14, 2021.

[7] Apache Software Foundation. Apache arrow. https://github.com/apache/
arrow.

[8] Apache Software Foundation. Apache spark: Lightning-fast unified
analytics engine. https://spark.apache.org/.

[9] T. Ahmad, N. Ahmed, J. Peltenburg, and Z. Al-Ars. Arrowsam:
In-memory genomics data processing using apache arrow. In 2020

3rd International Conference on Computer Applications & Information

Security (ICCAIS), pages 1–6. IEEE, 2020.
[10] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. Ibm

power9 processor architecture. IEEE Micro, 37(2):40–51, 2017.
[11] OpenCAPI Consortium. https://opencapi.org. Accessed: June 8 2021.
[12] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.

html.
[13] Google. grpc: A high performance, open source universal rpc frame-

work. https://grpc.io/.
[14] R. Biswas, X. Lu, and D. K. Panda. Designing a micro-benchmark

suite to evaluate grpc for tensorflow: Early experiences. arXiv preprint

arXiv:1804.01138, 2018.
[15] M. R. S. Katebzadeh, P. Costa, and B. Grot. Evaluation of an

infiniband switch: Choose latency or bandwidth, but not both. In 2020

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 180–191. IEEE, 2020.
[16] M. Masmano, I. Ripoll, and A. Crespo. A comparison of memory alloca-

tors for real-time applications. In Proceedings of the 4th international

workshop on Java technologies for real-time and embedded systems,
pages 68–76, 2006.

1234

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:09:33 UTC from IEEE Xplore. Restrictions apply.

