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Abstract— A focal plane array of extended-hemispherical 

silicon lenses coupled to aluminum coplanar-waveguide (CPW) 

Microwave Kinetic Inductance Detectors (MKIDs) has been 

designed to operate at 7.8 THz. Low-dispersive leaky-wave 

radiation has been used to efficiently illuminate the antireflection-

coated lenses. To minimize the radiation loss from the antenna 

feeding lines at these high frequencies, the CPWs have been 

miniaturized and placed on a dielectric membrane. A test device 

has been fabricated and its experimental characterization in terms 

of sensitivity, optical coupling, and beam patterns is ongoing. 

 

 

I. INTRODUCTION 

NE of the key instruments for astronomy is the Integral 

Field Unit (IFU), a multi-pixel device combining imaging 

and spectroscopic capabilities. Although IFUs are wildly 

successful in optical astronomy [1], only a handful of small 

scale IFUs exist to date in the terahertz (THz) domain, either 

based on coherent receivers (e.g. [2]), typically providing very 

high spectral resolution of order � = � ��⁄ ≈ 10	– 10�, or on 

direct detectors (e.g. [3]), which offer lower spectral resolution 

but do not suffer from quantum noise [4]. Among the different 

possible light-dispersion mechanisms for direct detection, the 

Virtually Imaged Phased Array (VIPA) [5] provides a high 

spectral resolution (� ≈ 10�– 10) with a large angular 

dispersion of the monochromatic output beams impinging onto 

a focal plane array (FPA) of detectors as illustrated in Fig. 1. 

In a multi-pixel instrument for astronomy, the detectors have 

two essential requirements: multiplexing capabilities and high 

sensitivity. Microwave Kinetic Inductance Detectors (MKIDs) 

[6] are superconducting pair-breaking detectors whose resonant 

nature makes them inherently easy to multiplex in the frequency 

domain and which have proven to be sufficiently sensitive to 

merit a space-borne mission [7]. Absorber-based MKID 

detectors have been extensively investigated [8], [9] but the 

lowest demonstrated Noise Equivalent Power (NEP) is of the 

order of 10��� W ⋅ Hz��. with disordered superconductors 

[10]. Instead, antenna-coupled detectors have better spatial 

resolution capabilities [8] and have been demonstrated to 

provide an NEP of the order of 10��� W ⋅ Hz��. with 

aluminum (Al) co-planar waveguide (CPW) MKIDs up to a 

kilo-pixel array configuration [7]. At THz frequencies, MKID-

coupled leaky-wave lens antennas have been demonstrated over 

multi-octave relative bandwidths up to 1.5 THz [11]–[14]. The 

non-resonant nature of these antennas [15] makes them 

relatively large and thereby easier to fabricate at high 

frequencies. In this work, we propose a 7.8 THz multi-pixel 

lens-antenna array directly coupled to Al CPW MKIDs. 

II. PIXEL DESIGN 

The design of each of the focal plane array pixels is driven 

by the need to maximize the coupling to the detectors. This 

requires an adequate lens-antenna design to capture most of the 

power impinging on the lens surface, as well as the 

minimization of the loss mechanisms once the radiation is 

coupled to the transmission line on the chip. 

A. Leaky-Wave Lens-Antenna 

The antenna of each pixel consists of an extended hemispherical 

silicon (Si) lens coated with a λ/4 Parylene-C anti-reflection 

layer as illustrated in Fig. 2(a). The feeding point of each lens, 

illustrated in Fig. 2(b), is a tapered leaky-slot etched on the 

same Al film used for the detectors. As shown in Fig. 2(c), this 

metal plane is deposited on a sub-micron-thick silicon nitride 

(SiN) membrane opened on a Si wafer and separated from a Si 

lens by an electrically thin air-gap of 1.5 μm to excite low-

dispersive leaky-wave radiation in the frontward direction 

while ensuring a high front-to-back ratio. These leaky-waves 

mainly illuminate the top part of the lens, which is its most 

efficient region [15]. The feed phase center is 22 μm behind the 

slot plane. The lens aperture efficiency (including spill-over and 

taper) and the front-to-back ratio have been calculated with the 

tool in [16] and the primary fields inside the lens simulated in 

CST Microwave Studio using a delta-gap-fed tapered leaky-slot 

embedded in the simplified stratification inside the yellow box 

of Fig. 2(c). A more realistic feeding structure based on CPW 

technology is discussed in the next section. The quasi-optical 

performance, the matching efficiency (normalized to 141 Ω) 

and their product are reported in Fig. 3. Illuminating the lens 

with the delta-gap-fed tapered leaky-slot provides a coupling 

efficiency to a plane-wave outside the lens in excess of 50% for 

more than an octave around 7.8 THz. The front-to-back, the 

taper and the spill-over efficiencies can all be improved by 

reducing the air-gap between the lens and the slot plane. The 

reason why this has not been done is twofold: firstly, to ease the 

already challenging fabrication and assembly process, and also 

to avoid the re-radiation from the CPW feed we discuss next. 
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Fig. 1. Focal plane array of lenses capturing the output beams of a VIPA. This 

plane retrieves the spectral sampling and the perpendicular the spatial sampling.
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B. Antenna Feed 

The antennas designed in this work are directly coupled to Al 

CPW MKIDs, which respond in the microwave regime to the 

THz power absorbed in the central Al strip. One caveat of CPW 

technology at THz frequencies is its re-radiation loss. The use 

of narrow-featured CPW lines, and especially when placed in a 

dielectric membrane, strongly suppresses re-radiation [17]. To 

minimize re-radiation loss, the CPW lines used in the proximity 

of the antenna have 1.125 μm-wide gaps and a 0.5 μm-wide 

central conductor, and are laid on a sub-micron-thick dielectric 

membrane as illustrated in Fig. 2. The SiN of the membrane has 

a relative dielectric permittivity of �� ≈ 7 and a loss tangent of 

tan � ≈ 10�! at THz frequencies [18]. Al absorbs radiation 

with a frequency higher than 90 GHz, which is its 

superconducting gap frequency. The Al central line of the CPW 

is the sensitive part of the KID, whereas the power absorbed in 

the ground plane is lost. An estimation of the different loss 

contributions of the CPW line has been carried out using 

Sonnet. After 400 μm, 54.5% of the THz power is absorbed in 

the central Al strip of the CPW, which is sensed in the 

microwave readout of the MKID. The rest of the THz power is 

in part re-radiated in the Si (12%) and in part dissipated in the 

SiN membrane (23%) and in the Al ground plane (10.5%). As 

a result, the coupling efficiency of the antenna-coupled MKID 

to a plane-wave illumination of the lens is estimated to be in 

excess of 27% (50% aperture efficiency multiplied with a 

54.5% absorption in the Al strip of the CPW) around 7.8 THz. 

III. CONCLUSIONS AND OUTLOOK. 

A 7.8 THz 15x15-pixel focal plane array test chip based on 

antenna-coupled MKIDs has been designed and fabricated. The 

characterization of the sensitivity and the optical efficiency of 

the pixels [19], as well as the measurement of their complex 

beam patterns [20], is ongoing. Furthermore, we are currently 

evaluating the performance with an equivalent reflector quasi-

optical system using the formalism described in [21]. 
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Fig. 2. Lens-antenna geometry and parameters: (a) cross-sectional view of a 

lens antenna, (b) top view of the feeding point, and (c) side view of the 

stratification around the antenna. The yellow box represents the simplified 
simulation stratification for the calculation of the primary fields in CST

Microwave Studio. 

Fig. 3. Frequency dependence of the efficiency terms describing the coupling of 
a plane wave illumination of the lens-antenna to the power captured by the 

feeding point. The lens-antenna aperture efficiency ("#$
#%&) accounts for the taper 

efficiency ("&#$
#%&) and the spill-over efficiency ("'(

#%&). The product of the lens-

antenna aperture efficiency with the front-to-back ratio (")!*) and the mismatch 

efficiency ("+) is in excess of 50% over more than an octave around 7.8 THz. 
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