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A Compressed Sensing Algorithm for Magnetic
Dipole Localization

Stefan L. de Gijsel , Aad R. P. J. Vijn , and Reinier G. Tan

Abstract—This paper proposes an algorithm to localize a
magnetic dipole using a limited number of noisy measure-
ments from magnetic field sensors. The algorithm is based on
the theory of compressed sensing, and exploits the sparse-
ness of the magnetic dipole in space. Beforehand, a basis
consisting of magnetic dipole fields belonging to individual
dipoles in an evenly spaced 3D grid within a specified search
domain is constructed. In the algorithm, a number of sensors
is chosen which measure all three magnetic field components.
The sensors are chosen optimally using QR pivoting. Using
the pre-constructed basis and the obtained field measurements, a sparse representation in the location domain is
computed using �1 optimization. Based on the resulting sparse representation, the location and magnetic moment of
the magnetic dipole are estimated. An extension to an iterative method is implemented, where the basis and chosen
sensors improve after every location estimate. Numerical simulations have been performed to verify the algorithm, and
experiments have been done for validation.The proposed algorithm is shown to be effective in localizing magnetic dipoles.

Index Terms— Compressed sensing, magnetic anomaly detection, magnetic sensors, sensor systems and applications.

I. INTRODUCTION

MAGNETIC Anomaly Detection (MAD) aims to detect,
localize and identify magnetic anomalies that are typi-

cally hidden underwater or underground, using a wide variety
of techniques. The target object creates a magnetic anomaly
which can be measured using magnetic field sensors. For
targets in the far field, magnetic anomalies can be modeled as
a magnetic point dipole, of which the location and magnetic
dipole moment can be estimated. In the field of MAD, various
approaches are possible. Some are based on gradiometry,
where multiple sensors are combined in one sensor config-
uration [1]. In [2], a method is obtained to solve location
and moment from multiple gradiometric measurements. Other
work describes the estimation of magnetic dipole parameters
by measuring with a gradiometer above the target in a straight
line [3], [4].
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A different approach is to use a single magnetic field
sensor. For either total field sensors or three-axis field sensors,
estimation methods include using the magnetic gradient sys-
tem [5], applying orthonormal basis function techniques [6],
and minimum entropy or stochastic resonance algorithms [7].

In many problems, a non-linear optimization is required,
since location of a magnetic dipole is incorporated in a
non-linear way in its field description. Global optimization
techniques such as particle swarm algorithms [5] or simulated
annealing [8] can be used.

A different approach other than optimization of a non-linear
problem is to approximate the problem by a linear problem.
In [9], a linear algorithm is derived for the non-linear problem.
In this paper, compressed sensing [10] is applied to the
magnetic source localization problem to linearize the problem.
The solution of the obtained linear system approximates the
solution of the original problem.

The mathematical background of compressed sensing was
developed in the 1980s, with new optimization techniques
to recover sparse signals. In recent years, the field has been
growing quickly, thanks to the development of efficient algo-
rithms, growing computing power, and the establishment of
solid mathematical foundations. Today, compressed sensing
techniques are applied in many important applications, ranging
from imaging techniques in cameras, MRI and seismology to
radar and communication networks [11].

The structure of this paper is as follows. Section II gives
an introduction to compressed sensing and discusses its main
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aspects used in application to the magnetic dipole local-
ization problem. Section III provides a problem description
and a discussion of the implemented localization algorithm.
In Section IV, a numerical example of the algorithm is given.
Section V provides the setup for the experiments done to
verify the algorithm, and Section VI discusses the results of
these experiments. Finally, Section VII provides conclusions
on the research.

II. COMPRESSED SENSING

Compressed sensing is the technique of recovering a sig-
nal using a limited number of measurements [10]. With
this method, fewer measurements are needed than pre-
scribed by classical information theory, such as the famous
Shannon-Nyquist theorem [12]. The two conditions needed to
apply compressed sensing are sparsity and incoherence.

For sparsity, the measured signal must be sparse in some
basis. For a signal that can be represented in a sparse way it
is possible to write

x = ���s, (1)

where x ∈ R
m is a signal, or state of a system, ��� ∈ R

m×n is
a transform basis and s ∈ R

n is a sparse vector. Compressed
sensing works by first estimating s from a limited part of the
measurement vector x. An estimate of the original signal x
can then be produced from x.

Performing p measurements of the state x is described by
the multiplication of x by a measurement matrix C ∈ R

p×m

containing rows with zeroes and one value of 1, resulting in
a measurement vector y ∈ R

p:

y = Cx. (2)

Using (1), the system becomes

y = C���s =���s, (3)

with ��� ∈ R
p×n . Now, C selects rows from ��� that correspond

to the chosen measurements, and these rows end up in in ���.
The second condition for compressed sensing is incoherence

of the measurement matrix C with respect to the basis ��� . The
coherence is given by

μ(C,���) = √
n max

j,k

∣∣〈ck,ψψψ j
〉∣∣ (4)

where ck is the kth row of C and ψψψ j is the j th column
of ��� [13]. The coherence is a measure for how correlated
the rows of C are with the columns of ���, with a value of
1 corresponding to incoherence, and a value of

√
n to full

coherence. The more incoherent the system is, the less mea-
surements are needed for the compressed sensing algorithm to
converge to the sparsest solution with high probability [13].
In Section IV and Section V, the coherence values in the
performed experiments are given.

The system (3) is underdetermined. The sparsest solution
can be found by optimization in the �0 pseudo-norm, which
usually requires a brute-force search. In compressed sensing,
the �0 optimization is replaced by an �1 optimization, which is
convex [13]. For convex �1 optimization, many good solvers
are available.

For compressed sensing techniques to be powerful in real-
life applications, they need to be able to handle noisy data.
Consider a measurement y that is noisy:

y =���s + e, (5)

where e ∈ R
n is an error term. Now the condition y = ���s

cannot hold exactly, and therefore a relaxed condition is
considered:

Minimize ‖s‖1 s.t. ‖y −���s‖2 ≤ �. (6)

Here, � is some error bound related to the noise level of e.
This optimization problem is convex, since both ‖s‖1 and
‖���s − y‖2 − � are convex functions. Therefore, every local
minimum of the problem is also a global minimum.

A. Choosing an Error Bound
In the minimization problem (6), an error bound � needs

to be chosen. Both sensor noise and the effect of a discrete
dipole location grid contribute to this value.

Based on the Gaussian white noise with standard deviation
σ as described in Section III-B.3, an appropriate value for
the error bound � is chosen. The random vector X := y −���s
has uncorrelated elements with zero mean and variance σ 2.
For a choice of �, it is important to know the characteristic
of ||X̃||2.

Scaling X results in X = σ X̃, where X̃i
i.i.d.∼ N (0, 1).

Note that ||X̃||2 =
√∑p

i=1 X̃2
i is distributed according to the

chi distribution: ||X̃||2 ∼ χp . This leads to the following mean
and variance for ||X||2:

μX := E||X||2 = σE||X̃||2 = σ
√

2
	((p + 1)/2)

	(p/2)
, (7)

σ 2
X := Var||X||2 = σ 2Var||X̃||2 = σ 2(p − E||X̃||22). (8)

The gamma function fraction in (7) can be approximated using
Stirling’s gamma function approximation [14]:

√
2
	((p + 1)/2)

	(p/2)
= √

p

(
1 − 1

4(p + 1)
+ O

(
1

p2

))
.

(9)

From this, the following approximate estimated value and
variance are obtained:

μX ≈ σ
√

p

(
1 − 1

4(p + 1)

)
, (10)

σ 2
X ≈ σ 2

(
p−p

(
1 − 1

2(p + 1)
+ 1

16(p + 1)2

))

= σ 2 p
8 p + 7

16(p + 1)2
. (11)

The chi distribution approaches the shape of a normal distrib-
ution for small values of p already. In this paper, it is expected
that the value of p is sufficiently large, and therefore the
distribution can be approximated by a Gaussian distribution.
Hence, it is assumed that more than 97 percent of values is
smaller than the mean plus two standard deviations:

P(||X||2 ≤ μX + 2σX) > 0.97. (12)
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The upper bound of this interval is

μX + 2σX ≈ σ
√

p

(
1 − 1

4(p + 1)
+ 2

√
8 p + 7

4(p + 1)

)

≈ σ
(√

p + √
2
)
, (13)

for sufficiently large p. Hence, � = σ
(√

p + √
2
)

is chosen
as error upper bound if just sensor noise is present. As will be
discussed further in Section IV-A, an additional error compo-
nent due to grid discretization will be taken into account.

B. Characterizing and Solving the Minimization Problems
Consider again the minimization problem (6). It can

be rewritten as a linear program with quadratic
constraints (QCLP):

min
t,s

1T t (14)

s.t. yT y + sT���T���s − 2yT���s ≤ �2 (15)

ci si ≤ ti∀i (16)

ci si ≥ −ti∀i. (17)

The problem is convex, so it can be solved using efficient,
existing convex optimization algorithms. The implementation
in this research uses the CVX package [15], [16] for MATLAB
with solver SDPT3, version 4.0 [17], [18], which implements
interior point methods for SDP problems.

C. Optimal Sensor Choice
It is assumed that a limited number of measurements

is available. In the system (3) the condition number κ(���)
determines how well the sparse solution s can be approximated
from some noisy measurement y. A system of equations with
a smaller condition number is numerically more stable, which
makes solving the system more robust. For a given number
of available sensors, the goal is to minimize this condition
number by choosing an appropriate measurement matrix C.

To minimize the condition number, QR decomposition with
column pivoting is used in combination with a Singular Value
Decomposition (SVD) [19], [20]. QR decomposition with
column pivoting is applied to ���T :

���T P = QR, (18)

where Q ∈ R
n×n is unitary, R ∈ R

n×m is upper triangular,
and P ∈ R

m×m is a permutation matrix which permutes the
columns of ���T [21]. The ordering of rows of P determines
the most significant measurements. The first rows of P form
the measurement matrix C.

The above decomposition is only applicable if ��� is square.
In the case where ��� has more rows than columns, the condi-
tion number of ���T��� needs to be minimized [13]. However,
in most cases��� has more rows than columns. In that case, this
method is not directly applicable. A solution to that problem
is using a reduced basis, as explained in Section II-D.

D. Basis Reduction
In the case of undersampling, a model order reduction is

required, which is performed by using the SVD. ��� is replaced

by a rank-r approximation, where r < rank(���). A reduction
of the m × n matrix ��� to r modes is obtained by performing
an SVD:

��� = U���VT , (19)

where U ∈ R
m×m and V ∈ R

n×n are unitary matrices, and
��� ∈ R

m×n is diagonal, with singular values σi placed on the
diagonal in descending order. Reduced versions of the matrices
are created, where �̃�� contains the upper left r × r block of
���, and Ũ and Ṽ the first r columns of U and V, respectively.
Then the rank-r approximation ���r is computed by

���r = Ũ�̃��ṼT . (20)

The Eckart-Young-Mirsky theorem states that���r is indeed the
best rank-r approximation to ��� [22].

How well ���r approximates ��� is quantified by looking at
the singular values corresponding to each of the columns of
���r . The energy each of these modes contains is represented
by its singular value. The fraction of the energy η of the first r
modes of ��� is given by the sum of its singular values, divided
by the total sum of all n singular values:

η(r) =
∑r

i=1 σi∑n
i=1 σi

(21)

From the typical singular value distribution in Fig. 4,
it becomes clear that the first few dozen modes already contain
a very large part of the total energy. It is assumed that in this
case sensors resulting from QR pivoting using ���r are also
optimal for representing the original basis ��� [13].

III. MAGNETIC DIPOLE LOCALIZATION ALGORITHM

We propose a magnetic dipole localization algorithm that is
able to estimate the location and moment of a single magnetic
dipole in a search space . A magnetic dipole is defined by its
center location rc and its magnetic moment m [Am2]. It has
a magnetic field Bdip [T] described by

Bdip(r) = μ0

4π

(
3r̂(m · r̂)− m

r3

)
, (22)

where r [m] is the location where the field is measured, r [m]
is the distance between r and rc, r̂ is the unit vector pointing
from rc to r, and μ0 [H/m] is the vacuum permeability.

A. Problem Description
In the magnetic dipole localization problem, a single mag-

netic dipole is considered. It has an unknown location in a
search space , and an unkown magnetic moment. The goal
of the implemented algorithm is to estimate the location and
moment of this dipole using simulated measurements of a
limited number of optimally chosen sensors. The problem is
illustrated in Fig. 1.

The sparseness that is needed for compressed sensing is
present in the location domain - it is assumed that there is only
one dipole. It makes sense to think of the vector s in system
(3) as representing unique locations and moments of single
dipoles. An arbitrary dipole could then be represented by an
‘average’ of a few dipoles. This interpretation of the sparse
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Fig. 1. Illustration of the localization problem, showing the search space
sf Ω containing one magnetic dipole with center location rc, and magnetic
field sensors outside sf Ω. The location of a field measurement is denoted
by r.

Fig. 2. The interpretation of the sparse vector s. The left and middle vec-
tor represent two different dipoles, and from the right vector, an ‘average’
dipole (dotted line) can be reconstructed.

vector is illustrated in Fig. 2. The location is incorporated
into the magnetic dipole field description in a non-linear way.
Describing the magnetic dipole by a weighted average of other
magnetic dipoles in a grid allows for solving a linear system
of equations. Section III-B.1 describes how the basis ��� is
constructed.

The assumption here is that the field of a dipole can be well
represented as an average of the fields of other dipoles close
by. A grid discretization error will be present, and an analysis
on this error was performed. In a simulated test, four random
magnetic dipoles were placed at the corners of a square with
each time a different distance between them. The combined
field of these dipoles was computed, as well as the field of
the single dipole with location and moment calculated as in
(25). The fields were calculated at different heights: the further
away from the source(s), the better the separate dipole fields
blend together to one field.

B. Description of the Algorithm
The main contribution of this paper is described in this

section. A compressed sensing algorithm for estimating field,
location and moment of a dipole has been implemented. The
algorithm must first be initialized by determining the basis ���,
and then follows several steps to produce an estimate. This
section describes both the initialization and the different steps.

The main algorithm can be summarized by the following
steps, given that just a selection of k optimal sensors of the
array can be used. The steps are also visualized in a flow
diagram in Fig. 3.

1) Initialize basis ��� .
2) Choose k optimal sensors using QR pivoting to perform

measurements. This results in a measurement matrix C.
Multiplying by the initialized basis ��� gives the required
matrix ���.

3) Perform a measurement y of size 3k from these chosen
sensors.

4) Solve the �1 optimization problem (6).
5) Classification: compute an estimated location and

moment from the resulting sparse vector s. A recon-
structed dipole field also follows.

The upcoming subsections describe the basis initialization and
all steps of the algorithm in more detail.

1) Basis Initialization: For a compressed sensing algorithm to
work, a basis ��� must be found that allows for transformation
between the original and sparse domain of the signal. To do
this, a set of initialization locations has been chosen, covering
the search space , as described in Section III-A. Specifically,
a predefined 3D grid of locations covering  is defined.

Every entry of the sparse vector s corresponds to a single
dipole at one of the initialization locations, with moments of
1 Am2 in positive and negative x , y, and z directions. Every
one of these dipoles creates a unique field at the sensors. The
signal x in the compressed sensing system (3) is hence defined
as the magnetic field B at the locations of all sensors in the
sensor array, ordered as [Bx,1, By,1, Bz,1, Bx,2, . . . , Bz,ntotal],
with 1, 2, . . . , ntotal representing the ntotal sensors available.
A measurement y contains a selection of this field, with just
the x-, y-, and z-component of selected sensors. Hence, C is
a selection matrix, containing selected rows from the identity
matrix. The entries of s correspond to unique magnetic dipoles.
The measurements used for initialization of ��� are noise-free
calculations using (22).

2) Sensor Choice: It is assumed that just k of the total
ntotal sensors are available to perform measurements. Every
sensor measures three components of the field, giving a total
of p = 3k measurements. The sensors are chosen according to
the method described in Section II-C and Section II-D. It must
be noted that the resulting pivots from the QR algorithm
indicate specific measurement indices, not sensors. Therefore,
sensors have been chosen in order of appearance in the pivot
sequence of one of their components.

3) Performing Measurements: The k chosen sensors measure
the three components of the magnetic field. All measurements
are stored in a vector y ∈ R

3k .
4) �1 Optimization: An �1 optimization is performed to find

a sparse solution vector. In the optimization problem (6)
the 1-norm of s is minimized, and therefore the algorithm
would prefer activating multiple smaller moments close to
the sensor array instead of activating the expected dipole
moments near the actual location. To resolve this undesirable
behavior, a penalty vector c ∈ R

n is introduced. Since B ∝ 1
r3

where r is the distance between the dipole and the sensor,
a sensible choice is to make the penalty of a dipole location
also dependent on 1

r3 . Section IV-A describes how this is done
in the specific case of a horizontal sensor array. The resulting
convex minimization problem including penalty vector is

Minimize ||c � s||1 s.t. ||y −���s||2 ≤ �, (23)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:28:11 UTC from IEEE Xplore.  Restrictions apply. 



DE GIJSEL et al.: COMPRESSED SENSING ALGORITHM FOR MAGNETIC DIPOLE LOCALIZATION 14829

Fig. 3. Flow diagram of the algorithm steps.

Fig. 4. Left: singular values in descending order. Right: the cumulative
energy of the first 100 singular values.

where � denotes the Hadamard product, i.e. elementwise
multiplication. The error bound � is chosen as in Section II-A.
If a grid discretization error with standard deviation σgrid is
present, the error bound is taken as

� =
√
σ 2(p + 2

√
2 p + 2)+ σ 2

grid p. (24)

5) Classification: Estimating Dipole Location and Moment: To
estimate the dipole’s location and magnetic moment, weighted
averages are taken. The sparse vector elements are used
as weights to average over the initialization locations and
moments. For the magnetic moment, the n elements of s can
be taken as weights. For the location, the same method is used,
but one must take a grid discretization error into account. The
estimated location x̂ and moment m̂ are given by:

x̂ =
n∑

i=1

si xi; m̂ =
n∑

i=1

si mi , (25)

where xi and mi are the location and moment corresponding to
dipole i in the initialization, respectively. Fig. 2 has illustrated
this method of averaging.

C. Extension of the Algorithm Using Iterations
To improve the estimates, the algorithm steps can be applied

iteratively. This has been implemented by shrinking the search
space. Based on the previous location estimate, a new basis
is constructed as in Section III-B.1. Instead of using the
full search space to choose initialization locations from, the
search space is shrunk around the previous location estimate.
Using the new basis, the same steps as in Section III-B are
followed, using k new sensors, and a new estimate is produced.
Section IV-A describes the specific implementation in the
numerical example provided in this paper.

Fig. 5. An illustration of the setup, where the black dots indicate the
sensors of the array, and the red box indicates the space in which
the dipole is located. Note that the convention of the z-axis pointing
downwards is used.

IV. NUMERICAL EXAMPLE

In this section, a numerical example of the algorithm is
given. First, the setup and specific implementation for this
example are described. Several results of a twin experiment
for the implemented localization algorithm are given, where
the influence of important variables and parameters in the
algorithm is analyzed.

A. Setup and Implementation
The considered setup is as follows: the search space spans

from x = −0.3 m to 0.3 m, from y = −0.15 m to 0.15 m and
from z = −0.35 m to −0.15 m. The sensor array is placed
at z = 0.145 m and sensors are evenly spaced between x =
−0.38 m and 0.38 m and between y = −0.18 m and 0.18 m,
with a distance of 4 cm between sensors in both directions.
An illustration of this setup is given in Fig. 5.

In each run of the twin experiment, a magnetic dipole
with magnetic moment m is placed at a location x. The
formula of a magnetic dipole field (22) is used for simulating
measurements. To every component (x , y, z) of every sensor
measurement some Gaussian noise is added, independent and
identically distributed with a standard deviation σ . The algo-
rithm produces an estimate m̂ of the magnetic moment, and x̂
of the location. The location error is computed by

∥∥x̂ − x
∥∥

2,

moment magnitude error by ‖m̂−m‖2‖m‖2
, and moment angle

error is defined as the angle between m̂ and m. An example
of a field reconstruction using k = 8 sensors is shown in
Fig. 6. In this configuration, the mutual coherence μ(C,���)
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Fig. 6. Comparison between the x-components of the true magnetic field
and field reconstruction in the twin experiment, both in nT. 8 sensors are
chosen optimally - their locations are denoted by black dots.

is equal to 7.7, where
√

n = 67.9. The computation time on
a machine with an 8th generation Intel i7 processor is about
1.6 seconds for a single iteration, and about 2.5 seconds for
three iterations.

As described in Section III-A, an analysis of the grid
discretization error was made. The search space is located
approximately 30 cm from the sensor array in this numerical
experiment. At this height, a choice of 0.04 m grid distance
ensures negligible influence of the grid discretization on the
constructed magnetic dipole fields.

For the penalty vector c described in Section III-B.4 values
are chosen equal to 1

d3 , where d is the distance from that spe-
cific magnetic dipole to the closest sensor.

For iterations, a smaller cube-shaped volume is used as
updated search space. The center of this cube is the estimated
location from the first iteration. The search cube in this
implementation starts with an edge length equal to eight
times the grid distances between the initial dipoles, hence
containing at most 83 dipole locations. Every iteration, the
search radius shrinks by the grid distance, eliminating in each
dimension two rows of grid points that were considered in
the previous iteration. In this algorithm, iteration stops after
a predefined number of iteration steps, or if the search box
would become smaller than twice the grid distance. A different
approach could be to stop iterating if the distance between two
consecutive location estimates becomes smaller than a certain
value.

B. Noise
It is expected that a larger signal-to-noise ratio (SNR) makes

it harder to reconstruct the noise-free field. For 150 runs,
the individual location errors have been determined. The
realizations are made with k = 8 chosen sensors. These are
plotted against the average SNR in Fig. 7. It is clear that
the average error, as well as the maximum encountered error,
decreases for larger SNR, as expected. For a SNR slightly
larger than 1, the average location error is still reasonable.
In the presence of noise the algorithm can therefore still give
an approximation of the location.

C. True Dipole Location
To see if the true dipole location influences the results, the

scatter plot in Fig. 7 has been reproduced to show the influence

Fig. 7. Scatter plot of location errors versus average signal-to-noise
ratio, for 150 numerical simulation runs with 8 chosen sensors.

of three parameters: vertical distance of the true dipole to the
sensor array, horizontal distance of the true dipole to the origin,
and distance of the true dipole to the closest initialization grid
point.

In Fig. 8a, the vertical distance to the sensor array is
analyzed. Naturally, magnetic dipoles closer to the sensor array
cause a larger SNR. Comparing results for equal SNR, there
is no difference in location error between magnetic dipoles far
away and close to the sensor array. This indicates that adding
the penalty vector to the minimization problem successfully
eliminates the preference for dipoles close to the sensor array.

In Fig. 8b, a comparison is shown for horizontal distance
of the true dipole to the origin, which is the center of the
search space. The algorithm does not perform better or worse
for dipoles closer to the edges.

The last considered factor is how close the true dipole is
to one of the initialization locations (grid points). The results
are shown in Fig. 8c. Again, no clear distinction in location
error is visible between true dipoles close to a grid point and
dipoles further away.

D. Iterations
To illustrate how iterations help in finding the correct

location, the error distributions for 1, 2, and 3 iterations over
150 runs have been plotted in Fig. 9. The realizations are
made with k = 8 chosen sensors, including noise with 0.5 μT
standard deviation. The first iteration is completed using the
full basis, over the full search space. Starting from the second
iteration, the size of the search space is reduced as described
in Section III-C.

The average location error is gradually reduced, as expected.
By eliminating the possibility to activate dipoles too far
away from the estimated location, the estimate becomes more
precise. Furthermore, new sensors are chosen using QR piv-
oting in every iteration, based on the smaller bases. The
activated sensors concentrate towards the estimated location
every iteration, to better describe the field originating from a
dipole in that area.

The shrinking of the search space is done gradually:
although the estimate is already quite good on average after the
first iterations, the number of times the estimate is relatively
far away from the real location is not negligible. If the box is
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Fig. 8. Scatter plots of location errors versus signal-to-noise ratio, for 150 numerical simulation runs with 8 chosen sensors. Colors indicate dipole
properties.

Fig. 9. Distributions of errors for 150 experimental runs and 8 chosen sensors, comparing 1, 2, and 3 iterations.

shrunk too aggressively, the real dipole location might end up
outside the search box, eliminating the chances of finding this
true location. Therefore, to create a robust algorithm, only one
layer of initial dipoles is removed on each side of the search
box every iteration.

On average, the moment magnitude is estimated well,
staying within 10 percent above or below the true value.
It is interesting to note the structural error - although not too
large - in moment angle. This error is by definition always
positive, so it might match with the average structural error
in location. Naturally, these influence each other: if the dipole
location estimate contains an error, the algorithm must have
compensated for this by rotating the estimated dipole bit,
to still be able to match the resulting field with the obtained
measurement.

V. EXPERIMENTAL SETUP

The experimental setup is similar to the one provided in the
problem description in Section IV-A, and the illustration in
Fig. 5. The measurement setup also consists of a horizontally
placed sensor array, now placed at z = 0.045 m. It spans
between x = −0.38 m and 0.38 m and between y = −0.18 m
and 0.18 m with 0.04 m distance between sensors in both
directions, which makes 200 sensors and 600 measurements
in total. The 3-axis magnetic sensors are of the type PNI
RM3100. Since each field component is measured by a dif-
ferent physical sensor at a slightly different location, there
can be an offset of a few mm in the sensor locations per
component. As before, all sensor locations have been used in
the initialization step to construct the basis. However, in the
application of the algorithm sensor choice was simulated in

this test using only the measurements of 10 chosen sensors.
The data of the other 190 sensors was acquired, but not used
in applying the algorithm.

A small magnet was moved over a grid in an S-shaped path.
The grid was 9 grid positions wide and 7 grid positions long,
from x = −0.38 m to x = 0.38 m and from y = −0.18 m
to y = −0.18 m. The magnet that was used produces a field
close to that of a perfect magnetic dipole, with an estimated
magnetic moment of approximately 0.05 Am2.

The sensor noise level has been estimated using two initial
measurements of the background field. 200 sensors have each
measured the three magnetic field components twice. From
these measurements a standard deviation of σ = 21 nT is
derived.

For basis construction, a grid distance of 0.04 m was used.
Again, the grid discretization error needs to be estimated.
The dipole was held at 0.24 m from the grid, and tests
showed an average discretization error of approximately 25 nT.
An adjusted value � ≈ 114 nT is chosen according to (24),
in which σ and σgrid are taken equal to 21 nT and 25 nT,
respectively. An alternative approach could be to decrease the
grid distance in basis construction. However, this increases
both the size of stored matrices and the computing power
needed to optimize exponentially.

In this configuration, the mutual coherence μ(C,���) is equal
to 10.5, where

√
n = 67.9.

VI. EXPERIMENTAL RESULTS

The experimental runs have been conducted using the
measurements of only 10 sensors at the same time. The results
for 1 iteration of the algorithm are compared to the results
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Fig. 10. 3D view of true locations compared to compressed sensing
location estimates from experimental runs after 3 iterations.

for 3 iterations. The magnetic moment was not measured or
estimated independently from this algorithm, and therefore
only location estimates and errors are discussed.

The resulting location estimates for 3 iterations are shown in
Fig. 10. This plot shows the difference between the true mag-
netic dipole location and the location estimate. The horizontal
location error is small, except for some outliers in the region
where y is negative. The outliers can be explained by the
observation that in this region, the sensors produced a larger
than average error. The location estimates can be influenced
by these errors. Another related source of the problem could
be the assumption of an equal noise level for every sensor.

It can be observed that estimates of the z-coordinate are
too small. Since an �1 optimization within error bounds is per-
formed, every possibility is used to minimize the �1 norm term.
A large feasible region is needed to ensure a good estimate
when the data is noisier than average. The introduction of a
penalty term scaling with 1

r3 enables the algorithm to produce
reasonable height estimates, but leaves room for improvement.

The performance of the algorithm is compared to the perfor-
mance of an alternative algorithm: the single grid point (SGP)
method. In this method, the measured field at 10 randomly
chosen sensor locations is compared to the magnetic fields
created by a dipole at each of the initialization locations (the
grid points). For each of the grid points, it is calculated how
well the measurement can be explained by three dipoles placed
in x-, y-, and z-direction. The estimated location r̂ is the
location with the smallest residual:

r̂ = arg min
r

‖y − A(r)b‖2 , (26)

where r are the grid point locations, A contains the magnetic
fields at the chosen sensor positions of the three magnetic
dipoles in x-, y-, and z-direction, and b is the least-squares
solution of Ab = y.

In Fig. 11, a top view of the location estimates of both
algorithms is shown, compared to the true path. The com-
pressed sensing algorithm performs slightly better than the
SGP method. The location estimation results are summarized
in Fig. 12. This figure also shows that the performance of the

Fig. 11. Top view of true locations compared to location estimates from
experimental runs, for the compressed sensing algorithm with 3 iterations
and the single grid point method.

Fig. 12. Location estimate errors for compressed sensing with 1 and
3 iterations, and for the single grid point method.

algorithm improves when the number of iterations is increased
from 1 to 3. These results are in line with those from the
numerical example in Fig. 9.

VII. CONCLUSION

Compressed sensing is an interesting method for processing
relatively small amounts of data. An algorithm for localization
of a magnetic dipole in a 3D space was implemented. The
algorithm is able to make accurate predictions of location and
dipole moment of a randomly placed dipole. This is shown by
simulation results, and verified using real-world measurements
using a small magnet.

As expected, increasing the SNR results in better location
and magnetic moment estimates. Increasing the number of sen-
sors chosen improves the results. The implemented algorithm
features an option for iteration in combination with optimal
sensor choice using QR pivoting. Iterating has shown to be
indeed able to improve localization performance. Analysis
shows that there are no biases in the algorithm towards certain
source dipole locations.

In future research, the influence of sensor position should
be analyzed. For instance, variation in height of the sensor
layer or different distributions of the sensors can be investi-
gated. Furthermore, variations of random sensor choice should
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be investigated. These factors can influence the incoherence
between the measurement matrix and the sparsifying basis.
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