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A B S T R A C T

Due to the inherent uncertainty in photovoltaic (PV) energy generation, an accurate power forecasting is
essential to ensure a reliable operation of PV systems and a safe electric grid. Machine learning (ML) techniques
have gained popularity on the development of this task due to its increased accuracy. Most literature, however,
focuses only on less than 5 PV systems during training process, which does not ensure generalization to
unseen systems. When in presence of a large feet, regional forecasts are the norm. Nevertheless, none of these
approaches are usable when it comes to monitoring residential PV systems. In this work, we propose a single
ML model that is able to predict the individual power of a large fleet of 1102 PV systems. XGBoost algorithm
was selected as the most suitable algorithm for the task of PV yield nowcasting due to its performance and
ease of use. This algorithm obtains Mean Absolute Error (MAE) of 0.877 kWh (considering an average system
size of 4.44 kWp) and Mean Absolute Percentage Error (MAPE) of 23% for hourly data aggregated to daily
values. XGBoost predictions for individual PV systems are on average two times better than currently used
commercial software. We discuss the lack of a suitable loss function that can combine absolute and relative
errors for residential PV yield forecasting. We also point out the lack of an adequate metric to compute the
error made on the predictions and provide hints on developing a suitable one.
1. Introduction

Between 2010 and 2020, cumulative photovoltaic (PV) installations
grew at a compound rate of 34% annually (Philipps et al., 2021)
being one of the most promising technologies to tackle climate change.
With economic growth being the crucial factor shaping human actions
and policies, solar energy can have a profound impact worldwide.
Solar power is abundant, affordable, easily scalable and has small CO2
emissions associated with manufacturing (Photovoltaic Power Systems
Program, 2021). However, mass utilization of solar modules has a
major challenge of intermittency of supply, which complicates power
balance maintenance, reserve capacity planning and electricity market
bidding (Notton et al., 2018).

A way to help system operators to manage the grid is to inform them
how much electricity will be generated by these renewable sources.
Consequently, PV yield forecasting is an important factor facilitating
energy transition and supporting investment in solar energy. Accu-
rate forecasts decrease energy yield uncertainty, therefore reducing
generation-load mismatch in the power grid and decreasing investment
risk. Yield nowcasting (short-term forecasting) ensures early anomaly
detection preventing financial losses and contributing to security of PV
system owners.

∗ Corresponding author.
E-mail address: A.AlcanizMoya@tudelft.nl (A. Alcañiz).

The PV power forecasting techniques can be classified into three
major groups (Ahmed et al., 2020): persistence, physical and statisti-
cal models. The latter group can be further divided into time-series
based and machine learning (ML) techniques. Until the surge of ML
techniques, none of the approaches rose to the forecasting challenge
in terms of reliability, accuracy and computational economy (Ahmed
et al., 2020). Persistence techniques are too simple to provide accurate
results except for in the very short-term. Analytical equations often fail
to predict yield due to incomplete system information or insufficient
spatial and temporal resolution of weather predictions (Antonanzas
et al., 2016). Moreover, in case of residential PV systems taking contin-
uous measurements of all required parameters in situ is not a common
practice due to high associated costs. Finally the main drawback of
statistical methods is their inability to adapt to abrupt changes in the
meteorological conditions (Hossain et al., 2017).

Overall, the obvious choice is the machine learning group. Although
some algorithms present drawbacks such as reduced reliability due to
randomness, increased model complexity, difficulty of hyperparame-
ter tuning and large data set requirement (Akhter et al., 2019; Das
et al., 2018), the increase in accuracy at a reduced computational
vailable online 24 January 2023
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time balances them out. Some interesting algorithms applied for PV
power forecasting are Multivariate Adaptive Regression Splines (Li
et al., 2016), Random forest (Ferlito et al., 2017; Massaoudi et al.,
2019), Long–short term memory (Han et al., 2019), Extreme Learning
Machine (Ni et al., 2017) or hybrid ML techniques (Wang et al., 2019).
ML algorithms have shown to provide accurate forecasts in a wide
range of horizons, from the very short (Sun et al., 2019a; Anagnostos
et al., 2019) to the long (Lin and Pai, 2016a; Jung et al., 2020) term.

Despite overwhelming abundance of literature, there are still gaps in
this discipline. For instance, Yang found a lack of standard benchmark,
lack of open-source access to the utilized data, intentional hiding of
the shortcomings and evaluation on small data sets (Yang, 2019). The
latter was also noticed by Theocharides et al. (2018). Most researchers
motivate their study by contributing to improved generator dispatch,
power quality effects mitigation, and reducing secondary reserve capac-
ity, but if their results are not validated for multiple systems, they might
not be reliable enough to upscale. Few studies employed data from
more than 5 PV systems, and when they did, PV power was commonly
aggregated to provide a regional approach (Lin and Pai, 2016b; Agoua
et al., 2019; De Felice et al., 2015; Fu et al., 2019; Lorenz et al., 2011;
Wolff et al., 2016; Pierro et al., 2017). Although from a grid manager
perspective regional forecasts are preferred over individual ones due to
their lower errors (Zhang et al., 2022), when it comes to nowcasting
and monitoring the individual PV systems, a regional forecast is not
suitable.

Exceptions found in literature are (Elsinga and van Sark, 2017),
which provided analysis for 202 rooftop PV systems, Gensler et al.
who forecasted the power of 21 systems (Gensler et al., 2017), and the
forecast of 71 systems from Lee et al. (2018). The approach in these
cases consisted on creating an ML algorithm for each PV system, which
can be computationally intensive during the training procedure and can
limit the application of the ML model until enough data is available for
a new PV system.

As opposed to previous literature, the aim of this work is to employ
a single ML algorithm to make accurate and fast predictions for all
PV systems of a large database of 1102 PV systems at once. The
algorithm will benefit from the training of other systems, its training
time will be reduced, and it will distinguish between systems through
easily available system information. The developed methodology will
be applied in a solar software company to show an alternative to the
currently employed analytical-based model. Suggestions for developing
a standard metric are also given, as well as a discussion on loss
functions. This report is structured as follows. Section 2 details the
dataset employed in this work, focusing on the considered features,
data preparation and exploration. Section 3 describes the methods
employed. The employed feature selection strategy is described, as well
as the ML models. Two important characteristics of the methodology,
namely the loss functions and the metrics, are also discussed in order to
highlight their flaws and possible improvements. Results are explained
in Section 4 in terms of feature selection, models performance, learning
curves and error analysis. Finally, main conclusions are presented in
Section 5.

2. Dataset

In this section origin, preparation and main characteristics of input
data are explained. The first step is to gather all possible data for
developing the model. Before inputting it to a ML algorithm, data needs
to be cleaned and processed. The data set is also explored to determine
main data quality issues.

2.1. Considered features

All considered features for the machine learning model can be
divided into weather and system features and descriptive parameters.
In machine learning, features is the term for the variables input to a
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model. All features are available in the time period from July 1st 2018
until June 30th 2019 for 1102 PV systems located in the Netherlands
and Belgium. Overall, this study considers a large data set containing
more than 4,000,000 data points.

Several weather parameters were considered for the model. These
include: global horizontal irradiance (GHI), cloud coverage, wind speed,
precipitation and ambient temperature. This data was obtained from
the Royal Dutch Meteorological Institute with hourly resolution (Anon,
2021a). The sun angles (altitude and azimuth) were included as well
using the library pvlib (Holmgren et al., 2018).

The system parameters refer to the characteristics of the PV systems
and include: system size, age, type of panels, latitude, longitude, panel
inclination, orientation, decay per year, maximal inverter efficiency
and nominal operating cell temperature. Descriptive parameters consist
of day of year and historical yield from 24, 48, 72, 96 and 120 h
before. Decision to use only five past days was based on Maitanova
et al. (2020), but a longer horizon could have been utilized as well.
All system data has been provided by the start-up Solar Monkey with
headquarters in The Hague, the Netherlands (Anon, 2021b).

2.2. Data preparation

Data needs to be properly prepared for the machine learning model
in order to obtain the best results. The data set was explored in search
for quality issues. For instance, missing cloud coverage values were
replaced with mean cloud coverage across all samples equal to 5.83
okta. Samples corresponding to night values (zero GHI) were removed
from the data set. Several issues were found on the yield data obtained
from inverters. Inverters log hourly yields via wi-fi which might be
discontinuous. In case of prolonged disconnection, the amount of data
stored in an inverter might exceed its memory capacity and some
information is lost leading to missing yield values. Other issues are con-
stant or lagged yields. Constant yields might be caused by unreported
disconnection of the inverter. Examples of these data quality issues can
be seen in Fig. 1 where low outliers are below 0.13 percentile and high
outliers are above 99.87 percentile of all yield values.

Another step of data preprocessing is normalization used to obtain
similar magnitudes of all features. This is required by ML algorithms to
provide optimal performance. First, presented inputs were processed to
contain only numerical features. Then, each of the features were scaled
to values between 0 and 1 using the functionMinMaxScaler from sklearn
ython package (Pedregosa et al., 2011). This scaler uses minimum
nd maximum values of all hourly data calculated for every feature
eparately.

.3. Data exploration

Brief exploration of the data was conducted as well. It was discov-
red that nearly 79% of systems consist of mono-crystalline silicon,
8% of poly-crystalline silicon and around 3% of thin film panels.
ystems of size between 2.5 kWp and 7.5 kWp dominate, but larger
ystems, up to 17.7 kWp, occur in the data set. None of the analyzed
ystems was older than four years.

Regarding weather features, GHI is dominated by small values
elow 50 W/m2 and its maximal values do not exceed 950 W/m2.
isualization of GHI vs. day of year and hour can be seen in Fig. 2.
ccording to cloud coverage data, sky is almost completely overcast

or vast majority of time (around 70%). Ambient temperatures remain
etween 264.2 K (−9 ◦C) and 310.2 K (37.05 ◦C) which is reasonable.
ainfall is present in 13.4% of all samples and its maximal value equals
1.6 mm per hour or 37.14 mm per day.

Exploration continued by looking for correlation in the data. Fea-
ures used as inputs to ML models should not be correlated and should
ave possibly large variance (Bishop, 2006). Correlation was investi-
ated by plotting a heatmap of weather features visible in Fig. 3.
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Fig. 1. Examples of yield data quality issues.
Fig. 2. Distribution of global horizontal irradiance values along the day and year.
It can be seen that GHI is positively correlated with sun altitude
and negatively correlated with cloud coverage. That is intuitive, as
clouds cause shading and reduce irradiance incident on flat surface on
the ground. Sun altitude has strong positive correlation with ambient
temperature. That is understandable, as the higher the sun is in the
sky, the more irradiance reaches Earth surface and the hotter the air
becomes. Ambient temperature is correlated with day of year since it
incorporates weather seasonality.

3. Methodology

This section explains the methods employed for selecting the best
subset of features and predicting the PV power. It also offers a discus-
sion on loss functions and metrics, important parameters for PV power
prediction.

3.1. Feature selection

Given the high amount of features considered, it is important to
determine which are the relevant inputs for the ML models. Feature se-
lection is a process of eliminating the inputs which do not contribute to
327
increasing algorithm’s performance (Konstantinos Koutrombas, 2008).
This will decrease the computational time while facilitating the models’
implementation. Amongst the default sklearn feature selection functions
available, Recursive Feature Elimination (RFE) with 3-fold cross vali-
dation was selected. This technique was used to increase confidence
that the selected set of features is the best possible, so that maximum
performance could be achieved.

As its name indicates, RFE eliminates features recursively given a
certain metric and algorithm (Guyon et al., 2002). The function com-
putes feature importance, drops the feature with the lowest importance
and recalculates the metric. The process is iterated until only a user-
specific number of features is left. The importance of each feature
is calculated by the chosen algorithm (Granitto et al., 2006). Each
training process is repeated three times using different parts of the data
to make sure the results are independent of shuffling. Once the best
configuration is found, it is implemented in the ML models and used
for prediction of PV power output.

The selected algorithm strongly influences the RFE results. In this
case, the algorithm used was XGBoost and the feature was Root Mean
Squared Error (RMSE). Since XGBoost is made of a combination of
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Fig. 3. Correlation heatmap of the weather variables using hourly resolution.
decision trees (more information in the next section), the importance
of each feature is relatively straightforward to compute. A decision tree
makes predictions by splitting decisions into branches. The data space is
recursively partitioned depending on its value, and a simple prediction
model is then fitted within each partition (Loh, 2011). Importance is a
score that indicates how useful each feature is in the construction of a
tree. It is calculated based on the amount that each feature improves
the performance in each split, weighted by the number of observations
on the split, and averaged across all trees (Brownlee, 2016).

3.2. Models

This section briefly explains the working principle of Extreme Gradi-
ent Boosting (XGBoost), the main model employed in this publication.
It also describes persistence and Solar Monkey’s model. Persistence is
a baseline model commonly employed to compute the skill score (vide
Section 3.4). Solar Monkey’s model is the commercial model employed
by the start-up, and used here as a reference physics-based model.

Persistence model assumes that the PV power at the following time
step will be the same as the previous one (Kleissl, 2013). It is a simple
algorithm usually employed as benchmark to compare the performance
of other models. Eq. (1) describes the model, where 𝑃 (𝑡) is the PV power
produced at time step 𝑡. Several improvements to this simple algorithm
have been developed to improve the accuracy, such as persistence
based on solar power index (Antonanzas et al., 2016). However, in
this study the persistence model is in its most naive form. Despite
its simplicity, this model can outperform complex algorithms when
forecasting PV power in the short-term (Sun et al., 2019b).

𝑃 (𝑡) = 𝑃 (𝑡 − 1) (1)

The algorithm currently employed by Solar Monkey to compute the
PV power produced by a PV system is based on an analytical approach.
It makes use of the skyline profile to account for obstacles surrounding
PV modules and the sun movement. Details on the framework can be
found in de Vries et al. (2020).

Regarding the choice of ML algorithm, it was decided to opt for an
algorithm whose performance was already proved in previous works.
This algorithm should be able to handle large amounts of data in a fast
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and accurate way, and it should be of reduced complexity and easy
to optimize. Overall, it was decided to select an algorithm from the
ensembles’ family due to their ability to win ML competitions (Vorhies,
2016; Chen and Guestrin, 2016). For instance, Gradient Boosting was
employed in GEFCom competition when predicting solar power by
three out of five top participants (Hong et al., 2016). Inside the family
of ensembles, the algorithm of choice was extreme gradient boosting
(XGBoost). This algorithm has already been employed for solar yield
forecasting in the works (Ferlito et al., 2017; Isaksson and Conde,
2018; Massaoudi et al., 2019). Ferlito et al. (2017) employed XGBoost
together with 10 other prediction models to forecast the yield of a 1 kW
grid-connected PV system. Their results indicated that support vector
regression was the best model out of 11 investigated, unless the dataset
was limited to less than 60 days, in which case ensemble algorithms
were the best alternatives. In Isaksson and Conde (2018), a comparison
of the performance of several ML models for PV power prediction was
performed across five different sites in Sweden. Their main conclusion
was that Artificial Neural Networks and Gradient Boosting Regression
Trees performed best on average across all sites. Finally, Massaoudi
et al. (2019) improved XGBoost by combining it with other algorithms.

Extreme Gradient Boosting, or XGBoost is an ensemble machine
learning algorithm based on decision trees. Decision trees tend to over-
fit, since they are sensible to very small changes in data. XGBoost solves
this problem by combining several decision trees (Chen and Guestrin,
2016). It starts by building a decision tree which finds a function 𝑓1(𝑥)
employing the input dataset 𝑥, whose output �̂�1 resembles as much
as possible the real output 𝑦. In the next iteration, a refined decision
tree will fit the pseudo-residuals 𝑓2(𝑥) from the first tree so that the
result �̂�2 approaches more to the output. This process is repeated for a
user-defined number of iterations 𝑀 , Eq. (2).

�̂�1 = 𝑓1(𝑥)

�̂�2 = �̂�1 + 𝑓2(𝑥)

…

�̂�𝑀 = �̂�𝑀−1 + 𝑓𝑀 (𝑥)

(2)

The new trees learn from previous trees’ mistakes by increasing the
weight of data points which were erroneously predicted. This way the
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Fig. 4. Loss functions considered during the search for the most suitable one. 𝑒 is the error between prediction �̂� and real 𝑦 values.
algorithm gives higher attention to large-error predictions. The rules
describing how an algorithm penalizes errors are described by a loss
function. The selected loss function should match the problem at hand
and is crucial for the model outcomes.

XGBoost has been implemented in Python using the library sklearn
(Pedregosa et al., 2011). The model was tuned for 20 rounds us-
ing RandomizedSearchCV with 3-fold cross validation, also available
in sklearn. It is important to notice that performing cross-validation
on all available data would cause data leakage (Bishop, 2006; Kon-
stantinos Koutrombas, 2008). Data leakage refers to evaluating model
performance on samples that the model has already seen, leading to
over optimistic results. In order to prevent it, all the reported results
were calculated on a left-out set (test set) being the remaining 20%
of data. Cross validation was therefore performed on 80% of all the
systems, hence 2/3 of this value was the training set (52.8% of all the
data) and 1/3 (26.4% of all the data) was used as the validation set.
sklearn GroupShuffleSplit function was employed to randomize the data
so that the algorithm would learn the solar annual patterns. Squared
error loss function together with RMSE as evaluation metric were used
for model training. Outcome predictions were filtered to make all
negative values equal to zero.

3.3. Loss functions

Contrary to utility scale PV forecasting, residential nowcasting re-
quires high quality predictions for all individual systems. For this task
the required loss function should be: (i) twice differentiable as required
by XGBoost (Chen and Guestrin, 2016), (ii) sensitive to outliers and (iii)
most importantly, relative to the size of the system. Thorough research
and analysis was performed in search for the most suitable loss function
for the problem at hand.

Square, log-cosh and pseudo Huber losses (vide Fig. 4) are the main
options due to their differentiability (Wang et al., 2020). Amongst
these, square loss is the most sensitive to outliers. Neither of the three
is relative to the size of the system. A relative loss, such as the absolute
percentage loss (Fig. 4) would fulfill this condition. However, it is not
twice differentiable.
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Several attempts to develop a custom loss function allowing to
combine absolute and relative errors were made, but none of them
succeeded. The main issue lies on the fact that loss functions focus
by definition on larger errors than on smaller ones. Similar is the
case for model utilizing Mean Absolute Percentage Error (MAPE) as
training evaluation metric. Tackling this issue could be a starting point
of future studies. Developing individual models for all systems was
also considered, but it would not solve this issue, as the models would
perform better in summer (higher yields) and worse in winter.

Overall, due to the failure of the aforementioned methods, sub-
optimal square loss function was used.

3.4. Metrics

This section describes the metrics employed to evaluate the perfor-
mance of the model. We also aim to expose metric-related issues and
present their impact on the quality of predictions.

Extensive overview of available metrics was provided by Antonan-
zas et al. (2016), Sobri et al. (2018), Zhang et al. (2015) who pursued
both statistical and economic approaches. They described interesting
metrics such as skew, curtosis, Renyi entropy and Kolmogorov–Smirnov
Integral among others. However, the most popular metrics for solar
yield nowcasting and forecasting still are RMSE, mean absolute error
(MAE) and MAPE. MAE is the most intuitive, as it informs by how
many kWh the predictions are off on average (Eq. (3)). Similarly, MAPE
informs about average relative error in percentage terms (Eq. (4)),
hence it is not affected by system size. RMSE also computes the average
error although it additionally penalizes large errors (Eq. (5)). In these
equations, �̂� and 𝑦 correspond to prediction and observation vectors
respectively while 𝑛 corresponds to the number of samples.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (3)

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

| (4)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

(𝑦𝑖 − �̂�𝑖)2 (5)

𝑖=1
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For this analysis, a metric that does not increase with system size,
such as MAPE, could be the metric of choice. However, it has the draw-
back of taking high values for small values of yield. Other metrics used
for this task are mean bias error (MBE, Eq. (6)), maximal error (max
error) and skill score (SS, Eq. (7)). MBE allows negative and positive
errors to cancel out, maximal error provides no information about error
distribution and skill score is RMSE dependent hence influenced by the
system size. Moreover, skill score informs about relative improvement
with respect to persistence model which performance highly depends
on the employed version of the model and on data resolution, as
mentioned previously. These characteristics make the usage of skill
score insufficient, even though it is promoted as a metric which allows
comparison across projects (Yang, 2019).

𝑀𝐵𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖) (6)

𝑆𝑆 = 100 ⋅ (1 −
𝑅𝑀𝑆𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
) (7)

An interesting approach was developed in Solar Monkey, where the
absolute and relative error were combined in one E-metric described by
Eqs. (8) and (9).

𝐸𝜖 =
1
𝑛

𝑛
∑

𝑖=1
𝑓 (�̂�𝑖, 𝑦𝑖) ⋅ 100% (8)

𝑓 (�̂�𝑖, 𝑦𝑖) =

{

1 if |�̂�𝑖 − 𝑦𝑖| < 𝜖
0 if |�̂�𝑖 − 𝑦𝑖| ≥ 𝜖

(9)

Here, 𝜖 stands for the threshold of absolute error. Metric 𝐸10 gives
a percentage of predictions with absolute error below 10 Wh. Similarly
𝐸50 gives a percentage of predictions with absolute error below 50
Wh and so on. The higher the E-metric is, the better the prediction.
Its drawback is that it requires different thresholds for different data
resolutions.

Another problem is that the majority of models is assessed on
the entire test set without investigating results for individual systems.
That is acceptable in case of forecasting performed for utility scale
companies which operate the grid and do not need to know individual
PV systems behavior. However, solar yield forecasting is becoming
increasingly important for residential PV owners who would like to
optimize their own production and consumption (Eneco, 2021). For
instance, they could store solar energy and sell it to the grid during
peak hours to maximize their profits. Moreover, early anomaly detec-
tion requires precise and accurate yield nowcasting for individual PV
systems. General metric calculation might hide cases for which the
model performs badly and does not include the fact that each system
usually belongs to a different entity. In case of Solar Monkey, measuring
overall model performance is informative, but insufficient to determine
whether all customers receive predictions of high quality. Therefore,
each of the previously presented metrics was calculated per system
and stored in an array. Next, minimum, maximum, mean and standard
deviation of each array were calculated. This approach allows also to
identify the worst performing systems and narrows the scope of error
analysis.

4. Results

This section presents the main results of the study showing the
features selected by RFE, the performance of the proposed model
compared with other models, and the learning curves and error analysis
of XGBoost.
330
Table 1
Comparison of results calculated for all predictions together.

𝑅2 MAE Max error RMSE MAPE SS
[%] [kWh] [kWh] [kWh] [–] [%]

Persistence 80 0.35 8.3 0.53 71 N/A
ElasticNet 83 0.30 32.2 0.47 11176 11
Polynomial
Regression

90 0.24 30.1 0.37 10504 29

Random
Forest

96 0.10 28.8 0.22 418 59

XGBoost 97 0.10 28.9 0.21 478 61

4.1. Feature selection

Features selected by RFE with their corresponding weights assigned
by the XGBoost algorithm can be seen in Fig. 5. There, one can observe
how the most influential feature is GHI followed by historical yields,
which coincides with similar results obtained in literature (Isaksson
and Conde, 2018; Abuella and Chowdhury, 2017). System size, one of
the few system characteristics considered together with orientation, is
also a relevant feature. Since our ML model was trained for on data
from multiple PV systems, system size may be used as a scaling factor.
The importance of cloud coverage increases as the forecast horizon
decreases, being highly important for predictions less than 15 min
ahead (Ahmed et al., 2020). Since the predictions are for the following
hour, cloud coverage is important but does not make it to the top 3.

Even though their importance differ, all weather and descriptive
features were kept by RFE. Out of all PV system parameters, only
system size and orientation were selected, showing that most of the
PV systems characteristics are not as influential as one may expect.

The non-measured features, namely the sun angles and day of year,
have low relevance probably because the periodic information that they
introduced is included in other features such as irradiance. Wind speed
and precipitation are the two least relevant features, which coincides
with previous results reported in literature (Abuella and Chowdhury,
2017; Kuzmiakova et al., 2017; Lee et al., 2019). One surprising result is
the low importance of ambient temperature, which is usually amongst
the chosen features (Abuella and Chowdhury, 2017; Kuzmiakova et al.,
2017; Lee et al., 2019).

4.2. Models performance

After performing feature selection and hyperparameter tuning for
XGBoost, the algorithm was trained to perform the forecasts. Since the
objective is to monitor the residential PV systems, the lead time was in-
stantaneous. The produced PV power was compared with the predicted
one at the same instant of production to detect any malfunction. This
occurred with an hourly resolution.

The algorithm’s performance against the persistence method is pre-
sented in Tables 1 and 2. Next to XGBoost, performance of models
based on ElasticNet, Polynomial Regression and Random Forest algo-
rithms was presented for comparison. For information on these ML
models, the reader is referred to Pedregosa et al. (2011). These models
were selected for comparison not because they represent the state-of-
the-art methods, but because they are easy to apply, provide fast results
and can handle large amounts of data, hence they could be appropri-
ate alternatives for a commercial application. Deep learning methods
would probably obtain lower errors but their lack of interpretability
and hard optimization would hinder their use in practice in the start-up.

XGBoost provides superior results with respect to all other analyzed
models in most of the employed metrics. Random Forest has similar
performance, with smaller maximum error and MAPE, however the
higher RMSE implies that it makes predictions more often with large
error. This is confirmed by the E-metrics in Table 2 where Random
Forest has higher 𝐸10, 𝐸50, and 𝐸100, but lower 𝐸500. To increase trust

in machine learning models one must make sure they do not make large
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Fig. 5. Importance assigned by XGBoost to each of the features selected by RFE.
Fig. 6. Distribution of RMSE for individual systems comparing the performance of the commercial software with that of XGBoost.
Table 2
E-metrics for hourly rough data set.

𝐸10 𝐸50 𝐸100 𝐸500
[%] [%] [%] [%]

Persistence 11.0 22.1 32.9 75.2
ElasticNet 3.2 15.9 30.5 82.1
Polynomial Regression 4.2 20.5 38.2 87.8
Random Forest 27.4 57.4 72.5 96.4
XGBoost 23.6 54.7 71.4 96.7

errors. Therefore, 𝐸500 is the most important metric in this table, and
is one of the reasons for choosing XGBoost over Random Forest.

Table 3 displays individual PV system metrics calculated for XG-
Boost and the analytical-based commercial software. It can be observed
that XGBoost has individual system RMSE oscillating between 0.4 kWh
331
and 4.6 kWh. The minimal RMSE of XGBoost is similar to the one of
the analytical model while the maximal RMSE for XGBoost is around
two times lower. Also, mean per-system RMSE decreased by around
one third. Usage of the ML model caused a drop in relative error
(mean MAPE) from around 44% to 23% which is almost two-fold
improvement.

Distributions of per-system RMSE and per-system MAPE can be
seen in Figs. 6 and 7 respectively. In both graphs, distributions cor-
responding to XGBoost model are shifted to the left with respect to the
analytical model which indicates their higher quality.

4.3. Learning curves

Next to XGBoost metrics, learning curves are presented to depict the
decrease in error as the model learns pattern in an increasingly large
dataset. Learning curves provide several benefits. Firstly, they allow to
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Fig. 7. Distribution of MAPE for individual systems comparing the performance of the commercial software with that of XGBoost.
Fig. 8. XGBoost learning curve during and after the initial learning phase. Be aware of the change of scale in both axis. Curve plotted for custom training set sizes, with non-constant
step value.
Table 3
Comparison of metrics for XGBoost vs. commercial software.
Individual system metrics Solar Monkey XGBoost

min RMSE [kWh] 0.37 0.40
max RMSE [kWh] 9.44 4.62
mean RMSE [kWh] 1.82 1.36
mean MAPE [%] 43.62 23.02

assess bias vs. variance trade-off, and make an informed decision about
the next development step. Secondly, they allow to estimate the amount
of data needed to decrease the error by a certain value, and therefore
are important in financial calculations (data can be expensive). Finally,
they allow to discover learning saturation — the point above which
further training almost does not improve decrease error.

Learning curve in Fig. 8 was obtained using 3-fold cross-validation
and allowed to determine whether full data set potential was utilized.
Semi-transparent areas around the lines in the figure correspond to
standard deviations of results for all three folds. It can be noticed that
standard deviations are large for small data sets and decrease with
increasing training set size. That is reasonable, as for large data sets it is
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less likely that particular shuffling of the training data would skew the
result. Therefore, cross-validation can be neglected for data sets larger
than 0.15% of the training set, that is exceeding 60,000 samples, as
it significantly increases computational cost and has almost no impact
on the results. Until seeing 0.15% of the training set size, XGBoost
validation error decreases exponentially and it seems to stabilize later
on. Drop in validation RMSE is only around 0.02 kWh for training set
size between 40% and 80%. It can be concluded that XGBoost learning
saturates around 40% of the training set, that is around 1.28 million
samples.

In the analyzed data set, each system has 4,609 samples correspond-
ing to non-zero irradiance in a year. Dividing critical number of samples
(1.28 mln) by samples per system, it can be concluded that data for
around 278 PV systems for an entire year is required for the XGBoost
algorithm to reach a point beyond which the RMSE does not decrease
significantly anymore. Further increase in training set size is likely to
decrease error, but this small gain is not justified considering surge
in required computational power and the associated financial cost.
Other operations, e.g. data cleaning, are likely to provide larger gain in
performance at lower expense. Usage of fewer number of systems with
larger time horizon is likely to provide similar results, as long as the
systems selected for training are representative of the test set.
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Fig. 9. Weather features as a function of absolute error.
4.4. Error analysis

This subsection describes when XGBoost model is mistaken and
investigates the possible reasons of large errors. Based on literature,
it is expected that the model works better under particular weather
conditions, such as clear days (Rosiek et al., 2018) or seasons (Yin et al.,
2020), or for certain systems (Gensler et al., 2017). This subsection
focuses on finding the pattern in large XGBoost errors.
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Fig. 9 depicts two graphs for each investigated parameter: distri-
bution of absolute percentage error (on the left) and distribution of
values (right hand side graphs). This was done to verify whether the
magnitude of percentage error corresponds to the number of training
samples in each bin. In Fig. 9 it can be seen that XGBoost’s performance
is independent of wind speed and ambient temperature, but depends
heavily on GHI and to some extent on cloud coverage. For GHI and
cloud coverage the largest absolute percentage errors overlap with bins
containing the largest number of samples. This is not the case for wind
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Fig. 10. Absolute percentage error as a function of observed yield for all systems.
Fig. 11. Error analysis with respect to time of the day. Hours are expressed in local time.
speed and ambient temperature. As presented in Fig. 5 the model did
not recognize these two features as relevant which means they have
little influence on the final predictions, and therefore on the absolute
percentage error.

Model’s performance as a function of cloud coverage is presented in
Table 4. It can be seen that the analyzed model performs around 50%
better in case of clear sky conditions which indicates that modeling
clouds influence on PV behavior is challenging. It also indicates that
the utilized cloud coverage data is insufficient to precisely capture real
life changes.

Next to the weather analysis, error analysis was performed. It was
already described that utilization of squared error loss function favors
large yields, that is large PV systems and sunny hours. To further
verify this hypothesis, observed yields vs. their corresponding absolute
percentage error (APE) were plotted in Fig. 10. It can be seen that APE
has values far exceeding 100% for yield values below 2 kWh which
confirms the initial assumption. APE with respect to hour of day and
334
with respect to month were plotted in Figs. 11 and 12, respectively.
Analysis of APE with respect to time in hours shows that relative error
is the largest just after sunrise and just before sunset. Regarding the
monthly analysis, it can be seen the model has the largest relative error
for December followed by January. This is possibly due to these two
months having the least irradiance in the whole year and therefore the
smallest yields.

5. Conclusion

In this work we have shown an effective strategy for monitoring
residential PV systems using ML techniques. XGBoost algorithm turned
out to be the method of choice for the task of solar yield nowcasting on
hourly data surpassing persistence, ElasticNet, Polynomial Regression,
Random Forest and a commercially available analytical model. This
work discussed that the currently used metrics and loss functions are
insufficient for evaluation of solar nowcasting and forecasting models,
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Fig. 12. Error analysis with respect to month of the year.
Table 4
XGBoost model performance with respect to cloud coverage.

Metrics Persistence XGBoost

Clear sky
(<1 okta)

MAE [kWh] 0.55 0.15
RMSE [kWh] 0.73 0.28
MAPE [%] 27 6
R2 [%] 69 95

Partly cloudy
(1–7 okta)

MAE [kWh] 0.58 0.24
RMSE [kWh] 0.77 0.38
MAPE [%] 28 11
R2 [%] 60 90

Completely
overcast
(>7 okta)

MAE [kWh] 0.57 0.23
RMSE [kWh] 0.76 0.37
MAPE [%] 32 12
R2 [%] 46 87
as they fail to combine relative and absolute error. Combining the two
is necessary for developing a single model able to learn individual
system properties, independently of their size, and to obtain high
quality residential scale solar yield predictions. In this study the usage
of squared error loss function caused the model to be significantly mis-
taken for small values of yield occurring in winter, close to sunrise and
sunset, and for small PV systems. Attempts to tackle this issue through
sample normalization and using MAPE as training metric have failed.
Further research should focus on developing new loss function and
evaluation metrics. Despite the presented issues, XGBoost provides two
fold improvement with respect to the commercially available analytical
model.
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