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Joint Feature Synthesis and Embedding:
Adversarial Cross-Modal Retrieval Revisited

Xing Xu , Kaiyi Lin , Yang Yang ,

Alan Hanjalic , Fellow, IEEE, and Heng Tao Shen , Senior Member, IEEE

Abstract—Recently, generative adversarial network (GAN) has shown its strong ability on modeling data distribution via adversarial

learning. Cross-modal GAN, which attempts to utilize the power of GAN to model the cross-modal joint distribution and to learn

compatible cross-modal features, is becoming the research hotspot. However, the existing cross-modal GAN approaches typically 1)

require labeled multimodal data of massive labor cost to establish cross-modal correlation; 2) utilize the vanilla GAN model that results

in unstable training procedure and meaningless synthetic features; and 3) lack of extensibility for retrieving cross-modal data of new

classes. In this article, we revisit the adversarial learning in existing cross-modal GAN methods and propose Joint Feature Synthesis

and Embedding (JFSE), a novel method that jointly performs multimodal feature synthesis and common embedding space learning to

overcome the above three shortcomings. Specifically, JFSE deploys two coupled conditional Wassertein GAN modules for the input

data of two modalities, to synthesize meaningful and correlated multimodal features under the guidance of the word embeddings of

class labels. Moreover, three advanced distribution alignment schemes with advanced cycle-consistency constraints are proposed to

preserve the semantic compatibility and enable the knowledge transfer in the common embedding space for both the true and synthetic

cross-modal features. All these add-ons in JFSE not only help to learn more effective common embedding space that effectively

captures the cross-modal correlation but also facilitate to transfer knowledge to multimodal data of new classes. Extensive experiments

are conducted on four widely used cross-modal datasets, and the comparisons with more than ten state-of-the-art approaches show

that our JFSE method achieves remarkably accuracy improvement on both standard retrieval and the newly explored zero-shot and

generalized zero-shot retrieval tasks.

Index Terms—Cross-modal retrieval, embedding features, adversarial learning, zero-shot learning, knowledge transfer

Ç

1 INTRODUCTION

IN OUR daily life, multimedia content usually consists of
different modalities with associations to represent com-

prehensive semantics and information. For example, a piece
of online news commonly consists of texts with correspond-
ing images or videos describing the same event; a recipe for
a special dish may also depict the cooking steps in terms of
textual descriptions, photos and demo videos. Therefore,
effective retrieval methods have become the primary issue
for multimodal information acquisition. Under this situa-
tion, cross-modal retrieval [1], [2], [3], which aims to find the
related results from one modality data given a query from
another modality, has become a highlighted research topic
in recent years. The related research has been concentrated
on various retrieval scenarios, e.g., image-text retrieval [1],
[2], recipe retrieval [4], [5], sketch-based image retrieval [6],

[7], and scene image retrieval [8]. Unlike the unimodal
retrieval scenarios such as image/video search that return
retrieved results of the same modality with the query, cross-
modal retrieval can provide search results of differentmodal-
ities with a query of anymodality. However, the challenge of
“heterogeneity gap” [9] in cross-modal retrieval, i.e., the incon-
sistent distribution and representation of different modality
data, makes it difficult to establish the cross-modal correla-
tion and to directlymeasure the cross-modal similarity.

During the last decade, a large number of research stud-
ies have been devoted to cross-modal retrieval focusing on
the standard retrieval scenario and following the paradigm of
common embedding space learning. Using image and text
modalities as an example, as the illustration of the standard
retrieval shown in Fig. 1a, a collection of annotated cross-
modal instances with each one consisting of a labeled
image-text pair, is divided into a source set and a target set.
The labels of the instances in the two sets belong to the same
scope of pre-defined classes, (i.e., 10 classes in total). With the
assumption that an intermediate common embedding space
exists in the cross-modal data and can represent instances
of relevant semantics as similar real-valued “embedding
features”, the typical pipeline for textual-visual cross-modal
embedding is to encode the source set instances of individ-
ual modalities into their original features and then maps
them into a common embedding space in the training
phase. Later, the embedding features of the target set instan-
ces can be generated in the learned space, which can be
finally utilized to measure the cross-modal similarities of

� Xing Xu, Kaiyi Lin, Yang Yang, and Heng Tao Shen are with the Center
for Future Media and School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Chengdu 611731,
China. E-mail: xing.xu@uestc.edu.cn, {lky.linkaiyi, dlyyang}@gmail.com,
shenhengtao@hotmail.com.

� Alan Hanjalic is with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2628 Delft, The
Netherlands. E-mail: A.Hanjalic@tudelft.nl.

Manuscript received 10 Nov. 2019; revised 9 Nov. 2020; accepted 6 Dec. 2020.
Date of publication 17 Dec. 2020; date of current version 5 May 2022.
(Corresponding author: Heng Tao Shen.)
Recommended for acceptance by X. Bai.
Digital Object Identifier no. 10.1109/TPAMI.2020.3045530

3030 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

0162-8828� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:45:59 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0003-4237-5313
https://orcid.org/0000-0003-4237-5313
https://orcid.org/0000-0003-4237-5313
https://orcid.org/0000-0003-4237-5313
https://orcid.org/0000-0003-4237-5313
https://orcid.org/0000-0002-5070-4511
https://orcid.org/0000-0002-5070-4511
https://orcid.org/0000-0002-5070-4511
https://orcid.org/0000-0002-5070-4511
https://orcid.org/0000-0002-5070-4511
https://orcid.org/0000-0002-5771-2549
https://orcid.org/0000-0002-5771-2549
https://orcid.org/0000-0002-5771-2549
https://orcid.org/0000-0002-5771-2549
https://orcid.org/0000-0002-5771-2549
https://orcid.org/0000-0002-2999-2088
https://orcid.org/0000-0002-2999-2088
https://orcid.org/0000-0002-2999-2088
https://orcid.org/0000-0002-2999-2088
https://orcid.org/0000-0002-2999-2088
mailto:xing.xu@uestc.edu.cn
mailto:lky.linkaiyi@gmail.com
mailto:dlyyang@gmail.com
mailto:shenhengtao@hotmail.com
mailto:A.Hanjalic@tudelft.nl


pairwise instances and accomplish the cross-modal retrieval
task.

Existing methods for common embedding space learning
range from the early shallow methods [1], [2], [10] and the
recent deep learning methods [11], [12], [13], [14], [15]. Nota-
bly, another group of hashing-based approaches [16], [17],
[18], [19] have also been proposed to learn binary codes as
embedding features in the common embedding subspace.
These methods generally aim to tackle the efficiency issue
for retrieval as binary embedding features boost the speed
for Hamming distance computation and require much less
storage consumption. Nevertheless, in this work, we mainly
discuss the cross-modal retrieval problem that aims at learn-
ing real-valued embedding features. Specifically, the shallow
learning methods usually obtain the embedding features of
different modalities by learning a linear projection function
for each modality. Due to the powerful ability of the deep
neural network (DNN) on feature extraction and modeling
the nonlinear cross-modal correlation, the DNN-basedmeth-
ods have been proposed and gained accuracy improvement.
Especially, generative adversarial network (GAN) [20]
(named “vanilla GAN” in this work) that consisting a gener-
ative module and a discriminative module has shown its
remarkable ability to capture the observed data distribution.
Several cross-modal GAN approaches [13], [15], [21], [22]
have been proposed to improve the embedding learning in
existing DNN-based approaches. Notably, the adversarial
training scheme is widely used in these approaches to either
boost the common embedding learning effectiveness or to
enable the synthetic feature generation in individual modali-
ties. Though significantly improved accuracy has gained for
cross-modal retrieval, these cross-modal GAN approaches
indeed still have the following shortcomings:

First, they commonly require elaborately labeled multimodal
data for supervised training. To establish accurate cross-modal
correlation, massive labeled multimodal data of high-quality
is expected to provide informative correlation cues. How-
ever, different from the unimodal data annotation such as

image tagging, collecting and labeling multimodal data are
extremely label-consuming, as it is inevitable to browse rele-
vant instances of multiple media types by seeing images,
reading documents, watching videos and listening to audios.
Though a few semi-supervised cross-modal GAN appro-
aches recently [23], [24] attempt to exploit informative unla-
beled data to complement the limited labeled cross-modal
data, without label information, the unlabeled data can only
be utilized in each modality separately, hence limitedly
enriches the cross-modal correlation.

Second, the GAN structure in existing cross-modal GAN
approaches is less effective, where the vanilla GAN [20] model is
typically adopted. The vanilla GAN is initially designed for
unimodal data synthesis. It may neglect the cross-modal
correlation when it is applied to generate multimodal data,
as the data synthesis in each modality is weakly associated.
Besides, the training procedure of the vanilla GAN is usu-
ally unstable and hard to converge, thus, learning an effec-
tive common embedding space in existing cross-modal
GAN approaches is even harder due to the influence of the
probably incorrect synthetic multimodal data.

Third, existing cross-modal GAN approaches lack of expansi-
bility for retrieving data of new categories. To address this issue,
recent studies explore another two practical retrieval sce-
nario of zero-shot cross-modal retrieval [25] and generalized
zero-shot cross-modal retrieval [26]. The general settings of the
two retrieval scenarios are illustrated in Figs. 1b and 1c,
respectively. These two zero-shot retrieval scenarios aim to
search the data of unseen classes in the target set only given
the training data of limited seen classes in the source set.
Compared with the standard retrieval scenario, these two
retrieval scenarios are more difficult, because they require
the learned retrieval model to not only cope with the hetero-
geneous distributions of multimodal data but also bridge
the inconsistent semantics across the seen and unseen clas-
ses. A few recent works [22], [25], [26], [27], [28] adopt vari-
ous knowledge transfer schemes from the research field of
zero-shot learning (ZSL) [29], [30] for zero-shot cross-modal
retrieval. These method have shown promising results com-
pared with the traditional cross-modal retrieval approaches,
however, they still adopt the conventional embedding
learning schemes such as triplet ranking loss [13], [26], [31]
or correlation loss [15], [32] for common embedding space
learning. These loss terms inevitably ignore the semantic
gap between seen and unseen classes, hence they are not
appropriate to accomplish the knowledge transfer in zero-
shot retrieval.

In this paper, we propose a novel method termed Joint
Feature Synthesis and Embedding (JFSE) to jointly overcome
the three shortcomings of the existing cross-modal GAN
approaches. The proposed JFSE method is designed as an
end-to-end neural network that fully incorporates multi-
modal feature synthesis, knowledge transfer, and common
embedding space learning, to accomplish more accurate
standard retrieval and zero-shot retrieval at once. The gen-
eral flowchart of the proposed JFSE is illustrated in Fig. 2.
Taking two modalities (i.e., images and texts) for example,
each modality has an improved GAN structure, i.e., condi-
tional Wassertein-GAN (cWGAN) and the two cWGAN are
coupled for multimodal feature synthesis. During training,
the proposed JFSE consists of two successive procedures:

Fig. 1. Illustration of the three different retrieval scenarios: (a) standard
cross-modal retrieval, where the data in the source set and the target set
share the same 10 classes; (b) zero-shot cross-modal retrieval, where
the data in each set are from 5 disjoint classes; and (c) generalized
zero-shot cross-modal retrieval, where the target set has additional 5
classes that are absent in the source set.
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multimodal feature synthesis and common embedding space
learning. In the former procedure, the class embeddings of
source set are utilized as side information in each cWGAN
to synthesize modality-specific features via adversarial
learning, while the shared class embeddings ensure the syn-
thetic features in each modality incorporate the semantic of
the class labels. In the latter process, both the synthetic and
true features of two modalities are projected into the com-
mon embedding space via three effective distribution align-
ment strategies, where the cross-modal correlation is
modeled and the knowledge transfer is conducted in the
space. Meanwhile, a modality discriminator is added to dis-
tinguish the modality type of the mapped the true and
synthetic embedding features. Moreover, an effective con-
straint of cycle-consistency is further deployed to minimize
the error between both the true embedding features and
its reconstructed ones, making the semantic consistency
between the true input features and the embedding features
within each modality are well preserved. During the test
stage, for either standard retrieval or (generalized) zero-
shot retrieval scenarios, the embedding features of the tar-
get set instances can be directly obtained by mapping their
true input features into the learned common embedding
space. As a result, the embedding features of different
modalities can be directly used to compute the cross-modal
similarity of pairwise instances.

We summarize our contributions in this paper as follows:

� Effective multimodal feature synthesis with improved GAN
structure. We improve the vanilla GAN model widely
used in existing cross-modal GAN approaches, and
design an improved GAN structure, i.e., cWGAN, to
simultaneously synthesize correlated multimodal fea-
tures with the guidance of the class embeddings.

Besides, the advantage of a stable training procedure
in the cWGAN model benefits to produce meaningful
synthetic features and to learn an effective common
embedding space.

� Advanced common embedding space learning. To sup-
port the standard retrieval, zero-shot retrieval, and
generalized zero-shot retrieval tasks, we develop
three advanced distribution alignment schemes to
capture cross-modal correlation and enable the
knowledge transfer during common embedding
space learning. All schemes perform distribution
matching between the embedding features and the
class embeddings of both the true and synthetic
data, by considering the correlation of pairwise
instances as well as the overall statistical properties
of the heterogeneous data. Besides, to enable the
knowledge transfer between classes, we introduce
the advanced cycle-consistency constraints that pre-
serve the semantic compatibility between the input
features and the mapped embedding features of
both true and synthetic data.

Difference With Our Conference Work. This paper is an exten-
sion and improvement of our previous work Adversarial
Cross-Modal Retrieval (ACMR) [13]. The ACMR method is
a pioneering work that utilizes adversarial learning to
obtain more effective common embedding space. It has
inspired the later studies on cross-modal GAN. Compared
with ACMR, our JFSE approach in this work achieves three
newly-added contributions: (1) Different from ACMR that
only uses adversarial learning in common embedding space
learning without vanilla GAN model, JFSE additionally lev-
erages it for multimodal feature synthesis with the more
advanced cWGAN model. This is beneficial to enrich the
quantity of meaningful multimodal training data that

Fig. 2. The flowchart of our proposed JFSE method. It includes two coupled cWGANs that take the class embeddings as guidance to produce mean-
ingful synthetic multimodal (e.g., image and text) features for robust training, as well as capture cross-modal correlation via distribution alignment
under the common embedding space. The advanced cycle-consistency constraints further enhances the knowledge transfer between heteroge-
neous data with different classes.
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facilitates to learn more effective common embedding
space. (2) The JFSE approach adopts three advanced distri-
bution alignment scheme with semantic consistency con-
straints for learning cross-modal correlation, which are
more effective than the triplet ranking constraint used in
ACMR. (3) The JFSE approach fully considers the expansi-
bility of cross-modal retrieval and can be smoothly applied
to both standard, zero-shot and generalized zero-shot
retrieval scenarios, while ACMR is originally designed for
standard retrieval and cannot be extended to the other two
practical retrieval scenarios. Notably, the JFSE approach
also provides more comprehensive analysis and different
coverage of the distribution alignment schemes and the var-
ious retrieval scenarios than our related study in [33]. Exten-
sive experiments with comprehensive ablation studies on
four widely-used cross-modal retrieval datasets demon-
strate the effectiveness of our proposed JFSE approach com-
pared with a bundle of state-of-the-art methods on three
different retrieval tasks.

Comparison With Other Cross-Modal GAN Approaches. As
the comparison illustrated in Fig. 3, the early work of
ACMR takes the feature projection as the “implicit” genera-
tor to generate the embedding features, which is not the
true meaning of the GAN structure. Instead, it leverages a
discriminator to distinguish the source of the projected fea-
tures from images or text captions, which helps to learn a
modality-invariant embedding space. The later works of
GXN [21], CM-GANS [15], R2GAN [5], DADN [28] and
TANSS [22] all have two pairs of generater-discriminator
for individual modalities, where a generator is commonly a
vanilla GAN model for independent image-image and text-
text generation on the feature level or pixel level. Note that
these approaches also have a discriminator to discriminate
against the modality of an embedding feature. Different
from the existing cross-modal GAN approaches, our JFSE
approach takes two coupled cWGANs that consider the
class embeddings as side information for cross-modal data
synthesis on the feature level. Meanwhile, the class embed-
dings are treated as the common embedding space, which is
more effective to correlate the feature synthesis for each

modality and encapsulate a rich set of loss functions for
effective distribution alignment. The proposed three distri-
bution alignment schemes are more general and compre-
hensive that cover the diverse strategies used in CM-GANS
[15], DADN [28] and TANSS [22]. Moreover, our JFSE
method enables the knowledge transfer between seen and
unseen classes for the practical scenarios of zero-shot and
generalized zero-shot retrieval, which have not been investi-
gated in previous cross-modal GAN approaches.

2 RELATED WORK

In this section, we first present a briefly introduction of
cross-modal retrieval, then we discuss the related techni-
ques of zero-shot learning, adversarial learning, and data
synthesis used in cross-modal retrieval.

Cross-Modal Retrieval. The main effort on cross-modal
retrieval is to bridge the “heterogeneity gap”, i.e., establish-
ing the correlation of heterogeneous data with inconsistent
distribution and different representation. As aforemen-
tioned in Section 1, the mainstream idea is learning a com-
mon embedding space where embedding features of data in
different modalities can be obtained for cross-modal simi-
larity measurement. Regarding the variations of the basic
models, existing methods can be grouped into shallow learn-
ing methods and DNN-based methods. The core issue in the
shallow learning methods [1], [2], [34], [35] is to learn effec-
tive linear projection functions that can map the input fea-
tures of different modalities into a common space. Various
constraints are proposed to ensure the learned projection
functions to maximize the correlation between the pairwise
data of different modalities. More discussion of the shallow
learning methods can be found in the survey [3], [36].

With the powerful ability of DNN models on feature
representation, recent studies [12], [14], [31], [32], [37], [38]
based on DNNs now become mainstream solutions for
cross-modal retrieval. These methods focus on using DNN
to capture the nonlinear cross-modal correlation and to gen-
erate more compact embedding features. Sufficient high-
quality and large-scale labeled cross-modal data are usually
required to train these methods, but collecting and annotat-
ing cross-modal data is labor-consuming. Even though sev-
eral semi-supervised learning strategies [23], [24] can be
adopted in cross-modal retrieval by taking unlabeled unim-
odal data into account as the complementary source, with-
out label information, the unlabeled data can only be
utilized in each modality separately and has limited impact
on enriching the cross-modal correlation. Differently, in our
JFSE method, we exploit the data synthesis strategy to syn-
thesize correlated multimodal data rather than explicitly
use additionally unlabeled data.

Adversarial Learning for Cross-Modal Retrieval. The adver-
sarial learning strategy is first proposed in the generative
adversarial network [20]. The vallina GAN is composed of a
generator module and a discriminator module. Specifically,
the former module tries to produce fake data that can mimic
the empirical distribution of true data, while the latter one
aims to distinguish the true data and the generated fake
data. The parameters in the two modules are learned via the
adversarial learning strategy. GAN has also been extended
to conditional GAN [39], which utilizes additional side

Fig. 3. Comparison of the adversarial learning used in existing cross-
modal GAN methods and our JFSE approach.
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information such as class labels or sentence descriptions for
both generative and discriminative models to incorporate
semantical cues in the generated data. Compared with the
vanilla GAN, conditional GAN is superior to producing
more meaningful synthetic data related to the given side
information.

Existing GAN based methods mostly focus on the data
generation problem with unimodal data. Recently, several
cross-modal GAN studies [13], [15], [15] have been proposed
for cross-modal retrieval task with multimodal data. For
example, Wang et al. [13] proposed adversarial cross-modal
retrieval that first utilizes adversarial learning to learn a
modality-invariant common embedding space. Peng et al.
[15] designed a cross-modal GAN (CM-GAN) structure to
jointly capture the correlation within inter-modality and
intra-modality, where the adversarial learning mechanism
involves two kinds of discriminative modules to preserve
both the intra-modality and inter-modality discrimination.
Gu et al. [21] incorporated two generative models of pixel-
level image-text generation and text-image generation into
the textual-visual feature embedding. Zhu et al. [5] further
designed a special GAN structure with one generator mod-
ule and two discriminator modules in their method recipe
retrieval GAN (R2GAN), which makes the generation of a
pixel-level image from textual recipe feasible. Generally,
these methods usually introduce a modality discriminator to
judge the modality type of the semantic features, while a
cross-modal generator reduces the difference of cross-modal
embedding features to confuse the modality discriminator.
Besides, they commonly adopt the vanilla GAN as the basic
structure for generator-discriminator pair, which may not be
stable to train in practice. Though our JFSE approach is also a
GAN based model, it leverages an improved GAN structure
of cWGAN, which not only inherits the merit of WGAN on
more stable training procedure but also takes the class
embeddings as guidance for multimodal feature synthesis
with semantic correlation preserved.

Zero-Shot Learning for Cross-Modal Retrieval. The research
on zero-shot learning aims to imitate the ability of humans
to recognize new (unseen) classes which are not observed in
the training stage. As visual knowledge of new classes is
unavailable during training, ZSL requires additional side
information to complement the unknown visual knowledge.
Most existing ZSL methods [29], [30], [40], [41], [42] focus on
unimodal scenario, and utilize side information such as
attributes and word vectors of class as the intermediate
semantics for recognizing unseen classes.

For cross-modal retrieval, existing standard retrieval
approaches may not well adapt to the zero-shot retrieval sce-
nario. To this end, a few recent works [22], [25], [27], [28], [33]
have been proposed for zero-shot cross-modal retrieval. They
make use of the word embeddings of class labels (i.e., class
embeddings) from pre-trained natural language processing
models as auxiliary knowledge, to perform cross-modal corre-
lation learning and knowledge transfer at the same time. These
approaches differ in how the class embeddings are leveraged
for knowledge transfer. In [27], class embeddings are used as
conditional input signal for the data reconstruction in the auto-
encoder structure, while in [22], [25], [28], [33], the class embed-
dings are directly treated as embedding features in the to-be-
learned common embedding space. Notably, in this work, we

develop an improved GAN structure of cWGAN that takes the
class embeddings as the conditional signal to guidemultimodal
feature synthesis procedure, which enhances the correlation of
synthetic features of differentmodalities.

Data Synthesis. Data synthesis is an effective strategy to
deal with the lack of training data, such as in the learning
from imbalanced data and few-shot learning problem [41]. In
the zero-shot scenario, the recent study in [43] shows that
using visual feature space for zero-shot learning is intrinsi-
cally effective to alleviate the hubness problem. Later, several
other works [42], [44], [45] leverage various data augmenta-
tion schemes based on GANs or variational auto-encoder
(VAE) [46] modules to estimate the empirical data distribu-
tions and synthesize visual features for unseen classes. How-
ever, these synthesis strategies are limited to unimodal data
such as images and videos. Recently, a more complex task of
text-to-image synthesis [47], [48] that requires to generate
photo-realistic images according to a short text description
has been explored. This task is commonly treated as a cross-
modal data synthesis problem with constrained direction
(i.e., from text modality to image modality), and extend the
GANs module with the text conditioned auxiliary informa-
tion for pixel-level image generation.

Similarly, several existing cross-modal GAN approaches
such as GXN [21] and R2GAN [5] also explore feasible
schemes for cross-modal synthesis in the vanilla GAN mod-
ule. However, the feature synthesis procedure of the indi-
vidual modalities in these methods is implicitly correlated
or even without association. Differently, in our JFSE
approach, the class embeddings are leveraged as shared
cues for feature synthesis in each modality. Therefore it can
be considered as the more advanced task of multimodal data
synthesis since correlated multimodal features can be jointly
generated and well preserve the semantics according to the
auxiliary information of the class embeddings.

3 PROPOSED METHOD

3.1 Problem Formulation

Suppose we have a cross-modal dataset O ¼ fOS;OTg con-
sisting of multiple instances (i.e., labeled image-text pairs),
where OS and OT denote the source set for training and the
target set for testing, respectively. Here OS ¼ fvi; ti; ci;
yigNS

i¼1 and OT ¼ fvj; tj; cj; yjgNT
j¼1 have NS and NT instances,

respectively. For each instance in the two sets, vi; vj 2 Rdv ;
ti; tj 2 Rdt ; ci; cj 2 Rs; yi; yj 2 R1 denote the dv-dim image
feature vector, dt-dim text feature vector, s-dim class
embeddings and the index of class label, respectively. In
addition, the class labels of all the instances in OS are from a
pre-defined class set YS ¼ f1; . . . ; Cg, where C denotes the
total number of classes. Notably, depending on the specific
retrieval scenario, the class set YT of OT may be variant
compared with YS . According to the illustration of the three
retrieval scenarios in Fig. 1, for the standard retrieval, YS ¼
YT as the scope of classes in the two sets OS and OT are
identical; for the zero-shot retrieval, YS

TYT ¼ f due to the
disjoint classes in the two sets; for the generalized zero-shot
retrieval, YS � YT as the classes in OT have unseen classes
that are not contained in OS .

Due to the potential semantic inconsistency of the two
class sets YS and YT , the intrinsic properties of the two sets
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OS and OT may also be different. In this work, our goal is to
learn an effective common embedding space from OS ,
which can be well adapted to represent the data in OS for
all three retrieval scenarios.

3.2 Key Components of Our JFSE Method

As the overall framework of our JFSE method shown in
Fig. 2, we first describe its core components on the standard
retrieval task. Then we will discuss its extension to the zero-
shot retrieval and generalized zero-shot retrieval scenarios.

3.2.1 Multimodal Feature Synthesis

Different from existing studies [45], [49] that perform unim-
odal data synthesis on pixel-level, we put forward an
improved GAN structure based on two coupled conditional
Wasserstein GAN [42] to synthesize multimodal input data
(i.e., images and texts) on the feature-level. This is clearly
different with the existing cross-modal GAN approaches
[13], [15], [22], [28] that take the vanilla GAN model as the
basic model for each pathway. Notably, the cWGAN is
superior to the vanilla GAN since it is more stable to achieve
robust training procedure. Besides, it can naturally take the
class embeddings as the input side information for feature
synthesis, which thereby provides semantic supervision to
produce more informative synthetic features. Specifically,
each cWGAN contains a generator G�ð�Þ and a discrimina-
tive moduleD�ð�Þ that are built with several fully-connected
layers in the network. Here � ¼ v; t denotes the image and
text modalities, respectively.

In the image pathway, given the feature vi of an image
with its class label yi, the class embedding ci of yi and a noise
vector zv are first concatenated as the input for the generator
Gv. Here the class embedding ci 2 Rs, zv 2 Rm is randomly
sampled from Gaussian distribution, and Gv is expected to
generate synthetic image feature ~vi according to the semantic
information of ci as ~vi ¼ Gvðzv; ciÞ. Subsequently, the dis-
criminative module Dv distinguishes the true image feature
vi and its class embeddings ci against the synthetic image
feature ~vi and ci. Finally, the feature synthesis for all the
images inOs can be formulated by the cWGAN loss as

Lv
cWGANðuGv; uDvÞ ¼ E½Dvðv; c; uDvÞ� � E½Dvð~v; c; uDvÞ�
� aE½ðk rv̂Dvðv̂; c; uDvÞ k2 �1Þ2�:

(1)

Here E½�� represents the expected value for all images, the
penalty coefficient � is a preset constant value, uGv and uDv

denote the parameters in the two modules. Notably, the
third term rv̂ denotes the gradient penalty as defined in
[44]. It requires the gradient of Dv to have unit norm along
the straight line between the pairs of true and synthetic fea-
tures, which ensures the numeric stability when updating
the parameters. In addition, v̂ ¼ avþ ð1� aÞ~v with a is a
weighted constant value sampled from the uniform distri-
bution Uð0; 1Þ.

Likewise, in the text pathway, the feature synthesis for all
the texts follows the same procedure as the above image
pathway, which can be formulated as:

Lt
cWGANðuGt ; uDtÞ ¼ E½Dtðt; c; uDtÞ� � E½Dtð~t; c; uDtÞ�
� aE½ðk rt̂Dtð̂t; c; uDtÞ k2 �1Þ2�;

(2)

where E½�� denotes the expected value for all texts, uGt and
uDt are the model parameters in the two modules in the text
pathway. Finally, the multimodal feature synthesis proce-
dure integrates the two losses Eqs. (1) and (2) of the two
pathways as

LcWGAN ¼ Lv
cWGANðuGv ; uDvÞ þ Lt

cWGANðuGt ; uDtÞ: (3)

3.2.2 Common Embedding Space Learning With

Distribution Alignment

With the help of the two cWGANs, we can generate suffi-
cient synthetic instances of multimodal features f~vj;~tjg ~N

j¼1.
Note that the value of ~N can be different from N of the true
instances fvi; tigNi¼1 as one true instance can generate multi-
ple synthetic embedding features in our cWGAN model.
We further equip two regressors Rvð�Þ and Rtð�Þ (with sev-
eral fully-connected layers) after the two cWGANs in our
JFSE model to utilize class embeddings to map both the true
and synthetic features of two modalities into a common
embedding space. Given the true feature vi and ti for the ith
image-text pair in OS , its corresponding embedding fea-
tures evi and eti can be respectively obtained by the two
regressors Rv and Rt as evi ¼ RvðviÞ and eti ¼ RtðtiÞ. Like-
wise, for the jth synthetic image-text pair, its embedding
features of two modalities can also be obtained by the two
regressors as ~evi ¼ Rvð~viÞ and ~eti ¼ Rtð~tiÞ, respectively.

The widely used schemes like correlation loss [11], [15],
[32] and triplet ranking loss [13], [31] consider to learn the
cross-modal correlation on the pairwise instance-level. One
serious problem of these schemes is that they paymore atten-
tion to each image-text pair, which is trivial to model the dis-
crepancy between the data distributions of two modalities.
Moreover, when considering the zero-shot and generalized
zero-shot retrieval scenarios, the semantic gap between the
heterogeneous data of both seen and unseen classes is also
necessary to be considered. Unfortunately, these schemes
are weak to cope with these two scenarios. Therefore, in this
work, we develop three advanced schemes to model the
cross-modal correlation on the statistical data distribution-
level. These proposed schemes can align the distributions of
both true and synthetic features of twomodalities in the com-
mon embedding space with transferable knowledge accord-
ing to their semantics. In the following parts, we give
detailed descriptions of the three proposed schemes.

Cross-Modal Maximum Mean Discrepancy (CMMD). The
target of the CMMD scheme is to maximize the mean dis-
crepancy of both the true and synthetic embedding features
of pairwise instances of different modalities. It differs from
the feature adaptation method [50] that processing the
unimodal data. Considering the true embedding features
fevigNS

i¼1 and fetjgNS
j¼1 of pairwise instances in OS , the CMMD

scheme measures the cross-modal similarity for all instances
via a kernel-based distance function, which is deriving as

Ltrue
CMMDðuRÞ ¼

1

N2
S

XNS

i;j¼1
k evi ; e

v
j

� �
� 2

N2
S

XNS

i;j¼1
k evi ; e

t
j

� �

þ 1

N2
S

XNS

i;j¼1
k eti; e

t
j

� �
:

(4)
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where i; j denote the indices of a pair. Notably, the kernel
function kðxi; xjÞ ¼

P
n hnexpf� 1

2sn
kxi � xjk2g linearly com-

bines multiple Radial basis function (RBF) kernels, where hn
and sn denote the weight value and standard deviation of
the nth RBF kernel, respectively. In our experiment, we
empirically use 19 RBF kernels and set the values of hn and
sn all these kernels according to the official implementation
of theMMD loss in Tensorflow toolkit.

Meanwhile, the CMMD scheme also applies to measure
the cross-modal similarity of the synthetic embedding fea-
tures, where in this case the formulation of the loss term is
consistent with the case of the true embedding features in
Eq. (4). Intuitively, the final loss term for the CMMD scheme
is a combination of the loss terms of both the true and syn-
thetic embedding features as

LCMMD
DA ¼ Ltrue

CMMDðuRÞ þ Lsyn
CMMDðuRÞ: (5)

By minimizing Eq. (5), the cross-modal correlation of both
the true and synthetic embedding features can be captured
and the modality discrepancy can also be narrowed.

Cross-Modal Correlation Alignment (CMCA). The CMCA
scheme is another scheme the measures the cross-modal cor-
relation by exploring the overall data distribution of all instan-
ces in different modalities. Unlike the CMMD scheme that
models the overall cross-modal correlation based on pairwise
instances, the CMCA scheme treats the embedding features of
all the true and synthetic instances as matrix forms, and mea-
sure the cross-modal distance with the covariance of a matrix.
The covariance reflects the second-order statistics of the data
distributions [51], which may be more informative than the
first-ordermodeling in the aboveCMMD scheme.

First, let U ¼ fevigNS
i¼1 2 RNS�s and Z ¼ fetigNS

i¼1 2 RNS�s be
the matrices consisting the embedding features of the true
image and text instances. Then define the covariance term
of U and Z as

Cv ¼ 1

NS � 1
ðU>U� 1

NS
ð1>UÞ>ð1>UÞÞ; (6)

Ct ¼ 1

NS � 1
ðZ>Z� 1

NS
ð1>ZÞ>ð1>ZÞÞ; (7)

where 1 is an NS dimensional column vector with all ele-
ments equal to 1. Similarly, we can also form the matrices

~U ¼ f~ejg ~NS
j¼1 and ~Z ¼ f~ejg ~NS

j¼1 according to the embedding

features of the synthetic image and text instances. Then, the

covariances of ~U and ~Z can be derived as

~Cv ¼ 1
~NS � 1

ð~U> ~U� 1
~NS

ð1> ~UÞ>ð1> ~UÞÞ; (8)

~Ct ¼ 1
~NS � 1

ð~Z>~Z� 1
~NS

ð1>~ZÞ>ð1>~ZÞÞ; (9)

Then the distribution alignment of the CMMD scheme is
accomplished by reducing the error between the covarian-
ces of both the true and synthetic instances in each modal-
ity. The loss term can be written as

LCMCA
DA ðuRÞ ¼ 1

4m2
kCv � Ctk2F þ

1

4m2
k~Cv � ~Ctk2F ; (10)

where k � k2F is the squared Frobenius norm for matrices.

Cross-Modal Projection Matching (CMPM). The CMPM
scheme is designed to model the cross-modal correlation by
minimizing the Kullback-Leibler (KL) divergence between
the normalized matching distributions and projection com-
patibility distributions of different modalities [52]. Specifi-
cally, considering B true image and text embedding
features in a mini-batch during training, the probability of
matching evi to �ðetjÞ is derived as

pi;j ¼
expðevi>�ðetjÞÞPn
k¼1 expðevi>�ðetkÞÞ

; (11)

where �ðetjÞ ¼
et
j

ket
j
k denotes the normalized text embedding

features, evi
>�ðetjÞ reflects the scalar projection between

image embedding features evi onto text embedding feature

�ðetjÞ and the probability pi;j denotes the percentage of this

scalar projection between pairs in a mini-batch. If the image

embedding feature is more similar to the text embedding

feature, the scalar projection will be larger. Considering in

each mini-batch there might be more than one matched

image-text pair that has the same class, the true matching
probability is normalized as follows: qi;j ¼ yi;jPB

k¼1 yi;k
. Where

yi;j ¼ 1, yi;j ¼ 0 respectively represents the matched image-
text pair and the unmatched pair. For each mini-batch, the
cross-modal projection matching loss of associating each
image embedding feature with correctly matched text
embedding feature is derived as

Ltrue
i2t ðuRÞ ¼ �

1

B

Xn
i¼1

Xn
j¼1

pi;jlog ð
pi;j

qi;j þ �
Þ; (12)

where � is a small number for preventing numerical prob-
lems and the Eq. (12) actually denotes the KL divergence
from the true matching distribution qi to the probability of
matching pi. The same procedure is followed to compute
text-to-image matching loss by replacing evi with etj in
Eq. (11). Then, the bi-directional cross-modal projection
matching loss LtrueCMPM ¼ Ltrue

i2t þ Ltrue
t2i .

Similarly, we also adopt bi-directional cross-modal pro-
jection matching loss in the synthetic image and text fea-
tures. Finally, the CMPM scheme combines the loss terms of
both the true and synthetic common embedding features as

LCMPM
DA ðuRÞ ¼ Ltrue

CMPMðuRÞ þ LsynCMPMðuRÞ: (13)

3.2.3 Modal-Adversarial Consistency Learning

The above distribution alignment schemes consider the sta-
tistical property of the true and synthetic embedding features
of two modalities. Here, we further import the modal-
adversarial consistency learning, which focuses on reducing
the instance-level difference of the true and synthetic embed-
ding features in each modality. Note that this scheme is dif-
ferent from our previous ACMRmethod and the other cross-
modal GAN approaches that only focus on the true embed-
ding features. In particular, we introduce amodality discrim-
inator Dmð�Þ to distinguish the modality type of the
embedding features that are produced by the two regressors
Rv and Rt, while the two regressors attempt to produce con-
fusing embedding features with less difference between
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modalities, as an adversarial training style. The Dm consists
of a gradient reversal layer (GRL) [53] and several fully-con-
nected layers parameterized by uM , where theGRL is an iden-
tity transformation that makes the modality discriminator
and the two regressors follow an adversarial training style.

First, let fl�i gNS
i¼1 and f~l�jg

~NS
j¼1, where l�i , ~l

�
j 2 f0; 1g, � ¼ v; t

represent the modality labels that are assigned to the true
and synthetic embedding features fevigNS

i¼1; fetigNS
i¼1 and

f~evig
~NS
i¼1; f~etig

~NS
j¼1 of two modalities, respectively. Then the

modal-adversarial consistency loss on the true and synthetic
embedding features can be written by maximizing the pre-
dicted score ofDm and the modality labels, as

LADV ðuMÞ ¼ 1

NS

X
�¼v;t

XNS

i¼1
fsigmoidðDMðe�i Þ; l�i ; uMÞ

þ 1
~NS

X
�¼v;t

X~NS

j¼1
fsigmoidðDMð~e�i Þ; ~l�i ; uMÞÞ;

(14)

where fsigmoidðx; x̂Þ ¼ �ðxlog x̂þ ð1� xÞlog ð1� x̂ÞÞ is the
sigmoid cross entropy loss function. By maximizing LADV ,
the heterogeneity gap between two modalities in the com-
mon embedding space can be explicitly reduced. Besides,
the consistency of both the true and synthetic embedding
features across different modalities can also be enhanced.

3.2.4 Reconstructing Embedding Features With Cycle

Consistency

Recent studies [42], [54], [55] have shown that combining
the cycle-consistency constraints in data reconstruction is
surprisingly effective at learning the mapping across
domains. These works can effectively accomplish pixel-level
image-to-image translation between different domains,
even without explicitly labeled image pairs. Inspired by
these works, to further enhance the mutual associations
between the multimodal representations in the raw feature
space and the embedding features in the common embed-
ding space, we further extend the cycle consistency con-
straints to ensure the embedding feature reconstruction
procedure in a meaningful way. In particular, it is expected
that both the true and synthetic embedding features to
reconstruct back to their true class embeddings to form a
cycle-loop, where the class embeddings incorporate the
underlying relationship between two modalities. As a
result, the cycle consistency constraints in this work are for-
mulated by minimizing the reconstruction error as

LCYC ¼
X
�¼v;t

E½k c�R�ðG�ðc; z; uGÞ; uRÞ k22�

þ E½kc�Rvðv; uRÞk22� þ E½kc�Rtðt; uRÞk22�:
(15)

Notably, the true and synthetic features of two modalities
can be implicitly paired, since the regressors R� effectively
preserve the discriminability of the class embeddings in
these features. At this point, our JFSE approach is different
from our previous ACMR and other methods [14], [15], [38]
that require additional classification module to predict the
semantic labels of the embedding features. Moreover,
another advantage of using the cycle consistency constraints
in Eq. (15) is that the knowledge transfer across different

classes (e.g., seen and unseen classes) can be effectively
accomplished by the intermediate of class embeddings.
Therefore, it facilitates to learn more compact embedding
features for the target set multimodal data and improves
the performance on the zero-shot and generalized zero-shot
retrieval scenarios.

3.3 Optimization

Our JFSE is an end-to-end architecture that combines the
above four key components in the two procedures of multi-
modal feature synthesis and common embedding space
learning. Finally, the full objective function can be formu-
lated by integrating the related loss terms as

uG; uD; uR; uM ¼ argminuG;uRmaxuD;uMLcWGANðuG; uDÞ
þ bLDAðuG; uRÞ þ gLADV ðuMÞ þ �LCYCðuG; uRÞ:

(16)

Here LDA denotes the three alternative schemes LCMMD
DA ,

LCMCA
DA , and LCMPM

DA . The optimization algorithm for the loss
terms in Eq. (16) follows a mini-max game under the adver-
sarial training style. In practice, we utilize the stochastic gra-
dient descent optimization algorithms (e.g., Adam [56]
optimizer) to joint accomplish the above optimization pro-
cedure. The detailed training procedure of our JFSE method
is summarized in Algorithm 1.

Algorithm 1. Training of the Proposed JFSE Approach

Input: Source setOs ¼ fðvi; ti; yiÞgNS
i¼1, class-embeddings fcigCj¼1,

batch size B, the number of iterations T , hyper-parameters
b, g, �, and learning ratem.

1: repeat
2: Sample image-text pair fðvi; ti; yiÞgBb¼1 and class embed-

dings fcjgBb¼1 with batch.
3: while i < T do
4: Update uD  uD � mÏuDð�LcWGANÞ.
5: end while
6: Update uG by uG  uG � mÏuGðLcWGANþ bLDA þ gLADVþ

�LCYCÞ.
7: Update uR byuR  uR � mÏuRðbLDA þ gLADV þ �LCYCÞ.
8: Update uM by uM  uM � mÏuM gLADV .
9: until The loss function in Eq. (16) converges or reaches the

maximum iterations.
Output: The regressors Rvð�Þ and Rtð�Þ that can map the true

input features of images and texts to the common embed-
ding space, respectively.

3.4 Extension to Zero-Shot Retrieval

Since the classes in the source set and the target set have no
overlap for the zero-shot retrieval scenario, to narrow the
semantic gap between the classes in the two sets, we further
employ the distribution alignment schemes on both the syn-
thetic embedding features of the seen and unseen classes to
transfer knowledge via the class embeddings. Since the gen-
eralized zero-shot retrieval just differs from the zero-shot
retrieval on the testing stage, i.e., the test data of both seen
and unseen classes are incorporated in the target set, there-
fore, we can directly follow the same training procedure as
for the zero-shot retrieval.

Intuitively, though the true features of two modalities for
unseen classes are unavailable during training, we can still
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generate their synthetic features f~evk; ~etkg
~NT

k¼1 according to the
class embeddings of unseen classes. Take the distribution
alignment scheme CMMD (denoted in Eq. (5)) as instance,
we can adopt one or more of the three schemes CMMD,
CMCA, and CMPM to align the synthetic features of both
seen and unseen classes of two modalities in the common
embedding space, which can be formulated as the following
loss:

Lzero
DA ¼ Lseen

DA ðuG; uRÞ þ Lunseen
DA ðuG; uRÞ; (17)

where Lseen
DA ðuG; uRÞ denotes the domain adaptation loss in

seen classes defined in Eq. (5). The term Lunseen
DA ðuG; uRÞ for

unseen classes has the similar form as in Eq. (4), where the
f~evk; ~etkg

~NT

k¼1 are used.
Moreover, we also address the modal-adversarial consis-

tency learning to generate a modality-invariant embedding
features for both the seen and unseen classes, as

Lzero
ADV ðuMÞ ¼ Lseen

ADV ðuMÞ þ Lunseen
ADV ðuMÞ; (18)

where Lunseen
ADV ðuMÞ denotes the modal-adversarial loss in

unseen classes.
Similar to Eq. (15), now the cycle-consistency constraints

force the synthetic embedding features of both seen classes and
unseen classes to reconstruct their true class-embeddings.
Therefore, it would be beneficial for zero-shot and generalized
zero-shot retrieval scenarios since the knowledge can be trans-
ferred fromseen classes to unseen classes via the shared seman-
tics of class embeddings. The cycle-consistency constraints in
this case is formulated as

Lzero
CYC ¼ Lseen

CYCðuRÞ þ Lunseen
CYC ðuRÞ: (19)

Note that the final objective function for both zero-shot
and generalized zero-shot retrieval scenarios is to replace
Eqs. (5), (14) and (15) by Eqs. (17), (18) and (19) in Eq. (16),
respectively. The optimization procedure generally follows
the steps in Algorithm 1. Once the model parameters of the
regressors Rvð�Þ and Rtð�Þ are obtained, we can use the two
regressors to map the unseen cross-modal instances to gen-
erate their embedding features to perform both zero-shot
and generalize zero-shot retrieval.

4 EXPERIMENT

4.1 Experimental Setup

Datasets and Features. Following the existing cross-modal
GAN approaches, we adopt four widely-used cross-modal
datasets (i.e., Wikipedia [1], Pascal Sentences [57], NUS-
WIDE [58] and PKU-XMediaNet [24]) in the experiment. All
datasets consist of image-text pairs with manually anno-
tated class labels. Table 1 summarizes the general informa-
tion of the four datasets and the train/test data splits on
both standard and (generalized) zero-shot retrieval tasks.

Following the recent works [13], [14], [22], [28], we utilize
the deep neural networks (DNNs) models pre-trained on
large corpus of images and texts to extract compact feature
representations for the image and text modality data. Spe-
cifically, each image on all datasets is represented by a 4,096
dimensions convolutional neural network (CNN) feature
vector extracted from the 7th fully-connected (FC) layer in

the pre-trained 19-layer VGGNet [59] for all the compared
methods for fair comparison. In the standard retrieval, we
extract the 300 dimensional feature vector for each text
using the WordCNN (WCNN) [60] as in [15], [24]. In the
zero-shot retrieval, similar as the previous work [22], [25],
the text representations are the 300-dimensional feature vec-
tor extracted from the Doc2Vec [61] (DV) model pre-trained
on Wikipedia, and the 300-dimensional word-embeddings
for classes are extracted by Word2Vec [62] (WV) model pre-
trained on Google News. For a class label that has multiple
words, we take the averaged vector based on the word vec-
tors extracted for all words. In Table 1, we also list the dif-
ferent types of features used for different retrieval
scenarios, where “F (I)”, “F (T)” and “F (C)” denote features
for images, texts, and classes respectively. Besides, for
“Class” column, “*/*” denotes the number of seen and
unseen classes for zero-shot retrieval.

Retrieval Tasks and Evaluation Metrics. To comprehen-
sively evaluate the effectiveness of the proposed method,
we conduct three different cross-modal retrieval tasks on all
datasets, including standard retrieval, zero-shot retrieval,
and generalized zero-shot retrieval. Each task has two sub-
tasks: image-to-text (Img2Txt) and text-to-image (Txt2Img),
where one modality data is used as a query to match the
most related items in the other modality. The data split of
the three retrieval tasks is briefly illustrated in Fig. 4, and
their detailed settings are as follows:

Standard Retrieval. Like the traditional protocol adopted
in [1], [13], [14], [15], we the default data split provided by

TABLE 1
The General Statistics of the Four Datasets Under the Standard
(top panel) and Zero-Shot Retrieval (bottom panel) Scenarios

Datasets Train Test Class F (I) F (T) F (C)

Wikipedia 2,173 462 10 VGG WCNN -
Pascal Sentences 800 100 20 VGG WCNN -
NUS-WIDE 8,000 1,000 10 VGG WCNN -
PKU-XMediaNet 32,000 4,000 200 VGG WCNN -

Wikipedia 2,173 693 5/5 VGG DV WV
Pascal Sentences 800 200 10/10 VGG DV WV
NUS-WIDE 42,941 28,661 5/5 VGG DV WV
PKU-XMediaNet 32,000 8,000 100/100 VGG DV WV

Fig. 4. The training/test data split of each dataset on the three retrieval
scenarios, where the arrows with different colors represents the training
and test procedures for each scenario.
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each dataset for the standard retrieval task. Here both the
training and test sets contain all the classes in one dataset.
Note that the training set is used to learn the retrieval model
and the evaluation is conducted on the test set.

Zero-Shot Retrieval. Following the protocol in [25], [28],
[63], for each dataset, we integrate its original test set and the
validation set to form a test set in this retrieval task. To
ensure the disjoint and balanced classes between the seen
and unseen set, for each dataset, we take the image-text pairs
of one half (50 percent) classes as the seen set and those of the
remaining classes as the unseen set. As a result, the original
training set and test set in each dataset are respectively
divided into four subsets: seen class source set (SS), unseen class
source set (US), seen class target set (ST), and unseen class target
set (UT). Based on the new data split for zero-shot retrieval,
we conduct two retrieval modes: seen class retrieval and
unseen class retrieval. Specifically, for the seen class retrieval,
the seen class source set is used for training and the seen class
target set is considered as queries to retrieve on the seen class
source set during testing. For the unseen class retrieval, it
also uses the seen class source set for training but takes the
unseen class target set as queries to retrieve on the unseen
class source set during testing.

Generalized Zero-Shot Retrieval. For this retrieval task, the
seen class source set is still utilized for training. Differently,
as an extension of the above zero-shot retrieval task, we fur-
ther divide the seen class target set into two equal parts (i.e.,
50 percent each). Then each part is added to the unseen class
source set and unseen class target set, respectively, to form
the database set and the query set during testing. This data
split scheme ensures that both seen and unseen classes are
involved during retrieval, which is coherent with the proto-
col advocated in [26].

We adopt the standard metric of mean average precision
(MAP) score to evaluate the retrieval performance of all
methods on the two subtasks of Img2Txt and Txt2Img. MAP
is the mean value of Average Precision (AP) of each query,
where a larger MAP score indicates better retrieval perfor-
mance. Following [25], [28], we calculate the results of MAP
score on all returned instances on all the datasets. Besides,
following [2], [13], [14], we also use the precision-recall curve
(PR curve) as a complementary metric for the MAP score.
The PR curve can elaborately reflect the retrieval perfor-
mance with different cases of the returned instances. All the
experiments are performed on a workstation with two NVI-
DIAGeForce GTX 1080 Ti GPUs.

Details of Network. The proposed JFSE approach is imple-
mented by the popular deep learning toolkit Tensorflow. For
the two cWGAN modules, each generator of the image and
text pathways are built with two fully connected layers,
where the first layer is followed by a LeakyReLU activation
function layer and the second layer is followed by a ReLU
activation function layer. The numbers of hidden units of the
two FC layers are [4096, K�], where � ¼ v; t, and Kv ¼ 4096
andKt ¼ 300 are the dimensions of the input image and text
features, respectively. Each discriminator module is formed
by two FC layers with dimensions ½4096; 1�, and it maps the
embedding features into a real-valued confidence score to
distinguish the true or synthetic categories. Each regressor
for the image and text modalities contains three FC layers
with the number of hidden units as ½4096; 4096; 300�. Each FC

layer in the regressor following a ReLU layer. The modality
classifier is built with three FC layerswith the number of hid-
den units as ½300; 150; 1�.

The Adam optimizer with an initial learning rate of m ¼
0:0001 is used to train our proposed JFSE network, and the
mini-batch size is set to 64. We tune the hyper-parameters
b, g, and � on all datasets and provide the sensitivity analy-
sis of the three parameters in the later experiment (Fig. 10).

4.2 Baseline Experiments

First, we conduct two baseline experiments to investigate
the effectiveness of each component in our JFSE method.

4.2.1 Effect of Different Distribution Alignment

Schemes

In Section 3, we have developed three distribution align-
ment schemes CMMD, CMCA, and CMPM to capture the
cross-modal correlation on the statistical data distribution-
level. To comprehensively evaluate the effect of the three
schemes, we additionally take into account another two
widely used schemes on the pairwise instance-level, i.e.,
correlation similarity (COR) [15], [32] and triplet ranking
loss (TRIP) [13], [31]. In this experiment, we train our JFSE
model using each scheme individually or combinative in
the loss term LDA. The overall retrieval performance of our
JFSE method with the different distribution alignment
schemes on four datasets are shown in Table 2.

When considering the retrieval results of each scheme sep-
arately, we can observe that the three proposed schemes
CMMD, CMCA, and CMPMobtainmuch better retrieval per-
formance than those of the COR and TRIP schemes. It indi-
cates that modeling the cross-modal correlation on the data
distribution-level is more effective for common embedding

TABLE 2
Comparison of Different Distribution Alignment Schemes on All

Datasets
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space learning than on the pairwise instance-level. Among the
three proposed schemes, as the CMPM scheme shows supe-
rior overall performance to the other two schemes, we further
evaluate the performance of its combinations with the other
two schemes. The results of different combinative schemes
are shown in the last three rows in each panel of Table 2. It can
be seen that the results of the three combinative counterparts
are inferior to the results of the single CMPM scheme. Due to
the similar purpose of modeling the cross-modal correlation
on the data distribution-level, the three schemes may have
potential incompatibility and negative influence on each other
during model training. Based on the above observations, we
choose the best individual scheme of CMPM in our JFSE
method to compare with the other approaches for different
retrieval scenarios in all the latter experiments.

4.2.2 Effect of Each Key Components

To assess the impact of different components of JFSE on the
retrieval performance, we further design a baseline experi-
ment by disabling each loss term in Eq. (16) during training.

Table 3 shows the retrieval results of the original JFSE
and its six baseline experiments on all datasets, where �L�
represents a loss term that is excluded from the Lall during
training. We can observe that: 1) When excluding the cycle-
consistency constraints in JFSE, the baseline�LCYC obtains
the worst performance. The reason is that cycle-consistency
constraints can force the generated synthetic features to
reconstruct their class embeddings back by minimizing the
error between the class embeddings and their reconstructed
ones. As aforementioned in Eq. (15), it plays a similar role
as the classification loss adopted in existing cross-modal
GAN methods, which preserves the discriminability of the
embedding features in the common embedding space. 2)
The baseline�LcWGAN that excludes the key components of
the two cWGANs obtains the second-worst performance
among all comparison baselines, because multimodal fea-
ture synthesis network with two coupled cWGANs can gen-
erate meaningful multimodal features for robust training
and improving the common embedding space learning. 3)
The performance of the baseline�LDA that excludes the
CMPM loss is inferior to the full model, showing that an
advanced alignment scheme can effectively capture the

correlation between different modalities, as well as ensuring
the smoothness of the knowledge transfer in the common
embedding space. 4) When excluding the component of
modal-adversarial semantic learning (baseline�LADV ), the
retrieval performance drops significantly, showing the
importance of the modal-adversarial semantic learning on
making the embedding features discriminative for classes
while invariant for different modalities.

4.3 Comparison on Standard Retrieval

Compared Methods. We choose 15 state-of-the-art methods
for a comprehensive comparison with our proposed JFSE
approach. Specifically, CCA [1], CFA [34], KCCA [69], JRL
[66] and LGCFL [10] are traditional methods, while DNN-
based methods include Corr-AE [32], DCCA [12], CMDH
[37] Deep-SM [67], ACMR [13], CCL [14], CBT [68], MCSM
[31], CM-GANS [15] and DSCMR [38]. To ensure the fair
comparison, we use the source code published by the
authors of the comparison methods and use the same image
and text features as our JFSE approach. As the source code
of CBT [68] is unavailable, we directly report its results on
three other datasets except for the NUS-WIDE dataset. Since
different compared approaches are derived from different
hypotheses and built with diverse network architectures,
the properties of the learned common space (including the
dimension of the common space) in each approach are dif-
ferent. Nevertheless, we tune the optimal dimension of the
learned common embedding space for each method to
ensure that the best performance of each method is
obtained. Additionally, each comparison method performs
ten runs and the averaged MAP scores are reported.

Analysis on the Results. TheMAP scores of our JFSEmethod
with the comparedmethods on the four datasets are shown in
Table 4. Due to the strong nonlinear mapping ability of the
deep network, most DNN-basedmethods have better perfor-
mance than the traditional methods, and the CM-GAN
method achieves the best accuracy in all compared methods.
Nevertheless, the shallow method JRL performs better than
some DNN-based methods, because JRL uses a semi-super-
vised learning scheme with sparse regularization constraint.
It is notable that our proposed JFSE significantly outperforms
all the comparedmethods on all datasets in terms of the aver-
age MAP scores. Specifically, on the PKU-XMediaNet data-
set, our method improves the average MAP score from 0.627
to 0.696 compared to the compared method DSCMR. The
similar remarkable improvement can be observed on the
other three datasets, our JFSE approach still maintains its
advantage and achieves the best retrieval performance.

Based on the results reported in Table 4, our proposed JFSE
approach achieves the best retrieval performance attribute to
the following key factors: 1) a novel feature synthesis network
architecture that uses cWGANmodelwith semantic correlation
for robust training; 2) effective cycle-consistency constraints
that preserve the semantic compatibility to learn more robust
common embedding space; 3) an advanced distribution align-
ment scheme that fully captures the cross-modal correlation of
different modalities in the common embedding space; 4)
modality-adversarial learning that makes the embedding fea-
tures discriminative for classes but invariant for different
modalities to strengthen the cross-modal semantic consistency.

TABLE 3
Baseline Experiments for Standard Retrieval on All Datasets
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Furthermore, the PR curves of our JFSE method and sev-
eral counterparts on Wikipedia and PKU-XMediaNet data-
sets are demonstrated in Fig. 5. It can be observed that our
JFSE approach consistently maintains the highest accuracy
of all recall levels in the PR curves, which demonstrates the
effectiveness of our approach. Especially on the PKU-XMe-
diaNet datasets, the curve height greatly exceeds other com-
parison methods with a large margin. Besides, Fig. 6 further
demonstrates typical Img2Txt and Txt2Img retrieval exem-
plars obtained by our JFSE approach and two latest DNN-
based compared methods ACMR [13] and DSCMR [38] on
the PKU-XMediaNet dataset.

4.4 Comparison on Zero-Shot Retrieval

Compared Methods.We further compare our JFSE approach
with 14 state-of-the-art methods for zero-shot retrieval by
evaluating the unseen class retrieval performance. There

compared methods contains 5 latest approaches designed
for zero-shot retrieval task: DEMZSL [43], MASLN [27],
DANZCR [25], DADN [28] and TANSS [22]. Besides, we
also take 8 methods designed for the standard retrieval into
consideration, which are directly evaluated under the zero-
shot retrieval scenario. The overall comparisons for both
seen class retrieval and unseen class retrieval are shown in
Tables 5 and 6, respectively.

Results on Seen Class Retrieval. From Table 5, it can be seen
that the experimental results of the seen class retrieval show
similar trends compared to the standard retrieval. As the
seen classes of test data are included in the training set, the
MAP scores of the seen class retrieval are significantly
higher than the results of the unseen class retrieval. We can
clearly see that our JFSE approach consistently outperforms
all the counterparts, including both the traditional methods
and the DNN-based methods. The reason is that our JFSE
can synthesize effective multimodal features through two
coupled cWGANs with robustness training procedure, and
learns a common embedding space through distribution
adaptation to capture the correlation of cross-modal data.
Notably, on the large-scale PKU-XMediaNet dataset, our
JFSE obtains the highest average MAP score of 0.773 com-
pared with 0.761 from the best counterpart DSCMR.

Results on Unseen Class Retrieval. The overall comparison
of the unseen class retrieval is shown in Table 6. Unlike the
results on seen class retrieval scenario in Table 5, all the
methods obtain remarkably lower MAP scores on the
unseen class retrieval for all datasets. The reason is that the
data of unseen classes is unavailable during training, hence
degrades the extendability of the learned model on test data
of unseen classes. We can see that some traditional methods
achieve better results than DNN-based methods. For exam-
ple, on the Pascal Sentences dataset, the traditional method
KCCA achieves good performance and is superior to most
DNN-based methods. We also notice that TANSS obtains
the best retrieval accuracy on all datasets among the DNN-
based compared methods. Comparing with TANSS, our
proposed JFSE approach gains remarkable improvement
accuracy on all datasets. In particular, on the Wikipedia

Fig. 5. The precision-recall (PR) curves of standard retrieval results on
the Wikipedia and PKU-XMediaNet datasets.

TABLE 4
The MAP Scores of Standard Retrieval for Our JFSE Approach and Other Compared Methods on All Datasets

Methods Wikipedia Pascal Sentencess NUS-WIDE PKU-XMediaNet

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [1] (2010) 0.298 0.273 0.286 0.203 0.208 0.206 0.167 0.181 0.174 0.212 0.217 0.215
CFA [64] (2003) 0.319 0.316 0.318 0.476 0.470 0.473 0.406 0.435 0.421 0.252 0.400 0.326
KCCA [65] (2014) 0.438 0.389 0.414 0.488 0.446 0.467 0.351 0.356 0.354 0.252 0.270 0.261
JRL [66] (2014) 0.479 0.428 0.454 0.563 0.505 0.534 0.466 0.499 0.483 0.488 0.405 0.447
LGCFL [10] (2015) 0.466 0.431 0.449 0.539 0.503 0.521 0.453 0.485 0.469 0.441 0.509 0.475
DCCA [12] (2015) 0.445 0.399 0.422 0.568 0.509 0.539 0.452 0.465 0.459 0.425 0.433 0.429
Corr-AE [32] (2014) 0.442 0.429 0.436 0.532 0.521 0.527 0.441 0.494 0.468 0.469 0.507 0.488
CMDN [37] (2016) 0.487 0.427 0.457 0.544 0.526 0.535 0.492 0.542 0.517 0.485 0.516 0.501

Deep-SM [67] (2017) 0.478 0.422 0.450 0.560 0.539 0.550 0.497 0.478 0.488 0.399 0.342 0.371
ACMR [13] (2017) 0.468 0.412 0.440 0.538 0.544 0.541 0.519 0.542 0.531 0.536 0.519 0.528
CCL [14] (2018) 0.505 0.457 0.481 0.576 0.561 0.569 0.481 0.520 0.501 0.537 0.528 0.533
CBT [68] (2018) 0.516 0.464 0.490 0.602 0.583 0.592 - - - 0.577 0.575 0.576
MCSM [31] (2018) 0.516 0.458 0.487 0.598 0.598 0.598 0.533 0.561 0.547 0.540 0.550 0.545
DSCMR [38] (2019) 0.515 0.479 0.497 0.595 0.598 0.597 0.554 0.563 0.559 0.622 0.632 0.627
CM-GANS [15] (2019) 0.521 0.466 0.494 0.603 0.604 0.604 0.544 0.562 0.553 0.567 0.551 0.559
JFSE (Ours) 0.527 0.484 0.506 0.632 0.610 0.621 0.564 0.583 0.574 0.701 0.691 0.696
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dataset, our JFSE method improves the average MAP score
from 0.309 to 0.329 of TANSS; on the Pascal Sentencess data-
set, we can see that our JFSE consistently outperforms
TANSS with a clear margin; when turning to the large-scale
NUS-WIDE and PKU-XMediaNet dataset, our JFSE still
achieves the highest MAP scores in both Img2Txt and
Txt2Img subtasks. The best performance of our proposed
JFSE approach can be attributed to the jointly multimodal
feature synthesis and common embedding space learning
with an adversary can fully capture the cross-modal correla-
tion. Furthermore, the advanced distribution alignment pro-
cess effectively transfers the knowledge to unseen classes
and captures the correlations across modalities via cycle-
consistency constraints.

4.5 Comparison on Generalized Zero-Shot Retrieval

Finally, Table 7 shows the overall comparison results of our
JFSE method and the compared methods for generalized

zero-shot retrieval on Wikipedia and Pascal Sentences data-
sets. We can see that the generalized zero-shot retrieval task
is more challenging than the above zero-shot retrieval task,
since the MAP scores of all the methods in Table 7 are lower
than those in Tables 5 and 6. The reason is that the query
and database sets in this task contain instances from both
seen and unseen classes, making the learned models diffi-
cult to well distinguish the seen and unseen classes. We can
also observe that the DNN based approaches generally
have much better retrieval performance than the shallow
methods. Notably, among the DNN based approaches, the
MASLN, DADN, and TANSS that are specifically proposed
for the zero-shot retrieval task consistently outperform the
traditional approaches such as DCCA, ACMR, and DSCMR.
Nevertheless, our proposed JFSE method still obtains the
highest average MAP scores on the two datasets compared
with all the counterparts. It again validates the promising
generalization ability of JFSE for facilitating the knowledge
transfer among classes.

4.6 Further Analysis

Effect of Multimodal Feature Synthesis. In this experiment, we
utilize the t-SNE [70] tool to jointly visualize the distribution
of the true image and text features and the synthetic features
generated by two coupled cWGANs in common embedding
space. For small datasets such as Wikipedia and Pascal Sen-
tences, we utilize all the true image and text features in the
training set and generate the same quantity of synthetic fea-
tures. For the NUS-WIDE dataset, we randomly select the
true and synthetic features of 2,000 instances to form 4,000
samples containing both images and texts. It is notable that
since the PKU-XMediaNet dataset has 200 classes, which is
hardly informative to visualization, we randomly select 10
classes, and 200 samples per class, and finally form 4,000
samples in total for visualization. The visualization results of
themixture of true and synthetic cross-modal features on the
four datasets are shown in Fig. 7, where the circle and the
cross symbols represent the image and text modalities,
respectively.We can observe that the true and synthetic mul-
timodal features form compact clusters in the common
embedding space on each dataset, which verifies that our
JFSE can not only effectively generate semantically related
multimodal features, but also captured the cross-modal cor-
relations of different modalities.

Effect of Adversarial Learning. In order to investigate the
effectiveness of adversarial learning applied in multimodal
feature synthesis (i.e., in two cWGANs) and in common
embedding space learning, we visualize the distributions of
the embedding features of the NUS-WIDE test set in the
learned common embedding space. It can be observed from
Fig. 8b that the embedding features of two different modali-
ties of image and text form several discriminative and com-
pact clusters in the common embedding space. Furthermore,
the comparison between Figs. 8a and 8b indicates that fea-
ture synthesis network with cWGANs can generate enough
multimodal features for robust training to promote learning
the representation of different modalities.

Analysis on Class Embeddings. Since the class embeddings
are extracted from the pre-trained Word2Vec model and
they are fixed as input for modeling the training process, it

Fig. 6. Examples of the Img2Txt and Txt2Img retrieval results on PKU-
XMediaNet dataset by our JFSE approach as well as compared methods
DSCMR [38] and ACMR [13]. In these examples the groundtruth class
label for each query is presented for instruction. Besides, the true
matches and the incorrect retrieval results are marked in green and red
rectangles, respectively.
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is necessary to explore the impact of their dimension on the
retrieval performance. To this end, we conducted an

experiment by changing the dimension of the class embed-
dings before the model training procedure. As the initial
dimension of the class embeddings is 300, here we utilize
the dimension reduction tool of principal component analy-
sis (PCA) to reduce the dimension in the range of
½10; 20; 50; 100; 200; 300�. Fig. 9a shows the standard and
zero-shot retrieval results (average MAP scores) of our JFSE
method with different dimensions of class embeddings on
the Wikipedia dataset. It can be seen that when the dimen-
sion is reduced in the range of ½200; 100�, the retrieval results
of both two tasks reduce drastically, while the dimension is
in ½50; 10�, the results of both two tasks slightly increases. It
is notable that the best retrieval performances of two
retrieval tasks are obtained with the original dimension 300
without dimension reduction. Therefore, it indicates that
using the original class embeddings for model training is
beneficial and can avoid information loss when reducing
the dimension of the class embeddings.

Analysis on Unbalanced Data Split. As aforementioned in
Section 4.1, we use the balanced data split for all the dataset

TABLE 6
The MAP Scores of Zero-Shot Retrieval on Unseen Classes for Our JFSE Approach and Other Compared Methods on All Datasets

Methods Wikipedia Pascal Sentencess NUS-WIDE PKU-XMediaNet

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [1] (2010) 0.238 0.236 0.237 0.207 0.183 0.195 0.400 0.397 0.399 0.031 0.044 0.038
CFA [64] (2003) 0.275 0.285 0.280 0.270 0.294 0.282 0.410 0.355 0.383 0.058 0.071 0.065
KCCA [65] (2014) 0.279 0.288 0.284 0.310 0.321 0.316 0.402 0.413 0.408 0.040 0.057 0.049
JRL [66] (2014) 0.264 0.266 0.265 0.298 0.283 0.291 0.401 0.449 0.425 0.083 0.055 0.069
LGCFL [10] (2015) 0.261 0.258 0.260 0.273 0.258 0.266 0.396 0.422 0.409 0.062 0.064 0.063
DCCA [12] (2015) 0.282 0.266 0.274 0.297 0.264 0.281 0.406 0.407 0.407 0.039 0.043 0.041
Deep-SM [67] (2017) 0.265 0.258 0.262 0.276 0.251 0.264 0.401 0.414 0.408 0.040 0.096 0.068
ACMR [13] (2017) 0.276 0.262 0.269 0.306 0.291 0.299 0.407 0.425 0.416 0.036 0.043 0.040

DEMZSL [43] (2017) 0.310 0.239 0.275 0.308 0.318 0.313 0.396 0.466 0.431 0.104 0.122 0.113
MASLN [27] (2018) 0.284 0.264 0.274 0.307 0.294 0.301 0.411 0.426 0.419 0.040 0.045 0.043
DANZCR [25] (2018) 0.297 0.287 0.292 0.334 0.338 0.336 0.416 0.469 0.443 0.106 0.117 0.112
DSCMR [38] (2019) 0.312 0.280 0.296 0.327 0.319 0.323 0.473 0.482 0.478 0.096 0.051 0.074
DADN [28] (2020) 0.305 0.291 0.298 0.359 0.353 0.356 0.423 0.472 0.448 0.112 0.130 0.121
TANSS [22] (2020) 0.314 0.303 0.309 0.362 0.355 0.359 0.446 0.483 0.465 0.110 0.137 0.124

JFSE (Ours) 0.343 0.314 0.329 0.382 0.371 0.377 0.508 0.514 0.511 0.123 0.153 0.138

TABLE 5
The MAP Scores of Zero-Shot Retrieval on Seen Classes for Our JFSE Approach and Other Compared Methods on All Datasets

Methods Wikipedia Pascal Sentencess NUS-WIDE PKU-XMediaNet

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [1] (2010) 0.261 0.267 0.264 0.214 0.183 0.199 0.432 0.438 0.435 0.201 0.246 0.224
CFA [64] (2003) 0.464 0.457 0.461 0.594 0.590 0.592 0.466 0.475 0.471 0.344 0.346 0.345
KCCA [65] (2014) 0.421 0.520 0.471 0.493 0.497 0.495 0.423 0.482 0.453 0.289 0.328 0.309
JRL [66] (2014) 0.522 0.604 0.563 0.636 0.677 0.657 0.480 0.616 0.548 0.330 0.235 0.283
LGCFL [10] (2015) 0.510 0.586 0.548 0.592 0.638 0.615 0.459 0.529 0.494 0.314 0.315 0.315
DCCA [12] (2015) 0.448 0.446 0.447 0.511 0.507 0.509 0.428 0.430 0.429 0.203 0.206 0.205
Deep-SM [67] (2017) 0.674 0.872 0.773 0.728 0.841 0.785 0.680 0.667 0.674 0.731 0.650 0.691
ACMR [13] (2017) 0.674 0.863 0.769 0.726 0.756 0.741 0.604 0.702 0.653 0.704 0.651 0.678

DEMZSL [43] (2017) 0.614 0.855 0.735 0.713 0.811 0.762 0.594 0.630 0.612 0.692 0.651 0.672
MASLN [27] (2018) 0.678 0.872 0.775 0.728 0.759 0.744 0.624 0.712 0.668 0.712 0.657 0.685
DANZCR [25] (2018) 0.672 0.887 0.780 0.737 0.868 0.803 0.727 0.709 0.718 0.739 0.736 0.738
DSCMR [38] (2019) 0.697 0.902 0.800 0.766 0.874 0.820 0.769 0.778 0.772 0.757 0.765 0.761
DADN [28] (2020) 0.677 0.892 0.785 0.748 0.878 0.813 0.732 0.712 0.722 0.753 0.743 0.748
TANSS [22] (2020) 0.686 0.897 0.792 0.761 0.884 0.823 0.737 0.755 0.746 0.751 0.760 0.756

JFSE (Ours) 0.708 0.906 0.807 0.791 0.896 0.844 0.786 0.792 0.789 0.760 0.785 0.773

TABLE 7
The MAP Scores of Generalized Zero-Shot Retrieval for Our
JFSE Approach and Other Compared Methods on Wikipedia

and Pascal Sentences Datasets

Methods Wikipedia Pascal Sentencess

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [1] 0.134 0.118 0.126 0.129 0.141 0.135
KCCA [65] 0.187 0.173 0.180 0.166 0.182 0.174
JRL [66] 0.175 0.169 0.172 0.161 0.178 0.170
DCCA [12] 0.210 0.186 0.198 0.205 0.227 0.216
ACMR [13] 0.251 0.199 0.225 0.250 0.284 0.267

MASLN [27] 0.255 0.209 0.232 0.252 0.287 0.269
DSCMR [38] 0.247 0.215 0.231 0.268 0.255 0.277
DADN [28] 0.251 0.239 0.245 0.265 0.296 0.281
TANSS [22] 0.246 0.227 0.236 0.261 0.288 0.274

JFSE (Ours) 0.283 0.237 0.260 0.310 0.316 0.313
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for the zero-shot retrieval task, i.e., the numbers of the seen
and unseen classes are identical. Actually, we can vary the
ratio (denoted by r) of the seen and unseen classes to form
unbalanced data split for the training and test procedures.
To further investigate the effect of our proposed JFSE
method with unbalanced data split, we take the Wikipedia
dataset as a testbed, and set different values of r as ½2 : 8; 4 :
6; 5 : 5; 6 : 4; 8 : 2� with total 10 classes. Fig. 9b demonstrates
the unseen class retrieval results (average MAP scores) of
our JFSEmethod and several comparedmethods on different
ratios r of unbalanced data split. It can be observed that the
retrieval results of all the methods continue to increase with
larger r, as more data of seen classes can be used for model
training and benefit the knowledge transfer to the unseen
classes during testing. Nevertheless, the proposed JFSE
approach consistently outperforms the four compared
approaches for all cases of r, showing its advance on handing
the unbalanced data split for model training and improving
the performance in generalized zero-shot retrieval scenario.

Analysis on Parameter Sensitivity. In this experiment, we
explore the impact of the key parameters on our JFSE
approach. Specifically, we still take the Wikipedia dataset as
the testbed to assess the effects of the hyper-parameters b,
g, and � in Equ. (16) for stand retrieval task. Specifically, we
set the value of each hyper-parameter in the range of [0.001,
1000], and we keep the value of one parameter unchanged
and tune the value of the other parameters each time.
Besides, we also investigate the effect of the dimension m of

the noise inputs (zv and zt) in the two cWGAN modules by
setting its range in ½50; 400�.

The first three subfigures in Fig. 10 shows the sensitivity
analysis of the three parameters of our JFSE method, respec-
tively. We can see that the average MAP scores are sensitive
to the values of the three parameters and the degree of the
sensitivity varies with different parameters. For b, g, when
the value of the hyper-parameter is too large (e.g., nearby
10), the performance is seriously degraded, while the value
of the hyper-parameter � is too small, the performance also
dramatically drops. The best average MAP scores are
obtained by our JFSE when b, g, and � are in the range of
½0:01; 1� on the Wikipedia dataset. Therefore, we can effec-
tively tune the optimal values of the parameters via valida-
tion of different datasets in practice. Moreover, the
dimension m of noise input in each cWGAN will directly
affect the quality of the generated features. From the results
shown in Fig. 10d, we can see that our JFSE approach
achieves the best accuracy at the dimension of noise around
the class embeddings (i.e., 300) on both the Wikipedia and
Pascal Sentences datasets.

Furthermore, as the number of the synthetic features ~NS

is flexible in our method, we further vary ~NS ¼

Fig. 7. The t-SNE results for the chosen data on four datasets. Clusters
with different colors are from different classes.

Fig. 8. The t-SNE visualization for with/without adversarial learning of
JFSE on NUS-WIDE dataset.

Fig. 10. A sensitivity analysis of the hyper-parameters of our JFSE
approach on Wikipedia dataset.

Fig. 9. Experiments of our JFSE method with (a) different dimensions of
the class embeddings and (b) different ratios of the seen and unseen
classes on Wikipedia dataset.
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NS; 2NS; . . . ; 5NS to investigate its impact on the final per-
formance of JFSE, where NS is the number of the true
image/text features. Fig. 11a shows the retrieval result of
various ~NS on Wikipedia dataset. We can observe that with
a considerable number of synthetic features, the perfor-
mance of JFSE increases, and when ~NS ¼ 2NS , it obtains the
best MAP scores. Nevertheless, when adding more syn-
thetic features (e.g., ~NS ¼ 4NS; 5NS), the performance
decreases as too many synthetic features may deteriorate
the model on modeling the true features. Indeed, the valid
number of synthetic features is highly dependent on the sta-
tistics of the specific dataset, thereby it is flexible for us to
control the quantities of the synthetic features to learn a
more effective model. Finally, in Fig. 11b), we also demon-
strate the MAP scores of the error bar for standard retrieval
on all datasets. We can observe that our JFSE approach is
stable and insensitive to the random initialization of the net-
work parameters.

Analysis onModel Convergence and Complexity. In this experi-
ment, we also conduct convergence experiments for our JFSE
approach to assess its training efficiency. The curve on the loss
values for the different modules of the generators, discrimina-
tors, and regressors of JFSE on the Wikipedia and NUS-WIDE
datasets are shown in Fig. 12. In the initial training phase, the
synthetic features produced by the generator are very different
from the true features, so the discriminator can distinguish
them well, which shows the unstable vibration of the genera-
tor, while the discriminator get a smooth downtrend. With
more training iterations, the capability of the generator is
improved, so the discrimination task for the discriminator
becomes difficult, and the performance of the discriminator
declines. Finally, both the generator and the discriminator
reach a balanced state, and the network converges. Further-
more, the loss curve of the regressor loss has always shown an

overall downward trend,which proves that our JFSE can effec-
tively learn the common embedding space across different
modalitieswith the supervision of class embeddings.

Notably, we have also recorded the time consumption
(both training and test processes) of the proposed JFSE
methods and other compared methods. In particular, our
JFSE approach needs around 80 and 840 seconds to reach
model convergence during training on the small Wikipedia
dataset and large PKU-XMediaNet dataset, respectively. It
is more efficient than the other cross-modal GAN-based
approaches DADN and TANSS that generally require over
100 and 1,000 seconds on the two datasets, respectively. The
reason is that our JFSE method has less GAN modules and
less complicated network structure than the DADN and
TANSS methods. Regarding the retrieval efficiency during
the test phase, these cross-modal GAN approaches as well
as our JFSE method have similar time consumption since
the optimal dimension of the common features are identical
(i.e., 300 in our experiment). In practice, the retrieval process
of these cross-modal GAN approaches are considerably effi-
cient, i.e., less than one second for hundreds of test instances
on Wikipedia and less than 100 seconds for thousands of
test instances on PKU-XMediaNet, respectively.

5 CONCLUSION

In this paper, we revisited the adversarial learning in exist-
ing cross-modal GAN approaches for cross-modal retrieval.
We further proposed a novel method termed Joint Feature
Synthesis and Embedding, which is an essential extension
and improvement of our previous ACMR method of the
conference version. It comprehensively inherits the merit of
ACMR and other cross-modal GAN approaches and makes
sufficient twists that boost the effectiveness for cross-modal
retrieval. We conducted extensive experiments on four
widely-used cross-modal datasets and provided insightful
analysis of our JFSE method compared with a bundle of
existing approaches on both the standard, zero-shot, and
generalized zero-shot retrieval scenarios. The experimental
results and the ablation study fully demonstrate the superi-
ority of our JFSE method on all retrieval scenarios, where
the effectiveness of the key components in JFSE (e.g., multi-
modal feature synthesis, three distribution alignment
schemes, and cycle-consistency constraints) are validated.

For future work, we will further leverage the multimodal
feature synthesis scheme to select relevant unlabeled true
images or texts for boosting the common embedding space
learning. Besides, alternative side information such as
knowledge graph will be leveraged to improve the knowl-
edge transfer scheme for zero-shot and generalized zero-
shot retrieval scenarios.
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