

Delft University of Technology

Cerebron
A Reconfigurable Architecture for Spatio-Temporal Sparse Spiking Neural Networks
Chen, Qinyu ; Gao, Chang; Fu, Yuxiang

DOI
10.1109/TVLSI.2022.3196839
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Citation (APA)
Chen, Q., Gao, C., & Fu, Y. (2022). Cerebron: A Reconfigurable Architecture for Spatio-Temporal Sparse
Spiking Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(10), 1425
- 1437. https://doi.org/10.1109/TVLSI.2022.3196839

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVLSI.2022.3196839
https://doi.org/10.1109/TVLSI.2022.3196839

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022 1425

Cerebron: A Reconfigurable Architecture for
Spatiotemporal Sparse Spiking Neural Networks

Qinyu Chen , Member, IEEE, Chang Gao , Member, IEEE, and Yuxiang Fu , Member, IEEE

Abstract— Spiking neural networks (SNNs) are promising1

alternatives to artificial neural networks (ANNs) since they2

are more realistic brain-inspired computing models. SNNs have3

sparse neuron firing over time, i.e., spatiotemporal sparsity; thus,4

they are helpful in enabling energy-efficient hardware inference.5

However, exploiting the spatiotemporal sparsity of SNNs in6

hardware leads to unpredictable and unbalanced workloads,7

degrading the energy efficiency. Compared to SNNs with sim-8

ple fully connected structures, those extensive structures (e.g.,9

standard convolutions, depthwise convolutions, and pointwise10

convolutions) can deal with more complicated tasks but lead11

to difficulties in hardware mapping. In this work, we propose12

a novel reconfigurable architecture, Cerebron, which can fully13

exploit the spatiotemporal sparsity in SNNs with maximized14

data reuse and propose optimization techniques to improve the15

efficiency and flexibility of the hardware. To achieve flexibility,16

the reconfigurable compute engine is compatible with a variety of17

spiking layers and supports inter-computing-unit (CU) and intra-18

CU reconfiguration. The compute engine can exploit data reuse19

and guarantee parallel data access when processing different20

convolutions to achieve memory efficiency. A two-step data21

sparsity exploitation method is introduced to leverage the sparsity22

of discrete spikes and reduce the computation time. Besides,23

an online channelwise workload scheduling strategy is designed24

to reduce the latency further. Cerebron is verified on image25

segmentation and classification tasks using a variety of state-of-26

the-art spiking network structures. Experimental results show27

that Cerebron has achieved at least 17.5× prediction energy28

reduction and 20× speedup compared with state-of-the-art field-29

programmable gate array (FPGA)-based accelerators.30

Index Terms— Field-programmable gate array (FPGA),31

spiking neural network (SNN), workload balancing.32

I. INTRODUCTION33

OVER the past decade, the revolution of deep neural34

networks (DNNs) has led to the state-of-the-art per-35

formance on various tasks, such as image classification [1],36

Manuscript received 25 January 2022; revised 1 June 2022 and 11 July
2022; accepted 2 August 2022. Date of publication 16 August 2022; date of
current version 27 September 2022. This work was supported in part by the
Science and Technology Commission of Shanghai Municipality under Grant
21DZ1100500 and in part by the Shanghai Frontiers Science Center Program
under Grant 2021-2025 No. 20. (Qinyu Chen and Chang Gao are co-first
authors.) (Corresponding author: Qinyu Chen.)

Qinyu Chen is with the Institute of Photonic Chips, University of
Shanghai for Science and Technology, Shanghai 200093, China (e-mail:
qinyu@usst.edu.cn).

Chang Gao is with the Department of Microelectronics, Delft University of
Technology, 2628 CD Delft, The Netherlands.

Yuxiang Fu is with the School of Electronic Science and Technology,
Nanjing University, Nanjing 210093, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2022.3196839.

Digital Object Identifier 10.1109/TVLSI.2022.3196839

semantic segmentation [2], and object detection [3]. However, 37

DNNs are computational-intensive. They have high compu- 38

tational complexity and tremendous parameters, leading to 39

a large memory footprint and power budget and are diffi- 40

cult to be deployed on resource-constrained platforms. DNN 41

compression methods [4] and dedicated, efficient hardware 42

accelerators [5], [6], [7], [8] were explored to deal with 43

this problem. Network compression methods include data 44

quantization [9], [10], sparsity exploration [11], [12], and 45

compact model design [13], [14]. MobileNet [13], [15] as a 46

typical representative of compact models, adopts depthwise 47

separable convolution (DSC), which can achieve a comparable 48

accuracy with much fewer multiply-and-accumulation (MAC) 49

operations and parameters. To further improve throughput 50

and energy efficiency, dedicated hardware accelerators for 51

compact models [7], [8] were designed to explore computing 52

parallelism and efficient memory organization. 53

Another way to enhance energy efficiency is to use spik- 54

ing neural networks (SNNs). Compared to continuous-valued 55

DNNs, SNNs adopt an event-driven computing mechanism 56

(i.e., the membrane potentials of neurons are updated only 57

when the input spikes arrive); thus, they have inherent spa- 58

tiotemporal sparsity brought by discrete binary spikes [16] 59

and can achieve high energy efficiency by replacing multibit 60

MAC operations by additions. Existing works, such as IBM 61

TrueNorth [17], Intel Loihi [18], and Tianjic [19], have shown 62

that event-based SNNs can be efficiently implemented in 63

custom hardware. 64

It is believed that the ultimate advantage of SNNs comes 65

from their ability to fully exploit spatiotemporal event-based 66

information [16]. Previous works have shown that SNNs can 67

achieve competitive accuracy compared with nonspiking coun- 68

terparts for some complicated image segmentation and image 69

classification tasks [20], [21], [22], [23]. However, modern sil- 70

icon implementations of SNNs still lag behind DNNs, mainly 71

featuring lower throughput and higher energy per neuron [24]. 72

The spatiotemporal event-based information processing para- 73

digm leads to spatiotemporal sparsity in the networks. Exploit- 74

ing spatiotemporal sparsity in hardware design usually leads 75

to unpredictable and unbalanced workloads, and potentially 76

irregular and redundant memory access, thus degrading effi- 77

ciency. Besides, the inputs need to be received and processed 78

across several time steps, which leads to repeated data accesses 79

and longer processing time. Therefore, exploiting parallelism 80

in SNNs is more challenging than DNNs. Current SNN 81

accelerators mainly focus on accelerating traditional network 82

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5356-537X
https://orcid.org/0000-0002-3284-4078
https://orcid.org/0000-0003-1351-5460

1426 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

structures such as multilayer perception [25], [26], which are83

difficult to meet the requirements of increasingly complex84

applications in terms of performance and efficiency.85

Therefore, we are motivated by these findings to design a86

reconfigurable architecture for SNNs, called Cerebron, target-87

ing high flexibility and efficiency. Cerebron can further lever-88

age flexibility to achieve higher efficiency. For example, Cere-89

bron can use both event-driven characteristics (spatiotemporal90

sparsity exploitation) and compact model structures (DSC) to91

achieve higher efficiency. We also propose several optimiza-92

tions to achieve high performance and low hardware overhead.93

The main contributions are:94

1) To obtain flexibility, a reconfigurable compute engine95

with inter-computing-unit (CU) reconfiguration and96

intra-CU reconfiguration is proposed to support various97

spiking layers, covering operations in various hybrid-98

NNs. The compute engine is also designed to exploit99

data reuse and guarantee parallel data access when100

processing different types of convolution to achieve high101

memory efficiency.102

2) To reduce the computation time, a two-step data sparsity103

exploration method is introduced to leverage the spar-104

sity of discrete spikes. Besides, an online channelwise105

workload scheduling method is proposed to reduce the106

latency further.107

3) The proposed design is implemented on a Xilinx108

XC7Z100 field-programmable gate array (FPGA) and109

verified by image segmentation and classification tasks.110

Results show at least 17.5× prediction energy reduction111

and 20× speedup achieved by Cerebron compared with112

state-of-the-art FPGA-based accelerators.113

II. PRELIMINARIES AND MOTIVATIONS114

A. Neuron Model for SNN115

The integrated-and-fire (IF) neuron model is used in this116

work. Assume that at time step t , the IF neurons in layer l117

receive binary input spikes �l(t), and the update mechanism118

of the temporary membrane potential of neurons is given by119

V l
temp(t + 1) = V l(t) + W l�l(t) (1)120

where V l(t) is the membrane potential at time step t , V l
temp(t+121

1) is the intermediate variable from V l(t) to V l(t + 1), Vth is122

the voltage threshold, and W l is the synaptic weight, which123

can signify the connection between neurons.124

If V l
temp(t +1) exceeds a predefined threshold Vth, an output125

spike �l(t + 1) will be produced. The membrane poten-126

tial at t + 1 would be updated by the reset-by-subtraction127

method [27]. The updating rules are described as128

�l+1(t) = U
(
V l

temp(t + 1) − Vth
)

(2)129

where U(x) denotes a unit step function. As shown in Fig. 1,130

SNNs are organized in cascaded layers and are executed over131

time steps with inputs encoded in spike trains. The spikes132

propagate through the network until reaching the output.133

Fig. 1. SNN topology and spiking neural dynamics.

Fig. 2. Different kinds of convolutions.

B. Depthwise Separable Convolutions 134

DSC [28] factorizes the standard convolution into a depth- 135

wise convolution and a pointwise convolution. Fig. 2 describes 136

how standard, depthwise, and pointwise convolution work. 137

In the standard convolution, the input feature map has to do 138

a convolution with F filters with a size of K × K × C . 139

The DSC comprises two steps. The first step is the depthwise 140

convolution, where only 2-D convolution is performed on each 141

input channel individually with K × K kernels. The second 142

step is the pointwise convolution, which can be regarded as 143

a standard convolution with 1 × 1 kernels. Compared to 144

standard convolution, DSC considerably reduces the number 145

of operations and parameters. One of the typical applications 146

of DSC is the compact model MobileNet, which can be run 147

much faster than traditional DNNs. 148

C. Spatiotemporal Sparsity and Event-Based 149

Workloads in SNNs 150

In traditional DNNs, sparsity exists both in weights and 151

feature maps. Some state-of-the-art pruning methods can 152

significantly increase the weight sparsity in networks with 153

comparable accuracy. Feature sparsity is the zeros existing 154

in the feature maps and is mainly caused by the activation 155

function (e.g., ReLU). The sparsity level is defined by the 156

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1427

Fig. 3. Spike activity of a spiking convolution layer when running 28 ×
28-16c5-32c3-8c1(branch1)-10c3(branch2)-fc network on MNIST dataset.

fraction of zeros in filters or features. Operations involved157

with zeros have no impact on the final results and thus can be158

skipped to reduce computational workloads. In DNNs, sparsity159

only exists in the spatial dimension.160

In contrast, SNNs run over multiple time steps. The sparsity161

exists not only spatially across neurons but also temporally162

over time steps, i.e., spatiotemporal sparsity. In SNNs, weight163

sparsity has the same definition as that of DNNs. However,164

feature sparsity is not present in SNNs but replaced by the165

neuron state sparsity caused by discrete spikes. The neuron166

state is binary, where 1 denotes that a spike is produced and167

its fan-out connections are active, 0 denotes no spike produced,168

and its fan-out connections are inactive. As mentioned before,169

a spike is only produced when the accumulated membrane170

potential exceeds a predefined threshold. The spike rate of171

SNNs is defined as the fraction of neurons that produce a spike172

across all time steps, which directly affects the sparsity level.173

Fig. 3 shows the spike activity of a convolution layer when174

running on samples in the MNIST dataset. Most neurons do175

not fire at each time step, showing high-level spatiotemporal176

sparsity (∼93%).177

SNNs have intrinsically event-driven workloads since the178

workload associated with a layer strongly relates to the spike179

rate of neurons and the number of active fan-out connections180

per neuron [24]. The dynamic, active connections between181

neurons introduce an unpredictable workload pattern. Fig. 4182

shows the input neuron state maps of different channels.183

We found that the spike rate varies considerably among these184

input channels. The unbalanced spike rates among the input185

channels will correspondingly lead to unbalanced workloads.186

In summary, due to weight pruning and the randomness of187

input spikes, the sparsity is irregular and unpredictable, which188

is difficult for accelerators to leverage. Besides, the unbalanced189

workload caused by the sparsity will reduce the hardware190

efficiency.191

III. RELATED WORK192

SNNs are intensive in computing and data access. A variety193

of SNN acceleration methods have been designed to improve194

the efficiency of SNN computation and can be categorized195

into three types. The first type is to deploy SNNs on com-196

mercial platforms such as GPUs [29], [30], [31]. However,197

Fig. 4. Demonstration of the workload. (a) Spike summation of different
channels. (b) Spike rate distribution of different channels in a certain CONV
layer. The data are collected during segmenting a frame in a driving video,
and the output is the segmentation mask for the road.

GPUs can only achieve maximum efficiency when having 198

a large amount of parallelizable computation and memory 199

access, which is in contrast with the event-driven nature of 200

SNNs. The second direction is to build specific hardware 201

for SNNs [17], [18], [19], [24], [32], [33], [34], [35], [36], 202

[37], [38], [39], [40], [41]. In this direction, various SNN 203

hardware implementations have recently been proposed, which 204

can be divided into two categories in terms of topologies: 205

general mesh and feedforward [42]. For the general mesh, 206

existing large-scale neuromorphic hardware systems, such as 207

IBM TrueNorth [17], Intel Loihi [18], and Tianjic [19], can 208

support a mesh of neurons by routers and schedulers. The 209

SNN networks are distributed among the neurocores, and each 210

neurocore is responsible for storing a portion of the weights 211

and computing that portion of the SNN topology. These 212

accelerators are biologically plausible but usually need large 213

area costs. Some accelerators (e.g., SIES [43], S2N2 [36], 214

and Spinalflow [24]) choose the feedforward approach. Their 215

neurocores are arranged in a cascaded fashion or configurable 216

processing element (PE) array. The accelerators belonging to 217

this kind require less area cost and achieve higher computing 218

resources utilization. Our work Cerebron also falls into this 219

category and is also largely complementary. The third category 220

is to explore emerging devices or materials that can be adapt- 221

able to the event-driven properties of SNNs, e.g., optics [44], 222

[45], memristors [46], [47], and spintronics [48], [49]. Using 223

the property of novel devices or materials may potentially 224

boost efficiency. For example, Feldmann et al. [45] designed 225

a fully optical neuromorphic framework for implementing 226

SNNs using phase-change materials, presenting a photonic 227

neural network consisting of four neurons and 60 synapses. 228

Singh et al. [49] built an ultralow-power architecture NEB- 229

ULA for SNNs and artificial neural networks (ANNs) infer- 230

ence using a spintronics-based magnetic tunnel junction neu- 231

ron model. 232

IV. ARCHITECTURE DESIGN AND DATA PROCESSING 233

A. Architecture Overview 234

The top-level architecture of Cerebron is shown in Fig. 5. 235

It is composed of a controller, on-chip buffers, an address 236

generator, and a compute engine. The on-chip buffer caches 237

neuron states, membrane potential (VMEM), and synaptic 238

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

1428 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Fig. 5. Proposed system architecture.

weights. A Xilinx Direct Memory Access (DMA) IP block239

controlled by the host is used to manage the I/O communica-240

tions between the accelerator and the host. Input neuron states241

are streamed to the accelerator and stored in the neuron state242

buffer. The address generator produces the addresses of the243

corresponding weights and membrane potentials. The compute244

engine also consists of a CU array, a data collection unit, and245

a workload scheduling unit.246

In the compute engine, the CU array has M × N CUs,247

and each CU is primarily composed of L PEs. The CU248

array is designed to be compatible with standard convolutions,249

depthwise convolutions, and pointwise convolutions to obtain250

versatility and flexibility. It is also optimized to support251

three kinds of data reuse: weight reuse, input neuron state252

reuse, and overlap reuse, which can vastly reduce memory253

access and eliminate the memory access conflict problem. The254

data collection unit contains multiple first input–first outputs255

(FIFOs) and register files to buffer data. The input neuron256

states and synaptic weights are loaded into the CU array to257

realize weight reuse and feature reuse. The overlap reuse is258

processed by transmitting overlaps in the data collection unit.259

The realization of data reuse by the data collection unit is260

further discussed in Section IV-D. The workload scheduling261

unit accumulates the spikes generated by CUs in each column262

to record the spike summation of each output channel, i.e.,263

the spike summation of each input channel in the subsequent264

convolution. By comparing the spike summations of different265

input channels, the workload in the convolution can be sched-266

uled channelwisely to obtain the balance.267

B. Reconfigurable Compute Engine268

1) Inter-CU Reconfiguration: The systolic array is a spe-269

cialized network of homogeneous PEs designed to process270

massive parallel computations [50]. In a typical systolic array,271

PEs get their inputs from neighboring PEs without frequently272

accessing data from memory. This is why the systolic array273

can achieve high throughput with relatively low memory274

bandwidth. Due to this advantage, many previous works adopt275

systolic arrays with output stationary dataflow for accelerating276

DNNs [51], [52]. However, the naive systolic array with277

output stationary dataflow has some shortcomings. On the one278

Fig. 6. Reconfigurable CU array with (a) systolic mode and (b) unicasting
mode.

hand, it is not suitable for processing all kinds of convolution 279

operations. For example, from a data reuse perspective, the 280

depthwise convolution cannot be processed in a naive systolic 281

manner because each 2-D input feature map is only convolved 282

with one filter; in other words, PEs cannot get inputs from 283

their neighboring PEs. Only the PEs in the first column are 284

busy, resulting in a considerable reduction of the utilization 285

ratio and degrading the performance. On the other hand, 286

the naive systolic array cannot fully exploit the parallelism 287

in neural networks. Each PE undertakes a convolution com- 288

putation, limiting the parallelism on sliding input windows’ 289

dimensions, such as channel dimension or vector dimension. 290

Previous works [7], [8] designed configurable adder trees 291

to support different convolutions and exploit the inherent 292

parallelism in convolutions. The reconfigurable adder tree can 293

be reconfigured to process x additions, each adding y input 294

data simultaneously, making it compatible with the parallelism 295

in various convolutions. However, this parallelism brought by 296

adder trees might result in the difficulty of processing sparsity. 297

In this work, we design a reconfigurable CU array to 298

support different convolutions and exploit the parallelism. 299

Our computing structure combines the advantages of the 300

systolic array and adder tree-based structure, exploiting higher 301

parallelism and keeping flexible and sparsity friendly. The 302

proposed reconfigurable CU array can be reconfigured to 303

different modes by changing the connections from the data 304

collection unit to each CU and between neighboring CUs. 305

Fig. 6 describes the details of the two reconfigurable modes, 306

including systolic mode and unicasting mode. In the systolic 307

mode [Fig. 6(a)], the input neuron state maps are loaded from 308

FIFOs in the data collection unit. They are sent to the CU array 309

from the left input port and horizontally shifted to the CUs. 310

The output neuron states and updated membrane potentials 311

are shifted to the right edge of the array. Each CU column 312

has a weight bus, which is connected to a group of register 313

files. The weight bus broadcasts the weights to CUs in this 314

column. In the unicasting mode [Fig. 6(b)], each CU has its 315

own connection to the register files, and the input neuron state 316

maps can be directly loaded from the register files in the 317

data collection unit. In this way, depthwise convolution can 318

be deployed on the CU array while keeping all the CUs busy. 319

2) Intra-CU Reconfiguration: Within a CU, the PE 320

can be reconfigured to support both different functions 321

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1429

Fig. 7. Reconfigurable PE: (a) PE architecture, (b) datapath under average-pooling mode, (c) datapath under stand-alone convolution mode, and (d) datapath
under cascade convolution mode.

according to the configuration word mode, which includes322

the average-pooling mode [Fig. 7(b)], stand-alone convo-323

lution mode [Fig. 7(c)], and cascade convolution mode324

[Fig. 7(d)]. Under the average-pooling mode, PEs can exe-325

cute the average-pooling function independently. Under the326

stand-alone convolution mode, PEs can undertake the convolu-327

tion independently, mainly used in the depthwise convolution.328

Under the cascade convolution mode, PEs are configured to329

work with other PEs in the same CU to process the convo-330

lution, adopted in the standard and pointwise convolutions.331

The cascade convolution mode obtains the parallelism on the332

channel dimension.333

As shown in Fig. 7(a), the PE mainly consists of an accumu-334

lator and several comparators. Most of these units are reused335

in different modes. Therefore, the unused PE area is relatively336

small. The PE structure can be decomposed into three mod-337

ules: data selecting, integrating, and output forwarding. The338

data selecting module selects the nonzero data to support zero339

skipping, thus reducing operations and power consumption.340

The integrating module performs the accumulation. In the341

stand-alone and cascade convolution modes, the inputs of the342

accumulation are the synaptic weights from the aligned pairs,343

while in the average-pooling mode, the inputs are the input344

neuron states from the aligned pairs. The aligned pair denotes345

the pair where the input neuron states and weights are both 346

nonzero data. The output forwarding module is designed for 347

the cascade convolution mode. Since the sparsity is irregular, 348

the workload of each PE might not be equal, and the output 349

forwarding module works as an output regulator to arrange the 350

transmission of the partial sums between PEs. Within a CU, 351

the output enable signal from the next PE En_next will be 352

transferred to the current PE and works together with the local 353

output result enable signal En_local to determine when the 354

output enable signal En_Psum_next of the current PE should 355

be forwarded to the next PE. 356

C. Two-Step Data Sparsity Exploitation 357

The nonzero aligned data pairs should be extracted before 358

accumulating to exploit both input neuron state sparsity and 359

weight sparsity. The operations involved with zero operands 360

should be skipped to save energy and processing time. 361

Some works first compressed the data using popular sparse 362

encoding formats, e.g., CSC [5], ECOO [50], and then 363

extracted and compared the indices of nonzero features and 364

weights to get the nonzero aligned data pairs. However, SNNs 365

are not suitable for encoding binary neuron states since the 366

indices of nonzero data lead to high memory overhead since 367

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

1430 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Fig. 8. Proposed two-step data sparsity exploitation.

they require multiple bits [36]. The previous work [35] adopted368

a one-step sparsity exploitation method to skip the input369

neuron state sparsity. The addresses of weights that correspond370

to the nonzero neuron state are calculated, and the weights371

are read from the buffers in one step. However, this requires372

several copies of the weights; otherwise, it will lead to memory373

access conflict. PEs in the same column receive different rows374

of input neuron states to reuse filters. However, the various375

sparsity existing in these neuron state rows leads to different376

weight addresses, thus leading to conflicts.377

In this work, a two-step data sparsity exploitation method378

is proposed to overcome the limitations. As shown in Fig. 8,379

we take a pointwise convolution example to illustrate how380

the two-stage data sparsity exploitation method works. In the381

first stage, two 1-D input neuron state vectors with length C382

are formed to two C-bit index signals “00010001” and383

“10100000” and loaded to the data collection unit.384

The two index signals will be dispatched to PE (0, 0) and385

PE (1, 0) in the CU array. Meanwhile, in the second stage, the386

starting address of each input spike vector is sent to the address387

generator to calculate the corresponding weight address. In this388

way, the weight vectors “w00w10w2w30w4” are read from the389

weight buffer and transmitted to the register files in the CU390

array. The index signals and the weight vector are adopted as391

mutual masks to determine the weights that have the exact392

location of aligned pairs, where both the index and weight393

are nonzero data. Within one clock cycle, the nonzero data394

will be filtered out, saved to the register file, and waiting to395

be accumulated. In the PE (0, 0), only the synaptic weight396

w4 is filtered out to accumulate; in the PE (1, 0), the synaptic397

weights w0 and w1 are filtered out.398

In such an approach, memory access conflicts are avoided399

when reusing weights. Furthermore, the CU array mainly400

involves accessing small register files instead of frequently401

accessing large buffers [static random access memory402

(SRAM)]. The energy efficiency could be improved accord-403

ingly.404

D. Data Reuse Supporting Different Convolutions405

Different convolutions usually involve different accumula-406

tion patterns, which brings an obstacle to the hardware design,407

especially in terms of data reuse. Fig. 9 describes how these408

convolutions achieve data reuse on the compute engine.409

1) Data Reuse in the Standard Convolution: The stan- 410

dard convolution can be exploited in weight reuse, feature 411

reuse, and overlap reuse. The details of data reuse in the 412

standard convolution are shown in Fig. 9(a). The weight 413

reuse and input neuron state map reuse are obtained by 414

broadcasting the same weights to CUs in the same CU column 415

and transferring the same inputs to CUs in the same row. 416

In the standard convolution, the input neuron state maps 417

required for the three convolution operations SM1, SM2, 418

and SM3 are overlapped with each other. The overlapped 419

part of SM1 and SM2 is called 3-D vertical overlap, and 420

the overlapped part of SM2 and SM3 is denoted as 3-D 421

horizontal overlap. If it is a naive design, the overlapped parts 422

of the input neuron state maps would be stored as several 423

copies, resulting in a waste of memory; also, repeated mem- 424

ory accesses are introduced, leading to unnecessary energy 425

consumption. 426

In this design, all input neuron state map elements need 427

to be read from the buffer only once. The vertical-FIFOs (v- 428

FIFOs) and horizontal-FIFOs (h-FIFOs) in the data collection 429

units are used to store the vertical overlap and horizontal 430

overlap, respectively, temporarily. We take the first convolution 431

involved with SM1 as an example. Ci j denotes the input vector 432

along the channel dimension. In the first period, C11, C21, and 433

C31 are loaded from buffers and sent to the CU array to initiate 434

the three convolutions. Meanwhile, copies of C11, C21, and C31 435

are streamed into v-FIFOs. In the second period, the copy of 436

C21 in v-FIFO2 is sent to the first CU row. In the third period, 437

the copy of C31 in v-FIFO3 is sent to the first CU row. Then, 438

in the fourth period, C12, C22, and C32 are loaded from the 439

buffers while holding two copies in v-FIFOs and h-FIFOs. The 440

copies of C22 and C32 in v-FIFOs are sent to the first CU row in 441

the following two periods. In the next three periods, C13, C23, 442

and C33 are operated in the same manner. The copies stored 443

in the h-FIFOs provide inputs for the neighboring right-hand 444

convolution involved with SM3. 445

2) Data Reuse in the Pointwise Convolution: The pointwise 446

convolution can be regarded as a particular case of the standard 447

convolution, i.e., the standard convolution with 1 × 1 kernel 448

size. In this case, overlapped input neuron state maps do not 449

exist when the filters slide over the inputs. They are only 450

related to weight reuse and feature reuse. Fig. 9(b) shows 451

the details of data reuse in the pointwise convolution. The 452

weight reuse and input neuron state map reuse in the point- 453

wise convolution can be achieved using the same approach 454

used in standard convolutions. The weights of the filters are 455

broadcasted to CUs in the same column, and the inputs are 456

transferred to CUs in the same row. 457

3) Data Reuse in the Depthwise Convolution: The depth- 458

wise convolutions are composed of multiple individual 2-D 459

standard convolutions. Each 2-D convolution only has one 460

filter, indicating that the input neuron state reuse does not 461

exist. In this case, only the weight reuse and overlap reuse 462

are exploited. The input neuron state maps cannot be fetched 463

from the neighboring CUs because the input neuron state maps 464

are not reused in the depthwise convolution. Therefore, the 465

CU array is reconfigured to unicasting mode to increase the 466

parallelism. As shown in Fig. 9(c), each CU in the array is 467

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1431

Fig. 9. Data reuse supporting different convolutions: (a) standard convolutions, (b) pointwise convolutions, and (c) depthwise convolutions.

designed to have an extra interface to the outside, connected468

to a group of register files.469

Each CU column performs one 2-D convolution indepen-470

dently. The weight reuse is obtained by broadcasting the471

weights to CUs in the same CU column. The overlap here is472

divided into vertical overlap and horizontal overlap. We take a473

2-D convolution as an example. The first multiple rows of the474

input neuron state map are read from the buffer directly, and475

then, they are reshaped into a vector and stored in the register476

file. The inputs required for computing an output point can477

be directly fetched from the register files. In this case, the478

horizontal overlap reuse can be realized. As for the vertical479

overlap reuse, when the input neuron states in the first row are480

no longer involved in the convolution, they will be replaced481

by the input neuron states in the next row while keeping other482

intermediate rows in the register files. Each time only the483

useless rows will be replaced.484

E. Exploiting Workload Balance in Spiking Convolutions:485

Online Channelwise Workload Scheduling486

Fig. 4 shows the considerably unbalanced sparsity among487

the input neuron state maps of different channels. This488

unbalance will reduce the throughput when processing con- 489

volutions. In the standard convolution, PEs undertake the 490

computations over the input channels. Within a CU, the PE, 491

which computes with the most sparse inputs, first finishes 492

its task, whereas the PE processing with the most nonzero 493

inputs becomes the bottleneck of the hardware throughput. 494

Similarly, in the depthwise convolutions, each CU column 495

performs one slice of depthwise convolution (i.e., 2-D con- 496

volution) individually. Since the input sparsity of each 2-D 497

convolution is different, the CU column, which computes 498

the 2-D convolution with the most sparse inputs, first fin- 499

ishes its task, whereas the CU column processing 2-D con- 500

volution with the most nonzero inputs becomes the foot 501

dragger. 502

We propose an online workload scheduling method targeting 503

spiking convolutions (seen in Algorithm 1) to deal with this 504

problem. The workload is scheduled with the minimum gran- 505

ularity of the 2-D convolution (i.e., a separable slice of depth- 506

wise convolution or partial channel convolution of standard 507

convolutions). The scheduling task is mainly undertaken by the 508

workload scheduling unit, primarily composed of a workload 509

accumulator, a serial full comparison sorting module, and a 510

scheduling table. 511

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

1432 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Fig. 10. Demonstration of the proposed workload scheduling method using a simple example.

The preparation work is to get the spike number of the input512

neuron state map in each 2-D convolution; in other words,513

we need to accumulate the spikes generated by the neurons514

in each output map in the previous convolution. The output515

generated by each CU will be transferred sequentially to the516

workload accumulator, each positive signal indicates an active517

connection, and makes the workload number add by 1. The518

first step is sorting and regrouping. Every round, we will get a519

list containing M output spike summations, and then, M values520

in the list will be sorted in order. Here, we adopt the serial521

full comparison sorting method, and the latency is about 2M522

cycles each round. The latency of all rounds except the last523

one is hidden by the computations in CUs. The last 2M-cycle524

delay is negligible as it takes more than thousands of cycles525

to finish the convolution. Now, we get F/M sorted lists, each526

containing M elements. Then, the value in the same position527

of each list will be put together to regroup M new lists; each528

new list has F/M elements. The sorting and regrouping results529

will be stored in the scheduling table. The second step is530

fine-tuning. The maximum element in each new group will531

be selected and compared with the maximum element of the532

previous group using comparators in the serial full comparison533

module. If it is larger, these two elements will swap places.534

The fine-tuning results will be saved back to the scheduling535

table. The third step is adjusting. To guarantee the parallelism,536

we need to keep the element in the list equal to Q. The537

value Q is the number of PEs within a CU when processing538

standard convolutions, whereas the number of CU columns539

is in depthwise convolutions. Q is compared with F/M to 540

determine whether the lists need to be split or concatenated 541

with others. 542

Fig. 10 shows the procedure of the proposed work- 543

load scheduling method working on depthwise convolution. 544

Assume that the CU array has eight CU columns (M = 8), 545

and there is a pointwise convolution with 64 output neuron 546

state maps (F = 64). These 64 output neuron state maps as 547

the inputs of 64 2-D convolutions in the subsequent depthwise 548

convolution need to be scheduled to achieve the workload 549

balance. The input neuron state map with most spikes within 550

a round dominates the processing time (denoted as the red 551

triangle). The scheduling method can gather the 2-D convolu- 552

tion with similar levels of spike summation together into one 553

processing round, thus reducing the workload unbalance. It is 554

observed that the processing time is gradually reduced with 555

the scheduling process. 556

V. EXPERIMENTAL RESULTS 557

A. Experimental Setup 558

Methods for direct training of SNNs have made tremendous 559

progress recently but are often computationally expensive and 560

challenging to scale up to deeper networks. Conversion of 561

DNNs to SNNs is a more straightforward way to obtain an 562

SNN with equivalent accuracy to the DNN. This method 563

transfers the pretrained ANN parameters to a network of the 564

same topology as ANN but uses spiking neurons. In this work, 565

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1433

Algorithm 1 Channelwise Workload Scheduling Mechanism

for converting the DNNs to the spiking version, we use an566

open-source SNNtoolbox,1 which implements the conversion567

methods described in [27].568

We evaluate the effectiveness of the proposed design using569

two kinds of tasks, including image classification and image570

segmentation. When testing image classification tasks, we use571

two representative models of the spiking version on the572

MNIST and CIFAR-10 datasets. For the MNIST dataset, an in-573

house ConvNet model with architecture 28 × 28-16C3-32C3-574

16C3-10 is used for evaluation. For the CIFAR-10 dataset,575

we select a variant of MobileNet: a thinner MobileNet. The576

thinner MobileNet includes one standard convolution layer as577

the first layer, followed by eight DSCs, an average-pooling578

layer, and a fully connected layer. The detailed architecture579

is shown in Table I. Since the input size of CIFAR-10 is580

smaller than ImageNet, we change the stride of the first three581

depthwise convolutions from 2 to 1 to guarantee the resolution.582

When testing image segmentation tasks, we study the task583

of detecting lanes in driving videos. We use a segmentation584

network (referred to as SegNet hereinafter) with 160 × 80 ×585

3-8C3-16C3-32C3-32C3-16C3-1C3-160 × 80 × 1 structure586

1https://snntoolbox.readthedocs.io/

TABLE I

ARCHITECTURE OF THINNER MOBILENET ON CIFAR-10

to realize the end-to-end pixelwise prediction. The model is 587

tested on the dataset from the MLND-Capstone project.2 588

We implement our design on a Xilinx Zynq XC7Z100 589

FPGA running at 200 MHz. The host program is responsible 590

for sending synaptic weights and input neuron state maps into 591

the programmable logic (PL) and collecting the final results. 592

B. Design Space Exploration in Workload Balance 593

The theoretical peak throughput of the accelerator on the 594

PL part is given as 595

Throughputpeak = f ∗ P (3) 596

where f denotes the clock frequency of PL and P is the total 597

number of PEs in this design. In this accelerator, P = M × 598

N × L, where M denotes the number of CU columns, N is the 599

number of CU rows, and L is the number of PEs within a CU. 600

Theoretically, the peak hardware throughput is proportional to 601

the number of PEs; however, the actual throughput is affected 602

by the workload imbalance brought by the inherent dynamic 603

spatiotemporal sparsity of SNNs. 604

As we analyzed in Section III-E, in depthwise convolution 605

and standard convolution, the slices of 2-D convolutions have 606

different nonzero values in the input neuron state maps, 607

leading to unbalanced workloads. To alleviate the unbal- 608

ance, we propose an online channelwise workload scheduling 609

method. To quantify the balance effect, we define the balance 610

ratio (BR) of the PEs adopted in [53] 611

BR =
∑T

t=1 WLt,mean∑T
t=1 WLt,max

(4) 612

WLt,mean =
M∑

m=1

WLm
t (5) 613

WLt,max = max
(
WL1

t , WL2
t , . . . , WLM

t

)
(6) 614

where WLt,mean and WLt,max are, respectively, the mean and 615

max workload of PE array at time step t . The BR is obtained 616

2https://github.com/mvirgo/MLND-Capstone/

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

1434 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Fig. 11. Balance ratio of the accelerator versus the choice of Q in depthwise
convolutions and standard convolutions.

by running over T time steps. The performance is dominated617

by the max workload WLt,max. We can achieve better perfor-618

mance when the max workload is closer to the mean workload.619

To evaluate the influence of the choice of Q on the workload620

balance, we conduct the experiments on depthwise convolu-621

tion from MobileNet and standard convolutions from SegNet622

separately. As mentioned before, in depthwise convolution, Q623

denotes the number of PEs in a CU. Fig. 11(a) shows the BR624

across depthwise convolution layers of the spiking MobileNet625

with and without the online channelwise workload scheduling626

method and demonstrates how the BR changes with different627

choices of Q. It was observed that the workload is more628

balanced (∼1.6×) when the scheduling method is applied.629

Besides, the workload is naturally more imbalanced when the630

value of Q is increasing. As the precondition to increasing631

the hardware parallelism, we considered setting the Q value632

between 4 and 8, where the BR value is between 0.79 and 0.82.633

In the standard convolution, Q denotes the number of CU634

columns. Fig. 11(b) and (c) shows the BR across standard con-635

volution layers with and without workload scheduling method636

and demonstrate how the BR changes with different choices of637

Q, under two cases: ConvNet model for MNIST dataset and638

SegNet model for MLND-Capstone dataset. In the first case639

[Fig. 11(b)], the workload is more balanced (∼1.3×) when640

the workload scheduling method is applied. In the second641

case [Fig. 11(c)], the workload is more balanced (∼1.7×)642

when the workload scheduling method is applied. Similar643

to before, the workload is naturally more imbalanced when644

the value of Q increases. As the precondition to increasing645

the hardware parallelism, we considered setting the Q value646

Fig. 12. Reduction on buffer capacity and access.

Fig. 13. Energy efficiency improvement of Cerebron with different sizes of
CU rows.

between 4 and 8, where the BR value is between 0.68 and 647

0.75. Therefore, we set the number of CU columns as 8 and 648

PEs within a CU as 4. 649

C. Memory Efficiency 650

Memory efficiency is mainly featured by evaluating the 651

reduction of required buffer accessing and buffer capacity. 652

In this design, it is mainly obtained by the overlap reuse 653

and two-step sparsity exploitation. Fig. 12 shows the average 654

reduction ratio in different models. From the overlap reuse per- 655

spective, nearly 9× reduction of neuron state buffer accessing 656

and capacity is achieved on the ConvNet and SegNet since 657

a large number of overlapped maps have existed. However, 658

the reduction in MobileNet is relatively smaller because the 659

pointwise convolution as the major component of MobileNet 660

is involved with 1 × 1 kernels, which has no overlap. From the 661

two-step sparsity exploitation perspective, it solves the weight 662

access conflict problem and avoids using several copies of the 663

weight buffer, thus reducing 8× of the buffer capacity. 664

D. Energy Efficiency and Performance 665

In this section, we evaluate the energy efficiency improve- 666

ment of this design. Without considering off-chip data access, 667

Fig. 13 shows that Cerebron can achieve up to 9.6× energy 668

consumption reduction over various models compared to the 669

accelerator without optimization. On one hand, numerous 670

additions have been skipped, which reduces the energy con- 671

sumption largely. On the other hand, the energy consumption 672

caused by buffer access is significantly reduced. The overhead 673

introduced by FIFOs or register files is much less than the 674

above two aspects, which takes up less than 5% of the power. 675

Experimental results also show that Cerebron with a larger 676

number of CU rows (N) could obtain a higher improvement 677

in energy efficiency. Considering that the input size of the 678

latter layers in the network is small, we set the number of 679

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1435

TABLE II

COMPARISON WITH PREVIOUS WORKS

CU rows as 8. In summary, the scale of Cerebron is set to680

8 × 8 × 4.681

An essential feature of Cerebron is its ability to handle the682

dynamic sparsity in the temporal–spatial domain. We adopt the683

two-step sparsity exploitation method to eliminate the sparsity684

and an online channelwise workload scheduling strategy to685

deal with the unbalance workload introduced by the dynamic686

sparsity. Through analysis, the baseline is the 50-GOp/s the-687

oretical peak throughput obtained by (4). When the two-step688

sparsity exploitation method was applied alone, the accelerator689

can achieve 0.44-, 0.48-, and 0.45-TOp/s effective throughput690

on ConvNet, MobileNet, and SegNet models, respectively.691

After the online channelwise workload scheduling method is692

applied, further speedup is achieved, and the accelerator can693

achieve 0.65, 0.52, and 0.60 TOp/s. Overall, by combining694

sparsity exploitation and workload scheduling, the accelerator695

achieved up to 13× speedup compared to the accelerator696

without optimization. For better illustrating Cerebron’s ability697

to handle temporal SNNs, the effective throughput across698

different time steps is also tested. Taking the spiking ConvNet699

as an example, as shown in Fig. 14, the effective throughput700

changes with the time steps due to the varying active con-701

nections. Another evaluation method is based on the synaptic702

operation (SOP) [25]. Each SOP delivers a spike through an703

individual synapse. After optimizations, the throughput can704

reach 40.1, 44.2, and 45.0 GSOp/s on ConvNet, MobileNet,705

and SegNet models, respectively.706

E. Comparison With Previous Works and Discussion707

Table II compares the performance of Cerebron with pre-708

vious state-of-the-art SNN accelerators, including information709

such as tasks, datasets, computation time, energy consumption,710

and throughput. As can be seen from the table, Cerebron711

Fig. 14. Effective throughput across time steps when processing the Spiking
CovNet.

has maximum flexibility, which can support a variety of 712

emerging network structures and model sizes. It has the lowest 713

computation time (0.026 ms/image) and prediction energy 714

(0.04 mJ/image) while achieving state-of-the-art accuracy clas- 715

sification accuracy (99.40%) for the MNIST classification 716

task among these designs. When processing larger scale net- 717

works, it can achieve 10.63 ms/image, 14.88 mJ/image, and 718

91.90% accuracy for MobileNet on the CIFAR-10 dataset, 719

and 0.80 ms/image, 1.12 mJ/image, and 97.30% accuracy for 720

SegNet on the MLND-Capstone dataset. Results show that 721

the implementation achieves at least 17.5× prediction energy 722

reduction and 20× speedup compared with those state-of-the- 723

art FPGA-based accelerators. The resource utilization of the 724

XC7Z100 FPGA is summarized in Table III and the power 725

breakdown is shown in Fig. 15. 726

The neuromorphic processors, such as TrueNorth and Loihi, 727

exploited sparsity at the expense of area cost. Since they are 728

biologically inspired designs, each neuron has occupied a fixed 729

resource of the chip without reuse, and large areas of resources 730

will be in the idle state. In our work Cerebron, resources can 731

be reused by neurons and well-arranged to achieve both energy 732

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

1436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Fig. 15. Breakdown of on-chip power consumption.

TABLE III

XC7Z100 FPGA RESOURCE UTILIZATION OF CEREBRON

efficiency and low cost by sparsity exploitation and afterward733

workload balance and scheduling. Besides, compared to other734

SNN accelerators using feedforward topology, our design735

is more sparse-friendly, and it exploits the spatiotemporal736

sparsity and further improves the throughput by scheduling737

the event-driven workloads.738

Recently, some latest works, such as LSMCore [54] and739

SSO-LSM [55], are concentrating on accelerating liquid state740

machine (LSM), which is the spiking version of reservoir741

computing. As discussed in LSMCore, there are three main742

challenges for LSM acceleration: 1) any possible connections743

among neurons are required; 2) the computation and com-744

munication of all neurons are completed within one time745

step; 3) sparsity utilization is adopted to reduce hardware746

resource and latency overhead. Luckily, Cerebron can meet747

these requirements and can be used to execute LSMs.748

VI. CONCLUSION749

In this work, we introduce a reconfigurable architec-750

ture, Cerebron, for SNNs targeting flexibility and efficiency.751

To achieve flexibility, a reconfigurable compute engine with752

inter-CU and intra-CU reconfiguration is proposed to support753

various spiking layers. To achieve memory efficiency, the com-754

pute engine is also designed to exploit data reuse and guarantee755

parallel data access when processing different convolutions.756

To reduce the computation time, the inherent spatiotemporal757

sparsity is exploited. Besides, an online channelwise work-758

load scheduling is designed to reduce the latency further.759

This design was implemented on a Xilinx XC7Z100 FPGA760

and verified on image segmentation and classification tasks,761

which uses spiking models, including ConvNet on MNIST,762

MobileNet on CIFAR-10, and SegNet on the MLND-Capstone763

dataset.764

REFERENCES765

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification766

with deep convolutional neural networks,” in Proc. Adv. Neural Inf.767

Process. Syst. (NIPS), vol. 25, 2012, pp. 1097–1105.768

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks 769

for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern 770

Recognit. (CVPR), Jun. 2015, pp. 3431–3440. 771

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 772

once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput. 773

Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788. 774

[4] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep 775

neural network with pruning, trained quantization and Huffman coding,” 776

in Proc. 4th Int. Conf. Learn. Represent. (ICLR), San Juan, Puerto Rico, 777

May 2016, pp. 1–14. 778

[5] S. Han et al., “EIE: Efficient inference engine on compressed deep 779

neural network,” ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, 780

pp. 243–254, 2016. 781

[6] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “DeltaRNN: 782

A power-efficient recurrent neural network accelerator,” in Proc. 783

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA), Feb. 2018, 784

pp. 21–30. 785

[7] L. Bai, Y. Zhao, and X. Huang, “A CNN accelerator on FPGA using 786

depthwise separable convolution,” IEEE Trans. Circuits Syst. II, Exp. 787

Briefs, vol. 65, no. 10, pp. 1415–1419, Aug. 2018. 788

[8] S. Yan et al., “An FPGA-based mobilenet accelerator considering net- 789

work structure characteristics,” in Proc. 31st Int. Conf. Field-Program. 790

Log. Appl. (FPL), Aug. 2021, pp. 17–23. 791

[9] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, 792

“Binarized neural networks: Training deep neural networks with weights 793

and activations constrained to +1 or −1,” 2016, arXiv:1602.02830. 794

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: 795

Imagenet classification using binary convolutional neural networks,” in 796

Proc. Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, 2016, 797

pp. 525–542. 798

[11] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured 799

sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process. 800

Syst., vol. 29, 2016, pp. 2074–2082. 801

[12] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie, “Balanced sparsity for 802

efficient DNN inference on GPU,” in Proc. AAAI Conf. Artif. Intell., 803

2019, vol. 33, no. 1, pp. 5676–5683. 804

[13] A. G. Howard et al., “MobileNets: Efficient convolutional neural net- 805

works for mobile vision applications,” 2017, arXiv:1704.04861. 806

[14] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely 807

efficient convolutional neural network for mobile devices,” in 808

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, 809

pp. 6848–6856. 810

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 811

“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. 812

IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, 813

pp. 4510–4520. 814

[16] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine 815

intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784, 816

pp. 607–617, Nov. 2019. 817

[17] F. Akopyan et al., “TrueNorth: Design and tool flow of a 65 mW 1 mil- 818

lion neuron programmable neurosynaptic chip,” IEEE Trans. Comput.- 819

Aided Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, 820

Oct. 2015. 821

[18] M. Davies et al., “Loihi: A neuromorphic manycore processor with on- 822

chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018. 823

[19] J. Pei et al., “Towards artificial general intelligence with hybrid tianjic 824

chip architecture,” Nature, vol. 572, no. 7767, pp. 106–111, 2019. 825

[20] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO: Spiking neural 826

network for energy-efficient object detection,” in Proc. AAAI Conf. Artif. 827

Intell., 2020, vol. 34, no. 7, pp. 11270–11277. 828

[21] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper 829

in spiking neural networks: VGG and residual architectures,” Frontiers 830

Neurosci., vol. 13, p. 35, Mar. 2018. 831

[22] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A free lunch from ANN: 832

Towards efficient, accurate spiking neural networks calibration,” 2021, 833

arXiv:2106.06984. 834

[23] Q. Cheni, B. Rueckauer, L. Li, T. Delbruck, and S.-C. Liu, “Reducing 835

latency in a converted spiking video segmentation network,” in Proc. 836

IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–5. 837

[24] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and 838

P.-E. Gaillardon, “SpinalFlow: An architecture and dataflow tailored for 839

spiking neural networks,” in Proc. ACM/IEEE 47th Annu. Int. Symp. 840

Comput. Archit. (ISCA), May 2020, pp. 349–362. 841

[25] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and 842

R. K. Krishnamurthy, “A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking 843

neural network with on-chip STDP learning and sparse weights in 844

10-nm FinFET CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, 845

pp. 992–1002, Apr. 2019. 846

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CEREBRON: A RECONFIGURABLE ARCHITECTURE FOR SPATIOTEMPORAL SPARSE SNNs 1437

[26] J. Park, J. Lee, and D. Jeon, “A 65-nm neuromorphic image classifi-847

cation processor with energy-efficient training through direct spike-only848

feedback,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 108–119,849

Jan. 2020.850

[27] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conver-851

sion of continuous-valued deep networks to efficient event-driven net-852

works for image classification,” Frontiers Neurosci., vol. 11, pp. 1–12,853

Dec. 2017.854

[28] F. Chollet, “Xception: Deep learning with depthwise separable convo-855

lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),856

Jul. 2017, pp. 1251–1258.857

[29] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking858

neural networks using GPUs,” in Proc. Int. Joint Conf. Neural Netw.859

(IJCNN), Jul. 2010, pp. 1–8.860

[30] K. Fujita, S. Okuno, and Y. Kashimori, “Evaluation of the computational861

efficacy in GPU-accelerated simulations of spiking neurons,” Comput-862

ing, vol. 100, no. 9, pp. 907–926, Sep. 2018.863

[31] B. Kasap and A. J. van Opstal, “Dynamic parallelism for synaptic864

updating in GPU-accelerated spiking neural network simulations,” Neu-865

rocomputing, vol. 302, pp. 55–65, Aug. 2018.866

[32] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking867

network accelerator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,868

vol. 22, no. 12, pp. 2621–2628, Dec. 2014.869

[33] S. Sen, S. Venkataramani, and A. Raghunathan, “Approximate comput-870

ing for spiking neural networks,” in Proc. Design, Autom. Test Eur. Conf.871

Exhib. (DATE), Mar. 2017, pp. 193–198.872

[34] S. Krithivasan, S. Sen, S. Venkataramani, and A. Raghunathan,873

“Dynamic spike bundling for energy-efficient spiking neural networks,”874

in Proc. IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED),875

Jul. 2019, pp. 1–6.876

[35] Q. Chen et al., “A 67.5 μJ/prediction accelerator for spiking neural877

networks in image segmentation,” IEEE Trans. Circuits Syst. II, Exp.878

Briefs, vol. 69, no. 2, pp. 574–578, Feb. 2021.879

[36] A. Khodamoradi, K. Denolf, and R. Kastner, “S2N2: A FPGA acceler-880

ator for streaming spiking neural networks,” in Proc. ACM/SIGDA Int.881

Symp. Field-Program. Gate Arrays (FPGA), Feb. 2021, pp. 194–205.882

[37] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast883

and energy-efficient SNN processor with adaptive clock/event-driven884

computation scheme and online learning,” IEEE Trans. Circuits Syst. I,885

Reg. Papers, vol. 68, no. 4, pp. 1543–1552, Apr. 2021.886

[38] H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding,887

model, and architecture: Systematic optimization for spiking neural888

network in FPGAs,” in Proc. 39th Int. Conf. Comput.-Aided Design,889

Nov. 2020, pp. 1–9.890

[39] J. Zhang, H. Wu, J. Wei, S. Wei, and H. Chen, “An asynchronous891

reconfigurable SNN accelerator with event-driven time step update,”892

in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2019,893

pp. 213–216.894

[40] D. Ma et al., “Darwin: A neuromorphic hardware co-processor based on895

spiking neural networks,” J. Syst. Archit., vol. 77, pp. 43–51, Jun. 2017.896

[41] D. Lee, G. Lee, D. Kwon, S. Lee, Y. Kim, and J. Kim, “Flexon: A flex-897

ible digital neuron for efficient spiking neural network simulations,”898

in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA),899

Jun. 2018, pp. 275–288.900

[42] H.-H. Lien and T.-S. Chang, “Sparse compressed spiking neural network901

accelerator for object detection,” IEEE Trans. Circuits Syst. I, Reg.902

Papers, vol. 69, no. 5, pp. 2060–2069, May 2022.903

[43] S.-Q. Wang et al., “SIES: A novel implementation of spiking convo-904

lutional neural network inference engine on field-programmable gate905

array,” J. Comput. Sci. Technol., vol. 35, no. 2, pp. 475–489, Mar. 2020.906

[44] T. Zhou et al., “Large-scale neuromorphic optoelectronic computing907

with a reconfigurable diffractive processing unit,” Nature Photon.,908

vol. 15, no. 5, pp. 367–373, May 2021.909

[45] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and910

W. H. P. Pernice, “All-optical spiking neurosynaptic networks with911

self-learning capabilities,” Nature, vol. 569, no. 7755, pp. 208–214,912

May 2019.913

[46] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor914

deep spiking neural computing system: A step toward realizing the low-915

power stochastic brain,” IEEE Trans. Emerg. Topics Comput. Intell.,916

vol. 2, no. 5, pp. 345–358, Oct. 2018.917

[47] J.-Q. Yang et al., “Leaky integrate-and-fire neurons based on per-918

ovskite memristor for spiking neural networks,” Nano Energy, vol. 74,919

Aug. 2020, Art. no. 104828.920

[48] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction921

enabled all-spin stochastic spiking neural network,” in Proc. Design,922

Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 530–535.923

[49] S. Singh et al., “NEBULA: A neuromorphic spin-based ultra-low power 924

architecture for SNNs and ANNs,” in Proc. ACM/IEEE 47th Annu. Int. 925

Symp. Comput. Archit. (ISCA), May 2020, pp. 363–376. 926

[50] J. Yang, W. Fu, X. Cheng, X. Ye, P. Dai, and W. Zhao, “S2Engine: 927

A novel systolic architecture for sparse convolutional neural networks,” 928

IEEE Trans. Comput., vol. 71, no. 6, pp. 1440–1452, Jun. 2021. 929

[51] S. Yin et al., “A high energy efficient reconfigurable hybrid neural 930

network processor for deep learning applications,” IEEE J. Solid-State 931

Circuits, vol. 53, no. 4, pp. 968–982, Dec. 2017. 932

[52] Y.-H. Chen, T. Krishina, J.-S. Emer, and V. Sze, “Eyeriss: An energy- 933

efficient reconfigurable accelerator for deep convolutional neural net- 934

works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 935

Nov. 2016. 936

[53] C. Gao, T. Delbruck, and S.-C. Liu, “Spartus: A 9.4 TOp/s FPGA- 937

based LSTM accelerator exploiting spatio-temporal sparsity,” IEEE 938

Trans. Neural Netw. Learn. Syst., early access, Jun. 10, 2022, doi: 939

10.1109/TNNLS.2022.3180209. 940

[54] L. Wang et al., “LSMCore: A 69k-synapse/mm2 single-core digital 941

neuromorphic processor for liquid state machine,” IEEE Trans. Circuits 942

Syst. I, Reg. Papers, vol. 69, no. 5, pp. 1976–1989, Feb. 2022. 943

[55] Y. Jin, Y. Liu, and P. Li, “SSO-LSM: A sparse and self-organizing 944

architecture for liquid state machine based neural processors,” in 945

Proc. IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH), Jul. 2016, 946

pp. 55–60. 947

Qinyu Chen (Member, IEEE) received the B.S. 948

degree in communication engineering from Shan- 949

dong University, Jinan, China, in 2016, and the Ph.D. 950

degree in electronic science and technology from 951

Nanjing University, Nanjing, China, in 2021. 952

From 2019 to 2020, she was a Visiting Ph.D. 953

Student with the Institute of Neuroinformatics, Uni- 954

versity of Zürich (UZH) and ETH Zürich (ETHz), 955

Zürich, Switzerland. In 2021, she joined the Insti- 956

tute of Photonic Chips, University of Shanghai for 957

Science and Technology, Shanghai, China, where 958

she was an Associate Research Professor. She is currently a Postdoctoral 959

Researcher with the Institute of Neuroinformatics, UZH and ETHz. Her cur- 960

rent research interests include low-power very large-scale integration (VLSI) 961

design for deep learning and brain-inspired algorithms. 962

Chang Gao (Member, IEEE) received the B.S. 963

degree in electronics from the University of Liver- 964

pool, Liverpool, U.K., and Xi’an Jiaotong-Liverpool 965

University, Suzhou, China, in 2015, the master’s 966

degree in analog and digital integrated circuit 967

design from Imperial College London, London, 968

U.K., in 2016, and the Ph.D. degree in neuroscience 969

from the Institute of Neuroinformatics, University 970

of Zürich and ETH Zürich, Zürich, Switzerland, 971

in 2021. 972

He is currently an Assistant Professor with the 973

Delft University of Technology, Delft, The Netherlands. His current research 974

interest includes computer architectures for deep learning with an emphasis 975

on recurrent neural networks. 976

Yuxiang Fu (Member, IEEE) received the B.S. 977

degree in microelectronics and solid-state electronics 978

and the Ph.D. degree in electronic science and tech- 979

nology from Nanjing University, Nanjing, China, in 980

2013 and 2018, respectively. 981

In 2018, he joined the School of Electronic Sci- 982

ence and Engineering, Nanjing University, where 983

he is currently an Associate Research Profes- 984

sor. His current research interests include artifi- 985

cial intelligence (AI)-aided computer architecture 986

optimization and chip design network-on-chip algo- 987

rithms/architectures, low-power digital systems, and 3-D integrated circuit (IC) 988

design. 989

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 11:00:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3180209

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

