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Position controller for a flapping-wing drone using UWB
Guillermo González*, Guido C.H.E de Croon, Diana Olejnik and Matěj Karásek

Delft University of Technology, Mekelweg 5, Delft

ABSTRACT

This paper proposes an integral approach for
accurate ultra wide band indoor position control
of flapping wing micro air vehicles. Three
aspects are considered to reach a reliable and
accurate position controller. The first aspect
is a velocity/attitude flapping-wing model for
drag compensation. The model is compared
with real flight data and shown to be applicable
for more than one type of flapping wing drone.
The second improvement regards a battery-level
dependent thrust control. Lastly a characteri-
sation of ground effects in flapping-wing flight
is obtained from hovering experiments. The
proposed controller improves position control
by a factor ∼ 1.5, reaching a mean absolute
error of 10cm for position in x and y, and 4.9cm
for position in z.

1 INTRODUCTION

The fact that drones are becoming increasingly popular
is intimately related with the development of more sophis-
ticated automation resources. In the case of drones, weight,
processing speed, and energy consumption are critical aspects
to accomplish fully autonomous flights. Therefore, elements
such as motors, micro-processors, memory units and batteries
need to be continuously improved to meet these requirements.
These conditions have fostered the development of flapping
wing micro-air vehicles (FWMAV). This type of UAV is in-
spired on the flight of birds and insects, and has become at-
tractive in the field of small-scale micro-air vehicles, since it
provides both the ability of hovering and flying into any di-
rection. After the foundational work from Ellington [1] and
Dickinson [2], many experiments have been carried out in or-
der to get an optimal physical design of FWMAVs, as well as
velocity and position controllers to keep a stable flight.

Regarding position feedback, the most common option is
an indoor positioning system (IPS). Some of the technolo-
gies used for for IPS are Wi-fi, Radio Frequency Identifica-
tion (RFID), and infrared (IR) motion tracking systems. Wi-fi
and RFID can be found for tracking mobile devices, but not
specifically for drones [3]. IR is used for indoor tracking of
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drones (e.g. VICON/OptiTrack), but it is an expensive option
and its accuracy can be affected by lighting conditions [4].

Another option for IPS is ultra wide band (UWB) which
was already defined in 2006, but just recently started to gain
popularity. UWB is able to transmit in nano-second scale
periods. Thus it allows excellent timing for signal arriving,
which translates to centimeter level accuracy. Its low spec-
tral density reduces the interference with other RF devices.
However, it also has some drawbacks like high computational
and memory capacity of the controller and its vulnerability
to multi-path effect when signals bounce with the physical
boundaries of the environment [5].

Inertial navigation systems (INS) are usually added in in-
door environments to complement IPS. Usually INS systems
employ micro-electro mechanical systems (MEMS) or iner-
tial measurement units (IMU). Furthermore, data fusion is
also applied for better accuracy, by means of a Kalman fil-
ter. Hence many combinations of integrated systems have
been proposed. For example a GPS/UWB/MEMS navigation
system with Kalman filter [6] and INS/UWB system based
on a fuzzy adaptive Kalman filter [7]. Although most of
these implementations provide a basis for designing an au-
tonomous position controller, it is important to keep in mind
they are specifically designed either for fixed-wing or quadro-
tor UAVs. In the case of flapping wing drones some extra
constraints shall be considered like the physical limitations in
terms of payload and energy consumption, or the noise influ-
ence in IMU measurements due to high frequency mechanical
vibration [8]. To overcome these circumstances, the existing
solutions must be adapted, leaving a potential research devel-
opment for position controllers of FWMAVs.

One of the challenges of working with FWMAVs comes
from the aerodynamics of the system. A reliable model of
the dynamics can significantly increase the performance and
accuracy. Nevertheless, most aerodynamic models for flap-
ping wings require extensive system identification techniques
for numerous parameters, whose values only remain valid
for a specific drone. A widespread alternative is the use of
quasi-steady models where force coefficients are obtained ei-
ther from experimental data or from theoretical principles [9].
The control strategy proposed in this paper follows a sim-
pler solution where the model is obtained by directly aver-
aging aerodynamic parameters as functions in terms of the
body velocities. Albeit the method may be considered just
a rough approximation compared to quasi-steady models, it
tends to be more practical since just a reduced amount of pa-
rameters is required. When validating averaging parameters
with real flight data, several authors address the issues of un-
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steady flight due to mechanical vibrations [10, 11]. However
just some models follow an approach based on drag compen-
sation. Within the few cases where drag compensation mod-
els are implemented, most of them are linear models, which
are only valid for a limited range of velocities [8, 12].

Similar to most MAVs, FWMAVs are also prone to short
flights due to the limited size of the batteries they are able
to carry. Thus it is common that voltage will significantly
change during flight, affecting as well the required throttle
level for hovering [13]. This condition poses a challenge in
height control, for both reaching and keeping a specific posi-
tion along the z axis.

Another issue affecting height control is the ground effect.
This phenomenon particularly occurs when the drone is flying
close to the ground [14]. An extra thrust is generated because
the wind currents underneath the drone bounce against the
ground, causing the drone to behave like sitting on a cushion
of air [15]. Thus, an extra lift is generated, causing the output
thrust to be higher than the input thrust.

This paper addresses the three aforementioned challenges
of FWMAVs. Sections 2, 3 and 4 provide the background
for the implementation. Section 5 describes how averaging
parameters are applied for drag compensation. Section 6
discusses the issues of changing voltage and ground effects.
Lastly, Section 7 shows the results on how the transient re-
sponse is improved in any of the three axes: forward (x-axis),
sideways (y-axis) and vertical (z-axis).

2 EXPERIMENTAL SETUP

Since the work on this project relies mainly on feed-
back through UWB, the experimental setting should be a grid
where UWB receivers are strategically located in the vertices
and the transceiver is mounted on the FWMAV. This way, the
drone flies inside the volume of a cube bounded by the posi-
tion of the anchors. A similar set-up is used in [16], where the
eight anchors on the corners optimise the possibility for the
drone to have line-of-sight at least with one anchor. Such a
grid was set-up at the Cyberzoo (shown in Figure 1), the flight
arena of the TU Delft Faculty of Aerospace, which is known
as the main facility of the university for performing tests on
drones, and has a size of 10m×10m×7m. A reliable choice
for UWB sensor is the Decawave DWM1000, as it has proven
to give successful results for UAV tracking [17]. The UWB
sensors are used as the anchors of the IPS and are set to work
using a time difference of arrival (TDOA) algorithm.

In order to have a reference for the UWB measurements, a
motion tracking system is used for measurements of position
and rotations. It consists of 12 OptiTrack Prime 17W mo-
tion tracking cameras (set to resolution 1664 px × 1088 px,
50 fps) and has proven to deliver accurate results for MAV
test flights [18]. When working with the motion tracking sys-
tem, the drone was equipped with four retro-reflective mark-
ers placed on the landing gear of the drone, and the UWB
sensor was placed at the top to optimise direct line of sight

Figure 1: Cyberzoo structure where the UWB anchors are
placed (left) and detail of UWB anchor mounted on the struc-
ture (right)

(Figure 2).
About the flapping-wing drone, referred in this paper as

Flapper, is a design from the company Flapper-drones [19]. It
is a 102g tailless FWMAV with a wingspan of 49cm, able to
keep flapping frequencies up to 12 Hz when hovering. The
on-board processing hardware consists of a Crazyflie Bolt
autopilot board, including an IMU with 3-axis accelerom-
eter/gyroscope (BMI088). The data link between the au-
topilot and the ground station is done with a Crazyradio PA
(also from Bitcraze), which is a USB radio dongle based on
nRF24LU1+ from Nordic Semiconductor. The system can be
powered with a 300-mAh two-cell 7.4V LiPo battery, reach-
ing a flight time between 4-6 minutes, depending on the in-
ternal resistance of the battery.

Figure 2: Flapper drone equipped with IR markers and UWB
sensor

3 CONTROL LOOP

For autonomous flight, the flapping-wing drone uses a
cascaded PID-controller, based on the structure presented by
[20]. The controller consists of three loops. The output pro-
vides the control signals for the motors involved in the flight
dynamics of the drone: two brush-less motors in charge of
the flapping frequency for thrust and roll, one servo-motor
that modifies the angle of the dihedral for pitch, and another
servo-motor that changes the deflection of the wings for yaw.

Regarding the structure of the cascaded loops, the inner-
most loop is in charge of attitude rate and runs at 500Hz. The
intermediate loop also runs at 500Hz and is in charge of atti-
tude control. The outer loop is the position/velocity control,
which runs at 100Hz and can take either position or velocity
commands.

Another remark is the trimming values for servos in
charge of pitch, roll and yaw. This procedure must be done
in order to get the proper behaviour from the controller. For
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trimming, one should fly the drone manually until it hovers at
a steady position. The trim values are the pitch, roll and yaw
commands given to keep the drone hovering. The values are
specific for each flapping-wing drone, as they change depend-
ing on manufacturing factors. Thus it is important to properly
set the appropriate trimming values before going further with
any flight test.

4 STATE ESTIMATION

The state estimation is done by means of an Extended
Kalman Filter (EKF) which fuses the measurements of the
IMU and the UWB positioning system. The model of the
EKF is the same as the one proposed by [21], which consid-
ers a nine-dimensional state vector defined as:

S =
[
xE vB d

]T
(1)

Where xE is the position vector in global frame, vB is the ve-
locity vector in body frame and d is an attitude error vector,
where the error is defined as the difference between the last
measured attitude and the current attitude. The purpose for
using attitude errors instead of the conventional Euler angles
is to simplify the state prediction equations because it only
considers the increments in roll, pitch and yaw. A more de-
tailed explanation on the implementation of the filter is given
in [21].

The main advantage of fusing UWB with IMU through
the Kalman filter is the attitude correction to account for the
drift in pitch and roll caused by sensor noise and bias. For in-
stance, when the Flapper is left standing up, the Kalman filter
resets correctly the roll and pitch to zero when UWB mea-
surement are coming in. On the other side, a complementary
filter, which relies only on IMU data, will converge to a cer-
tain drift and thus propagates it through time.

One last adjustment done to the EKF aims to diminish the
detrimental effects on position estimation caused by multi-
path UWB signals. Specially when going close to the ground,
the position estimates tend to drift for more than 20 cm.
A way to account for the wrong measurements when flying
close to the ground is to use a variable sensor noise value
Ruwb for measurements from UWB, rather than a constant
value. Consequently, the sensor noise is defined as:

Ruwb = λ(ẑ)σ2
uwb (2)

Where λ(ẑ) is a factor dependent on the estimated height ẑ,
in meters. For the implementation, λ = 0.5, for z ≥ 1;
λ = 1.5 − ẑ, for 0.5 < ẑ < 1; and λ = 1, for z ≤ 0.5.
The effect of variable sensor noise in position estimation was
tested by placing the drone static on the ground, at the origin
(0,0,0) of the UWB IPS. The plots from Figure 3 show the
estimated position (est) in contrast to the real position (cmd),
Both values were sampled at 50Hz, during 8 seconds. Using
the variable sensor noise Ruwb significantly increases the ac-
curacy in estimation approximately by 0.2m in the three axes.

Figure 3: Effects in position estimation before using variable
sensor noise (left) and after implementing it (right).

Once the variable sensor noise term was implemented
into the EKF, several flight paths were tested (linear, square,
rhombus and hexagonal paths). The measurements from
UWB using a TDOA algorithm proved to be reliable enough
for position estimation. The mean absolute error obtained in
all cases remained between 8-10 cm, when compared to the
measurements from the Optitrack system.

5 DRAG COMPENSATION

The first technique for yielding a better control strategy
for FWMAVs was to obtain a model for drag compensation.
Since the drag is typically neglected in aerodynamic models,
there tends to be an offset between the commanded veloc-
ity and the velocity output by the controller. Usually a feed
forward term is used to compensate for these drag effects.
Following the structure of the controller in Section 3, the ve-
locity loops provides the input for the attitude loop. Thus,
feed forward is modelled as a function of velocity:

θFF = f(vxE) (3)

ϕFF = f(vyE) (4)

Where Eq. (3) is the feed forward term for pitch and Eq. (4)
is for roll. In order to derive such a model, a system identi-
fication experiment is proposed based on the supplementary
materials from [22], where step inputs in roll and pitch are
given to the flapping-wing drone and then the transient re-
sponse is recorded. The experiments are done using manual
flight via a Frsky RC-controller where the pitch and roll step
inputs are pre-programmed. The tracking data is recorded
with the motion tracking system mentioned in Section 2.

Figure 4 is given as an example of the transient response
in velocity obtained for different step-inputs in pitch (a sim-
ilar response is obtained for roll angles). Due to limitations
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Figure 4: Velocities attained at different pitch step inputs

on the size of the flight arena, only for the small angles (be-
low 45°) it is possible to reach the steady-state velocities. For
higher angles, a common technique to reach the steady-state
velocities is to perform wind-tunnel experiments [23]. In this
case, an alternative method is used where a non-linear regres-
sion model is obtained for the smaller angles and then it is
used to extrapolate the data at higher angles. From figure 4, it
can be appreciated that the transient response approximates to
the behaviour of a first-order system. Hence, the equation for
the transient response is modelled as an exponential function
of the form:

v(t) = a− be−ct+d (5)

The parameters a, b, c and d from Eq. (5) have to be initialised
with certain values, depending on the shape of the curve ob-
tained from the measured data points. The final steady-state
values obtained from the extrapolation model strongly de-
pend on how many data points are considered for the regres-
sion model. Hence, Table 1 shows the absolute error between
the last measured velocity for each angle, and the respective
value calculated from the extrapolation model. For the angles
of 30° or less, this velocity approximates to the steady-state
velocity. For angles of 45° or above, the last measured veloc-
ity is used as ground truth equilibrium velocity, although it is
still part of the transient response.

Final velocity error at different pitch angles [m/s]
Data taken for regression 12° 22° 33° 45°* 52°*

10% 0.124 0.0752 0.1842 0.2641 0.276
30% 0.0318 0.0459 0.0347 0.1899 0.1259
50% 0.0166 0.0636 0.015 0.2048 0.0038
70% 0.0183 0.0632 0.0282 0.1379 0.0402
90% 0.0142 0.0561 0.0289 0.0857 0.0185

Final velocity error at different roll angles [m/s]
Data taken for regression 12° 22° 33° 47°* 52°*

10% 0.1007 0.1479 0.0391 0.2972 0.3028
30% 0.10 0.1216 0.0452 0.2303 0.2366
50% 0.0262 0.1427 0.0325 0.0499 0.0849
70% 0.0234 0.0802 0.0378 0.0486 0.095
90% 0.0268 0.0247 0.0261 0.0266 0.0757

Table 1: Extrapolation errors taking different amounts of data
for regression model. *Indicates that for those angles the final
velocity is not considered as ground truth. Hence these errors
are overestimated.

As expected, results from Table 1 show on the angles of
accurate ground truth (12º,22º and 33º) that the overall accu-
racy of the extrapolation model, for both pitch and roll, in-
creases as more data points are taken for the regression. Indi-
vidually, for each angle, accuracy remains approximately the
same with 50% of the data points or more. For illustration
purposes, Figure 5 shows the predicted steady-state velocity
for each angle when taking 70% of the data points for the
regression model. Nevertheless, the real steady-state values
used were the ones obtained taking all of the data points since
those ones result in the lowest error.

Once the steady-state velocity for each angle is available,
the pitch-velocity and roll-velocity models can be obtained.
Given the mapping of the steady-state velocity/attitude pairs,
different regression models were tested to approximate the
relationship the models (linear, quadratic and exponential).
Since the maximum roll and pitch angle is 90° for a FWMAV,
it is expected that the velocity will converge to a maximum
value as the angle approaches 90°. Thus, the model is ap-
proximated as the exponential function in Eq. (6). Linear or
quadratic models could be used as well, but they would only
be valid within specific ranges since they do not converge to
a constant value.

v(θ) = a+ be−cθ (6)

Using the obtained steady-state velocity, a nonlinear re-
gression model is obtained using Eq. (6). For both pitch and
roll the parameters are initialised as: a = −90, b = 90 and
c = 0.3. Moreover, to test the applicability of the exponential
model, the same described procedure was applied to the data
sets from [22] regarding the Delfly Nimble (a 33cm-wingspan
FWMAV of the same type). Then the nonlinear regression
model is applied initialising the parameters with exactly the
same values. Figure 6 shows how the exponential curves of
the Flapper and the Delfly properly approximate to the given
data points for both roll and pitch.

6 HEIGHT CONTROL

Having a reliable height control strategy is essential to
guarantee successful autonomous flight. Mainly it is used
to keep the drone flying at a certain altitude and for hov-
ering. Nevertheless, it also plays a major role in landing,
which is known to be as the most challenging phase of flight
for any aircraft. Height control is intimately related with
thrust. Therefore, two approaches for improving thrust com-
mand were considered, first one is a voltage-dependent thrust
model, and second one is an analysis of the ground effects.

6.1 Voltage-thrust model
Thrust is part of the position and velocity control of the

drone, it also involves a PID controller which takes a com-
manded throttle and delivers an output signal for the motors.
The signal from the controller is summed with a feed forward
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Figure 5: Extrapolation models for pitch (left) and roll (right) at different velocities
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Figure 6: Pitch/velocity (left) and roll/velocity(right) models obtained from extrapolated data

term known as base thrust, which is the thrust required to
keep the drone hovering at a certain altitude. In most cases
the base thrust is a constant value, but there is evidence that
the required base thrust tends to increase as the battery volt-
age drops off [13]. In order to observe this behaviour, a series
of experiments were done where the drone started flying with
a fully-charged battery and then let it hover until the battery
got discharged. all values were sampled at 50 Hz and mapped
as depicted in Figure 7.

Throttle is used instead of thrust because this is the signal
that is directly input into the motors. In this case, throttle is a
dimensionless value where 30000 sets the motors to the low-
est speed and 60000 indicates full speed. The data points are
then filtered and used to create a regression model. The im-
provement when increasing the order of the regression model
is not significant. First, second and third-order models yield
R2 ≈ 0.756. Albeit there is noisy data involved, it is not
considered for the regression model since it is already known
that the noise comes mainly from the feedback of the con-
troller and the IMU measurements. Nevertheless, there is the
option of using alternative regression models to account for
the stochastic behaviour observed in Figure 7, which may re-
sult in a better R2 value.

Once the model is implemented, the base thrust turns into
a variable base thrust whose value will tend to increase the
longer the drone keeps flying. To evaluate the model, a series
of experiments was conducted using four different thrust con-

trollers: a P and PI height controller, using both the constant
and variable base thrust. For each controller, the flight was
analysed in five different directions: X-motion, Y-motion, Z-
motion, XZ-motion and YZ-motion. For each motion, a flight
test was done consisting on five repetitions of step-input com-
mands in the given motion, in order to get an average be-
haviour. Hence, Table 2 summarises the standard deviation
and the mean absolute error between the transient response
and the commanded height for each motion and controller.
Notice from the table that for most of the motions, using a PI
will result in lower error than a P controller, regardless of the

Figure 7: Throttle and voltage mapping with tendency lines
for different regression models
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variable or constant base thrust. For most conditions, vari-
able PI reaches the lowest mean absolute error and standard
deviation, showing the utility of varying thrust model.

Figure 8 depicts the averaged transient response in height
for each controller, for the cases of X motion and XZ mo-
tion. The reduction of steady-state error caused by the inte-
gral gain is clear in the X motion, where the drone should
keep flying at the same height when moving from one posi-
tion to another. The XZ motion shows a case in which vari-
able thrust model performs less well. In motions where a
change in height occur, performance is more similar between
P and PI controllers. From one side the integral gain tends to
increase the settling time compared to the P controller, but at
the same time the oscillations of the PI response reduces the
error to minimum whenever it crosses the commanded value.

Figure 8: Extrapolation models for pitch (left) and roll (right)
at different velocities

6.2 Ground effect

For the second approach in height control, the target was
to investigate whether the ground effect has a large effect
when flying low. According to [14], the range of height in
which ground effects usually occur is 3d > h > d, where
d is the diameter of propellers in quadrotors. Similarly, for
a FWMAV, the range would be proportional to the wingspan
(0.5m). Hence, the experiments to model the ground effect
consisted on keeping the drone hovering at different heights
between 0.33m and 1.2m for over a minute. The lowest height
tested was 0.33m above the ground, since this was the lowest
height at which the drone can be kept hovering autonomously
due to the location of the UWB anchors. In this section, the
height is considered to be the distance between the landing
gear and the ground. For each different height, a mean thrust
and mean voltage is obtained. Using the thrust-voltage re-
lationship found previously, the corrected thrust can be ob-
tained. The ratio between the corrected thrust and the mean
thrust is specific for each different height, as depicted in fig-
ure 9. Notice that for each data point an upper and lower
bound is also provided based on the standard deviation of the
thrust and battery voltage. According to [24], the relationship

between thrust ratio and height can be modelled as:

Tinput
Toutput

= 1− λ
(

1

h− a

)2

(7)

After mapping the thrust ratio with their respective height,
a non-linear regression model using equation Eq. (7) is ap-
plied. Such model approximates the coefficients λ = 0.00093
and a = 0.4213. In Figure 9, the regression model stays
within the bounds of each data point. At the tested heights the
ground effect still has relatively little influence on the thrust
ratio. The thrust ratio only decreases to 92% at the lowest
height of 0.33m. Thus, the ground effect is little up to 0.33m.
Lower heights are not considered relevant, because, due to
the disposition the UWB anchors, the drone is unlikely to fly
lower except during take-off and landing. Nevertheless, the fit
shows a sharp drop-off below 0.33m. Whether this is correct
will have to be confirmed with future experiments.
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Figure 9: Thrust ratio for each height
.

7 EXPERIMENTAL VALIDATION

Once all the modifications were done, two versions of the
controller were tested for validation. The first version is re-
ferred as ”raw” version, which is the working implementation
with the default EKF and PID controller mentioned in Section
3, without the proposed enhancements. The second version is
referred as the ”modified” version, and is the implementation
with the adaptations mentioned in Sections 4, 5, and 6.

The validation consists of analysing the transient re-
sponses in position and velocity when position step-inputs
were given in x, y, and z. For a wider perspective on the
stability of the controller, the amplitude of the step input was
changed from 1m to 2m. Thus, any difference in the aggres-
siveness of the response can be detected as well. For each
motion and step-input, a series of five repetitions was done
and averaged to obtain the general behaviour of the transient
response. Table 3 presents how the mean absolute error, for
both position and velocity, decreases when using the modi-
fied controller instead of the raw controller. In general, errors
are approximately 1.5 times lower after the modifications.
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X motion Y motion Z motion XZ motion YZ motion Overall
Controller Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
Constant P 0.109 0.08 0.098 0.075 0.077 0.117 0.035 0.166 0.043 0.143 0.072 0.116
Constant PI 0.061 0.159 0.048 0.093 0.06 0.075 0.047 0.09 0.047 0.1175 0.053 0.107
Variable P 0.114 0.069 0.086 0.079 0.065 0.069 0.057 0.116 0.046 0.1038 0.074 0.09
Variable PI 0.049 0.107 0.025 0.083 0.06 0.056 0.05 0.092 0.037 0.061 0.044 0.08

Table 2: Errors and standard deviations for each controller. Best result for each condition is bold-cased.

Mean absolute error for position step input 1
X motion Y motion Z motion

Version Raw Modified Raw Modified Raw Modified
Position [m] 0.1706 0.105 0.1898 0.1048 0.0496 0.043

Velocity [m/s] 0.3945 0.1297 0.3001 0.1199 0.1001 0.0892
Mean absolute error for position step input 2

X motion Y motion Z motion
Version Raw Modified Raw Modified Raw Modified

Position [m] 0.3316 0.1978 0.2989 0.2055 0.1245 0.1097
Velocity [m/s] 0.6330 0.2859 0.4583 0.1802 0.2476 0.1613

Table 3: Mean absolute errors of validation experiments. Best
performance for each case is bold-cased.

Lastly, Figure 10 illustrates how the absolute error ob-
tained in the transient response of the modified version is
smaller and more consistent than the one of the raw version.
For the sake of simplicity, only the transient responses of ve-
locity in x and y to the step input of 2m are given, as the
increase in performance in those two is the largest, according
to Table 3. In Figure 10 the error is defined as the absolute
difference between the output value and the corresponding
commanded value. The plotted error corresponds to the tran-
sient response when the step input of amplitude 2 is given at
t = 1s. Notice that almost throughout the whole response the
error of the modified version is lower than the one of the raw
version. Moreover, most of the peaks of the modified version
are roughly 75% smaller than the ones from the raw version.

8 CONCLUSIONS

The achievement from this work was defining a strategy
for enhancing position control for FWMAVs. From the esti-
mation perspective, the strategy uses an extended Kalman fil-
ter to fuse UWB and IMU data, and it also incorporates a vari-
able sensor noise term. Altogether, state estimation achieves
accuracy between 8-10 cm error. From the control side, three
specific aspects are considered.

Firstly, a velocity/attitude nonlinear model, which showed
to be valid for two different kinds of FWMAVs. Thus, prov-
ing that it can be adapted, as long as there is experimental
data from which the steady-state velocity can be extrapolated
for a certain angle. Moreover, the model was validated using
real flight data and proved its efficacy for drag compensation
as part of the feed-forward term in the velocity control loop.

Secondly, the lower standard deviation of voltage-
dependent thrust, compared to constant thrust, demonstrates

(a) Absolute error in Velocity X

(b) Absolute error in Velocity Y

Figure 10: Comparison of velocity error during transient re-
sponse to a step input of amplitude 2

a more consistent performance through time. A more notori-
ous contrast can be obtained if the FWMAV flies for longer
periods.

Thirdly, the ground effect experiments prove that as long
as the drone’s wings fly above 0.5m from the ground, no sig-
nificant additional thrust will appear. Nevertheless, to know
how much extra thrust is produced below 0.5m, experiments
should be done through manual flight.

Lastly, in order to improve performance in autonomous
flight using UWB, further development can be done in the po-
sition estimation. For instance drag is not considered in the
EKF for the estimation of body velocities. An option would
be deriving a drag model from IMU data. Other approach
would be fusing data from other sources (e.g. barometer and
magnetometer data) to compensate for the noisy accelerome-
ter measurements due to inherent mechanical vibrations from
flapping wing flight.
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