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Summary 
 
An increasing number of geo-energy applications require the quantitative prediction of hydromechanical response 

in subsurface. Integration of mass, momentum, and energy conservation laws becomes essential for performance 

and risk analysis of enhanced geothermal systems, stability assessment of CO2 sequestration and hydrogen 

storage, resolving the issue of induced seismicity. The latter problem is of particular interest because it exposes 

safety risks to people and surface infrastructure.  

     

Implicit coupling of conservation laws is computationally demanding and the solution procedure often uses 

different numerical methods for different laws that complicates simulation. Recently developed Finite Volume 

(FV) schemes for poromechanics present a unified approach for the modeling of conservation laws in geo-energy 

applications. Contact mechanics at faults requires special attention due to the inequality constraints it imposes and 

nonlinear friction laws that strongly affect the occurrence of seismicity.  

     

We develop a cell-centered FV scheme for the purpose of integrated simulation in Delft Advanced Research Terra 

Simulator (DARTS) platform. The scheme proposes a unified numerical framework capable to resolve 

conservation laws in a fully implicit manner using a single collocated grid. Coupled multi-point flux and multi-

point stress approximations provide mass, momentum, and heat fluxes at the faces of the computational grid. We 

use a conformal discrete fracture model to incorporate faults, where the multi-point approximations of fluxes 

respect the discontinuity in displacements. The block-partitioned preconditioner that takes the advantage of linear 

structure of the coupled problem is developed to facilitate the performance of the simulation. 

     

The proposed numerical scheme are validated against analytical and numerical solutions in a number of test cases. 

The convergence and stability of the schemes are investigated. It is found that the developed scheme is indeed 

accurate, stable, and efficient. Thereafter, we demonstrate the applicability of the approach to model fault 

reactivation at the laboratory scale. In a core injection test, we validate the results of simulation against 

experimental measurements. Next, we investigate the performance of the different preconditioning strategies. The 

proposed block-partitioned preconditioning strategy demonstrates the scalability and efficiency of the numerical 

framework. 

 

 

 



Introduction

Geomechanics plays an important role in safe and optimal subsurface operations related to geo-energy
applications (Zoback, 2007). Changes in subsurface conditions (e.g., pressure depletion during gas
production) often lead to subsidence and may initiate induced seismicity and serious damage to surface
infrastructures (Segall et al., 1994; Shapiro et al., 2011; Jha and Juanes, 2014; Guglielmi et al., 2015;
Buijze et al., 2020a). In geothermal operations, the re-injection of cooler fluid causes stress and strain
changes that can potentially activate faults and lead to induced seismic activity (Buijze et al., 2020b).
Successful and risk-controlled exploitation of subsurface resources, therefore, depends highly on the
development of robust and efficient computational techniques for modeling geomechanics to design safe
bounds of operation.

Recently, the Finite Volume Method (FVM) has gained considerable attention as a technique for model-
ing geomechanics, especially when mechanical interactions are modeled in a fully coupled manner with
transport processes. The FVM is an attractive choice because it represents an integral form of conserva-
tion laws. Recent literature includes the development of the FVM for geomechanical simulations with
both staggered (Deb and Jenny, 2017a; Sokolova et al., 2019; Shokrollahzadeh Behbahani et al., 2022)
and collocated grids (Nordbotten, 2014; Berge et al., 2020; Terekhov and Tchelepi, 2020).

The coupled modeling of mechanics and flow in fractured media is another focus of intensive research.
The Conformal Discrete Fracture Model (DFM) (Karimi-Fard et al., 2004) allows lower-dimensional
faults to be resolved explicitly at the interfaces of equidimensional control volumes. It respects fault
geometry and material contrasts in the vicinity of the fault. In contrast to DFM, the Embedded Discrete
Fracture Model (EDFM) (Li and Lee, 2008) and projection-based EDFM (Tene et al., 2017) do not re-
quire conformal meshing of faults, hence, independent grids for faults and rock matrix can be employed.
A comprehensive review and benchmarking study has been presented in Berre et al. (2021).

Both concepts have been successfully applied to mechanics and poromechanics modeling (Garipov and
Hui, 2019; Terekhov and Vassilevski, 2022; Deb and Jenny, 2017b; Xu et al., 2021). In the embedded
models, special discontinuity basis functions are used to resolve contact mechanics (Deb and Jenny,
2017b; Xu et al., 2021) whereas the use of vertex-based (Garipov et al., 2016; Garipov and Hui, 2019)
grids allows for natural treatment of the discontinuities within a DFM unstructured mesh. In this paper,
we employ the combination of an equidimensional DFM for the flow equation and a lower-dimensional
representation of faults in mechanics as a contact problem. Contact mechanics imposes inequality con-
straints at faults. A penalty method with a return-mapping algorithm (Simo and Laursen, 1992; Garipov
et al., 2016; Gallyamov et al., 2018), Lagrange multipliers (Simo and Laursen, 1992; Berge et al., 2020)
or Nitsche method (Garipov and Hui, 2019) can be used to satisfy these constraints.

Induced seismicity occurs at critically stressed natural faults in the subsurface prone to unstable slip.
This behavior of faults can be explained with nonlinear friction laws (Dieterich, 1979; Ruina, 1983;
Chen and Spiers, 2016). Incorporation of these friction laws along with contact inequality constraints
in the numerical model as boundary conditions is challenging. Instead, the introduction of additional
unknowns at faults, e.g. displacements (Ucar et al., 2018), Lagrange multipliers (Berge et al., 2020)
or gap vector (Novikov et al., 2022), provides more flexibility and seems natural once coupled with
flow. Moreover, having the gap vector as a primary unknown eases the practical realization of friction
laws since it does not require extra stabilization due to the presence of dual variables, i.e. Lagrange
multipliers.

In this study, we develop a collocated fully implicit multi-point FVM scheme for poromechanics simu-
lation of faulted porous media subject to nonlinear friction laws. We improve the formulation of multi-
point approximations in faulted porous media presented in Novikov et al. (2022). In contrast to previous
work, we impose continuity conditions for flow and mechanics at different points that are aligned with
their fault representations. The resulting scheme can be used to solve arbitrarily anisotropic porome-
chanics problems on unstructured polyhedral grids in the presence of material heterogeneity. We use a
penalty method with a return-mapping algorithm to resolve the contact problem. In order to validate the
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numerical solution we consider a pair of benchmarks where we perform comparisons against analytics
for a displaced reservoir setup (Jansen and Meulenbroek, 2022) and against laboratory measurements
in a core injection experiment (Wang et al., 2020a). In the latter case, we first match experimental data
with friction coefficients taken from the experiment and thereafter we reproduce the frictional response
with a rate-dependent friction law.

The developed methods are implemented in the Delft Advanced Research Terra Simulator (DARTS).
DARTS is a scalable parallel simulation framework, which has been successfully applied for modeling
of hydrocarbon (Khait and Voskov, 2018a; Lyu et al., 2021a), geothermal (Khait and Voskov, 2018b;
Wang et al., 2020b) and CO2 sequestration (Kala and Voskov, 2020; Lyu et al., 2021b) applications.
This study adds geomechanical capabilities to the existing advanced simulation capacity of DARTS,
making it a fully thermo-hydro-chemical-mechanical (THCM) simulator for complex energy transition
applications.

Continuous governing equations

Momentum and mass balance laws govern the coupling between mechanics and fluid flow in porous
media. In the case of single-phase flow, the coupled system of equations (Coussy, 2003) reads

−∇ ·ΣΣΣ = ρtg∇z, (1)
∂

∂ t
(φρ f )+∇ · (ρ f vvv)+ r = 0, (2)

The system is subject to the relations defined in Coussy (2003); Zhao and Borja (2020), that represent

• the stress changes within an anisotropic poroelastic medium

ΣΣΣ−ΣΣΣ0 = C : (EEE −EEE0)− (p− p0)BBB, (3)

• the porosity associated with anisotropic poroelasticity

φ −φ0 =
ψ −φ0

Kr
(p− p0)+BBB : (EEE −EEE0), (4)

• the infinitesimal strains

EEE =
∇uuu+(∇uuu)T

2
, (5)

• the Darcy velocity

vvv =− KKK
µ f

(∇p−ρ f g∇z) , (6)

• the properties of the matrix and fluid

ρt = φρ f +(1−φ)ρs, ρ f = ρ f (p), µ f = µ f (p). (7)

In the above equations the subscripts f and s refer to the fluid and skeleton (porous rock), respectively,
while ∇· is the divergence operator and ∇ is the gradient operator. The rest of the notation is described
in the Nomenclature section.

The subscript “0” denotes the reference state of a variable, i.e.,

ΣΣΣ0 = ΣΣΣ(uuu0, p0), φ0 = φ(uuu0, p0), EEE0 = EEE(uuu0, p0). (8)

For the stress tensor the following relation holds

ΣΣΣ = ΣΣΣ
′− pIII = ΣΣΣ

′′− pBBB, (9)
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where ΣΣΣ
′ is the Terzaghi effective stress tensor and ΣΣΣ

′′ is the Biot effective stress tensor.

We note that the full Biot tensor results from general thermodynamic assumptions to a poroelastic
medium, but in most practical applications it is only possible to experimentally determine a single scalar
Biot coefficient. However, we maintain the full Biot tensor formulation because of its potential relevance
to upscaling.

We denote vectors with bold lowercase letters, second-order tensors and matrices with bold capital
letters, and the tensors of rank higher than two with script font. We also use the following definition for
the total traction vector fff and fluid flux q f over an interface δ with unit normal nnn:

fff |δ = − ΣΣΣ|
δ
·nnnδ =−

(
C :

∇uuu+(∇uuu)T

2
− pBBB

)∣∣∣∣
δ

·nnn, (10)

q f |δ = − KKK (∇p−ρ f g∇z)
∣∣
δ
·nnn. (11)

Boundary conditions for the system of Eqs. (1), (2) can be written as

nnnT (αnuuuδ +βn fff δ ) = γn, (12)

(III −nnnnnnT )(αtuuuδ +βt fff δ ) = γγγ t , (13)

αp pδ +βp

(
q f

µ f

)
δ

= γp, (14)

where subscript δ denotes the property evaluated at the boundary, αn,βn, αt ,βt , αp and βp are co-
efficients that determine the magnitude of corresponding boundary conditions, while γn,γγγ t ,γp are the
corresponding condition values. Eqs. (12), (13) represent normal and tangential boundary conditions
for the momentum balance respectively, while Eq. (14) defines the boundary condition for mass bal-
ance. Eqs. (12)-(14) can describe a broad range of possible boundary conditions including Dirich-
let (αn = αt = 1, βn = βt = 0), distributed force loading (αn = αt = 0, βn = βt = 1), free boundary
(αn = αt = γn = 0, βn = βt = 1, γγγ t = 000), and roller conditions (αn = βt = 1, βn = γn = αt = 0, γγγ t = 000)
for mechanics; and Dirichlet (αp = 1, βp = 0) and Neumann (αp = 0, βp = 1) conditions for flow.

At the fault interfaces we consider a gap vector ggg that is equal to the jump of displacements over the
contact ggg = uuu+−uuu−, where +/− denote a particular side of the fault. The contact conditions following
Simo and Laursen (1992) read

gN ≤ 0, (15)

fff ′T −µ f ′N
ġggT

|ġggT |
= 000, Φ = 0, |ġggT | ̸= 0, (slip), (16)

ġggT = 000, Φ < 0, (stick), (17)

where f ′N = nnnT fff ′ and fff ′T = (III −nnnnnnT ) fff ′ are the scalar normal and vectorial tangential projections of fff ′

on the fault; gN and gggT are the equivalent normal and tangential projections of ggg on the fault; ġgg stands
for the time derivative of the gap vector and Φ =

∣∣ fff ′T ∣∣− µ f ′N is the Coulomb friction function with µ

the friction coefficient. Eq. (15) represents a non-penetration condition, Eq. (16) governs relaxation of
tangential traction once slip occurs, and Eq. (17) sets the change of the tangential gap (i.e. the slip) to
zero if the slip criterion is not exceeded.

We consider two models of contact friction represented by friction laws as

µ = µs, (static), (18)

µ = µ
∗+(a−b) ln

(
ġggT

v∗

)
(steady-state), (19)

where µs is the static friction factor, Dc is the critical slip distance, µ∗ is a reference friction coefficient
measured at reference velocity v∗, while aandb are the parameters of the rate-and-state friction law
(Dieterich, 1979; Ruina, 1983).
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Discrete equations

We use the Finite Volume Method (FVM) to discretize the balance equations. The Finite Volume (FV)
scheme for Eqs. (1), (2) in cell i can be written in the following vector form

Viai + ∑
j∈∂Vi

δi jfi j = 000, (20)

where subscript j denotes the neighbours of the cell i, ∆t is the time step size, Vi is the volume of cell i,
δi j denotes the area of the connection between cells i and j. The accumulation vector ai and the vector
of fluxes fi j in cell i are defined as

ai =

(
∆tρn+1

t,i g∇z(
φ̃ρ f

)∣∣i,n+1
i,n +∆trn+1

i

)
, fi j =

 ∆t fff n+1
i j

ρ f iq̃ f i j

∣∣∣n+1

n
+∆t(ρ f q f /µ f )

n+1
i j

 , (21)

where superscripts n, and n+ 1 denote the variables taken from the current and next time step, respec-
tively, fff is defined in Eq. (10), φ̃ and q̃ f i j, are defined as

φ̃ = φ0 +
ψ −φ0

Kr
(p− p0), q̃ f i j =

(
(uuu−uuu0)i j − (uuu−uuu0)i

)
· (BBBnnn)i j, (22)

where the following relations are used

BBB : (EEE −EEE0) = BBB : ∇(uuu−uuu0) = ∇ ·BBB(uuu−uuu0)− (uuu−uuu0) ·∇ ·BBB. (23)

Here BBB is assumed to be symmetric, the porosity in Eq. (4) is treated as φ = φ̃ +BBB : ∇(uuu−uuu0) and the
last term is approximated using Gauss’ formula as a sum of fluxes q̃ f i j over cell interfaces. The term
(ρ f /µ f )i j is calculated using an upwind approximation while the approximations of fff i j,q f i j and q̃ f i j
are discussed in the next sections.

To satisfy Eqs. (15)-(17), we use a penalty regularization (Simo and Laursen, 1992; Yastrebov and Bre-
itkopf, 2013; Garipov et al., 2016; Gallyamov et al., 2018) which leads to the return-mapping algorithm
of

f
′n+1
N − εN⟨gn+1

N ⟩= 0, (24)

f̃ff
′
T = fff

′n
T + εT (gggn+1

T −gggn
T ), Φ̃ =

∣∣∣ f̃ff ′T ∣∣∣−µ
n+1 f

′n+1
N , (25)

fff
′n+1
T − f̃ff

′
T + ⟨Φ̃⟩ f̃ff

′
T∣∣∣ f̃ff ′T ∣∣∣ = 0, (26)

where f̃ff
′
T denotes a trial traction, which represents the penalized effective tangential traction (Simo and

Laursen, 1992). Penalty parameters εN ,εT ≫ 1 are calculated as εN = fscaleEδ/V,εT = fscaleGδ/V
where fscale is an empirical scaling factor, δ denotes the area of contact interface, V stands for mean
volume of two neighbouring matrix cells, while EandG denote the mean Young’s and shear moduli of
two neighbouring matrix cells (Cardiff et al., 2017). Moreover, the Coulomb friction function Φ used as
a slipping criterion is evaluated at the trial state Φ̃ = Φ( f̃ff

′
) that accounts for the change of slip gggT over

the time step. Macaulay brackets are used to indicate that ⟨a⟩ is equal to a if a ≥ 0 and otherwise equal
to zero. Thus, in the slip state Φ̃ = 0 Eq. (26) requires contact to remain at the slipping surface defined
by Φ = 0 where the direction of forces is defined by the trial traction. Contact reaches the stick state
once the slip increment in Eq. (25) becomes negligible compared to the previous traction (ġggT = 000). In
this case, Eq. (26) claims the traction to be equal to the trial one. In our experience, the return-mapping
algorithm described in Eqs. (25)-(26) does not exhibit significant convergence problems, except for cases
with severe inf-sup instability (pressure oscillations) and when the slip direction reverses. We may also
expect convergence issues in the presence of intersecting faults or in the case of a hydraulically active
fault when its volume and transmissibilities depend on the aperture gN .
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Although Eqs. (24)-(26) can be treated as boundary conditions with no extra degrees of freedom
(Terekhov, 2020b), it might be convenient to treat the gap vector g as an unknown assigned to par-
ticular fault cells, especially in induced seismicity applications. Moreover, it allows the block structure
of the Jacobian to be maintained.

The fluid mass balance in fault cells can be written as

Vi
(
ρ

n+1
i −ρ

n
i +∆trn+1

i

)
+ ∑

j∈∂Vi

δi j

(
ρ

n+1
i q̃ f

n+1
i j −ρ

n
i q̃ f

n
i j +∆t

(
ρq f

µ

)n+1

i j

)
= 0, (27)

where (ρ/µ)i j is taken from the upwind direction, fluxes of displacements q̃n
i j, q̃

n+1
i j are evaluated only

between fault and matrix cells, and where the approximations of f,q, and q̃ are discussed in the following
sections. It is worth to point out that we expect discontinuous displacements over the fault interface
whereas pressure remains continuous there according to the assumptions of the DFM approach.

The influence of mechanical stresses on the conductivity of hydraulically active faults can be of high
interest in the modeling of hydraulic fracturing. Although we do not consider fault opening in this paper,
this effect was addressed by other researchers using FEM with penalty regularization (Garipov et al.,
2016), the Nitsche method (Garipov and Hui, 2019) or Lagrange multipliers (Franceschini et al., 2022);
and in the FVM framework with using Lagrange multipliers (Berge et al., 2020). The latter development
within FVM also demonstrates the applicability of our developed method to model hydraulically active
faults.

Multi-point approximations

In order to complete the set of discrete equations presented in the previous section, the approximation
of momentum and fluid mass at the interfaces of the computational grid must be provided. The approx-
imation of q̃ f is also required as far as Gauss’ formula is used to represent terms in Eq. (23).

The approximation may be performed in a number of ways, and different interpolation strategies can
be employed. As usual, for many FV schemes, the approximation is derived from the requirements of
continuity of unknowns and fluxes at some point on the interface between two cells. The first requirement
reflects the continuity of solutions of the balance Eqs. (1), (2). The second one imposes the conservation
of momentum and fluid mass at the local scale.

In this paper, we improve the coupled multi-point stress and multi-point flux approximations at faults
presented in Novikov et al. (2022). The lower-dimensional treatment of discontinuity in mechanics
requires the construction of connections different from flow problems where the fault is considered
according to the equidimensional DFM approach (Karimi-Fard et al., 2004). As a result, we impose the
continuity between matrix-matrix cells in mechanics and between matrix-fault cells in a flow problem. In
this section, we provide the derivation of these approximations at faults and the corresponding equations
for gradient reconstruction. The approximations at continuous interfaces and at boundaries can be found
in Terekhov (2020a).

Approximation at discontinuity. Although faults are usually represented as 2D surfaces in compu-
tational grids, DFM assigns some aperture so that they have a volume greater than zero in the discrete
fluid mass balance (Karimi-Fard et al., 2004). In contrast to DFM, in mechanics we treat faults as
lower-dimensional objects. It allows displacements to be discontinuous at faults while pressure remains
continuous according to the assumptions of the DFM. We introduce an additional degree of freedom
(d.o.f.) per fault interface, namely a gap vector ggg = uuu+2 − uuu−1 , which is equal to the jump of displace-
ments over the interface. Using this definition, we can impose the continuity of unknowns and fluxes
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as

uuu1 ±ggg3 +
[
III ⊗ (xxx3 − xxx1)

T ](∇⊗uuu1) = uuu2 +
[
III ⊗ (xxx3 − xxx2)

T ](∇⊗uuu2) , (28)

p1 +(xxxδ − xxx1) ·∇p1 = p3 +(xxxδ − xxx3) ·∇p3, (29)

−
[
III ⊗nnnT ]QQQ1 (∇⊗uuu1) =−

[
III ⊗nnnT ]QQQ2 (∇⊗uuu2) , (30)

−(∇p1 −ρ f g∇z) ·KKK1nnn =−(∇p3 −ρ f g∇z) ·KKK3nnn, (31)

where uuu1, p1 and uuu2, p2 denote vectors of displacements and pressure defined at the centers xxx1 and xxx2 of
matrix cells 1 and 2 respectively, ggg3 denotes the gap vector defined at fault cell 3, and xxxδ denotes the
center of the interface δ . The Kronecker product ⊗ works that III ⊗ (xxxδ − xxxi)

T , i = 1,2 represent 3× 9
matrices constructed as

III ⊗ (xxxδ − xxxi)
T =

(xxxδ − xxxi)
T

(xxxδ − xxxi)
T

(xxxδ − xxxi)
T

 , i = 1,2,

∇⊗uuui is 9×1 vector, constructed as

∇⊗uuui =

∇ux
∇uy
∇uz


i

, i = 1,2, (32)

QQQi = YYYCCCiYYY T are 9× 9 matrices, CCCi, i = 1,2 are 6× 6 symmetric stiffness matrices defined in cell i and
written in Voigt notation and

YYY T =

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

.

1

2x2

x1

x�
x3

n
d23

d d1�

3

Figure 1: Geometry of a fault cell. The continuity of displacements and traction vector is imposed at the
center of fault cell xxx3 whereas the continuity of pressure and fluid flux is imposed at the center of the
interface between matrix cell 1 and fault cell 3.

Fig. 1 shows the geometry of a fault cell. The continuity of displacements in Eq. (28) is imposed at the
center of fault cell xxx3 and the continuity of pressure at the center of the interface between matrix and
fault cells xxxδ . This interface is parallel to the fault and shifted over half of its aperture (perpendicularly
to thefault) towards matrix cell 1.
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Below we will use the following co-normal decompositions:

∇⊗
[

uuu
p

]
i
= [III ⊗nnn]ξξξ i +ξξξ τi, ξξξ i = [III ⊗nnnT ]

[
∇⊗

[
uuu
p

]
i

]
, ξξξ τi = [III ⊗ (III −nnnnnnT )]

[
∇⊗

[
uuu
p

]
i

]
, (33)[

III ⊗nnnT ]QQQi = TTT i[III ⊗nnnT ]+ΓΓΓi, TTT i = [III ⊗nnnT ]QQQi[III ⊗nnn], ΓΓΓi = [III ⊗nnnT ]QQQi[III ⊗ (III −nnnnnnT )], (34)

KKKinnn = κinnn+κκκ i, κi = nnnT KKKinnn, κκκ i = (III −nnnnnnT )KKKinnn, (35)
xxx3 − xxx1 = d13nnn+(xxx3 − yyy13), d13 = nnn · (xxx3 − xxx1)> 0, yyy13 = xxx1 +d13nnn,
xxx2 − xxx3 = d23nnn+(yyy23 − xxx3), d23 = nnn · (xxx2 − xxx3)> 0, yyy23 = xxx2 −d23nnn,

xxxδ − xxx1 = d1δ nnn+(xxxδ − yyy1δ ), d1δ = nnn · (xxxδ − xxx1)> 0, yyy1δ = xxx1 +d1δ nnn,
xxx3 − xxxδ = d3δ nnn+(xxx3 − yyy3δ ), d3δ = nnn · (xxx3 − xxxδ )> 0, yyy3δ = xxx3 −d3δ nnn,

where subscripts i = 1,2 refer to the matrix cells, i = 3 refers to fault cell, di j stands for the projection
of xxx j − xxxi on the direction nnn normal to the interface while yyyi j denotes the projection of xxx j − xxxi on the
direction tangential to the interface, TTT 1 and TTT 2 are 3×3 matrices, ΓΓΓ1 and ΓΓΓ2 are 3×9 matrices, while
scalars κ1 and κ2 and vectors κκκ1 and κκκ2 provide co-normal decompositions of KKK1nnn and KKK2nnn. The 3×1
vectors ξξξ 1, ξξξ 2 and the 9×1 vectors ξξξ τ1, ξξξ τ2 represent normal and tangential projections of the gradients
of unknowns respectively.

Co-normal decomposition applied to Eqs. (28)-(31) gives the following equations

uuu1 ±ggg3 +d13ξξξ
u
1 +
[
III ⊗ (xxx3 − yyy13)

T ]
ξξξ

u
τ1 = uuu2 −d23ξξξ

u
2 +
[
III ⊗ (xxx3 − yyy23)

T ]
ξξξ

u
τ2, (36)

p1 +d1δ ξ
p
1 +(xxxδ − yyy1δ )

T
ξξξ

p
τ1 = p3 −d3δ ξ

p
3 , (37)

−TTT 1ξξξ
u
1 −ΓΓΓ1ξξξ

u
τ1 =−TTT 2ξξξ

u
2 −ΓΓΓ2ξξξ

u
τ2, (38)

−κ1ξ
p
1 −κκκ

T
1 ξξξ

p
τ1 +ζ1 =−κ3ξ

p
3 −κκκ

T
3 ξξξ

p
τ3 +ζ3, (39)

where ξξξ
u
i , ξξξ

p
i are normal projections of displacement and pressure gradients in the vector ξξξ i = [ξξξ

uT
i ξ

p
i ]

T ,
ξξξ

u
τi, ξξξ

p
τi, i = 1,2,3 are tangential projections of displacement and pressure gradients in the vector ξξξ τi =

[ξξξ
uT
τi ξξξ

pT
τi ]

T , i = 1,2,3, ζi = ρ f g∇z ·KKKinnn, i = 1,3. Note, that in Eqs. (38), (39) we omit Biot terms for
both momentum and fluid mass fluxes.

Deriving ξξξ
u
2,ξ

p
3 from Eqs. (36), (37) and substituting the result into Eqs. (38), (38) we obtain the

following expressions for ξξξ
u
1,ξ

p
1

(d23TTT 1 +d13TTT 2)ξξξ
u
1 = TTT 2

(
uuu2 −uuu1 ∓ggg3 + III ⊗ (xxx3 − yyy23)

T
ξξξ

u
τ2 − III ⊗ (xxx3 − yyy13)

T
ξξξ

u
τ1
)
+d23

(
ΓΓΓ2ξξξ

u
τ2 −ΓΓΓ1ξξξ

u
τ1
)
,

(40)

(d3δ κ1 +d1δ κ3)ξ
p
1 = κ2 (p3 − p1)+d3δ

(
κ2(yyy1δ − xxxδ )

T +d3δ (κκκ3 −κκκ1)
)

ξξξ
p
τ , (41)

where ξξξ
p
τ1 = ξξξ

p
τ3 = ξξξ

p
τ because pressure remains continuous over the interface.

Substituting Eqs. (40), (41) into the left-hand side of Eqs. (38), (39), one obtains the following multi-
point approximation for the diffusive part of the fluxes at discontinuity:

fff (d)
δ

=−TTT
(
uuu2 −uuu1 ∓ggg+ III ⊗ (xxx3 − yyy23)

T
ξξξ

u
τ2 − III ⊗ (xxx3 − yyy13)

T
ξξξ

u
τ1
)
−

−d23TTT 1 (d23TTT 1 +d13TTT 2)
−1

ΓΓΓ2ξξξ
u
τ2 −d13TTT 2 (d23TTT 1 +d13TTT 2)

−1
ΓΓΓ1ξξξ

u
τ1, (42)

q f
(d)
δ

=−κ
(

p3 − p1 − (xxxδ − yyy1δ )
T

ξξξ
p
τ

)
−

−d3δ κ1 (d3δ κ1 +d1δ κ3)
−1 (

κκκ3ξξξ
p
τ −ζζζ 3

)
−d1δ κ3 (d3δ κ1 +d1δ κ3)

−1 (
κκκ1ξξξ

p
τ −ζζζ 1

)
, (43)

where TTT = TTT 1 (d23TTT 1 +d13TTT 2)
−1 TTT 2, κ = κ1 (d3δ κ1 +d1δ κ3)

−1
κ3.

The final approximation of the diffusive part of the traction vector is obtained as the arithmetic mean of
the approximations defined in Eq. (42) written for both sides δ1, δ2 of the fault cell,

fff (d)
δ

=
fff (d)

δ1 − fff (d)
δ2

2
, (44)
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where “-” takes into account the fact that the approximations fff (d)
δ1 , fff (d)

δ2 are defined in Eq. (42) for
opposite orientations of the normal vector.

We approximate the advective part of traction vector fff (a)
δ

and flux q̃ f as

fff (a)
δ

= p3BBB3nnn, q̃ f δ
= (BBB1nnn)T ⊗ (xxxδ − xxx1)

T (∇⊗uuu1 −∇⊗uuu1,0) , (45)

where (BBBinnn)T ⊗ (xxxδ − xxxi)
T is a 1× 9 row vector and ∇⊗ uuu1,0 denotes the gradients of displacements

defined Eq. (32) and are taken from the previous time step.

We use a DFM for the flow which implies having discrete equations for fracture segments of non-zero
volume. The particular scheme was shown in Eq. (27). We assume continuous pressure at the boundary
between fault cells. The following two-point approximation of Darcy flow is used for these connections

q f δ
=

κ1κ2

d1κ2 +d2κ1
(p1 − p2)+ρ f ,12g∇z ·nnn, (46)

where ρ f ,12 = (d1ρ f ,2 +d2ρ f ,1)/(d1 +d2) is linearly interpolated between cells.

Gradient reconstruction. The approximations in Eqs. (42), (43), (45) require the gradients of the
unknowns to be reconstructed. One can derive ξξξ

u
2,ξ

p
3 from Eqs. (38), (39) and substitute them into Eqs.

(36), (37) to obtain the interpolation equation as(
TTT 2 ⊗ (xxx2 − xxx1)

T +d23 (TTT 1 −TTT 2)⊗nnnT +d23(ΓΓΓ1 −ΓΓΓ2)
)
[∇⊗uuu1] =

= TTT 2 (uuu2 −uuu1 ∓ggg3)∓
(

TTT 2 ⊗ (yyy23 − xxx3)
T −d23ΓΓΓ2

)
∇⊗ggg3, (47)

(κ3 (xxx3 − xxx1)+d3δ (KKK1 −KKK3)nnn) ·∇p1 = κ3 (p3 − p1)+d3δ (ζ1 −ζ3) . (48)

Eq. (48) is used as a condition for pressure gradient reconstruction not only between matrix and fault
cells but also between fault cells.

Gap gradients are reconstructed by using the following relation for the connections between fault cells

[III ⊗ (xxx2 − xxx1)
T ]∇⊗ggg1 = ggg2 −ggg1. (49)

In the connection between a fault cell and an open boundary interface we have[
III ⊗ (xxx2 − xxx1)

T ]
∇⊗ggg1 = 0, (50)

whereas for a closed boundary (fault tip) we have[
III ⊗ (xxx2 − xxx1)

T ]
∇⊗ggg1 =−ggg1. (51)

It is worth to mention that these equations does not take into account material contrasts.

The condition for a connection between a matrix cell and a boundary interface can be found in Terekhov
(2020a).

It is necessary to consider at least 3 interfaces (in 3D) of the first cell to enclose the system with respect

to the 12 components of ∇⊗
(

uuu
p

)
i
. Bringing together Eqs. (47), (48) and the corresponding conditions

written for continuous interfaces and boundaries (Terekhov, 2020a) for N considered interfaces of the
i-th cell, we build up the system

MMMi

(
∇⊗

(
uuu
p

)
i

)
= DDDiψψψ i, (52)
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where MMMi is a 4N × 12 matrix and DDDi is a 4N × 4(N + 1) matrix of coefficients in front of the corre-
sponding unknowns at the right-hand side of these equations, while ψψψ i is a 4(N +1)×1 vector of N +1
unknowns (or free terms in the right-hand sides of the boundary conditions). The solution of Eq. (52)
can be obtained in a least-squares sense as

∇⊗
(

uuu
p

)
i
= (MMMT

i MMMi)
−1MMMT

i DDDiψψψ i. (53)

For the approximation of tangential gradients ξξξ τ = [ξξξ
uT
τ ξξξ

pT
τ ]T in Eq. (43) the following combination of

gradients is used (Terekhov, 2020a):

ξξξ τ =
ξξξ τ1 +ξξξ τ2

2
. (54)

A set of cells that contribute to the approximation Eq. (54) for each interface of some cell i is illustrated
in Fig. 2.

Figure 2: Cells that contribute to the approximation of fluxes over the interfaces of cell i. Index j denotes
the nearest neighbours of cell i. Index k denotes farther neighbours that contribute to the gradients
reconstructed in cells j.

Note that the least-squares solution in Eq. (53) allows computing the gradients of unknowns locally
and independently for every cell. Note, however, that it does not guarantee the local conservation prop-
erty for the scheme. It can be maintained if individual gradients for every interface that respects the
corresponding flux balance are employed.

Solution strategy

The approach to discretization presented in the previous section allows the approximation of momentum
and fluid mass fluxes to be calculated only once before iteration over time. Nonlinearity introduced by
fluid density and viscosity can be taken into account having the equations for fluid mass flux in Eq.
(10) and flux of displacements in Eq. (22) already approximated. It requires the assembly of Darcy
and Hooke (diffusive) terms separate from Biot (advective) terms. Fluid gravity taken in ζζζ i should be
assembled also separately in order to be multiplied by pressure-dependent fluid density.

We use Newton iterations at every time step to resolve nonlinearity exhibited by contact conditions and
fluid properties. In the current study, we employ a direct solver for the linear system of equations. An
advanced preconditioning strategy for the iterative linear solver applied to a similar system is described
in Novikov et al. (2022).

Results

Displaced reservoir

Faulted reservoirs can experience different mechanical conditions over their geological history. Nearly
always this results in an offset such that stratigraphic layers become displaced. An analytical investi-
gation of stresses initiated around a displaced fault in a depleted reservoir is carried out in Jansen et al.
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(2019); Jansen and Meulenbroek (2022). In this test case, we compare the solution we obtain numeri-
cally against the analytical one.

The square model domain shown in Fig. 3a of size L =W = 4500m is considered with shear modulus
G = 6.5GPa and Poisson ratio ν = 0.15. A fault inclined by θ = 70o with respect to the horizontal
axis crosses the center of the domain. The reservoir is displaced over this fault in a way that the left
side lies between a = 75m above and b = 150m below the horizontal centerline of the domain, and
vice versa for the right side. A Biot coefficient b = 0.9 is used inside the reservoir. The domain is
subjected to gravitational forces distributed over the domain according to its density defined in Eq. (7)
where ρ f = 1020kg/m3, ρs = 2650kg/m3 and φ = 0.15 is constant over the whole domain. Initial pore
pressure inside the domain is also governed by a gravitational gradient p = p0 − ρ f gy where y = 0
corresponds to the horizontal centerline of the domain. Biot effective stresses are used in the Coulomb
slipping criterion along with a static friction law (Eq. (18)) where the friction coefficient µst = 0.52.

(a) (b)

Figure 3: Model geometry (a) and computational grid (b) in displaced reservoir test case.

A plane-strain 2D setup is considered. A roller boundary condition governs deformation at the bot-
tom. A constant vertical force fv = Σ′′

yy(H/2) loads the top boundary of domain, where Σ′′
yy = ρtg(y−

D0) and D0 = 3500m. The left and right sides are subjected to compressive horizontal forces fh =
−K0

(
Σ′′

yy +bp(y)
)
+bp(y), where K0 = 0.5. However, this combination of boundary conditions makes

the horizontal displacement ux undefined. In order to define the problem completely, we imposed a
normal Dirichlet condition at three extra boundary points and calculated the resulting displacements
ux = ux(y) over the left and right boundaries. In the current comparison, we apply these displacements
as normal boundary conditions and zero force as the tangential ones. Fig. 3a shows the setup geometry
and boundary conditions, while the grid used in modelling is presented in Fig. 3b.

We consider an instantaneous constant depletion ∆p inside the reservoir. The displaced geometry of
the reservoir produces discontinuous shear stress at the four corner points of the reservoir at the fault-
reservoir intersection (Jansen et al., 2019). As a result, pressure depletion leads to the development of
two slip patches around the two inner points.

Jansen and Meulenbroek (2022) provide a semi-analytical solution for the slip distribution corresponding
to this problem, assuming a domain of infinite horizontal extent. In Fig. 4, the calculated post-slip
Coulomb stress and the slip profiles in a domain of 4W width are presented along with their analytical
counterparts.
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Figure 4: Post-slip Coulomb stress (left) and slip profiles (right) calculated for four values of pressure
depletion ∆p = −24,−25 ,−26 ,−27MPa. Numerically calculated profiles provide a good match to
their analytical counterparts.

Core injection experiment

The developed framework has also been applied to model fluid-induced fault slip behavior observed
in a core injection experiment (Wang et al., 2020a). The authors performed two fluid-induced slip
experiments (SC1, SC2) conducted on permeable Bentheim sandstone samples crosscut by a fault. Fault
slip was triggered by fluid injection into the core at different rates. Wang et al. (2020a) measured slip,
slip velocity, normal and shear stresses, and computed the apparent friction coefficient as a function of
time.

In order to approximately simulate the experiment, the following setup is considered. A rectangular
2D domain (Fig. 5) of 50× 100 mm size is loaded from the left and the right with a confining nor-
mal stress |f| = 350 bar, and from the top by a constant displacement uy = −0.385 mm in SC1 and
uy = −0.36 mm in SC2. A roller condition is specified for the tangential degree of freedom at the top
boundary whereas the displacements at the bottom boundary are fixed. Following the post-processing
of experimental results (Wang et al., 2020a) we apply plane strain conditions to the third dimension.
The domain has constant Young’s modulus 26 GPa, Poisson’s ratio ν = 0.17, an isotropic Biot tensor
BBB = diag(0.6,0.6,0.6), an isotropic permeability tensor KKK = diag(1,1,1) Darcy, porosity φ0 = 0.23 and
constant compressibility 1.45 ·10−10 Pa−1. The fault has the same permeability as the matrix.

The normal displacements applied from the top are chosen to match the initial vertical stress (σ1 in Wang
et al. (2020a)) observed in the experiment. Using a Neumann condition for the top boundary directly
is not possible because once the fault starts sliding, the problem becomes purely Neumann so that the
displacements in the top piece become only defined up to an arbitrary constant.

Water of constant viscosity µ = 10−3Pa · s and compressibility 10−9 Pa−1 is injected into the domain
through the bottom boundary at a specified pressure p = p(t) whereas the other boundaries are im-

European Conference on the Mathematics of Geological Reservoirs 2022
5–7 September 2022, The Hague, The Netherlands & Online



permeable. The evolution of injection pressure and friction coefficient are taken precisely from the
experimental data and are shown in Fig. 6. The injection pressure is increased step-wise in SC1 while in
SC2 it is increased gradually while keeping the pressure constant during short periods of time.

Fig. 6 depicts the dynamics of experimental slip, slip velocity, normal and shear stresses compared to
their counterparts calculated numerically with a time step ∆t = 2s. Although we used a 2D approxi-
mation of a 3D setup, there is a good match in terms of slip, both stresses, and slip velocity in both
tests.

Figure 5: Model setup.

Figure 6: Numerical simulation of core injection experiments from Wang et al. (2020a). Two injection
scenarios were considered: step-wise increase (SC1) and gradual increase (SC2) of injection pressure
from 50 to 350 bar. The time-dependent friction coefficient was taken from the experiment.

In the first example, we use the friction coefficient calculated from the experimental data. In the second
one,we employ the steady-state friction law defined in Eq. (19). A comparison of the friction coeffi-
cients obtained in modelling and measured in the experiment is shown in Fig. 7. The calculated friction
coefficient manages to qualitatively represent the behavior observed in the experiment except during the
final stage of SC2 where strong slip-weakening is exhibited.
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The use of rate-dependent friction laws is complicated by the fact that friction goes to infinity in Eq. (19)
when the slip velocity is equal to zero. One of the options is to use a regularized rate-and-state friction
law (Lapusta et al., 2000). In this modeling we impose a cut-off on the magnitude of the slip velocity
vco = 0.01v∗. Below this cut-off |ġggT | < vco we assume the friction coefficient to remain equal to the
reference value µ = µ∗. Another complication is that under the quasi-static assumption we may not
observe the slip velocity to remain continuous over time. As a result, rate-dependent friction may exhibit
noisy behavior. The results shown in Fig. 7 are calculated with a large time step ∆t = 20s. The use of
smaller time steps leads to more frequent oscillations in slip velocity and in friction.

Figure 7: Numerical simulation of core injection experiments from Wang et al. (2020a). Two injection
scenarios were considered: step-wise increase (SC1) and gradual increase (SC2) of injection pressure
from 50 to 350 bar. Steady-state friction law defined in Eq. (19) is used, where µ∗ = 0.68, a−b = 0.01,
v∗ = 1nm/s in experiment SC1, and µ∗ = 0.68, a−b = 0.006, v∗ = 1nm/s in experiment SC2.

Conclusion

We have developed a fully implicit collocated Finite Volume scheme for a faulted porous media. The
improved formulation of multi-point approximations of momentum and fluid mass fluxes at faults leads
to a more accurate scheme compared to our earlier implementation (Novikov et al., 2022). A collo-
cated grid allows assigning unknowns and material properties in the same regions such that the block
structure of the Jacobian is maintained. A fully coupled approximation provides a robust and unified
framework to approach hydromechanical problems. Based on the literature (Terekhov, 2020a; Terekhov
and Vassilevski, 2022), we expect that our method can be extended to more complex grid geometries.

The method can cope with discontinuities in displacements, as occur in faults, on the level of discretiza-
tion. The multi-point approach allows to perform discretization only once in the pre-processing stage.
These discrete terms remain valid for different contact states. We introduced gap degrees of freedom
over the fault, which significantly simplified the formulation of contact conditions and nonlinear friction
laws. We validated the method against analytical solutions and experimental results in several test cases.
The developed framework demonstrates its applicability to resolve fault reactivation. The presented
methodology allowed us to successfully consider nonlinear friction laws in coupled hydro-geomechanics
simulation.
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Nomenclature

Physical variables

a,b – parameters of rate-and-state friction law,
αn,αt ,αp,βn,βt ,βp,γn,γγγ t ,γp – coefficients that determine boundary conditions,
BBB – rank-two Biot tensor,
C – rank-four drained stiffness tensor of skeleton,
CCC – 6×6 symmetric matrix of stiffness coefficients,
EEE – rank-two strain tensor,
E – Young’s modulus,
fff – traction vector,
fN , fff T – normal and tangential projections of traction vector,
fff ′ – effective Terzaghi traction vector,
f ′N , fff ′T – normal and tangential projections of effective Terzaghi traction vector,
G – shear modulus,
ggg – 3×1 vector of gap in displacements,
gggN ,gggT – normal and tangential projections of gap vector,
ġggT – slip velocity vector,
g – gravity constant,
µ – friction coefficient,
µs – static friction coefficient,
µ∗ – reference friction coefficient,
III – identity matrix of appropriate dimension,
KKK – rank-two tensor of permeability,
Kr – bulk modulus of the solid phase,
Kd – drained bulk modulus,
kx,ky,kz – diagonal components of permeability tensor,
M – Biot’s modulus,
µ f – fluid viscosity,
µ – friction coefficient,
nnn – unit normal vector,
ν – Poisson’s ratio,
p – pore pressure,
q f – fluid flux,
r – source (sink) of fluid mass,
ρ f – fluid density,
ρs – rock density,
ρt – total density of the medium,
ΣΣΣ – rank-two total stress tensor,
ΣΣΣ
′ – rank-two effective Terzaghi stress tensor,

ΣΣΣ
′′ – rank-two effective Biot stress tensor,

ΣΣΣ – total stress tensor in Voigt notation,
ΣΣΣ
′ – effective Terzaghi stress tensor in Voigt notation,

ΣΣΣ
′′ – effective Biot stress tensor in Voigt notation,

t – time,
uuu = [ux uy uz]

T – vector of displacements,
uuu−,uuu− – displacements at the particular side of the fault
(∇uuu)T – Jacobian matrix of uuu
vvv – Darcy’s velocity of fluid,
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v∗ – reference slip velocity,
Φ = | fff ′T |−µ f ′N – Coulomb function,
φ – porosity,
φ̃ = φ0 +(p− p0)(ψ −φ0)/Kr,
ψ = (BBB : III)/3 – one-third of the trace of tensor BBB,
z – depth,
∇z – direction vector [0 0 1]T .

Numerical variables

ai – accumulation vector in discrete equations for cell i,
κκκ i – tangential projections of co-normal permeability vector,
ΓΓΓi – 3×9 matrices,
∆t – time step size,
δ j – area of interface j,
εN ,εT – penalty parameters,
fi j – flux vector in discrete equations for cell i,

f̃ff
′
T – penalized Terzaghi effective tangential traction,

ζi – gravity contribution to single-side approximations of fluid mass fluxes,
κi – tangential projection of co-normal permeability vector,
ξξξ i,ξξξ τi – 4×1 and 12×1 vectors of normal and tangential projections of the gradients of unknowns
in cell i,
ξξξ

u
i ,ξ

p
i ;ξξξ

u
τi,ξξξ

p
τi – normal and tangential projections of the displacement (u) and pressure (p) gra-

dients in cell i,
QQQi – 9×9 matrix,
ri – distance between the center of cell i and interface,
Vi – volume of cell i,
xxxi – center of cell i,
xxxδ – center of the interface,
YYY – 9×6 matrix,
yyyi – projection of the center of cell i center on interface.
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