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ABSTRACT: Spectral wave modelling can reduce uncertainties in the estimation of wave energy resource
assessment, converter design, extreme value analysis, etc. In spectral models, wave growth is represented with
different approaches, resulting in wave resource assessments having large differences especially at high wave
values. In this paper a modified version of the North Sea Wave Database is used to quantify the impact of wind
temporal fidelity on the wind growth components. The Simulating WAves Nearshore (SWAN) model has been
modified, with two different wind inputs used from the European Centre for Medium-Range Weather Forecasts
(ECMWF). Results are compared with in-situ measurements an inter-comparison for 20 years (1980-1999). Dif-
ferences are found on mean and maxima values of wave parameters, with little changes in directionality. How-
ever, higher temporal resolution of the wind does not mean always a better hindcast, in fact attention to the
calibration of wind-wave growth interactions and whitecaps leads to similar results. Finally, the high fidelity
hindcasts are compared, identifying limitations and opportunities for improvements in wave energy assessments.

1 INTRODUCTION

Wave models have emerged as competent tools to
assist in covering the metocean gap of information.
However, as in any case numerical wave models
depend on their configuration, physical tuning, and
inputs (i.e. wind, bathymetry, currents, etc.). In 2009
(Cavaleri 2009) discussed the limitations all models
have, when it comes to reducing uncertainties in large
waves, wave models have a tendency to under-
estimate. Since then advancements have been made
to the performance of numerical wave models, how-
ever the “problem” persists with model under-
estimation. Building upon the seminal work of
(Komen, Hasselmann, & Hasselmann 1984) that gave
way to the WAM-III formulation, that was expanded
and modified to WAM-IV and several other configur-
ations ST4, ST6 (Janssen 1988, Rogers et al. 2002,
Rogers et al. 2012, Stopa et al. 2016). Improvements
in our understanding of wind-wave generation, has
allowed several different options to emerge.

Although our understanding and the availability of
computational resources keeps on increasing, there is
still not clear theory, physical set-up that will create
the ``perfect” model. To complicate things further,
there are different types of wave models (phase resolv-
ing/averaged), and models suitable for different scales

(shallow, nearshore, oceanic). Hence, the development
of an accurate enough hindcast is determined by sev-
eral aspects such as the final model usage, modeller’s
experience, input suitability/quality, regional character-
istics, calibration, and validation methods.

Arguably, in all wave models the most influential
process is wind generation, and therefore closely con-
nected to wind fields used. Stopa et al (Stopa &
Cheung 2014) compared the ERA Interim with NCEP
Climate Forecast System Reanalysis (CFSR) to drive
a global model (WaveWatchIII), the authors concluded
that depending on the Hemisphere wave generation
differs and caution is needed when it comes to using
a wind dataset. Interim was under-estimating but
proved more homogeneous over time, however, for
higher values CFSR showed a better agreement. Simi-
lar results were reported for higher resolution grids for
the cases of Scotland (Lavidas et al. 2017) and the
Black Sea (Akpinar et al. 2016, Akpinar and Ponce de
León 2016), where the maximum bias performance of
CFSR outperformed ERA-interim. However, in both
cases the authors did mention the large over-
estimations for mean values and larger scatter indices.
Which in the case of wave energy assessment may
lead to increased over-estimations. Finally, (Stopa
2018) also assessed 10 different wind datasets, the
mean performance of generated waves by the model

DOI: 10.1201/9781003360773-7

53



wa similar but again larger wave height were differ-
ently hindcasted. This study builds upon a calibrated
and validated North Sea Wave Database (NSWD)
(Lavidas & Polinder 2019, Lavidas 2020a, Lavidas
2020b, Lavidas 2020c, Lavidas 2020d, Lavidas
2020e).

2 WAVE MODEL

For generation of the database a third generation
spectral phased averaged model, Simulating WAves
Nearshore (SWAN) version 41.20 was used (Delft
2014). For the development of long-term datasets we
have to ensure that proper methods are used and
most importantly a suitable wave model is utilised
(Lavidas & Venugopal 2018, Ingram, Smith, Fer-
riera, & Smith 2011). The SWAN model is suitable
to provide reliable information at the nearshore, as it
contains the possibility of modelling complex non-
linear interactions that exist near the coastlines. This
is highly important, as most first generation wave
energy converters (WECs) will be placed near the
shoreline, at depths were bathymetry has influence
over the metocean conditions.

The model has been set-up with spherical coord-
inates and a resolution of 0:025�, corresponding to
≈2.25 km longitude (λ) and ≈2 km latitude (�),
accounting for the Earth’s curvature. Coastline data
have been obtained by Amante et al. (Amante &
Eakins 2014) and the latest Global Self-consistent,
Hierarchical, High-resolution Geography Database
(GSHHG) (Wessel & Smith 1996). Based on the
information a bathymetry domain was constructed as
input for the model, see Figure 1, the depth is vary-
ing “smoothly’’ without the existence of very sharp
depth gradients, due to being on a Continental Shelf.
To compare the validated model several locations
have been extracted with their coordinates and spa-
tial information given in Figure 3 and Table 1

SWAN is a third generation spectral phased-averaged
wave model, that accounts multiple physical processes
suitable for deep and shallow waters, although arguably
it is more efficient for nearshore and Shelf Seas. The
wave spectrum is described in time (t) by the action
density equation (E), dependent upon angular frequency
(σ), direction (θ), frequency (f ), energy propagation (c)
over latitude (�) and longitude (λ). Sink source terms
are used to estimate the wave parameters (see Equa-
tion 1), given a specific set of inputs and physical coeffi-
cients, with wind input (Sin), triads (Snl3), quadruplet
(Snl4) interactions, whitecapping (Sds;w), bottom friction
(Sds;b) and (Sds;br) depth breaking.

Stot ¼ Sin þ Snl3 þ Snl4 þ Sds;w þ Sds;b þ Sds;br ð1Þ

In wave models, generation, propagation and
spectrum evolution is dependent on various

Figure 1. North Sea domain for the study with depth in
meters.

Table 1. Locations extracted.

Longitude Latitude Map Number

Brouw 3.61� 51.76� 1
Schouw 3.31� 51.74� 2
Eurdwe 3� 51.94� 3
Eur3 3.27� 51.99� 4
IJ1 4.51� 52.46� 5
IJ2 4.05� 52.55� 6
L91 4.96� 53.61� 7
F161 4.01� 54.11� 8
J61 2.95� 53.81� 9

Figure 2. Bathymetry domain depth in meters and loca-
tions as numbered in Table 1.
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parameters. Most important source terms are mech-
anisms of wind Sin, and dissipation Sds;w=b=br, as they
are responsible for wave generation and dissipation.
Waves are created by wind surface pressure on the
ocean, in wave models this term is modelled by con-
sidering a wind drag coefficient (CD) that contributes
to the growth. Wind wave generation is a summation
of energy density Eðλ; �Þ from the Stot (over Spher-
ical coordinates)

3 CALIBRATING FORWIND

Wind drag coefficients can differ and may enhance
or reduce the wave generation capabilities in the
model. It is known that wave models tend to under-
estimate at lower frequencies (Cavaleri 2009), with
accuracy affected by wind components used. SWAN
41.20 introduced an adjusted formulation for wind
and whitecapping, similar but not the same to Wave-
watch3 (WW3) ST6 (NOAA, Ponce de León, Bet-
tencourt, Van Vledder, Doohan, Higgins, Guedes
Soares, & Dias 2017). The wind drag parametrisa-
tion requires fine tuning, the sink term of wind input
is given in Equation 2

Sin ¼ Aþ βEðλ; �Þ ð2Þ

with A linear growth, β is the exponential growth,
in order to avoid wave generation at regions below
the Pierson-Moskowitz spectrum, β the exponential
growth that depends upon estimation of frictional
velocity. This in turn affects the momentum flux that
is the driver between atmosphere and the ocean sur-
face for wave generation, as the model translates
wind at 10 m (U10) to a surface wind, see Equation 3
with an estimation wind drag coefficient (CD) that
depends on U10.

U2
� ¼ CD þ U2

10 ð3Þ

Wind drag estimations have limitations especially
for higher wind speeds, where they are known to
under-estimate and even limit wave growth, therefore,
for every different configuration, the CD should be
adjusted. Kamranzad et al. (Kamranzad and Mori
2019) indicated that even though wind drag paramet-
risations in models are good at generating waves, they
are limited in their performance especially at higher
wind values where wave growth is reduced. To allevi-
ate this limitation, a modified formulation was used
and since 41.20, a similar approach to that of Rogers
et al. (Rogers, Babanin, &Wang 2012) can be acti-
vated. All calibration models were tuned using the
binned distribution of 36 directions and frequencies,
with the latter using a Δf = 0.1. The calibrations were
conducted with an Intel Xeon with 36 GB of RAM.

The NSWD used a fully calibrated model with
ERA-Interim wind fields, the chosen model was

based on the STH123 (ST6) with CD based on
(Hwang 2011), local dissipation (lds): 4.7�7 cumula-
tive dissipation (cds): 6.6�6, and scaling 3:35. The
scaling option parametrisation aims to correct the
mean square slope, Tuning this option has to do with
how much energy is allowed to migrate in higher
frequencies. With a higher number, lower the
amounts that are allowed there, therefore, this can be
beneficial to not under-estimate lower frequencies.

This reflected in the detail validation of the model,
majority of locations indicate a high agreement for
Hm0 with R within ≈90–94%. For Southern parts of
Dutch coastlines (Brouwer, Eur3, Schouw, Eurdwe),
R shows a high agreement following the generation
trend. Regarding the NSWD bias performance, the
database showed an over-estimation by ≈10 cm.
Unlike, the trend of mean biases in the NSWD, most
maxima values are only slightly under-estimated, usu-
ally with a difference of ≈30–80 cm. Scatter Index for
all years are with 14–16%, indicating a strong diag-
onal agreement, and the periods are characterised by
mid to high frequency waves, simulated accurately by
the model with small under-estimation in magnitude
of ≈0.18–0.4 s. For a more in depth look into the val-
idation, please see the (Lavidas & Polinder 2019).

3.1 Wind inputs

In the first version of NSWD ERA-Interim winds (Dee
et al. 2011) were used, as when the model was con-
structed a full set of ERA5 winds were not available
from 1980s. However, since then ERA5 have been
released and closely modified (Hersbach et al. 2019).
The ERA5 offer are considered an upgrade from the
Interim products, in terms of the wind components, the
vertical resolution increased from 60 levels (Interim) to
137 level, with a spatial resolution almost twice as
high from 79Km to 39 Km. The wind variables are
outputted every 1 hour for ERA5, while Interim was
6-hourly, that implies a better storm representation.
The wave boundaries are offered by a newer version of
EC-WAM that has three time higher resolution from 1�
to 0:36�. Another difference is the data assimilation
scheme, for Interim a 4D-Var scheme was used, which
at ERA5 was upgraded by using ensemble atmospheric
data assimilation leading to reduced biases.

4 RESULTS

Forcing with different winds, even between the same
“family” results in different outputs are slightly
modified. The results compare individual years from
between 1980-1999, with more focus on 1980-1989
and 1990-1999. The reason behind this selection is
to asses performance of satellite assimilated and
non-assimilated models. Between 1980-1989 the re-
analysis is not assimilated with satellite data, whilst
for 1990 onward data assimilation exists (Dodet
et al. 2020). This in turn allow us to compare the dif-
ference in annual and overall terms.
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The NSWD driven by ERA-Interim (see
Figure 3), shows that most wave power compo-
nents have a directionality from Easterly and
Southern with values � 50kW/m. The ERA5
NSWDv2 (see Figure 4) database exhibits similar
Easterly and Southern magnitudes, but it also
showcases magnitude coming from the South-
West. The latter dataset shows there are also less
clustered event from the South, with those events
having a higher number and smaller intensities in
wave power content.

Figure 5 shows a direct comparison of the gener-
ated combined swell and wind waves, the NSWDv2
showcases higher wave heights at all instances, with
particular differences at the highest waves. This can
implies that storm conditions, as expected due to
temporal and assimilation improvements, to be
better captured. However, in the NSWD data the
maxima already were only under-estimated slightly,
≈40 cm. Figure 5 shows NSWDv2 is often time
more than 0.8-1 meter higher on large wave values.
Figure 6 shows only the last year of the on-going
hindcast, while the generation trend is similar the
difference over large waves are consistent.

Table 2 showcases the differences between
NSWD and NSWDv2 in mean values for different
variables. Almost universally the NSWDv2 overesti-
mates the means. The difference between the mean
values of Hm0 is ≈ 1 cm, see Figure 7. In terms of
Hm0 maxima the differences are higher on average
(see Table 3), however, the Tpeak and Tm10 are under-
estimated by the NSWDv2 almost by 1 to 1.5
seconds.

Figure 4. Wave power rose from the ERA5 NSWDv2
1980-1999.

Figure 5. Hm0 comparison of the dataset 1980-1999, wave
generated by the different winds.

Figure 3. Wave power rose from the ERA-I NSWD
1980-1999.

Figure 6. Hm0 comparison of the dataset 1999, wave gener-
ated by the different winds.
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5 CONCLUSIONS

Wind inputs have a large impact of wave models,
however, physical tuning of wave models allows us
to closely match real wave conditions. Furthermore,
this can also lead to a “cheaper” computational
model, achieving similar accuracies. Forcing winds
influence the generation of waves, and result in high
waves differences. However, larger waves do not
mean a better dataset, while the quality of wind is
vital, the physical tuning is and should always be
considered of higher importance.

It should be noted that depending on the use fore-
seen for a wave dataset, different aspects have to
given interest. Therefore, while the results of wave
hindcasts can be ``optimal” for specific processes
and studies, whether these are wave energy, storm
surges, Climate Change, etc, they cannot cover all
aspects. Although, transferability of hindcasts for
other studies is common, the user should be aware of
the calibration impacts by a wave model, as if for
example one aims to use a hindcast database then the
mean bias and scatter index will not be as important
as the maximum bias and root-mean-square error.
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