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Signal-Intensity Informed Multi-Coil MRI Encoding Operator for
Improved Physics-Guided Deep Learning Reconstruction of

Dynamic Contrast-Enhanced MRI

Ömer Burak Demirel1,2, Burhaneddin Yaman1,2, Steen Moeller2,
Sebastian Weingärtner1,2,3 and Mehmet Akçakaya1,2

Abstract— Dynamic contrast enhanced (DCE) MRI acquires
a series of images following the administration of a contrast
agent, and plays an important clinical role in diagnosing various
diseases. DCE MRI typically necessitates rapid imaging to
provide sufficient spatio-temporal resolution and coverage. Con-
ventional MRI acceleration techniques exhibit limited image
quality at such high acceleration rates. Recently, deep learning
(DL) methods have gained interest for improving highly-
accelerated MRI. However, DCE MRI series show substantial
variations in SNR and contrast across images. This hinders
the quality and generalizability of DL methods, when applied
across time frames. In this study, we propose signal intensity
informed multi-coil MRI encoding operator for improved DL
reconstruction of DCE MRI. The output of the corresponding
inverse problem for this forward operator leads to more uni-
form contrast across time frames, since the proposed operator
captures signal intensity variations across time frames while not
altering the coil sensitivities. Our results in perfusion cardiac
MRI show that high-quality images are reconstructed at very
high acceleration rates, with substantial improvement over
existing methods.

I. INTRODUCTION
Dynamic contrast-enhanced (DCE) MRI is widely used in

different organs, including the heart, kidney, prostate, breast,
brain, among others [1], [2]. These acquisitions typically
require snap-shot imaging of the whole anatomy during or
after the administration of an exogenous contrast agent. High
spatio-temporal resolution and sufficient coverage are crucial
in DCE MRI to capture the contrast uptakes adequately [3],
[4]. However, data acquisition times still remain a major
challenge, requiring trade-offs between coverage and spatio-
temporal resolution, and necessitating accelerated MRI.

In DCE MRI applications, parallel imaging, simultaneous
multi-slice (SMS) imaging and compressed sensing (CS)
are the most commonly used acceleration methods [5]–[7].
Recently, physics-guided deep learning (PG-DL) has gained
substantial interest in accelerated MRI to improve recon-
struction quality [8]–[11]. At higher acceleration rates, where
conventional methods exhibit aliasing and noise artifacts,
PG-DL is able to provide high-quality reconstructions [9]–
[12]. However, several challenges hinder the utility of PG-
DL methods for DCE MRI. Typically, PG-DL methods are
applied to individual time frames, but they face challenges

1Department of Electrical and Computer Engineering, 2Center for Mag-
netic Resonance Research, University of Minnesota, Minneapolis, MN,
USA, and 3Department of Imaging Physics, Delft University of Tech-
nology, Delft, Netherlands. e-mails: {demir035, yaman013,
moell018, sweingae, akcakaya}@umn.edu

with generalizability across varying SNRs [13], which is
inherently the case across time frames in DCE MRI. While
reconstructing individual time frames is preferable to avoid
temporal blurring, spatio-temporal regularization has been
popular in CS methods in DCE MRI [6], [7]. An anal-
ogous training for spatio-temporal PG-DL reconstruction
may also be challenging due to differences in contrast
uptakes/breathing patterns among different individuals, es-
pecially in patient populations, along with the difficulty of
obtaining sufficiently large training databases for DCE MRI
acquisitions.

In this work, we propose the use of a signal-intensity
informed multi-coil (SIIM) encoding operator for improving
PG-DL reconstruction of highly-accelerated DCE MRI ac-
quisitions. SIIM encoding operator captures the SNR/signal-
intensity variations across time frames, leading to a more
uniform contrast across the image series, which in turn
facilitates generalizability for DL methods. The proposed
approach was applied to highly-accelerated perfusion car-
diac MRI. Comparisons were made to split slice-GRAPPA,
locally low-rank (LLR) regularized reconstruction [14]–[16],
and PG-DL with a conventional multi-coil encoding operator,
where the proposed method visibly outperformed all in terms
of image quality.

II. METHODS

A. Physics-Guided Deep Learning MRI Reconstruction

The inverse problem for MRI reconstruction is given as:

x̂reg = argmin
x

||yΩ −EΩx||22 +R(x), (1)

where yΩ is the acquired multi-channel k-space, Ω is the in-
plane undersampling pattern, x is the image of interest, EΩ is
the multi-coil encoding operator and R(·) is the regularizer.
Note the first quadratic terms enforces data consistency
(DC) with the acquired points. Using variable splitting with
quadratic penalty [11], [17], the objective function in (1) can
be decoupled in two sub-problems:

z(t) = argmin
z

µ∥x(t−1) − z∥22 +R(z), (2)

x(t) = argmin
x

∥yΩ −EΩx∥22 + µ∥x− z(t)∥22, (3)

where µ is the penalty parameter, and z(t) and x(t) are
intermediate and reconstructed images at tth iteration, re-
spectively. PG-DL unrolls (2) and (3) for a fixed number of
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Fig. 1: Unregularized least squares estimate of a representative slice
using: a) conventional operator using ESPIRiT and b) proposed
SIIM encoding operator. Visible SNR/signal intensity changes are
seen in (a), while uniform contrast using (b). c) Low-resolution
images (L) for the slice of interest for three different time frames.
The product of middle and bottom rows yield contrast similar to
top row, as detailed in (7).

iterations [8]. DC problem in (3) is solved by linear methods,
while (2) is solved implicitly using a neural network.

B. Conventional Multi-Coil MRI Encoding Operator

The forward encoding operator E in (1) is given as [18]:

EΩ =

FΩC1

...
FΩCK

 , (4)

where FΩ is a partial Fourier operator sampling the pattern
Ω, and Ck is a diagonal matrix representing the sensitivity
profile of the kth coil. In many applications, including PG-
DL, sensitivity maps are estimated using ESPIRiT [19]. ES-
PIRiT maps are normalized, i.e.

∑
k |Ck|2 = I. Thus for the

inverse problem in (1), the SNR variations in the measure-
ments, yΩ across time frames are dynamically exhibited in
the solution x̂reg, leading to image outputs with substantially
different SNR/signal-intensities across time frames.

C. Proposed Signal Intensity Informed Multi-coil (SIIM)
Encoding Operator

Let L be a diagonal matrix whose entries correspond to the
pixel values of an image that corresponds the signal variation
in a particular time frame. We define the SIIM operator as:

HΩ = EΩL, (5)

and the corresponding inverse problem is now:

x̂SIIM = argmin
x

||yΩ −HΩx||22 +R(x). (6)

Fig. 2: Physics-guided DL with (a) Conventional operator with
ESPIRiT and (b) Proposed SIIM encoding operator. The network
outputs are different between conventional and SIIM encoding
operators. The product of L yields the similar contrast as in
conventional output.

In the absence of a regularizer, it is easy to show that [20]:

x̂reg = (E∗
ΩEΩ)

−1E∗
ΩyΩ

=
(
(L−1)∗H∗

ΩHΩL
−1

)−1
(L−1)∗H∗

ΩyΩ

= L
(
H∗

ΩHΩ

)−1
H∗

ΩyΩ = L · x̂SIIM . (7)

Thus, while the SIIM operator leads to an output, x̂SIIM

with a uniform signal intensity (Fig. 1) compared to the
output corresponding to the conventional operator, x̂reg, the
two are equivalent once the former is multiplied by L for
the unregularized case.

A simple way to capture the signal intensity variations
for a given time frame is to let the diagonal entries of
L correspond to a low-resolution image from the central
k-space. In the original parallel imaging setting, a similar
concept was utilized by using low-resolution images from
the central k-space as coil maps, instead of normalizing
them with their root-sum-squares [20]. In this work, the
alternative formulation in Eq. (5) enables a more synergistic
combination with ESPIRiT map estimation.

There are two main differences between the conventional
and SIIM encoding operators. There are numerical differ-
ences between solving the objective functions in (1) and
(6), which may overcome numerical instabilities resulting
from high accelerations, even in the unregularized case [20].
The SIIM formulation also has a further advantage in the
regularized setting since the solution to the objective function
in (6), x̂SIIM has a more uniform/flat signal intensity across
time frames (Fig. 1). In turn, this may allow improved
generalizability for PG-DL reconstructions , since their per-
formance have been shown to be affected by SNR variations
of the underlying solutions. Schematics of unrolled networks
employing conventional and SIIM encoding operators are
depicted in Fig. 2. Notably for the latter type of network,
the output has to be multiplied by L to yield the desired
final reconstruction.
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Fig. 3: Representative perfusion CMR results across different time frames on a test subject, acquired with a simultaneous multi-slice
factor of 3 and in-plane acceleration of 4 with 6/8 partial Fourier (16-fold acceleration). Substantial noise amplification is observed in
split slice-GRAPPA albeit without aliasing artifacts, LLR regularized reconstruction and PG-DL with ESPIRiT reduce noise amplification
but suffer from aliasing artifacts (yellow arrows). Proposed PG-DL reconstruction with SIIM encoding operator shows improved image
quality by eliminating noise amplification and aliasing artifacts.

D. Imaging Experiments

Imaging experiments were performed at 3T (Siemens
Magnetom Prisma) in 8 subjects. The study was approved by
our institutional review board and written informed consents
were acquired before each scan. Free-breathing first-pass
perfusion cardiac MRI (CMR) was performed with the
injection of 0.05 mmol/kg gadobutrol (Gadovist) at 4mL/s
followed by a 10-mL saline flush. A saturation-prepared GRE
sequence was used along with slab-selective saturation pulses
for outer volume suppression (OVS) [21]. Relevant imaging

Fig. 4: Representative signal intensity curves showing (a) left
ventricular and (b) myocardial contrast uptake. In both cases, split
slice-GRAPPA and PG-DL with SIIM encoding operator exhibit
similar uptakes. On the other hand, LLR regularized reconstruction
and PG-DL with conventional encoding show earlier and different
uptakes, which may be a result of the residual aliasing artifacts
remaining in these reconstructions.

parameters were: SMS acceleration = 3, in-plane acceleration
= 4, partial Fourier = 6/8, FOV = 360×360mm2, resolution =
1.7×1.7mm2, slice-thickness = 8mm, temporal resolution =
110ms. For SMS imaging, an additional calibration scan was
performed: Non-prepared GRE with FOV = 360×360mm2,
resolution = 1.7×5.6mm2.

III. EXPERIMENTS AND RESULTS

A. Implementation Details

SIIM Encoding Operator. Conventional coil sensitivity
maps were generated using ESPIRiT [19] and using the
24×24 central part of the calibration scans. For the estima-
tion of low-resolution images, L, the central 24×24 region of
each time frame was reconstructed using split slice-GRAPPA
[22]. Note that this intermediate reconstruction was necessary
due to the SMS encoding, and would not be necessary
in single-slice or single-volume imaging. Subsequently, a
ringing filter was applied, and smoothing was performed in
image domain on each coil image, prior to the generation
of the root-sum-of-squares image per time frame. Finally,
ESPIRiT maps were multiplied with these low-resolution
images as described in Section II-C to generate the SIIM
encoding operator.
Self-supervised DL for SMS Reconstruction. For SMS
imaging reconstruction, the objective function in (1) is
extended to resolve multiple simultaneously excited slices
by concatenating the individual slices along the readout
direction [23] with an SMS encoding operator that contains
individual slice encodings [24], [25]. Since the perfusion
acquisitions are highly-undersampled, ground-truth reference
data are not available. Therefore, a recently proposed self-
supervised learning approach, SSDU [17] was used for train-
ing. In particular, in SSDU, the acquired k-space locations,
Ω, are split into two disjoint sets, where the first is used in
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the DC units of the unrolled network, while the second is
used to define training loss [17]. This enabled high-quality
network training without requiring ground-truth data.
Network Training Details. Training was done on 4 subjects
using 360 SMS k-spaces via unrolling the PG-DL for 10
iterations. A ResNet structure was used for the regularizer
and conjugate gradient was used for DC units with the
SIIM encoding operator. DC unit itself was unrolled for
20 iterations [11], [17]. Training was performed by using
Adam optimizer with a learning rate of 3 · 10−4. Network
was trained to minimize a normalized ℓ1 - ℓ2 loss over
100 epochs with a batch size of 1 [17]. Network outputs
were multiplied by the respective low-resolution root-sum-
squares images (i.e. L) to generate the final reconstruction as
described in Section II-C. All training was performed using
TensorFlow in Python and processed on a workstation with
an Intel E5-2640V3 CPU (2.6 GHz and 256 GB memory),
and an NVIDIA Tesla V100 GPU with 32 GB memory.
The training takes around 10 minutes per epoch for PG-DL,
both with the SIIM encoding operator and the conventional
encoding operator.

A separate training with the same parameters and network
was performed, except using conventional ESPIRiT maps for
the multi-coil encoding operator. This served as the conven-
tional PG-DL reconstruction baseline. Further comparisons
were made to split-slice GRAPPA [22], which is a clinically
used linear reconstruction strategy for SMS imaging, as well
as to LLR regularized reconstruction where the conventional
encoding operator was used in the DC term [14]–[16].

B. Reconstruction Results

Fig. 3 shows reconstructed slices for a SMS=3×R=4
accelerated perfusion dataset. Split slice-GRAPPA recon-
structed the slices without aliasing artifacts but suffered from
high noise amplification. LLR regularized reconstruction
and PG-DL with ESPIRiT reduced the noise amplification
compared to split slice-GRAPPA, however residual aliasing
artifacts deteriorated the image quality in both cases (yellow
arrows). Proposed PG-DL with SIIM encoding operator
successfully removed the aliasing artifacts while reducing
the noise amplification with high image quality during the
RV and LV uptakes, as well as later time frames.

Signal intensity curves are depicted in Fig. 4 showing
the left ventricular blood pool signal and myocardial con-
trast uptake from a representative test subject. Split slice-
GRAPPA and PG-DL with with SIIM encoding operator
follow similar left ventricular contrast uptake, while PG-
DL with conventional encoding, and LLR regularized re-
construction show deviations from them. These deviations
in quantification for the latter two may be attributed to the
residual aliasing artifacts that are visibly apparent in the
corresponding reconstructions.

IV. DISCUSSION

We proposed the use of SIIM encoding operator for PG-
DL reconstruction of DCE-MRI. The main advantage of this
approach is that the output image of the objective function,

x̂SIIM has uniform contrast across different SNRs/time
frames, which is critical for addressing the generalization
problem in DCE MRI reconstruction. In particular, perfusion
CMR has higher SNR in the ventricular uptake time frames,
but the SNR slowly depletes especially at later phases.

The SIIM encoding operator leads to a more uniform/flat
signal intensity in the output to the corresponding inverse
problem in (6) across time frames that have varying SNRs
in terms of the acquired k-space. Therefore, regularization
operates on more uniform SNRs in the image space, for
the corresponding outputs x̂SIIM regardless of the particular
physiological process associated with a time frame. Even
though this intermediate solution has more uniform signal
intensity, the final reconstruction is generated following
multiplication by the corresponding low-resolution image for
that time frame. Notably, SIIM encoding operator should not
effect the quantification of myocardial perfusion since both
conventional and SIIM encoding operations yield the same
solution in the absence of a regularizer shown in (7), which
is consistent with the quantification of the uptake curves in
Fig. 4. On a first look, the approach in (5) may resemble the
use of preconditioning in other MRI reconstruction problems
[18], [26]. In such settings, preconditioning is typically used
to speed up the convergence in solving the data consistency
problem in (3). However, the preconditioner does not change
the signal intensity variations at the solution output, and the
solution to (1) will have similar signal intensity variations
across time frames whether preconditioning is used or not.
Thus, the SIIM operator is distinct from the typical use of
preconditioners in MRI reconstruction, as the former leads
to a more uniform/flat signal intensity across different time
frames in DCE applications, unlike the latter.

In this study, all the acquisitions were prospectively ac-
celerated, and as such there was no reference image with
which to compare the reconstructions. Thus, no quantitative
metrics are presented. A reader study is warranted to further
evaluate the proposed method, and will be investigated in
future studies.

V. CONCLUSIONS

The proposed PG-DL with SIIM encoding operator recon-
struction generalizes well across different time frames/SNRs
and substantially improves highly-accelerated DCE MRI.
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