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Abstract: Microbial metabolism is strongly dependent on the environmental conditions. While these
can be well controlled under laboratory conditions, large-scale bioreactors are characterized by inho-
mogeneities and consequently dynamic conditions for the organisms. How Saccharomyces cerevisiae
response to frequent perturbations in industrial bioreactors is still not understood mechanistically.
To study the adjustments to prolonged dynamic conditions, we used published repeated substrate
perturbation regime experimental data, extended it with proteomic measurements and used both for
modelling approaches. Multiple types of data were combined; including quantitative metabolome,
13C enrichment and flux quantification data. Kinetic metabolic modelling was applied to study
the relevant intracellular metabolic response dynamics. An existing model of yeast central carbon
metabolism was extended, and different subsets of enzymatic kinetic constants were estimated. A
novel parameter estimation pipeline based on combinatorial enzyme selection supplemented by reg-
ularization was developed to identify and predict the minimum enzyme and parameter adjustments
from steady-state to dynamic substrate conditions. This approach predicted proteomic changes in
hexose transport and phosphorylation reactions, which were additionally confirmed by proteome
measurements. Nevertheless, the modelling also hints at a yet unknown kinetic or regulation phe-
nomenon. Some intracellular fluxes could not be reproduced by mechanistic rate laws, including
hexose transport and intracellular trehalase activity during substrate perturbation cycles.

Keywords: Saccharomyces cerevisiae; carbon storage metabolism; repeated substrate perturbation
regime; adaptation; glucose transport; kinetic modeling; parameter estimation

1. Introduction

Saccharomyces cerevisiae, also commonly known as baker’s yeast, has been used by
mankind for thousands of years for the production of relevant beverages, foods and
chemicals. However, despite its extensive use in industry [1–3], scaling new S. cerevisiae
production processes to industrial scale poses several interesting and fundamental chal-
lenges. The source of most challenges is spatial inhomogeneities due to mixing limitations
in large-scale bioreactors leading to gradients throughout the reactor. A cell dispersed in
the reactor is therefore exposed to rapid changes in its extracellular environment, which in
turn will impact intracellular metabolic regulation [4,5]. Similarly, the natural habitat will
commonly have oscillations with respective to perturbations of environmental conditions
such as temperature, pH and substrate availability.
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Although dynamic conditions are encountered for industrial applications as well
as environmental habitats, many physiological studies on yeast are performed under
(pseudo-) steady-state conditions. Clearly, with the vast available reference data, reliable
measurements and reproducibility, steady-state (SS) experiments are very useful in the
quantification of intracellular fluxes. However, for the identification of in vivo kinetic
parameters, dynamic metabolic experiments are required [6]. To bridge this gap, dynamic
perturbation experiments can be performed, and many studies have focused on elucidating
the metabolic response from single pulse (SP) experiments [6–12].

While this SP approach is very useful for the identification of kinetic parameters of
networks adapted to the pre-perturbation limited steady-state, it cannot describe adap-
tations that may occur upon the subsequent perturbations observed under industrial
conditions [5]. To emulate such an environment, a system of periodic substrate perturba-
tions was developed. This regime produces repetitive substrate concentration gradients in
time, which allow for accurate and reproducible sampling of the intracellular metabolism
(Figure 1) [13,14]. Suarez-Mendez et al. (2014) used this repeated substrate perturbation
setup to monitor the in vivo metabolic activity during cycles of 400 s. At this timescale, it is
assumed that the metabolic response within one cycle is mainly governed by metabolic in-
teractions, as enzyme concentrations will remain basically constant during these 400 s [15].
In a cycle, feed was provided block-wise, i.e., 20 s feeding followed by 380 s of no feed
(Figure 1).
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Figure 1. Profile of the experimental feeding regime. After a chemostat phase (reference steady-state)
of 50 h, a block-wise feed is applied in a 400 s cycle at the same average substrate supply and
dilution rate for another 50 h (adapted from [13]). On the left, a schematic overview of the feed rate
during chemostat and repeated substrate perturbation regimes is shown. On the right, the resulting
extracellular substrate concentration profile in the fermentation broth is shown.

Under such dynamic substrate conditions, S. cerevisiae cultures show different metabolic
phenotypes compared to SP or SS cultures [13]. After a pulse in the repeated substrate per-
turbation regime, an increase rather than a decrease in ATP, no ethanol production and no
accumulation of glycolytic metabolites was observed. These differences in metabolic
response suggest a proteomic adaptation induced by the prior dynamic growth condi-
tions [16–18]. Especially, translational regulation can lead to condition-specific proteome
compositions [19]. In fact, distinct proteome compositions have been observed under
changing glucose availability conditions [20], both for sugar transporters and intracellular
enzymes [21,22], and distinct isoenzymes have different kinetic properties that can include
glucose sensitivity as well [23]. However, the mechanisms behind this adaptation are not
well understood.

For the identification of kinetic parameters and putative regulation mechanisms,
quantitative data from different approaches will be required. Especially, to generate com-
prehensive models, in addition to intracellular concentrations, carbon tracing is required to
identify bidirectional, cyclic or parallel reactions [24,25]. Work with 13C-labelling indicates
that storage metabolism is a major metabolic sink upon changes in the glycolytic flux,
with on average 15% of the carbon flux being diverted through the glycogen and trehalose
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cycles [26]. This diversion of flux is in accordance with earlier studies into the importance
of the trehalose cycle under SP conditions [9].

Understanding metabolism, especially under dynamic conditions, requires integration
of stoichiometry and enzyme kinetics. Such kinetic metabolic models have been developed
for S. cerevisiae using either in vitro and in vivo parameters [22,27], additional allosteric
regulation [28] or subpopulation dynamics [9]. Nonetheless, the conditioning of the cells
was mostly at steady-state [29], leading to putative mismatches when applied to large-scale,
dynamic cultivation conditions.

Under dynamic conditions, further pathways have been described to play a regulatory
role—glycogen and trehalose metabolism. For both, the reaction stoichiometry is known,
and in vitro parameters have been broadly studied [30–33], but no in vivo based parameter
values have been derived.

Especially for cyclic pathways, such as the trehalose cycle, quantifying in vivo param-
eters can be challenging as both in- and outfluxes influence the concentration change and
no in- or outflux is directly observable. This correlation, plus the fact that the networks
are getting larger, leads to a danger posed by local minima and ill-conditioning and conse-
quently sloppy parameter estimates [34]. To overcome this challenge and identify a minimal
set of necessary changes in kinetic constants, the divide-and-conquer approach has been
developed. Here, a decomposition of the global estimation problem into independent
subproblems [35] is used. Furthermore, to consider the already known parameter values
for the enzymes under study [22,29], L1 or Tikhonov regularization can favour a given
parameter set as long as experimental data are properly reproduced [36–38].

Here, we specifically studied the impact of proteome adaptation to substrate per-
turbations on the changed metabolic response. To this end, we expanded upon existing
state-of-the-art kinetic models, combining both metabolome and fluxome, as well as 13C
enrichment data, to evaluate which proteome changes are most relevant to explain the
experimentally observed change in metabolic response.

2. Materials and Methods
2.1. Strain and Growth Conditions

The haploid yeast Saccharomyces cerevisiae CEN PK 113-7D strain was grown at 30 oC,
pH5, first in a batch phase and then in chemostat at dilution rate 0.1 h−1 [13]. The repetitive
substrate perturbation regime began after five residence times and consisted of 20/380 s-
cycles in which a feed was added in the first 20 s. The concentration of this feed was
20 times higher than the one of the chemostat phase to ensure that the culture would
overall receive the same amount of glucose. Data were collected after 20 cycles. For further
reference, see [13].

2.2. Experimental Datasets Used in This Work

The experimental datasets used in this work consisted of metabolite concentration
measurements [13] and the respective calculated reaction rates [26]. Samples were col-
lected more frequently during the first part of the cycle, since substrate concentration,
and thus network dynamics changed more rapidly during this part [13]. Suarez-Mendez
and colleagues [13] took samples for the extracellular measurements using a cooled syringe
to enable quenching and fast filtration (see details in Mashego et al. [39]). The filtered
sample was then analysed using HPLC and enzymatics analysis [13]. For the measurement
of intracellular metabolite concentrations, samples were rapidly withdrawn using a self-
developed sampling device. The broth was first quenched in cold methanol; cells were
washed and metabolites were extracted by boiling in ethanol (see details: Wu et al. [40] and
Douma et al. [41]). The extract was then analysed using GC-MS and LC-MS [42].

Extracellularly, concentrations were measured for carbohydrates glucose and trehalose.
Intracellularly, concentrations were measured for carbohydrates involved in glycolysis, the
trehalose cycle, PPP, the glycerol branch and the TCA cycle and for adenosine nucleotides.
Dynamic fluxes were estimated as piece-wise linear functions [43] using a consensus
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stoichiometric model for yeast [44]. Fluxes were estimated for glycolysis, carbohydrate
storage metabolism (trehalose and glycogen cycles), PPP and the TCA cycle [26].

2.3. Model Description

A kinetic model of yeast central carbon metabolism was adapted in this work [29].
The original model contained the reactions that compose glycolysis, glycerol branch, a sim-
plified trehalose cycle. Reactions of the PPP, the TCA cycle and uptake of glycolytic
metabolites for biomass production were lumped as sink reactions (similar to [45]). The fol-
lowing modifications were made to represent the complexity of carbon storage metabolism
seen in the data and adapt the sink reactions of the TCA to the repeated substrate perturba-
tion setup:

1. New reactions were added to represent a complete trehalose cycle and glycogen
synthesis and degradation:

• The A-glucoside transporter (AGT1) mobilizes trehalose between the extracellu-
lar space and cytosol [32]. Its reaction rate was modelled using reversible uni-uni
MM kinetics. Since the experimental data pointed at a decay in its activity during
the cycle but it did not contain any information on possible inhibitors, an in-
hibitory effect of T6P was added as a proxy of an increasing flux through the
trehalose cycle.

• A vacuolar transport of trehalose was added to mobilize trehalose between
cytosol and vacuole-like compartments. Even though trehalose can be compart-
mentalized in vesicles in the cytosol, the kinetics of the process are not known.
Here it was assumed that reversible MM kinetics determine this process, as
with AGT1.

• Acid trehalase (ATH1, EC 3.2.1.28) degrades trehalose to glucose. It acts in
more acid environments that the cytosol, such as the vacuole or the intracellular
space [32], even though its location is still under debate. This reaction was
modelled using irreversible MM kinetics. Similar to AGT1, inhibition by T6P
was added.

• UDP-Glucose phosphorylase (UDPG, EC 2.7.7.9) carries out the reaction from
G1P to UDP-glucose, which is later used as substrate for glycogen synthesis. This
reaction was adapted from [46] and modelled using an ordered bi-bi mechanism.

• Glycogen synthesis was not modelled by enzymatic kinetics but interpolated
from the experimental data in this study, with an added UDP-glucose satura-
tion factor.

• Glycogen degradation was also interpolated from the experimental data in this
study, with an added UDP-glucose saturation factor.

2. The sink reactions were optimized for chemostat growth [47] in the previous model.
At a dilution rate of 0.1 h−1, the fluxes observed were higher than the ones seen
under the repeated substrate perturbation regime. As a result, the flux simulated in
repeated substrate perturbation towards the TCA cycle via the sink of pyruvate was
overestimated, resulting in a lesser flux towards the fermentative direction and more
CO2 being produced than measured. A factor was added to the reaction accounting
for the pyruvate sink to reduce its flux and fit the CO2 produced in the experiment.

In the following section, further details on model implementations are discussed.

2.4. System of Ordinary Differential Equations

The model consists of a series of ordinary differential equation representing the mass
balances for each metabolite in the model. The model contained three compartments: cy-
tosol, vacuole and extracellular space. The metabolites that are part of glycolysis, trehalose
and glycogen cycles, glycerol branch and cofactors metabolism were located in the cytosol.
Trehalose could be compartmentalized in the vacuole or secreted to the extracellular space,
and glucose was modelled extracellularly as well. Meanwhile, the amount of carbon structure
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inside the cytosol depended on the inflow of glucose and outflow of the system. Moiety
conservations were used for cofactors as in [22]. The sum of adenosine and nicotinamide
adenine nucleotides (ATP + ADP + AMP and NAD + NADH, respectively) was kept constant
in the cell. The model mass balances can be seen in detail in Supplementary File S1.

2.5. Reaction Rate Equations

The reaction rate equations used in this model followed Michaelis–Menten kinetics
in most cases, but there were exceptions: PFK kinetics are affected by multiple regulators
and the alternation between tense and relaxed state [27], PYK and PDC follow Hill-type
kinetics [28] and glucose transport occurs by facilitated diffusion (equilibrium constant
equals 1). Additionally, multiple allosteric regulations occur in the network, both activation
and (competitive) inhibition. Reactions were made reversible, except hydrolysis reactions,
due to their remarkably negative Gibbs energy (reference) and the sink reactions in the
model. Reaction rates were expressed in (mM s-1). This unit refers to the intracellular
volume. It could be correlated with the biomass dry weight via the biomass volume fraction
(defined as 0.002 L per gram biomass dry weight). The kinetic rate expressions can be seen
in detail in Supplementary File S1.

2.6. Simulation Setup

The simulations were performed in three steps aimed at resembling the experimental
process that cells underwent in the experiments in [13]. The first step consisted of a
chemostat, which also served to confirm that the system remained in a physiological
realistic steady state. The second step consisted of the substrate perturbation cycles. A total
of 20 repetitive cycles were simulated in which glucose was fed for the first 20 s of the cycle
without any outgoing flux. For the rest of the cycle, no glucose was fed, and the outgoing
flux lasted until the same amount of volume increased in the first 20 s had been emptied,
by approximately 260 s of the cycle. Afterwards, both incoming and outgoing fluxes were
kept at zero. After running for 20 cycles, the resulting simulation was compared to the
experimental metabolite concentrations in reaction rates obtained in [13]. The third step
concerned the simulation of the enrichment profiles reported in [26]. This extra simulation
was run after the second step, and 99% of the inflow of glucose was 13C labelled. All the
simulations were carried out with the abovementioned mechanistic model. Matlab version
9.3.0.713579, R2017b and the ode15s solver were used. A graphical view of how simulations
were constructed can be found in Supplementary File S1.

2.7. Implementation of 13C-Labeling Data Simulations

As described by [25], reactions of a metabolic network can be correctly represented
with mass isotopomeric models if there are no cleavage reactions present because in
the latter the position of the labelled carbon(s) is decisive to define the isotopomers of
the following metabolites. In the interest of providing an accurate model without over-
complicating it, the kinetic model is thus expanded to labelled carbon enrichment instead
of simulations of isotopic transients, as the simulation of the isotopic transients requires
determination of the distribution of the possible C-labelled atoms for every metabolite
of the network and additionally accounting for the bidirectionality of reactions in the
isotopomer balance equations, which is no longer as trivial as building an enrichment
model [48].

For each carbon-based metabolite in the model, a mass balance was added to ac-
count for its respective 13C-labelled fraction. In this secondary mass balance, the input
and output reaction rates were the same as for the total metabolite concentration mass
balance, but it was multiplied by the respective fraction of labelled metabolite. Whereas
the metabolite total concentrations depend solely on the enzymatic rates, the metabolite
labelled concentrations also depend on the fractions of other labelled metabolites (labelled
concentration/total concentration) that the reactions use as substrate. Moreover, now the
enzymatic fluxes need to be adjusted for reversible enzymatic reactions.
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For mass balances equations of total metabolite concentrations, reversible enzymatic
fluxes are defined with a positive value in one direction and negative in the reverse direction.
However, to implement the mass balances equations of labelled metabolite concentrations,
these are multiplied by metabolite’s labelled fractions, so they need to be always positive.
Thus, enzymatic fluxes that change directions during the simulation are implemented as a
forward and backwards flux. These are only used in the equations for labelled metabolite
concentrations and are defined in the model with conditional statements. An example of
the mass balance of labelled and unlabelled acetate can be seen below. Reaction reversibility
is already accounted for inside the calculation of the reaction rate:

dACE
dt

= vPDC − vADH − vsinkACE (1)

dACEL
dt

= PYRL vPDC − ACEL vsinkACE − ACEL vADH (2)

where L refers to the labelled metabolite fraction. Enrichment simulations were performed
after the 20 repetitive cycles were simulated. The experimental data consisted of percentage
level of 13C enrichment over the cycle time, obtained from [26].

2.8. Parameter Values Used in This Work

The initial parameter values were obtained from the original model [29]. These
parameter values had been fitted to experimental data (metabolomic and fluxomic) from
data at different steady states [47] and SRE [9]. A subset of the parameter values including
enzymes HXT and GLK, the ones involved in the trehalose cycle and ATPase kinetics were
estimated in this work. The values of the kinetic rate expressions used in this work can be
seen in Supplementary File S1.

2.9. Estimation of In Vivo Parameters

Some reactions in the model underwent changes during the substrate perturbation
cycles. For instance, the proportions of the isoenzymes HXK/GLK changed. To account
for its effect on kinetic parameters, such as KM or Kcat, reaction parameters were estimated
for HXT and HXK/GLK. Additionally, trehalose cycles parameters were estimated, since
the final structure of the cycle was different than the initial and the ATPase reaction rate
constant needed to change as well. For initial parameter guesses, the initial parameter
values from [29] were used. The nonlinear least-squares solver lsqnonlin from the Opti-
mization Toolbox, using an interior reflective Newton method [49], was used to estimate
the parameters by minimizing the error between measured and simulated data during the
transient experiment.

2.10. Design of the Cost Functions: Combination of Enzymes and Weighting Factors

Experimental quantification of isoenzymes pointed at the couple HXK/GLK experi-
encing the biggest deviation prior to and after the substrate perturbation cycles, but minor
changes were also confirmed for the other enzymes in glycolysis. Still, estimation of all
the kinetic constants in glycolysis simultaneously was undesirable due to the appearance
of parameter dependencies [50] which could lead to unphysiological parameter values.
Therefore, to describe the changes in the experimental data with only the essential number
of enzymes changing, the parameters were fitted to the data on multiple occasions. In each
of those, a different selection of enzymes and cost function weighting factors was used:

• Selection of enzymes: Multiple enzyme combinations were tested. These combinations
contained the trehalose cycle and added different enzymes from glycolysis each time.
The combination selected was the one that described experimental data properly while
making physiological sense (such as including the changes in HXK/GLK) and having
the smallest number of enzymes possible. Simultaneously, random combinations of
enzymes were also tested to confirm results and give robustness to the method.



Metabolites 2023, 13, 88 7 of 20

• Combination of weighting factors: It was not clear at first if it would be possible
to describe all the experimental data simultaneously. For this purpose, each of the
abovementioned enzyme combinations was run repeated times, each of them with a
different set of weighting factors. The errors for every metabolite were normalized
so that they would contribute with the same weight to the cost function. Additional
weighting factors changed these weights in three orders of magnitude at most.

2.11. Design of the Cost Functions: Regularization

Parameter dependencies could still appear for a selection of enzymes or within a
single enzyme, even though less generalized than if all enzymes had been optimized
together. To avoid this problem, parameters were estimated again after the previous round
of data fit which was only based on selecting enzymes and cost function weights. This
time, L1-type regularization was implemented to force the parameter estimates closer to
the initial parameter set, as long as experimental data could be properly fit, helping to
identify the important parameter changes for a specific dataset [36,37]. In this way, only
the necessary parameters needed to change to fit the repeated substrate perturbation data.
The regularization factor λ was applied to the cost function in the following manner:

errorestimation = errordata + errorparameters (3)

errordata = datasimulated − dataexperimental (4)

errorparameters = −λ
(
parametersreference − parametersestimated

)
(5)

3. Results and Discussion
3.1. Cells Grown under Continuous and Dynamic Substrate Conditions Demonstrate Different
Enzymatic Levels and Metabolic Responses—Experimental Observations

As mentioned before, cells exposed to a block-wise feeding (repeated substrate per-
turbation regime) showed a remarkably different response compared to glucose-limited
cells from chemostat conditions. The proteome during both conditions was measured and
subsequently analysed on their composition [51]. Major changes were observed within the
glycolytic and transporter enzymes, specifically in the expression levels of hexose trans-
porters (Hxt2p, Hxt3p, Hxt5p, Hxt13p), hexokinase (Hxk1p, Hxk2p) and glyceraldehyde
dehydrogenase (Tdh1p, Tdh2p, Tdh3p) (Figure 2). The expression of hexose transporters
has been shown to correlate with the (maximal) substrate uptake rate [52]. The observed
decrease in protein concentration can be interpreted as an adaptation to limit rapid influx of
glucose upon glucose pulse. In contrast, glucokinase (GLK) is slightly upregulated. HXK is
highly regulated through inhibition by T6P; however, GLK is not inhibited by trehalose-6-P
(T6P) up to a level of 5 mM [53]. As such, the lower concentration of HXK in combination
with the upregulation of GLK will likely result in an adaptation in the regulation of the
glycolytic flux. The downregulation of upper glycolysis (HXK), in combination with the
upregulation of lower glycolysis (TDH), may additionally allow for improvement of flux
capacity through glycolysis upon glucose influx [9].
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Figure 2. The protein concentration is presented as a log2 fold change from chemostat to dynamic
substrate conditions of selected glycolytic and transporter proteins. Protein concentration fold change
was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS).

Ref. [54] observed that long-term adaptation of the proteome composition had a major
influence on the adjustment of the metabolic response of the cell. To assess whether the
observed metabolic response can indeed be explained by the measured proteome changes,
combinatorial enzyme selection and regularization was used to identify key parameter
adaptations. Next to this, the effect of individual iso-enzymes was considered and evaluated
as a factor influencing the observed metabolic response. Furthermore, the kinetics and
implementation of the storage metabolism were evaluated.

3.2. Carbon Storage Physiology Differs between Continuous and Dynamic Substrate Conditions

A kinetic model of yeast glycolysis was previously developed to fit various SS and SP
datasets [29]. For the dynamic substrate conditions, the model was extended with regard to
trehalose metabolism in different compartments and glycogen synthesis and degradation
(Figure 3).

The model simulations could reproduce most of the experimental data properly af-
ter several kinetic constants from HXT and HXK were estimated (this is explained in
detail in the next section), but with a few exceptions (Figure 4A). For instance, glucose
6-phosphate (G6P) and fructose 6-phosphate (F6P) simulated concentrations were smaller,
which was already documented in the original model and attributed to underdetermined
phosphofructokinase (PFK) reaction kinetics [29]. Other metabolites, such as fructose bis-
phosphate (FBP), glucose 1-phosphate (G1P) or trehalose 6-phosphate (T6P), also deviated.
This could be explained by affinity constants undergoing changes during substrate per-
turbation cycles, here unaccounted for. Furthermore, reaction rates, estimated from 13C
enrichment data, were in close agreement (Figure 4B), except for the maximum simulated
rate for HXT with a simulated maximum lower than observed experimentally.
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balances and reaction kinetics, see Supplementary File S1.
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Figure 4. Model simulations in comparison to experimental observations: (A) metabolite concentra-
tions; and (B) reaction rates estimated from 13C enrichment data over one cycle (400 s). Metabolite
concentrations and reaction rates are displayed in the y-axis (in mM and mM s−1, respectively) and
time in the x-axis; (C) normalized metabolite concentrations during one feeding cycle. Darker colours
indicate values closer to the maximum, while brighter ones indicate values closer to the minimum.

In the substrate perturbation simulations, the increase in residual glucose during
feeding resulted in transient changes in glycolytic metabolites, which returned to the initial
value by the end of the cycle (Figure 4C). Upper glycolysis metabolites, except glucose,
reached their maximum concentration within 50 s due to recirculation via the storage
metabolism. Glycerol branch and storage kinetics followed a similar pattern, but with a
delay. Due to the slower reaction rate for enzyme GAPDH [55], the entry in lower glycolysis
was delayed, and BPG reached its maximum at about 130 s. Nonetheless, the increase in FBP
activated pyruvate kinase (PYK), reducing concentrations of 3-phosphoglycerate (P3G), 2-
phosphoglycerate (P2G) and phosphoenolpyruvate (PEP). As FBP decreased, its activation
dissipated, and these lower glycolysis metabolites reached maximum concentrations in
about 230 to 250 s of the cycle. This trend is in agreement with the known allosteric
regulation of FBP on PTK [12].

Trehalose metabolic dynamics were different between repeated substrate perturbations
and SP. During the repeated substrate perturbations, the maximum flux towards production
of trehalose was less than 10% of the HXK reaction rate, in comparison to the 30% observed
in SP [9], and part was secreted to the extracellular space, what is commonly regarded
as stress protection [56,57]. Nonetheless, glycogen took up a greater portion during the
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repeated substrate perturbation regime, implying that carbon storage is predominant over
the stress response by the trehalose cycle and suggesting that the cell is indeed adapted to
the repeated substrate perturbation setup.

Small changes in protein expression occur between cells in a population. One way to
examine the possible resulting phenotypes of the network upon perturbation is by means
of ensemble modelling [58,59]. To test the robustness of the model, 10000 simulations
were performed with random parameter values deviating within a range of 10% of the
model parameter set. The concentration and reaction rate profiles were very consistent (see
Supplementary Figures S1 and S2, respectively), especially for reaction rates, where the
relative deviation between fluxes was very small. This suggested that the model dynamics
are consistent within the parameter range tested.

3.3. Glucose Transport and Phosphorylation Identified as Key Adaptations from Combinatorial
Parameter Estimation

Glycolytic enzyme expression changed from chemostat to dynamic substrate con-
ditions, most notably for HXT and HXK (Figure 2). As each iso-enzyme has specific
kinetic properties, the catalytic (Kcat) and Michaelis–Menten (KM) constants also differ [22].
To identify changes in kinetic parameters, parameter estimation based on the substrate
perturbation datasets was performed and interpreted in light of the measured proteome
changes. However, estimating all kinetic parameters simultaneously can lead to multiple
local minima and ill-conditioning [34]. To bypass this problem and identify which are the
key parameters that change between the cells adapted to continuous and dynamic sub-
strate conditions, respectively, we adapted the scale and setup of the parameter estimation
problem. Two stages were applied (Figure 5): (1) Parameters were estimated for multiple
combination of enzymes in parallel assays to isolate which enzymes were key to reproduce
the data properly. (2) Regularization was implemented, i.e., parameters were re-estimated
for the best selection of enzymes found and with a penalty for deviation from the reference
parameter set.

In Step 1 (Figure 5A), good fits were achieved when HXT, HXK/GLK and the trehalose
cycle were included in the parameter estimation, suggesting that these are the relevant
enzymes undergoing changes. In Step 2, an optimal fit between model error and parameter
deviation was achieved by adding a regularization factor, shown in (Figure 5B) for GLK
kinetics. This overcame dependencies between kinetic constants of the reaction and pointed
to Km,GLC, Ki,T6P and Vmax being the key parameter alterations with respect to the reference
parameter set from [29] (Figure 5C). Compared with other toolboxes available to perform
parameter estimation in complex kinetic metabolic models [22,34,36,50,60], this pipeline
incorporates regularization for known in vitro parameter values into a combinatorial
enzyme selection approach, with the added value that intracellular flux data is used. Flux
data have been available for only a decade, and few works have used it for yeast kinetic
model development and validation [9,29].

As a result of this pipeline, some kinetic constant changes were suggested for the
glucose transport and phosphorylation reactions (Table 1). For HXT, the maximal reaction
rate (Vmax) decreased from 8.13 to 1.7 mM s−1, which is actually close to the value in other
published models [27,28] and consistent with the experimental HXT concentration decrease
(Figure 2). Changes in HXT isoenzyme proportions could also lead to changes in affinity;
in vitro KM measurements have shown a high variability for the HXT1-7 subunits [21,61].
Nevertheless, the shift in isoenzymes here did not lead to drastic changes in affinity; the KM
only changed from 1.01 to 0.90 mM.
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Figure 5. Two-step, scaled optimization approach results: (A) fitting the data with different subsets
of enzyme parameters; bars show the error between simulation and best fit with the respective
combination (upper x-axis). Blue bars highlight the combinations containing the two enzymes HXT
and GLK. Red lines show the number of enzymes; (B) implementation of a regularization factor on the
estimation of GLK kinetic parameters; the dashed and continuous line; show model and parameter
error, respectively. The arrow indicates the chosen regularization factor. Parameters are regularized
such that the data is still well reproduced (see Supplementary Figures S3 and S4). (C) change in key
GLK parameters identified upon regularization; the deviation between the estimated parameter and
the initial value taken from (bioRxiv2022) is shown in the y-axis (in logarithmic scale). Black and
empty circles show the estimates prior and post regularization when parameter dependencies are
minimized. The x-axis shows specific parameters.
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Table 1. Several parameters explain the adaptations in HXT and HXK isoenzymes. Changes in
parameters in HXT and HXK kinetics allow the Y3M1 model to fit the data. For the other parameters
in these reactions, changes were below 5%.

Enzyme Parameter Units [29] This
Work

Fold
Change Literature

HXT Vmax mM s−1 8.13 1.70 0.21 3.67 [27], 1.62 [28]

KM,GLC mM 1.01 0.90 0.90 50-100 (low affinity), 1-2 (high affinity) [21]

GLK,HXK Vmax mM s−1 6.25 15.75 2.52 3.75 [27], 3.55-4.75 [28]. (Kcat) HXK1: 10.2, HXK2:
63.1, GLK: 0.07 [22]

KM,GLC mM 0.35 0.11 0.31 HXK: 0.1, GLK: 0.028 [62], HXK1: 0.15, HXK2: 0.2,
GLK: 0.0106 [22]

Ki,T6P mM 0.0073 0.0183 2.51 HXK1: 0.2 HXK2: 0.04, GLK: 5 [53]

For the hexose phosphorylation reaction, several kinetic constants changed. Km glu-
cose decreased from 0.35 to 0.11 mM, in line with the experimental increase in GLK/HXK
ratio (Figure 2), given that the affinity constant for glucose was found lower in GLK than
HXK both in vitro- and in vivo-like conditions [22,62]. Furthermore, the T6P inhibition con-
stant (Ki) increased from 0.0073 to 0.0183, and Ki,T6P was also found to change between the
two isoenzymes [53]. Next to these parameters, Vmax increased from 6.25 to 15.75 mM s−1,
which is higher than values reported before in yeast glycolytic models [27,28]. Since the
kcat for GLK is much lower than for HXK [22], such an increase in Vmax was not expected.

Outside glycolysis, changes were required in the trehalose cycle and ATP maintenance
reaction. Note that the original model did not include glycogen metabolism, nor com-
partmentation of the trehalose cycle reactions. The missing reactions were added in this
work, and the trehalose cycle parameters were re-estimated to account for the effect of the
previously lumped reactions. Finally, the ATPase maximum reaction rate decreased to fit
the adenosine nucleotide concentrations (ATP + ADP + AMP). This might be related to the
fact that the initial model simulated the response to a GP of 20 g L−1 of glucose [29], which
is seen by the cell as a stress condition due to the rapid increase in extracellular glucose
concentration [9]. The final parameter set can be found in the Supplementary File S1.

3.4. Glucose Sensing Influences Hexose Transporter Kinetics during Substrate Perturbation Cycles

Glucose uptake has been widely modelled as an equilibrium-driven passive transport
reaction [22,27], where its kinetics are determined by isoenzyme-specific Vmax and KM
parameters [21,62,63]. Here, we have found that these kinetics alone cannot explain the
experimental data, for which a glucose sensing mechanism [23] needs to be active.

By sampling the parameter space and using passive transport reaction kinetics, we
found that no combination of parameters could fit the data (Figure 6). Especially, none
of the generated models could reproduce a net uptake reaction of almost zero at the end
of the cycle (400 s) and reach the value of 0.72 mM s−1 at 20 s when the uptake rate
reaches its maximum (Figure 6A). Since throughout the entire substrate perturbation cycle
the residual and maximum glucose concentration are 0.1 and 0.45 g L−1, respectively,
adjusting parameters to lower the effect of the transmembrane glucose gradient for one
also reduces for the other. Interestingly, the only way to reproduce the experimental uptake
(Figure 6B) was by including a minimum glucose concentration term in HXT kinetics
(Csmin in Equation (7)). This term acted as a threshold value when glucose import occurs.

vGLT =
Vm

(
GLCec2 − GLCi

Keq

)
Km

(
GLCi

Km
+ GLCec2

Km
+ GLCi GLCec2 Ki

Km
2 + 1

) (6)
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where
GLCec2 = GLCec − GLCec,min (7)

if
GLCec,min < GLCec (8)

Suarez-Mendez et al., (2014) already noticed a similar phenomenon when modelling
glucose uptake dynamics. Here, we assumed that the threshold was an effect of glucose
sensing under certain conditions [23]. Glucose sensing acts independently of glucose up-
take [64] and is known to activate a cascade of reactions and ultimately lead to altered gene
expression in yeast [65–67]. This could imply that, in line with [68], glucose sensing is ob-
servable under the repeated substrate perturbation condition but not in the SP experiments
in which residual glucose concentrations are remarkably higher [9].
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Figure 6. Glucose sensing is needed to explain HXT kinetics: (A) glucose uptake rate at 20 s vs at
400 s; 20 s is the approximate point for the maximum reaction rate. Black data show simulations
generated with randomly generated parameter samples when no threshold value is considered.
A total of 1000 samples were run within 3 orders of magnitude above and below the estimated
parameters. Parameters were randomized for HXT kinetics, and external glucose concentration
was fit to the experimental data; (B) visualization of hexose transport rate during the cycle for the
abovementioned models; the blue line corresponds to the simulation with the model considering
glucose sensing. The grey and black coloured simulations are the ones with the generated models.
Only 200 are displayed and some simulations are highlighted in black to ease visualization. The red
dots point to the experimental data points. The individual effect of HXT kinetic parameters (Vmax,
KM) can be found in Supplementary Figure S5.

3.5. 13C-Labelled Metabolite Mass Balances Validate the Model but Suggest Caveats in
Carbohydrate Storage Metabolism

Metabolic and flux profiles agreed between simulations and experimental data
(Figure 4). Even though 13C isotope labelling was used in the flux estimation [26], these
data have not yet been implemented in kinetic models. Here, we aimed at validating the
model by implementing individual mass balances for each labelled metabolite (carbon
structures) in the network. We found a considerable degree of agreement when simulating
enrichment profiles. For the first 100 s of the cycle, the percentage of enriched metabolite
rose to about 80% for most metabolites (Figure 7A), It then decayed as recirculation of
unlabelled trehalose and glycogen became more prominent (Figure 7B–D).
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Figure 7. Predicted and observed 13C labelling enrichment during substrate perturbation cycles:
(A) enrichment of intracellular metabolite (%) vs time; black lines consist of the simulations and red
markers to the experimental data points. Feeding phase is shaded in grey. The X-axis is the cycle time,
from 0 to 400 s, and the Y-axis is the enrichment percentage, from 0 to 100%; (B) diagram of inflow to
cytosolic glucose; (C) fluxes that positively contribute to the cytosolic glucose mass balance (mM s−1)
vs. the cycle time (s); red coloured are labelled data, blue coloured, non-labelled; (D) contribution of
each flux to the cytosolic glucose mass balance (in %) vs. the cycle time (s); red coloured are labelled
data, blue coloured are non-labelled.

Conversely, the accuracy of model simulations was also limited. Enrichment of T6P
decreased slower and glycolytic metabolites faster than expected during the late cycle,
which could indicate that there is a surplus of glycogen recirculation which was mostly
unlabelled. This might be explained by the current glycogen metabolism kinetics, which
were simplistic here. Small deviations from the experimental value can have a great
impact on the late cycle stage, given that fluxes in the network are generally low. We
initially aimed at representing glycogen synthesis and degradation as mass action or
Michaelis–Menten kinetics, but unfortunately, this did not resemble the experimental
reaction rates due to the high and relatively constant glycogen concentrations. Therefore,
simplified phenomenological expressions were used (see details in Supplementary File S1).
Besides glycogen metabolism, enrichment of lower glycolysis metabolites was faster than
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expected, which could be attributed to the changes observed in other isoenzymes such as
TDH (Figure 2).

3.6. Missing Regulation in Trehalose Metabolism

Another location with uncertainty is the trehalase reaction, which is carried out by
an acid and neutral enzyme (ATH1 and NTH1, respectively) [69,70] and whose in vivo
fluxes were quantified in the repeated substrate perturbation condition in [26]. In the
model simulations, NTH1 trehalase activity was reproduced but only if cytosolic trehalose
concentration was artificially low (Figure 8A–C) and redirected to the other compartments.
Nonetheless, trehalose is expected to locate more in the cytosol than the vacuole [71].
This occurred as a result of NTH1 reaction being modelled as simple Michaelis-Menten
kinetics (Figure 8A) [46]. To fit these kinetics, cytosolic concentrations were kept very
low with a comparatively high increase during the cycle. To further doubt the current
model understanding, the estimated Km.TRE decreased from 2.11 to 0.13 mM, but it
was experimentally quantified to be 3-8 mM [72]. We are uncertain is what this missing
regulation could be. A post-translational regulation acting on NTH1 could be a possible
explanation [32,72], but new data on the state of the enzyme would be required to confirm
this claim.
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Figure 8. Missing regulation on NTH1 could explain excessively low simulated cytosolic trehalose
concentrations: (A) NTH1 reaction kinetics; (B) NTH1 reaction rate; (C) cytosolic trehalose; blank
lines show simulations, and red dots experimental data.

4. Conclusions and Summary

In this work, we combine metabolome, fluxome and proteome data to develop a
metabolic model. Based on detailed analyses, we suggest enzymatic reactions whose reac-
tion kinetics adapt to the dynamic substrate conditions and locations where our knowledge
is limited. Testing different subsets of parameters for recalibration highlighted transporters
and phosphorylation reactions as crucial for the adaptation. This in silico approach is
comparable to the experimental approach of metabolic reverse engineering [73] but much
faster and less laborious as no experiments with combinatorial genome modifications are
required. The combinatorial approach can also be applied to other industrially relevant
downscaling setups which are relevant to finding out key parameter changes in a relatively
simple manner and further optimize the bioprocess.

Furthermore, disagreements between experimental and simulated data suggest that
the assumed mechanistic kinetics cannot sufficiently describe the intracellular flux and
metabolome. Here, glucose uptake could not be explained by facilitated diffusion only
(Equation (7)) but required a glucose threshold concentration (Figure 4). In addition, some
reactions of the storage metabolism required non-mechanistic adjustments to reproduce
the observed labelling enrichments.

Author Summary

Kinetic metabolic models are used to understand how biological systems deal with
dynamic perturbations in their environment. A well-known case of their application is
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the microorganism Saccharomyces cerevisiae, which was domesticated by mankind thou-
sands of years ago, and is used to produce a wide range of products, such as bread,
beverages and biofuels. When cultured in industrial-scale bioreactors, this cell factory is
impacted by environmental perturbations which can challenge the bioprocess performance.
The repeated substrate perturbation regime has been proposed as an experimental setup to
downscale these industrial perturbations. Intracellularly, these perturbations impact central
carbon metabolism, including carbon storage. Even though kinetic metabolic models have
been developed to study the effect of single extracellular perturbations, they have not
explored repeated substrate perturbations and their implications on carbon metabolism.
We developed a model construction and parameter identification pipeline and used it
to expand the existing models to represent carbon metabolism under dynamic substrate
conditions. We used computer simulations to point at adaptations in yeast metabolism
and locations in the model where our understanding is not entirely accurate. We found
that combining multiple types of data, despite being challenging, can be very beneficial by
providing a comprehensive and realistic representation of the cell.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13010088/s1, Figure S1: Simulation of metabolic concen-
trations is robust to parameter changes within 10% of their estimated value; Figure S2: Simulation
of reaction rates is robust to parameter changes within 10% of their estimated value; Figure S3:
Metabolite concentrations (mM) over time (s). Model fit; Figure S4: Reaction rates (mM s−1) over time
(s). Model fit; Figure S5: Glucose sensing is needed to explain HXT kinetics: Individual parameter
effect; File S1: Ordinary differential equations, Rate equations, Parameter set, Summary rate equations
and Simulation setup.
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