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Accurate and Energy-Efficient Bit-Slicing
for RRAM-Based Neural Networks

Sumit Diware , Abhairaj Singh, Anteneh Gebregiorgis , Member, IEEE, Rajiv V. Joshi, Fellow, IEEE,
Said Hamdioui , Senior Member, IEEE, and Rajendra Bishnoi

Abstract—Computation-in-memory (CIM) paradigm leverages
emerging memory technologies such as resistive random access
memories (RRAMs) to process the data within the memory it-
self. This alleviates the memory-processor bottleneck resulting
in much higher hardware efficiency compared to von-Neumann
architecture-based conventional hardware. Hence, CIM becomes
an attractive alternative for applications like neural networks
which require a huge number of data transfer operations in con-
ventional hardware. CIM-based neural networks typically employ
bit-slicing scheme which represents a single neural weight using
multiple RRAM devices (called slices) to meet the high bit-precision
demand. However, such neural networks suffer from significant
accuracy degradation due to non-zero Gmin error where a zero
weight in the neural network is represented by an RRAM device
with a non-zero conductance. This paper proposes an unbalanced
bit-slicing scheme to mitigate the impact of non-zero Gmin error.
It achieves this by allocating appropriate sensing margins for
different slices based on their binary positions. It also tunes the
sensing margins to meet the demands of either high accuracy or
energy-efficiency. The sensing margin allocation is supported by
2’s complement arithmetic which further reduces the influence of
non-zero Gmin error. Simulation results show that our proposed
scheme achieves up to 7.3× accuracy and up to 7.8× correct oper-
ations per unit energy consumption compared to state-of-the-art.

Index Terms—Computation-in-memory, bit-slicing, neural
networks, non-zero Gmin error, conductance variation, non-
idealities.

I. INTRODUCTION

W ITH recent advancements in the field of Artificial Intelli-
gence (AI), neural network-based cognitive applications

such as image recognition have become an integral part of many
real-world products and services [1]–[4]. Existing computing
systems such as CPUs [5], GPUs [6] and AI-oriented ASICs like
TPUs [7] are developed using CMOS-based von-Neumann ar-
chitecture. The physical separation of memory and computation
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units in these systems results in a huge number of data transfers to
execute vector-matrix multiplication (VMM) operations for neu-
ral network applications leading to degradation of performance
and energy-efficiency [8]–[11]. Moreover, CMOS technology is
struggling with challenges such as excessive sub-threshold leak-
age and scalability issues [12]–[14]. Computation-in-memory
(CIM) utilizes emerging memory technologies such as resis-
tive random access memories (RRAMs) to alleviate the data
transfer bottleneck by performing in-place computations within
the memory using simple circuit laws [15]–[18]. Moreover,
RRAM devices used in CIM are non-volatile (leakage-free),
highly scalable and small in size making CIM a more efficient
alternative to the conventional hardware [19]–[21]. Despite these
advantages, CIM architectures face the limitation of not being
able to support the high bit-precision demands of neural network
applications [22]. Therefore, a bit-slicing scheme [23], [24]
is commonly employed in CIM architectures where multiple
RRAM devices represent a full-precision neural network weight.
Bit-slicing CIM architectures represent a zero weight in the
neural network using an RRAM device with non-zero conduc-
tance equal to the minimum possible RRAM device conductance
denoted as Gmin [25]. Multiplication of any non-zero digital
input with a zero digital weight must produce a zero digital
output. However, a non-zero output current is produced when a
non-zero input in the form of a voltage is applied to an RRAM
with Gmin conductance. This is known as non-zero Gmin error,
which violates the functional equivalence between the digital
output and CIM output, leading to errors in VMM and degraded
neural network accuracy.

State-of-the-art bit-slicing CIM architectures cannot provide
good accuracy in presence of non-zero Gmin error. For in-
stance, ISAAC [23] and PUMA [24] use balanced bit-slicing
(BBS) scheme which suffers from accuracy degradation due to
non-zero Gmin error. PANTHER [22] proposes heterogeneous
bit-slicing (HBS) scheme, which is an extension of BBS and
thereby struggles to provide good accuracy in the presence of
non-zero Gmin error. Current subtraction technique (CST) [25]
can be utilized to mitigate the impact of non-zero Gmin on BBS
and HBS. However, it becomes less effective when conductance
variation is considered along with non-zero Gmin error. Hence,
there is a strong need for an effective solution to mitigate the
impact of non-zero Gmin error on bit-slicing CIM architectures
while taking conductance variation into account.

We propose an unbalanced bit-slicing (UBS) scheme for CIM
architectures in which appropriate sensing margin is provided to
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different slices by adjusting their bit-size to reduce the impact
of non-zero Gmin error in presence of conductance variation.
In addition, UBS is supported with 2’s complement arithmetic
whose inherent differential nature further helps in this mitigation
task leading to improved neural network accuracy. A preliminary
version of this work was published in [26] which assigns higher
sensing margin for more important bits i.e. most significant
bits (MSBs) to achieve high accuracy at the expense of energy
overheads. In this paper, we extend our work with a new variant
of UBS which allocates just good enough sensing margin to the
slices to improve the energy-efficiency by reducing the hardware
requirements while retaining the accuracy benefits. Moreover,
we provide an algorithm for optimal energy-efficient slice size
selection which leverages an inherent accuracy versus energy
tradeoff. We also demonstrate the effectiveness of UBS across
different datasets and neural networks. Our overall contributions
for this paper are as follows:
� We propose an unbalanced bit-slicing scheme which pro-

visions high sensing margin for more important slices to
achieve high accuracy in presence of non-zero Gmin error
and an algorithm to find slice sizes for optimal accuracy
under given resource constraints.

� We develop a methodology to tailor the unbalanced bit-
slicing scheme for energy-efficiency by constraining the
sensing margin for slices in order to reduce the hardware
resources while maintaining good accuracy.

� We present a holistic solution consisting of unbalanced
bit-slicing logic and 2’s complement arithmetic which
mitigates non-zero Gmin error impact in presence of con-
ductance variation.

� We demonstrate the effectiveness of the proposed unbal-
anced bit-slicing scheme by performing comprehensive
analysis and comparison with state-of-the-art across dif-
ferent datasets and neural networks.

Simulation results across five datasets using fully-connected
neural network and convolutional neural network show that UBS
achieves up to 7.3× accuracy and up to 7.8× correct operations
per unit energy consumption compared to state-of-the-art with
reasonable overheads.

The rest of this paper is organized as follows. Section II
presents the fundamentals of CIM-based neural network im-
plementation. Challenges in bit-slicing CIM architectures are
discussed in Section III. Section IV provides details of the pro-
posed bit-slicing scheme. The simulation setup and experiments
are described in Section V, followed by simulation results in
Section VI. Finally, Section VII concludes the paper.

II. NEURAL NETWORKS USING COMPUTATION-IN-MEMORY

A. Computation-in-Memory (CIM) Architecture

Vector-matrix multiplication (VMM) operations account for
more than 75% of the computations and energy consumption
in neural networks [27]. Computation-in-memory (CIM) can
act as a more efficient alternative to von-Neumann architecture
for implementing VMM in neural network hardware [22]–[24].
VMM operation between two neural network layers can be

Fig. 1. CIM-based vector-matrix multiplication for neural networks.

mapped to a CIM architecture as shown in Fig. 1. CIM ar-
chitecture uses memory elements which store the data in the
form of conductance. They are arranged in a grid-like structure
known as crossbar. The crossbar operates in analog domain
and interacts with other digital components in the system using
periphery circuits like digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs). Weight matrix is mapped
to conductances (G’s) in the crossbar and inputs are applied as
voltages (V ’s) using DACs. This results in a flow of current
through all the G’s as per Ohm’s law, which is equivalent to
element-wise multiplication of V ’s and G’s. Currents from G’s
belonging to the same column get accumulated according to
Kirchhoff’s law, leading to output currents (I’s). Thus, each
column performs a multiply-and-accumulate operation in analog
domain. Such multiply-and-accumulate operations across all the
columns represent one VMM operation. As all the columns
produce the outputs simultaneously, VMM is performed with
O(1) time complexity. The column currents are then converted to
digital outputs using ADCs and sent to other system components
for further processing or storage.

B. RRAM Device Technology

Resistive random access memory (RRAM) has gained notable
attention as memory element in CIM due to its high switch-
ing speed, non-volatile data storage and high scalability [28].
RRAM device a.k.a memristor consists of an oxide material
sandwiched between two metal electrodes. It exhibits a high-
resistance state (HRS) and a low-resistance state (LRS) which
can be used to store data as 0 and 1. The switching from HRS to
LRS is called “SET”, whereas that from LRS to HRS is called
“RESET”. Set voltage (V SET) creates conductive path called
filament to increase the conductivity of oxide layer leading to
LRS. Reset voltage (VRESET) causes rupture of the conductive
filament which reduces oxide layer conductivity resulting in
HRS. Both SET and RESET processes are depicted in Fig. 2(a)
and (b). Moreover, multiple HRS/LRS states can be achieved
by controlling the extent of filament creation or rupture which is
called multi-level cell (MLC) operation [29]. This allows storing
multiple bits of information in a single RRAM device. In order
to read an RRAM device i.e. to detect its resistance state, a very
small voltage VREAD (VREAD << | VSET| and V READ << |
VRESET|) is applied across it and the resulting current is sensed.
A small sensed current means device is in HRS and high sensed
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Fig. 2. RRAM device technology.

Fig. 3. RRAM-based CIM architecture with bit-slicing.

current means device is in LRS. Read operation can be similarly
extended to MLCs.

C. Bit-Slicing Concept in CIM

CIM architectures cannot directly support high bit-precision
demands of neural networks. This is due to the fact that bit-
capacity of RRAM devices is typically less than bit-size needed
for neural network weights. Moreover, full-precision neural
network inputs and outputs require digital-to-analog convert-
ers (DACs) and analog-to-digital converters (ADCs) with high
resolutions. They are very expensive in terms of energy and area
which significantly reduces the hardware efficiency benefit of
CIM [22], [23]. To overcome these problems, bit-slicing [22]–
[24] is utilized in CIM architectures, which is the process of
splitting the full-precision neural network weights and inputs
into smaller bit-size chunks called slices as shown in Fig. 3.
2-bit slices of a 8-bit weight are converted to conductances
and mapped to RRAMs in different crossbar columns. 1-bit
slices of a 16-bit input are converted to voltages and mapped
to different time-steps in which they are applied to the crossbar.
Column currents resulting from time-multiplexed voltage inputs
are converted to digital values and undergo shift-and-add oper-
ations across the columns as well as the time-steps to obtain the
full-precision output.

III. CHALLENGES IN BIT-SLICING CIM ARCHITECTURES

A. Non-Zero Gmin Error

Bit-slicing CIM architectures represent a zero weight-slice
in the neural network using an RRAM device with non-zero
conductance that is equal to the minimum possible RRAM
device conductance (Gmin). In the digital domain, multiplying
any non-zero input with a zero weight must result in a zero

Fig. 4. Illustration of non-zero Gmin error.

Fig. 5. Conductance variation [30]. L’s denote five programmable conductance
levels for every RRAM device in the array.

output. However, when such digital computation is mapped to
CIM as shown in Fig. 4, a non-zero output current is produced
when a non-zero input in the form of a voltage is applied to
an RRAM with Gmin conductance. This is known as non-zero
Gmin error, which creates a functional mismatch between digital
output and CIM output resulting in erroneous VMM operation
and degraded neural network accuracy.

B. Conductance Variation

Conductance variation in RRAM devices is composed of a
temporal component known as cycle-to-cycle variation and a
spatial component known as device-to-device variation. Cycle-
to-cycle variation refers to the fact that the same RRAM de-
vice exhibits different programmed conductance at different
points in time under identical programming conditions [31].
This variation arises due to the stochastic nature of underlying
physics of RRAM device which involves formation and rupture
of the conductive filament. On the other hand, device-to-device
variation refers to the fact that different RRAM devices exhibit
different conductance characteristics under identical program-
ming conditions. It arises from fabrication imperfections e.g.
oxide thickness fluctuations leading to variable thickness and
cross-section area across different RRAM devices [32]. Cycle-
to-cycle variation for an RRAM device and device-to-device
variation for 1 kB array of RRAM devices are shown in Fig. 5.
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Fig. 6. Current subtraction technique (CST) as described in [25].

Conductance variation causes deviation from the expected cur-
rent contribution of RRAM devices leading to error prone VMM
and degradation of neural network accuracy.

C. Existing Solutions and Their Limitations

CIM architectures employ various bit-slicing schemes to ex-
press the full-precision weights using multiple RRAM devices.
For instance, ISAAC [23] and PUMA [24] both use balanced bit-
slicing (BBS) scheme which divides the full-precision weight
into equal chunks having bit-sizes same as the RRAM bit-
capacity. For example, in case of 8-bit weight and 2-bit RRAM,
BBS produces four slices of 2-bit size. This can be expressed
as [2, 2, 2, 2] bits/slice, where the indices go from the most
significant bit (MSB) slice on the left to the least significant bit
(LSB) slice on the right. However, the sensing margin in BBS
is not sufficient to deal with non-zero Gmin error. Moreover,
the underlying crossbar arithmetic results in high accumulated
error in the final output when the partial results from the slices
are combined, leading to erroneous VMM and degraded neu-
ral network accuracy. Furthermore, PANTHER [22], which is
an extension of PUMA, leverages a heterogeneous bit-slicing
(HBS) scheme which allocates more bits for central slices.
For example, in case of 8-bit weight and 2-bit RRAM, HBS
will lead to [1, 1, 2, 2, 1, 1] bits/slice. HBS also suffers from
accuracy degradation due to non-zero Gmin error as it uses the
same weight encoding and underlying crossbar arithmetic as
that in BBS. Moreover, HBS is intended for optimizing weight
update operations during neural network training and not VMM
operations during inference. The current subtraction technique
(CST) [25] can be utilized to mitigate the impact of non-zero
Gmin error on BBS and HBS to improve the neural network
accuracy. CST adds an offset equal to Gmin to all conductance
states and uses a dummy crossbar column having only Gmin

conductances as shown in Fig. 6. Thus, it can reduce the non-zero
Gmin error impact by subtracting the common off-state currents
between the crossbar columns and the dummy column. However,
this technique is effective only when the conductance states
exhibit values that are close to the ideal values, but in reality,
these values can be significantly impacted due to conductance
variations. Hence, CST struggles to provide high neural network
accuracy in presence of conductance variation. In this work, we
improve the neural network accuracy by addressing the non-zero

Fig. 7. Overview of state-of-the-art and proposed bit-slicing schemes.

Gmin error problem in presence of the conductance variation
using a novel bit-slicing scheme and crossbar arithmetic.

IV. PROPOSED UNBALANCED BIT-SLICING

A. Overview

A bit-slicing scheme consists of bit-slicing logic and associ-
ated crossbar arithmetic. The bit-slicing logic determines how a
full-precision neural network weight is split into smaller slices,
whereas the crossbar arithmetic governs the way in which the
partial outputs from the crossbar columns are combined to obtain
the final full-precision output. Along the same lines, an overview
of the state-of-the-art as well as the proposed bit-slicing schemes
is shown in Fig. 7. For the state-of-the-art bit-slicing scheme,
balanced bit-slicing logic splits the full-precision neural network
weight into equal-sized (balanced) slices and unsigned binary
arithmetic is used to combine the column-wise partial outputs.
Whereas, in our proposed unbalanced bit-slicing (UBS) scheme,
we split the full-precision neural network weight into a mix of
equal-sized and unequal-sized (unbalanced) slices in such a way
that the resulting allocated sensing margins minimize the impact
of non-zero G min error. The sensing margin allocation strategy
in UBS can be adapted based on whether the goal is to achieve
high accuracy or high energy-efficiency. If the target is to achieve
high accuracy, UBS delivers high sensing margin to more impor-
tant bits (MSBs). On the other hand, if energy-efficiency is the
primary goal then UBS provides just enough sensing margins to
the slices to reduce the hardware resource requirements resulting
in a high energy-efficiency while maintaining a sufficiently good
accuracy. Moreover, UBS uses 2’s complement arithmetic which
results in negative scaling factor for the column containing MSB
slices when combining the column-wise partial outputs using
shift-and-add operations. The full-precision output denoted as
Dacc is obtained by performing shift-and-add operations on n
columns as per (1a), whereDi s andSis denote the column-wise
partial outputs and scaling factors respectively.

Dacc =
n∑

i=1

Si·Di (1a)
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Fig. 8. Error reduction approach for high accuracy.

Dacc =

n∑
i=1

Si·Ti +

n∑
i=1

Si·Ei (1b)

Eacc =

n∑
i=1

Si·Ei =

(
−S1·E1 +

n∑
i=2

Si·Ei

)
(1c)

Expressing Di = Ti + Ei leads to (1b) for Dacc, where Ti is
the ideal column output (Gmin = 0 scenario) and Ei is the error
due to non-zero Gmin. The summation over Ei in (1b) gives
the accumulated non-zero Gmin error denoted as Eacc which
is present in the full-precision output Dacc. The contribution
of the negatively scaled 2’s complement MSB column (i = 1)
towards Eacc can be separated from the other positively scaled
columns (i = 2 to n) as shown in (1c), where E1 is the error in
MSB column and −S1 is the MSB column scaling factor where
S1 > 0 denotes magnitude of the MSB column scaling factor. It
is clear from (1c) that the negative MSB column scaling factor
reduces the overall accumulated error Eacc in the final output
due to weighted subtraction of column-wise errors. However,
such weighted subtraction will not be perfectly zero resulting
in a non-zero accumulated error which can be large enough to
cause substantial deviation from the correct VMM computation.
The sensing margins provided by the unbalanced slice sizes in
UBS ensure that this accumulated error remains small. Thus,
sensing margin allocation and 2’s complement arithmetic work
together to minimize the impact of non-zero Gmin error for
improved neural network accuracy. In the next subsections, we
first describe the details of UBS for achieving high accuracy
followed by its more energy-efficient variant.

B. Unbalanced Bit-Slicing Scheme for High Accuracy

1) Bit-Slicing Logic: Goal of the bit-slicing logic is to min-
imize the accumulated error represented by Eacc in (1c) that
remains after combining the column-wise partial outputs using
2’s complement arithmetic. It is clear that the accumulated error
can be minimized by achieving a good matching between the
magnitudes of negatively scaled error in MSB column and sum
of the positively scaled errors in the rest of the columns as
illustrated in Fig. 8. If all the column-wise errors (Ei in (1c), i
= 1 to n) are individually large, then the mismatch between the
scaled errors will be large leading to a high accumulated error.

Fig. 9. Illustration of the impact of sensing margin on bit-slicing schemes.

On the other hand, a small accumulated error can be obtained
if the columns with high scaling factors have low errors. As
columns with high scaling factors correspond to MSB slices,
our bit-slicing logic aims at reducing the errors in as many MSB
slices as possible for achieving low accumulated error and high
neural network accuracy. Non-zero G min error at the output of
a crossbar column with a certain slice size can be reduced by
providing the slices with higher sensing margin. This can be
achieved by using an RRAM device with n-bit capacity as an
m-bit memory-cell (slice) such that m < n. This results in wider
separation between the conductance states leading to higher
sensing margin and reduced error in the crossbar column output
due to non-zero Gmin as shown in Fig. 9.

As discussed earlier, reducing the individual errors in as
many MSB slices as possible will result in better accuracy.
Different UBS configurations can be obtained based on how
many MSBs are provided with high sensing margin to reduce
the individual errors. For instance, using 2-bit RRAMs for 8-bit
weights, [1, 1, 2, 2, 2] bits/slice (first 2 MSBs with high sensing
margin, total five slices) and [1, 1, 1, 1, 2, 2] bits/slice (first
4 MSBs with high sensing margin, total six slices) are some
of the possible configurations. UBS configuration with more
number of slices results in better accuracy due to better matching
between the positively and negatively scaled errors leading to
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Fig. 10. Accumulation of partial digital outputs in CIM crossbar.

smaller accumulated error. However, it needs more energy due
to more analog to digital conversion operations. For minimum
energy requirement, an UBS configuration should have:
� Minimum number of slices per weight.
� High sensing margin for MSB slices.
� First MSB slice of 1-bit size for 2’s complement arithmetic

compatibility (details in Section IV-B2).
Such configuration is called fundamental slice configuration

(FSC) which is obtained for N-bit weights and m-bit RRAMs
as follows: 1 b for the first MSB slice and remaining N-1 bits
divided into nearly equal chunks of m bits with small-sized
chunks assigned to MSB slices. For example, with 8-bit weights
and m = 2 bits per RRAM, we obtain FSC = [1, m-1, m, m, m]
= [1, 1, 2, 2, 2] bits/slice which is used in Fig. 9.

UBS provides high accuracy at the cost of additional energy.
Algorithm 1 gives UBS slice sizes for optimal accuracy in
presence of non-zero Gmin error subjected to energy constraint.
It starts with FSC having minimum energy requirement and then
progressively assigns smaller slices to the next MSBs. Finally,
the UBS slice configuration having the highest accuracy (highest
number of slices) within the specified energy limit is selected.

2) Crossbar Arithmetic: Weights represented in 2’s comple-
ment format cannot be mapped to a crossbar that uses BBS. This
is due to the difficulty in isolating the negative contribution of
the MSB from a multi-bit slice in 2’s complement format [23].
Hence, BBS converts signed weights into equivalent positive
weights using an offset and utilizes unsigned binary arithmetic
to combine the column-wise partial outputs. In UBS, we force
the MSB slice to always be of 1-bit size for compatibility with
2’s complement weight encoding and utilize 2’s complement
arithmetic to combine the column-wise partial outputs.

Fig. 10 shows the accumulation of partial digital outputs
(Di’s) for 8-bit weights with 2-bit RRAMs using both conven-
tional BBS and proposed UBS. We use [2, 2, 2, 2] bits/slice for
BBS and FSC with [1, 1, 2, 2, 2] bits/slice for UBS. We obtain
(2a) and (2b) as the expressions for the accumulated output error
for BBS and UBS respectively, by using (1c) for dataflow graphs
shown in Fig. 10.

Eacc = 64·E1 + 16·E2 + 4·E3 + E4 (2a)

Eacc = (−128)·E1 + 64·E2 + 16·E3 + 4·E4 + E5 (2b)

Fig. 11. Error reduction approach for high energy-efficiency.

As described by these equations, UBS can result in lower ac-
cumulated error compared to BBS due to weighted subtraction
of column-wise errors in 2’s complement arithmetic. This holds
true for any UBS configuration, as they all use 1-bit slice for
the first MSB to be compatible with 2’s complement crossbar
arithmetic. Moreover, the impact of non-zero Gmin error is
further suppressed as the bit-slicing logic (described earlier in
Section IV-B1) ensures that the accumulated error obtained after
the weighted subtraction remains small.

C. Unbalanced Bit-Slicing Scheme for Energy-Efficiency

UBS leads to more slices per weight compared to BBS due
to utilizing RRAMs for less than their bit-capacity for some
slices to achieve higher sensing margin. The extra slices in UBS
introduce additional analog-to-digital conversion operations re-
sulting in higher energy consumption. Hence, it is necessary to
decrease the number of slices per weight in UBS for reducing
the energy overhead which can be achieved by using bigger slice
sizes. However, the low sensing margin in bigger slice sizes leads
to higher accumulated error and reduced accuracy. Thus, bigger
slice sizes provide higher energy-efficiency at the expense of
reduced accuracy and there exists a potential accuracy versus
energy tradeoff.

Neural networks can inherently tolerate some deviation from
ideal VMM computations. For instance, correct classification
needs the output corresponding to the correct class to be max-
imum, but it does not matter if it is slightly higher or much
higher than the other classes. So, instead of the targeting a
very low accumulated error as done earlier in Section IV-B1
to obtain high accuracy, sufficiently good accuracy can still be
achieved with a higher accumulated error which is just small
enough to get the correct classification output. Thus, we can
leverage bigger slices for higher energy-efficiency while incur-
ring reasonable accuracy loss by adjusting the sizes of the bigger
slices in such a way that the accumulated error remains small
enough for correct classification. This is illustrated in Fig. 11.
Hence, an energy-efficient UBS configuration that uses bigger
slice sizes must satisfy the following conditions to achieve high
energy-efficiency while maintaining sufficiently good accuracy:
� Less number of slices per weight than UBS FSC.
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� Small enough accumulated error for correct classification.
To satisfy the constraint for number of slices, we need to uti-

lize some slice sizes that are bigger than the RRAM bit-capacity.
For instance, with 2-bit RRAMs for 8-bit weights, UBS FSC
([1, 1, 2, 2, 2] bits/slice) leads to five slices. If we want the UBS
configuration to fit in 4 or less slices, the only option is to keep
the first MSB slice as 1-bit (for 2’s complement compatibility)
and increase the sizes of other slices so that the remaining seven
bits fit in three or less slices. This leads to slice configurations
such as [1, 2, 2, 3] bits/slice where some slices exceed the
2-bit capacity of our RRAM devices. Slices bigger than RRAM
bit-capacity can be implemented by overloading the existing
RRAM device. Overloading refers to the process of using n-bit
RRAM as an m-bit memory-cell (slice) such that m> n, where n
= 2 and m = 3 for our scenario. A non-overloaded RRAM (n-bit
RRAM used to hold n or fewer bits) has a certain available
sensing margin and no overlap exists between the variation
profiles of its conductance states. Overloading an RRAM device
leads to a larger number of conductance states within the same
conductance range. This results in reduced sensing margin and
overlap between the variation profiles of the conductance states.
The more we overload a device (more difference between m and
n), the lower is the sensing margin and the higher is the variation
profile overlap. This can lead to increased errors due to non-zero
Gmin in presence of conductance variation for a column with
overloaded RRAMs.

Overloading RRAM devices to meet the first constraint for
number of slices inherently increases the error in overloaded
columns. However, we can still use overloading and satisfy
the second constraint of small-enough accumulated error by
overloading the columns which contribute less towards the ac-
cumulated error. The scaling factors for individual output errors
(Eis) in MSB columns are much higher compared to the LSB
columns as evident from (2b). Hence, low accumulated error

can be achieved if MSB slices have smaller individual output
errors compared to LSB slices. Hence, MSB slices in an energy-
efficient UBS configuration should have higher sensing margin
i.e. they should be smaller and less overloaded compared to
LSB slices. Thus, a possible energy-efficient UBS configuration
which can achieve low accumulated error in presence of RRAM
overloading is obtained as follows:
� First MSB slice must be of 1-bit size.
� Slices per weight must be less than UBS FSC.
� LSB slices must be bigger or equal to MSB slices.
For 8-bit weights and 2-bit RRAMs (UBS FSC as [1, 1, 2, 2, 2]

bits/slice) various possible energy-efficient UBS configurations
which satisfy the aforementioned conditions can be listed as:
[1, 2, 2, 3] bits/slice, [1, 1, 2, 4] bits/slice, [1, 1, 3, 3] bits/slice,
[1, 1, 1,5] bits/slice, [1, 3,4] bits/slice, [1, 2, 5] bits/slice, [1,
1, 6] bits/slice and [1, 7] bits/slice. They provide different
levels of accuracy while consuming different amounts of en-
ergy. Algorithm 2 describes the method of selecting appropriate
energy-efficient UBS configuration according to the energy and
accuracy constraints. It begins with FSC whose accuracy is taken
as the baseline. The permissible accuracy loss with respect to
this baseline is also specified as an input. Out of the various
possible energy-efficient UBS configurations, the ones having
accuracy and energy within the specified limits are shortlisted.
Finally, slice configuration having the least energy requirement
among the shortlisted ones is selected.

V. SIMULATION SETUP AND EXPERIMENTS

A. Simulation Setup

We have developed a simulation framework in Python based
on in-situ multiply-accumulate (IMA) unit in [23] (shown in
Fig. 3) which is compatible with UBS, BBS and HBS. The
IMA design follows 32 nm CMOS technology [23]. The power
and area details for various IMA components are also obtained
from [23]. The power consumption of ADCs in the IMA is
modelled based on the ADC design presented in [38] which is
also referenced in [23]. In order to estimate the power/area for the
aforementioned ADC at different bit resolutions while keeping
rest of the ADC specifications same, we followed the method-
ology given in [23]. It involves scaling the power/area of all
the ADC components except capacitive DAC (CDAC) linearly
with ADC resolution and scaling the power/area of the CDAC
exponentially with ADC resolution. The ADC power/area at
new bit resolution is then obtained by summing all these scaled
component-wise powers/areas. The RRAM device-related sim-
ulation parameters are taken from HfOx-based device presented
in [39]. All of our experiments take into account both non-zero
Gmin error and conductance variation together. We consider 2-bit
RRAMs (same as [23], [24]) and 8-bit weights. This leads to [1,
1, 2, 2, 2] bits/slice (FSC obtained using Algorithm 1) for UBS,
[2, 2, 2, 2] bits/slice for BBS [23], [24] and [1, 1, 2, 2, 1, 1]
bits/slice for HBS [22]. Other slice configurations are specified
within the corresponding result figures.

We evaluate the performance of five datasets shown in Table I
on a fully-connected neural network (FC-NN) as well as a
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TABLE I
ACCURACY ON THE DATASETS CONSIDERED FOR SIMULATION

convolutional neural network (CNN). All of our datasets consist
of 28 × 28 images. The details of the used neural networks are
as follows:
� FC-NN: It consist of an input layer of 784 neurons followed

by two hidden layers with 100 and 50 neurons. It has 47
output neurons for EMNIST [37] dataset and 10 output
neurons for all other datasets. Thus, FC-NN can be ex-
pressed as 784-100-50-(47 or 10). The activation function
used is ReLU.

� CNN: Its structure is similar to LeNet-5 [33] with two
convolution layers having 6 kernels and 16 kernels of size
5×5, each followed by a max-pooling layer. Flattened
output from the second max-pooling layer connects to
fully-connected layers with 120 neurons and 84 neurons.
The output layer has 47 neurons for EMNIST [37] dataset
and 10 neurons for all other datasets. So, we can represent
the CNN as 6c5-maxpool-16c5-maxpool-flatten-120-84-
(47 or 10), where mCn means m kernels of size n × n.
ReLU is used as activation function.

Both neural networks are trained using PyTorch [40] with
Adam [41] optimizer and inference on CIM hardware is sim-
ulated using our Python-based framework. The Python-based
simulation framework is validated by comparison with SPICE
simulation. All the results are shown in terms of relative ac-
curacy. It is calculated by expressing the accuracy obtained
in Python-based hardware simulation for a given dataset as a
percentage of its ideal (software) baseline accuracy in Table I.
Thus, relative accuracy acts as a measure of how much software
accuracy is preserved in CIM hardware in presence of non-zero
Gmin error and conductance variation.

B. Experiments Performed

1) Accuracy Comparison for Various Bit-Slicing Schemes:
The goal of this experiment is to demonstrate the effectiveness
of UBS across various datasets and neural networks, when
compared to state-of-the-art bit-slicing schemes and mitigation
techniques. We compare the classification accuracy of UBS
against BBS, HBS, BBS augmented with CST and HBS aug-
mented with CST. This comparison is performed across five
different datasets using FC-NN as well as CNN.

2) Accuracy Versus Energy Tradeoff for UBS: In this ex-
periment, we compare the classification accuracy and energy
consumption of UBS FSC with other energy-efficient UBS

configurations presented in Section IV-C to see if they can
achieve reasonable accuracy while consuming less energy than
UBS FSC. This is a key experiment, as a slicing scheme or
configuration with high energy-efficiency but poor classification
accuracy is not useful. It also sheds the light on how to select
the best UBS configuration for energy-efficiency which satisfies
a given accuracy constraint and vice versa. HBS and BBS are
also included in this experiment to show how they fare against
energy-efficient UBS configurations in terms of both accuracy
and energy. This evaluation is performed across five datasets on
FC-NN and CNN.

3) Scalability of UBS: This experiment aims to demonstrate
the applicability of UBS to complex datasets and large neural
networks. We use CIFAR-10 [42] dataset on VGG-16 [43] neural
network for this purpose. As the original VGG-16 network is
intended for 224x224 RGB images, we adapt it for 32x32 RGB
images in CIFAR-10 by making a slight change in the final fully-
connected layers. The resulting network can be represented as
follows (nCm means n convolution filters of m x m size): Input
- 64c3 - 64c3 - Maxpool - 128c3 - 128c3 - Maxpool - 256c3 -
256c3 - 256c3 - Maxpool - 512c3 - 512c3 - 512c3 - Maxpool
- 512c3 - 512c3 - 512c3 - Maxpool - 512 - 10. This network
achieves a software baseline accuracy of 89%. We then compare
the classification accuracy of various bit-slicing schemes on this
network for CIFAR-10 dataset.

VI. SIMULATION RESULTS

A. Accuracy Comparison for Various Bit-Slicing Schemes

UBS achieves the highest accuracy while HBS achieves the
lowest accuracy among BBS, HBS and UBS for both FC-NN
and CNN as shown in Figs. 12 and 13. The intuition behind this
can be explained as follows. Non-zero Gmin error at the output
of ith crossbar column can be expressed as:

Ei =
Ni·δ
S

(3)

where Ni is the number of RRAMs (in the ith column) hav-
ing Gmin conductance, δ is the error due to a single Gmin

conductance and S is the sensing margin for such an archi-
tecture design. The column-wise errors Ei’s result in final ac-
cumulated error Eacc as per (2a) and (2b) for BBS and UBS
respectively. UBS intends to reduce the error Ei compared to
BBS by providing larger S (see 3) using smaller slice sizes
for some important columns like MSBs. However, this also
leads to higher Ni for some UBS columns compared to their
BBS counterparts as smaller slice sizes produce more digital
zero chunks which get mapped to Gmin, contributing towards
increase in Ei. Nevertheless, weighted sum in (2a) leads to high
accumulated error for BBS despite having smaller Ni’s. On
the other hand, the impact of higher Ni’s on the accumulated
error in UBS is severely diminished thanks to weighted subtrac-
tion due to 2’s complement arithmetic as shown in (2b). The
sensing margin allocation in UBS further reduces the impact of
accumulated error that remains after the weighted subtraction.
Hence, UBS has a very small accumulated error and thereby
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Fig. 12. Accuracy comparison for various bit-slicing schemes on fully-connected neural network across different datasets.

Fig. 13. Accuracy comparison for various bit-slicing schemes on convolutional neural network across different datasets.

provides much higher accuracy compared to BBS. Even though
HBS provides high sensing margin for some slices, increase in
Ni’s coupled with weighted accumulation of errors (similar to
(2a)) due to its unsigned binary arithmetic leads to higher ac-
cumulated error and lower accuracy compared to both BBS and
UBS.

CST [25] mitigation for BBS and HBS relies on current
subtraction using a common dummy column for the entire cross-
bar. Such current subtraction is not perfect due to conductance
variation and yields non-zero current residues. These current
residues get accumulated across the columns leading to errors
in the digital output after analog-to-digital conversion. These
errors are further amplified during weighted sums to combine
the column-wise partial digital outputs in HBS and BBS, leading
to a high overall accumulated error. UBS does not rely on
a common column and leverages weighted subtraction across
various groups of columns. Hence, UBS outperforms HBS and
BBS even when they are augmented with CST as shown in
Figs. 12 and 13.

The final accumulated error at the output layer is high in
CNN compared to FC-NN as our considered CNN has more
layers than FC-NN. Thus, the impact of non-zero Gmin error
becomes more severe in CNN. Hence, the accuracy for BBS
and HBS (with as well as without CST) reduces on CNN
when compared to that on FC-NN. On the other hand, higher
number of layers in CNN result in negligible impact on UBS
accuracy as it always inherently leads to low error for the
output in each layer. This is evident in Fig. 12 and Fig. 13.
Thus, UBS outperforms BBS and HBS (both with and with-
out CST) across various datasets as well as types of neural
networks.

B. Accuracy Versus Energy Tradeoff for UBS

We only consider in-situ multiply-accumulate (IMA) unit
in [23] for energy comparison as bit-slicing schemes and config-
urations have no impact on its other components. Different bit-
slicing schemes and configurations lead to changes in total num-
ber of crossbar columns as well as the number of bits per RRAM
device (slice size) for a given column. These changes affect
various IMA components such as analog-to-digital converters
(ADCs), crossbar arrays, sample-and-hold circuits etc. However,
the contribution of ADCs towards the overall IMA energy is
significantly higher compared to other components [23]. Hence,
we focus on the impact of bit-slicing schemes and configurations
on the energy of ADCs which can be directly correlated to the
IMA energy. A change in the number of crossbar columns leads
to a change in total number of ADCs in the IMA to maintain
constant throughput. A change in the number of bits per RRAM
device for a column causes a change in the ADC resolution
for correct analog-to-digital conversion. Thus, the overall IMA
energy for a bit-slicing scheme or configuration is determined
by the combined effect of the number of required ADCs and
their resolutions.

Both BBS and HBS are augmented with CST for comparison
in Figs. 14 and 15 as their accuracy is higher with CST (discussed
in Section VI-A). UBS FSC ([1, 1, 2, 2, 2] bits/slice), BBS +
CST ([2, 2, 2, 2] bits/slice) and HBS + CST ([1, 1, 2, 2, 1, 1]
bits/slice) in Figs. 14 and 15 all have slices which are either 1-bit
or 2-bit in size. Thus, ADC resolutions used in these schemes are
quite similar. Hence, their IMA energy performance is mainly
governed by total number of ADCs. The total number of ADCs
required for UBS FSC is less than that in HBS + CST as it has
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Fig. 14. Accuracy versus energy tradeoff demonstration for various bit-slicing schemes on fully-connected neural network across different datasets.

Fig. 15. Accuracy versus energy tradeoff demonstration for various bit-slicing schemes on convolutional neural network across different datasets.

less number of slices per weight. Hence, UBS FSC results in
less energy than HBS + CST. On the other hand, UBS FSC has
more slices per weight than BBS + CST which results in more
number of ADCs and higher energy when compared to BBS +
CST. This is shown in Figs. 14 and 15.

The energy overhead for UBS FSC can be lowered at the
expense of reduced accuracy by decreasing the total number
of slices. As discussed in Section IV-C, the possible energy-
efficient UBS configurations can be listed as: [1, 2, 2, 3]
bits/slice, [1, 1, 2, 4] bits/slice, [1, 1, 3, 3] bits/slice, [1, 1, 1, 5]
bits/slice, [1, 3, 4] bits/slice, [1, 2, 5] bits/slice, [1, 1, 6] bits/slice
and [1, 7] bits/slice. Two opposite effects regarding the energy
consumption come into picture when we move from UBS FSC
to energy-efficient UBS configurations:
� Energy-efficient UBS configurations have less number of

slices than UBS FSC. Hence, they need less crossbar
columns and less ADCs compared to UBS FSC. This
contributes towards reduction in energy requirements.

� Energy-efficient UBS configurations use bigger slice sizes
compared to UBS FSC. Hence, they need higher resolu-
tion ADCs which demand more energy. This contributes
towards increase in energy requirements.

The overall energy consumption depends on which of these
two effects dominates for a given slice configuration. It can be
seen in Figs. 14 and 15 that [1, 3, 4] bits/slice consumes the

least energy among all schemes and configurations (even less
than BBS). This indicates that the impact of number of slices
(number of ADCs) is dominant over the impact of slice sizes
(ADC resolution) for [1, 3, 4] bits/slice.

The energy-efficient UBS configuration in which bit-sizes
of the adjacent slices are similar, leads to better balancing
between the scaled column-wise errors. This results in smaller
accumulated error and high accuracy. Hence, [1, 2, 2, 3] bits/slice
gives the best accuracy among all the listed energy-efficient UBS
configurations. This is because the maximum bit-size difference
between its adjacent slice-sizes is 1, which is the smallest among
all the listed energy-efficient UBS configurations. Similarly,
among configurations with 3 slices, [1, 3, 4] bits/slice gives the
highest accuracy as the maximum difference between its adja-
cent slices is 2, while it is 3 and 5 for [1, 2, 5] bits/slice and [1, 1,
6] bits/slice respectively. Note that even though energy-efficient
UBS configurations achieve slightly less accuracy compared to
UBS FSC having [1, 1, 2, 2, 2] bits/slice, they still achieve
much higher accuracy compared to BBS and HBS (both with
CST) as evident in Figs. 14 and 15. The configurations [1, 1, 6]
bits/slice and [1, 7] bits/slice result in significantly poor accuracy
compared to all other energy-efficient UBS configurations as
depicted in Figs. 14 and 15. Hence, it is not recommended to
overload a 2-bit RRAM device for holding more than 5 bits.
The analysis in Figs. 14 and 15 can be used to find the UBS
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Fig. 16. Accuracy comparison for various bit-slicing schemes on VGG-16 neural network for CIFAR-10 dataset.

TABLE II
SUMMARY OF THE PERFORMANCE METRICS PER IMA, UNIT INDICATED IN BRACKETS WITH EACH METRIC. ACCURACY VALUES FOR EMNIST DATASET ON CNN

ARE REPORTED. CORRECT OPERATIONS PER UNIT ENERGY = (TOTAL OPERATIONS × ACCURACY/100)/ENERGY, UNIT: GIGA OPERATIONS PER JOULE (GOP/J)

configuration having the lowest energy consumption for a given
accuracy constraint as well as the UBS configuration with the
highest accuracy for a given energy budget.

C. Scalability of UBS

The accuracy comparison of various bit-slicing schemes on
VGG-16 network using CIFAR-10 dataset is shown in Fig. 16.
We have considered HBS and BBS empowered with CST for
this comparison because they achieve their highest possible
accuracy with CST as evident in Figs. 12 and 13. We use 16-bit
weights as CIFAR-10 is a complex dataset and VGG-16 is a large
network [23]. Considering 2 bits per RRAM as in Section V-A,
we get [1, 1, 2, 2, 2, 2, 2, 2, 2] bits/slice for UBS, [2, 2, 2, 2,
2, 2, 2, 2] bits/slice for BBS+CST and [1, 1, 2, 2, 2, 2, 2, 2, 1,
1] bits/slice for HBS+CST. To improve the energy efficiency
of UBS with 9 slices ([1, 1, 2, 2, 2 , 2, 2, 2, 2] bits/slice), we
follow the same logic as in Section VI-B to reduce the number
of slices. This leads to [1, 2, 2, 2, 2, 2, 2, 3] bits/slice as the
best (most accurate) configuration having 8 slices and [1, 2, 2,
2, 2, 3, 4] bits/slice as the best (most accurate) configuration
having 7 slices. These slice configurations are also included
for the comparison in Fig. 16. It is evident from Fig. 16 that
UBS outperforms HBS+CST and BBS+CST on VGG-16 with
CIFAR-10 dataset in terms of accuracy. This can be attributed
to the mitigation provided by the sensing margin allocation
which is also supported by 2’s complement crossbar arithmetic.
Moreover, energy-efficient UBS configurations ([1, 2, 2, 2, 2,
2, 2, 3] bits/slice and [1, 2, 2, 2, 2, 3, 4] bits/slice) incur a very
minor accuracy loss compared to the UBS with 9 slices ([1, 1,
2, 2, 2, 2, 2, 2, 2] bits/slice) as they sacrifice sensing margin for
LSBs to reduce the number of slices.

D. Summary of Performance Metrics and Discussion

The performance metrics per IMA for various bit-slicing
schemes are summarized in Table II. We consider both BBS
and HBS augmented with CST so that their most accurate
versions are considered for comparison. Out of the various
energy-efficient UBS configurations discussed in Section VI-B,
[1, 2, 2, 3] bits/slice and [1, 3, 4] bits/slice are selected as they
provide the highest accuracy and the lowest energy among UBS
configurations having 4 slices per weight and 3 slices per weight
respectively. UBS FSC ([1, 1, 2, 2, 2] bits/slice) provides 7.3×
accuracy at the expense of 15.3% energy overhead compared
to BBS, while it achieves 2.7× accuracy and consumes 11.7%
less energy when compared to HBS. The UBS energy overhead
with respect to BBS can be reduced from 15.3% to mere 1.1%
by using UBS with [1, 2, 2, 3] bits/slice. We can even achieve
10% energy savings compared to BBS by leveraging UBS with
[1, 3, 4] bits/slice.

The net energy-efficiency represents the number of operations
performed per unit energy consumption and is expressed as
giga operations per second per watt (GOPS/W) in Table II. The
energy-efficiency comparison can be correlated to the energy
comparison discussed earlier by taking into account the fact
that these two have inverse relationship. For instance, the more
energy-efficient scheme is the one that consumes less energy or
has higher GOPS/W.

Metrics like energy and energy-efficiency do not take into
account the fact that even though BBS appears to be energy-
efficient, it is spending that energy in performing incorrect
computations as reflected in its poor accuracy. Hence, we define
a metric called “correct operations per unit energy” which takes
into account both energy and computational correctness. The
number of correct operations can be computed as a product of
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accuracy (in fraction format, not as a percentage) and total opera-
tions. Correct operations per unit energy is then simply obtained
by dividing the number of correct operations by total energy
consumption. UBS FSC ([1, 1, 2, 2, 2] bits/slice) provides 6.3×
and 3× correct operations per unit energy compared to BBS
and HBS respectively. [1, 2, 2, 3] bits/slice provides 7.2× and
3.4× correct operations per unit energy compared to BBS and
HBS respectively, at the cost of just 0.54% accuracy loss com-
pared to UBS FSC. [1,3, 4] bits/slice results in 7.8× and 3.7×
correct operations per unit energy compared to BBS and HBS
respectively, at the expense of 3.23% accuracy loss compared to
UBS FSC. This shows that the number of correct computations
performed per unit energy consumption is much higher for UBS
and it increases further with the use of energy-efficient UBS
configurations for a very small decrease in accuracy.

UBS FSC ([1, 1, 2, 2, 2] bits/slice) requires 7.2% more area
with respect to BBS. UBS with [1, 2, 2, 3] bits/slice and [1, 3,
4] bits/slice incur area overheads of 6.2% and 24% respectively
when compared to BBS. Thus, UBS with [1, 2, 2, 3] bits/slice is
the best choice if the target is to achieve high energy-efficiency
with accuracy closest to UBS FSC and minimum area overhead
with respect to BBS. On the other hand, [1, 3, 4] bits/slice is the
best choice if we are willing to trade further accuracy and area
for even higher energy-efficiency.

Please note that the bit-sizes for weights in different layers
of the neural network can be selected independent of UBS. The
bit-sizes for weights in each layer are given as a design constraint
to UBS (like number of bits per RRAM) and UBS tries to deliver
the best possible performance for these given bit-sizes. For
designs which use the same bit-size for weights in every layer,
all layers should be provided with the same slice configuration
based on the accuracy versus energy-efficiency tradeoff. For
instance, with 16-bit weights and 2-bit RRAMs, [1, 1, 2, 2, 2,
2, 2, 2, 2] bits/slice should be used for all layers if accuracy is
the primary concern and [1, 2, 2, 2, 2, 3, 4] bits/slice should be
used for all layers if energy-efficiency is the major concern.
If the design uses different bit-sizes for weights in different
layers, the same strategy can be extended to layers that use the
same bit-size. For instance, consider a network where half the
layers use 8-bit weights, and half the layers use 16-bit weights.
If accuracy is the primary target, then one should use [1, 1, 2, 2,
2] bits/slice for 8-bit layers and [1, 1, 2, 2, 2, 2, 2, 2, 2] bits/slice
for 16-bit layers. On the other hand, for energy-efficiency, one
should use [1, 3, 4] bits/slice for 8-bit layers and [1, 2, 2, 2,
2, 3, 4] bits/slice for 16-bit layers. Moreover, UBS is designed
to make the vector-matrix multiplication error free. Provided
that the core computation involved in a layer is vector-matrix
multiplication or matrix-matrix multiplication, any such layer
can reap the benefits of UBS by following the slice configuration
allocation logic discussed earlier. Hence, UBS is applicable to
any type of deep learning layer as almost all types of layers in
deep-learning involve matrix-matrix multiplication as the core
computation.

VII. CONCLUSION

We propose an unbalanced bit-slicing scheme to mitigate the
impact of non-zero minimum conductance of RRAM devices

on CIM architectures. The proposed scheme achieves this by
appropriate utilization of sensing margin and leveraging the
weighted subtraction effect of 2’s complement crossbar arith-
metic. Two different sensing margin allocation strategies are
proposed based on whether the final goal is to achieve high
accuracy or energy-efficiency. The proposed scheme provides
up to 7.3× accuracy and up to 7.8× correct operations per unit
energy consumption compared to state-of-the-art. Such high ac-
curacy and energy-efficiency can benefit a wide spectrum of AI
applications like autonomous vehicles, wearable healthcare etc.
This work has shown that by introducing smart techniques such
as the proposed unbalanced bit-slicing scheme in RRAM-based
CIM architectures, one can deal with device-level non-idealities
like non-zero minimum RRAM conductance.
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