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Experimental Closed-Loop Excitation of Nonlinear
Normal Modes on an Elastic Industrial Robot

Filip Bjelonic1, Arne Sachtler1,2, Alin Albu-Schäffer1,2, and Cosimo Della Santina1,3

Abstract—Adding elastic elements to the mechanical structure
should enable robots to perform efficient oscillatory tasks. Still,
even characterizing natural oscillations in nonlinear systems is
a challenge in itself, which nonlinear modal theory promises to
solve. Therein eigenmanifolds generalize eigenspaces to mechan-
ical systems with non-Euclidean metrics and thus characterize
families of oscillations that are autonomous evolutions of the
robot. Eigenmanifolds likewise provide a framework for deriving
feedback controllers to excite and sustain these oscillations.
Nevertheless, these results have been so far essentially theoretical.
They have been applied on relatively low dimensional systems and
almost exclusively in simulation. We aim to bridge the theory to
the real-world gap with the present work and show that we
can excite nonlinear modes in complex systems. To this end,
we propose control strategies that can simultaneously stabilize
numerically evaluated eigenmanifolds and sustain oscillations in
the presence of dissipation. We then focus on the KUKA iiwa with
simulated parallel springs as an example of the highly nonlinear
and articulated system. We calculate all the nonlinear modes
of the system, and we use the proposed strategies to excite the
associated natural oscillations.

Index Terms—Motion Control; Dynamics; Modeling, Control,
and Learning for Soft Robots

I. INTRODUCTION

IN (articulated) soft robotics, researchers study how intro-
ducing elasticity in the mechanical structures of robots [1]

may lead to improved performance [2]. The dynamics of these
systems are essentially richer than their rigid counterparts,
including behaviors like autonomous nonlinear oscillations and
chaos. If on the one hand elasticity can generate stabilizing
effects, on the other even standard control problems as force
and motion control can get more challenging due to reduced
control authority [3], [4]. Interestingly, elasticity creates new
control opportunities that can be exploited by novel algorith-
mic solutions.

In this work, we are primarily interested in repetitive
motions. In this context, elasticity may help lift efficiency to
a higher level. Indeed, energy is not lost during these mo-
tions but exchanged between elastic elements and the bodies’
velocity. Researchers have considered exploiting elasticity in
soft robots to perform locomotion [5], [6] and execute periodic
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Fig. 1. We show in grey the fourth eigenmanifold M of the elastic iiwa
projected onto (ξm, x2) ∈ R3, where ξm are the modal coordinates. The
surface is a section of the energy shell E(Ē), and it is shown only on one side
of the eigenmanifold not to overload the figure. The proposed control strategy
regulates nonlinear modes by simultaneously stabilizing M and E . The smooth
robot trajectory in orange comes from multiple experimental cycles, and it
correctly sits close to the intersection of the two surfaces.

tasks in an industrial context [7]–[11]. Consequently, many
algorithms have been recently proposed that stabilize nonlinear
oscillations in mechanical systems. In this context, virtual
holonomic constraints have generated sound theoretical re-
sults [12]–[14]. Alternatively, transverse feedback linearization
[15], energy shaping [16], Floquet theory [17], immersion and
invariance [18] have all been considered. Finally, bio-inspired
solution combined with engineering intuition yield promising
but task- and platform-specific results [19], [20]. But all these
techniques are not designed to minimize the control effort,
and as such, they involve some form of steady-state model
cancellation.

As an alternative, with a series of recent works [21]–
[24], we have proposed sacrificing versatility for efficiency.
Instead of prescribing some oscillatory behavior to the system
- not matched to the physics of the system - we propose
to start by characterizing what the robot is good at utilizing
nonlinear modal theory. Nonlinear modes provide an extension
of the linear modal theory to nonlinear systems [23], [25].
Eigenvectors become curves, eigenspaces become eigenman-
ifolds, and sinusoidal oscillations become nonlinear periodic
orbits. Eigenmanifolds are collections of self-similar periodic
orbits that the mechanical system can perform as autonomous
evolution. Therefore, they can be seen as a way of charac-
terizing all the regular oscillatory behaviors of (soft) robots.
Once the eigenmanifolds of the robot have been identified,
controllers can be devised to excite and stabilize the associated
oscillations [21], [22]. This can be achieved by simultaneously
transforming an eigenmanifold into an attractor, and regulating
the total energy of the system (Fig. 1). The results are stable
hyper-efficient natural oscillations. However, these techniques
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have had a primarily theoretical development and were vali-
dated on simple systems and exclusively in simulation - except
for the preliminary work [26].

This paper aims to finally provide a long-awaited solid
experimental validation to this otherwise theoretical frame-
work, even if preliminary. As we will discuss later in this
paper, this also requires developing new control strategies
that - even if based on the same philosophy of [21], [22] -
can deal with challenges that ideal theoretical formulations
would neglect. We compute and report a representation of
the eigenmanifolds and evaluate the control approaches on an
industrial manipulator with seven degrees of freedom (elastic
KUKA iiwa robot). We demonstrate the excitation of various
nonlinear modes from six out of the seven eigenmanifolds.

II. BACKGROUND AND NOTATION ON
NONLINEAR NORMAL MODES

The theory of nonlinear normal modes in conservative
mechanical systems is the base upon which we build the results
proposed in this paper. We report here an introduction to the
topics that will be necessarily succinct and informal for the
sake of space. The interested reader can refer to [23] for a
general introduction to the topic.

A. General Notation

Consider a nonlinear mechanical system governed by the
multi-body dynamics equation

M(x)ẍ+ C(x, ẋ)ẋ+
∂V

∂x
(x) = τ, (1)

where x ∈ Rn are Lagrangian coordinates (e.g., joint vari-
ables), ẋ and ẍ their first and second time derivatives. The
inertia matrix M(x) ∈ Rn×n is assumed positive definite,
and C(x, ẋ) ∈ Rn×n combines Coriolis and centrifugal terms.
Finally, V : Rn → R is the potential field induced by, e.g.,
gravity and elastic actions. The total energy E of the system
(1) is

E(x, ẋ) =
1

2
ẋTM(x)ẋ+ V (x). (2)

We assume that there is at least one isolated xeq such that it
is a local minimum of V , or equivalently a stable equilibrium
of (1). We assume the level curves of V are closed in a large
enough neighborhood of xeq. The vector norm is defined as
||x||M =

√
xTMx.

B. Modes

The spectral analysis of S−1/2M(xeq)S
1/2 yields n inde-

pendent eigenvectors, with S being the stiffness matrix at the
equilibrium defined as the Hessian of V . Each eigenvector
c leads to a separate two-dimensional eigenspace ES =
Span{(c, 0), (0, c)}. This is an invariant space for the linear
approximation of the robot, with all evolutions being regular
sinusoidal oscillations. However, this analysis holds only under
the small-oscillations hypothesis.

The eigenmanifold theory aims to extend eigenspaces
outside small oscillations to characterize families of large-
amplitude nonlinear oscillations. Therefore, we define an
eigenmanifold M ⊂ R2n as a two-dimensional invariant

submanifold of the state space. The invariance is here defined
w.r.t. the dynamics (1), and thus outside any small oscillation
regime. There are at least n distinct eigenmanifolds associated
with an equilibrium xeq, and each one of them is tangent
to a different linear eigenspace ES. An eigenmanifold is a
continuous collection of periodic orbits (eigenmodes from now
on), each of which can be univocally identified by its constant
(pseudo-)energy. For small energies, these orbits will resemble
the ones predicted by the linear analysis. In other words, every
initial condition (x(0), ẋ(0)) ∈ M leads to a periodic orbit
whenever τ ≡ 0, and thus the forward evolution stays on M
without applying torques.

Given an eigenmanifold M, we can identify two functions
(X, Ẋ) : R2 → Rn×Rn such that we can define the manifolds
as the image of these maps, i.e.,

M =
{
(x, ẋ) ∈ R2n | ∃ξm ∈ R2 s.t. (x, ẋ) = (X(ξm), Ẋ(ξm))

}
.

(3)
The two-dimensional variable ξm is a parameterization of the
eigenmanifold, and (X, Ẋ) is the natural embedding in the
associated coordinates. This paper will propose algorithms that
do not need to explicitly calculate these quantities since they
are not easily obtainable for high-dimensional systems.

III. CONTROL STRATEGY

The goal of this section is to introduce a control architecture
that excites and stabilizes a large palette of eigenmodes from
a complex mechanical system, such as the elastic industrial
manipulator that we consider in the experimental section.

We base this architecture on the approach that some of the
authors of the present paper have proposed in [21], [22]. This
framework builds upon the fact that the trajectory spanned by
an eigenmode is always coincident with M ∩ E(Ē), where

E(Ē) =
{
(x, ẋ) ∈ R2n |E(x, ẋ) = Ē

}
(4)

is the energy shell of energy Ē. Note that for a conservative
system this is a (2n−1)-dimensional invariant manifold. Thus,
M ∩ E(Ē) has correctly dimension 1 (single orbit). Fig. 1
reports an example of these two manifolds, together with an
experimental oscillation obtained as their intersection.

Based on this intuition, we split our controller into

τ(x, ẋ) = τM(x, ẋ;M) + τE(x, ẋ; Ē), (5)

such that

(i) τM acts as an eigenmanifold stabilizer, producing closed-
loop trajectories such that (x(∞), ẋ(∞)) ∈ M or al-
ternatively (x(∞), ẋ(∞)) = (X(ξm), Ẋ(ξm)) for some
ξm ∈ R2;

(ii) τE acts as an energy regulator, thus implementing a
closed-loop energy evolution such that E(∞) = Ē.

If both controllers succeed in their tasks, then (x, ẋ) converges
to a modal orbit and τ → 0. This section aims at introducing
new controllers τM and τE achieving their respective goals
under realistic hypotheses. The novel control architecture that
we designed is visualized as a block diagram in Fig. 2.
Here, we already show the system that will be used in the
experimental section.
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Fig. 2. Block diagram of the control architecture. Both control loops are reported in the figure: the manifold controller τM that stabilizes the
eigenmanifold, and the energy controller τE that regulates the energy E to the desired reference Ē. Together, they excite and sustain the
nonlinear modes whose trajectory is M ∩ E(Ē). The physical system used in the experimental validation is a KUKA iiwa with simulated
parallel springs implemented by τS. Note however that the proposed control strategy can be applied to any articulated soft robot with physical
parallel elasticity.

(a) Point Cloud Representation (b) Tree Data Structure

Fig. 3. Coordinate expression of the eigenmanifold M with dots inside
visualizing the pointcloud; and a sketch of the tree data structure for
fast closest-point queries.

A. Eigenmanifold Stabilization
The strategy for the eigenmanifold stabilization that we have

proposed in previous work [21] does not trivially generalize
to high dimensional systems. Indeed, it requires a closed-form
expression of (X, Ẋ) which is hard to obtain in practice.
Also, that strategy is intrinsically local since it relies on
projection onto the tangent eigenspace ES. Here, we propose
an eigenmanifold stabilization strategy that is globally well
defined, does not rely on any closed-form parameterization
and is easy enough to implement in a realistic scenario.

First, we do not explicitly create a parameterization of the
eigenmanifold but rather represent it by a set of points. We
employ a shooting method that starts from the equilibrium,
points in the direction of the eigenvector, and from there
locally searches for modes of increasing energy - similarly
as discussed in [23, Sec. 8]. We simulate each of the modal
oscillations so discovered by forward-integration of (1). We
stop the simulation after one complete oscillation. The col-
lection of all these samples yields a point cloud Mpc, which
serves as a numerical and discrete approximation of M (cp.
Fig. 3).

In preparation to define a controller, we design a retraction
of any state (x, ẋ) onto the eigenmanifold using its point cloud
representation by solving the following discrete optimization(

X(ξm), Ẋ(ξm)
)
= argmin

(x̃, ˙̃x)∈Mpc

∥∥∥∥[xẋ
]
−
[
x̃
˙̃x

]∥∥∥∥2
2

. (6)

Given a state vector (x, ẋ), this will return the point in
Mpc closest to (x, ẋ) w.r.t. Euclidean distance. Note that
we do not evaluate ξm explicitly, but directly the element
in the eigenmanifold as appearing embedded in R2n. This
way, we are neither constrained by the possible locality of
the parameterization (X, Ẋ) nor by the implicit dependency
of ξm in (6).

The naı̈ve approach to solving (6) is to compare each point
in Mpc to the query point (x, ẋ). The complexity of this
algorithm is O(m), with m being the number of points stored
in Mpc. For good enough approximations of M, this approach
becomes very soon computationally intractable. We propose
the following k-d tree strategy [27] as an alternative. First, we
pre-compute a tree data structure on top of the point cloud.
Each node of the tree represents a cut of the state space
by a hyperplane (cf. Fig. 3). The k-d tree algorithm selects
the dimension and the threshold value along which the cut
is performed for each node such that the tree implements a
fast closest-point query. Given a query point (x, ẋ) the tree is
traversed and the leaf node corresponds to the closest point.
This strategy has query times in O(logm) and, thus, makes
it feasible to implement the retraction (6) within a controller
cycle. This strategy directly generalizes to generic distances
used in (6) in place of the Euclidean one. For example, the
distance induced by the Sasaki metric [28] would be a more
physically correct choice, however hard to compute in practice.

Using (6) we can define a distance vector to the eigenman-
ifold, and thus propose the following D-like controller

τM(x, ẋ;Mpc) = αDM(x)
(
ẋ− Ẋ(ξm)

)
. (7)

Here, αD > 0 is a scalar gain, and Ẋ(ξm) is the vector
of joint velocities of the closest point to (x, ẋ) in Mpc in
an Euclidean sense - found as a solution of (6). It is worth
stressing that this strategy always pushes the robot towards the
manifold, no matter how distant the state is from it. Given the
experimental nature of this work, we are not interested here
in formally assessing the stability properties of this strategy.
It is however worth mentioning that neither in simulation, nor
with experiments, we ever experienced a condition in which
this controller has not converged to a neighborhood of M.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 (e) Mode 5 (f) Mode 6 (g) Mode 7

Fig. 4. Identified nonlinear normal modes of the KUKA iiwa. For each mode, an oscillation for one energy level is sketched. The arrows indicate the main
motion of the mode.

Fig. 5. Stills of a single period of the steady-state oscillation associated to eigenmanifold 7, as obtained during the experiments in IV-C. Time flows from
left to right and the period of this oscillation is 1s.

B. Energy Regulation

Eigenmanifold theory is developed under the assumption
that the system is conservative. This is a hypothesis that
it is clearly not going to be fulfilled in the practice, since
dissipation is an unavoidable aspect of any real scenario. Here,
we introduce a heuristic mechanism of damping compensation
for the first time in the eigenmanifold framework.

We start by reformulating the dynamics as M(x)ẍ +
C(x, ẋ)ẋ+D(x)ẋ+ ∂V

∂x (x) = τ , where D ≻ 0 is the damping
matrix. We propose the following energy regulator

τE(x, ẋ; Ē) = γPM(x)
(
Ē − E(x, ẋ)

)
ẋ

+ γIA(x)

(∫ (
Ē − E(x, ẋ)

)
dt

)
ẋ.

(8)

Here, γP, γI > 0 are scalar controller gains, E(x, ẋ) is the
energy as defined in (2), and A is a positive definite matrix.

To assess the asymptotic behavior of the closed-loop, we
first evaluate the rate of change of the energy, which is

Ė = ẋTM(x)ẍ+
1

2
ẋTṀ(x)ẋ+

∂V (x)

∂x
ẋ

= −ẋTDẋ+ ẋTτE .
(9)

Plugging (8) into (9), and defining ∆ = Ē − E yields the
closed-loop energy evolution

∆̇ = −γP||ẋ||2M∆− ||ẋ||2A
(
γI

∫
∆ dt− β

)
ẋ. (10)

Note that we have hypothesized that β ∈ R exists such that
D = βA. This is clearly a strong assumption, but nevertheless,
we have observed that this controller gives robust results in the
practice. Eq. (10) is a second-order scalar and linear system,
with time-varying positive gains ||ẋ||2M , ||ẋ||2A that annihilate
only at isolated points in time. Thus it converges globally

(but not exponentially) to ∆. Thus τE implements a perfect
compensation of the damping Dẋ, with its integral term will
converge to an estimate β, under the stringent hypothesis that
D = βA. To conclude, it should be noted that the convergence
of this energy regulator does not automatically imply that the
full controller (5) converges to a stable oscillation. See [22]
for more details on this topic.

IV. EXPERIMENTAL INVESTIGATION

We conducted four sets of tests to assess the proposed
controller’s effectiveness, robustness, and efficiency. The first
test shows that the control architecture can excite and sustain
the desired mode - i.e., stabilize the eigenmanifold, and
regulate the energy level. The second test looks at disturbance
rejection. Afterwards, we test the controller’s capabilities in
dynamically switching from one mode to another in the third
experiment. We test changes of eigenmanifold M as well as
changes of energy shell E . The fourth experiment looks more
closely at changes in the desired energy and the oscillation
amplitude with it. Note that we aim here at exciting periodic
orbits that are, on average, close to the theoretical manifolds.
In most plots, we report both the evolution in light grey and
its average over one period. Control gains are as reported
in Table I. Although most of the discussion is devoted to
robustness and effectiveness, we devote a subsection at the
end to report about efficiency.

A. Robotic System

The goal of this section is to show that the proposed control
architecture can excite modal oscillations in an industrial
robot. Unfortunately, we did not have any highly articulated
elastic system available. As an alternative, we decided to use
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Fig. 6. The eigenmanifold controller successfully minimizes the distance of the state to the eigenmanifold. Each row shows the excitation
experiment for each eigenmode. Since we have seven eigenmanifolds, each column shows the distances with respect to the specific eigenmode.
As a result, the plots on the diagonal (orange lines) show always the smallest in distance.
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Fig. 7. Energy evolution during the excitation experiment (cf. Fig. 6). The combined controller is not only capable of minimizing the distance
to the manifold but is also able to simultaneously regulating the desired energy level (dashed black line).

20 21 22 23 24 25

0

0.5

1

1.5

Fig. 8. This figure illustrates the joint configuration over time for five
consecutive oscillations of eigenmode 7. The corresponding sequence of stills
is shown in Fig. 5

the KUKA LBR iiwa 7 R800 as seen in Fig. 4. A low
level closed-loop (τS in figure) simulates the presence of
parallel joint-level springs with potential (x− x̄)TK(x− x̄)/2,
with K = diag([50, 50, 50, 50, 50, 5, 1])Nm rad−1 being the
stiffness matrix and x̄ = [0, 1, 0, 1, 0, 1, 0]Trad being the

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

Fig. 9. This figure shows the trajectories of 6 different initial positions of
the robot with the control goal being mode 4 and desired energy of 2.5J .
Each color corresponds to 7 lines, one line per joint position. After 10s, the
lines start to overlap, which means that the controller is able to push the
system onto the desired eigenmode and energy level for a variety of starting
configurations.

equilibrium positions of the springs. The A matrix was set
to be M(x). The update time of the controller is 5ms. The
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joint velocity is computed by finite difference. The equations
of motion are calculated using a state of the art dynamics
algorithm and the robot URDF-File provided in [29]. For the
computation, we assumed a conservative mechanical system
with parallel springs in its joints. The result is the dynamics
equation as seen in (1).

The KUKA robot has a partial gravity compensation imple-
mented as built-in feature that cannot be disabled. We could
identify the residual gravity acceleration to be approximately
g̃ = 0.275m s−2. Moreover, a low-level compensation of
friction is present as well - which not only does not wholly
compensate for dissipation, but at times it overcompensates.
These various effects build up considerable uncertainty, which
makes the control challenge especially hard. Still, the proposed
control strategy works robustly, always converging to steady-
state oscillations - as discussed below. For example, due to
friction overcompensation, the energy may even diverge in
open loop. The proposed energy controller τE appears robust
enough to converge to a dissipation action rather than to an
energy injection when this is needed to keep the right energy
balance.

B. Nonlinear Eigenmodes of the Elastic LBR

This system has seven independent eigenmanifolds, one for
each linear mode. Calculation of all modes with the strategy
discussed above took 2.71 hours on an Intel Core i5-5200U
CPU. Note that these are offline calculations that are required
only once. An example of modal oscillation - as excited by our
closed-loop strategy - for each eigenmanifold can be seen in
Figs. 4, 5 and the supplementary video. The first four modes
are dominated by oscillations of a single joint - numbers 5,
7, 1, and 2, respectively. The remaining three modes involve
coordinated patterns of oscillation of several joints.

C. Exciting Eigenmodes

We report here on the excitation of the eigenmode of
maximum energy (and amplitude) allowed for each of the
seven eigenmanifolds. We have computed Mpc up to 10 J.
However, LBR’s joint limits did not allow for testing up to
this energy. We report the actual maximum energies that the
hardware can accept in Tab. I. We initialize the robot at a point
close to the eigenmanifold, and let the oscillation continue for
60 s. Fig. 6 shows in each line the result of this experiment

TABLE I
CONTROLLER GAINS AND MAXIMUM ENERGY

Mode 1 2 3 4 5 6 7
αD in s2

kgm rad
-3 - -7 -2 -14 -13 -14

γP in s
kg rad

10 - 5 1 10 5 4
γI in 1

kg rad
1 - 1 1 1 1 1

max Energy in J 1.0 - 2.5 2.5 1.3 1.0 2.0

TABLE II
PERFORMANCE FOR EXCITING EIGENMODES

Eigenmode 1 2 3 4 5 6 7
Distance 1.1 - 0.41 0.23 0.98 0.46 0.68

∆Energy J 0.0 - 0.0 0.0 0.0 0.0 0.0
Overshoot J 0.19 - 0.17 0.0 0.0 0.2 0.44

Settling Time s 13 - 7.5 2.6 9.9 12 8.4

TABLE III
EIGENFREQUENCIES OF THE MODES

Mode 1 2 3 4 5 6 7
f in Hz (sim) 5.3 3.0 0.68 0.44 2.0 1.7 1.9
f in Hz (real) 1.8 - 0.64 0.47 1.0 0.90 1.0

for each eigenmode. The columns refer to the distance to
each manifold evolution at the desired energy level for the
specific experiment. Our controller failed to excite mode 2
which would have involved mostly an oscillation on the last
joint. This failure is due to the high level of static friction
affecting this joint in our experimental platform, together with
the low inertia of the corresponding link. For all other modes,
the manifold controller τM successfully reduces the distance
to the selected eigenmanifold, as proven by the fact that the
diagonal elements are the smallest. Fig. 7 reports the energy
evolution together with its reference as a black dashed line.
Thus, also the energy regulator τE successfully converges to
the desired behavior. Figs. 5, 8 show an example of steady-
state oscillations achieved in this experiment, corresponding
to eigenmanifold 7.

We summarize some performance metrics in Tab. II, whose
first two rows report the steady-state Euclidean distance to the
eigenmanifold and the energy error respectively. Row 3 reports
the maximum energy overshoot, and row 4 the 2% settling
time. Tab. III reports the frequencies for the calculated modes
in simulation and the once measured during these experiments.
Interestingly, the latter are always smaller than the former. This
is coherent with linear modal analysis, that shows that adding
damping reduces the natural frequency of oscillation of a linear
mechanical system. This effect is especially visible for modes
1, 5, 6, and 7, which are the ones involving larger oscillations
of the last three joints of the robot. There, the friction torque
becomes a dominant factor.

To test the controller’s capabilities of working from different
starting conditions, Fig. 9 shows the system’s trajectory in
joint space for controlling eigenmode 4 with six random initial
conditions. A total of 20 initial conditions have been tested
with similar results. We do not report them here for the sake
of clarity. In all of the tested cases, the controller successfully
converged towards the desired mode.

D. Rejection of Disturbances and Uncertainties
We test here the ability of the closed-loop to reject dis-

turbances. We disturbed oscillations by pushing the system
at points corresponding to joints 2, 3, 4, 5 and 6. We have
repeated the experiment for each mode except the second (see
IV-B). In each experiment, the controller smoothly guided
the evolution back to its original oscillation. Due to space
limitations, we could report here only one of these experiments
in Fig. 10. Here we push the robot at the joint 4 in two different
directions, and sideways at joint 6. Fig. 10d shows that both
control goals are always restored: the system goes back to the
eigenmanifold, and to the desired energy level of 1 J. Similar
performance are achieved for the experiments with the other
modes.

Additionally, we performed experiments with an additional
payload connected to the end effector of our KUKA robot. Its
weight is 0.38 kg (about 10% the mass of a link) is unknown
to the controller, and as such serves as model uncertainty. The

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3141156, IEEE Robotics 
and Automation Letters

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 07:21:29 UTC from IEEE Xplore.  Restrictions apply. 



BJELONIC et al.: EXPERIMENTAL CLOSED-LOOP EXCITATION OF NONLINEAR NORMAL MODES 7

(a) Lateral, Joint 4 (b) Anterior, Joint 4 (c) Lateral, Joint 6

0 20 40 60 80
0

0.5

1

1.5

2

0

1

2

3

(d) Energy and distance plot

Fig. 10. This is an example of disturbing manually a mode from section
IV-D. At time 24s, we push the system as shown in Fig. 10a, followed by
one hit like Fig. 10b at 44s and one last disturbance at 64s. Below that in Fig.
10d is the evolution of the energy (blue), the distance to the eigenmanifold
(orange) and the desired energy (dashed black line) displayed.

controller still managed to excite all modes successfully. We
observe that the resulting frequency of the oscillation drops
slightly, e.g. 2% for mode 6.

E. Changing Modes
In this experiment, we initialize the controller to stabilize at

the sixth eigenmanifold. After 10 s, when the robot reaches the
steady-state oscillation, we change the desired eigenmanifold
to the seventh. We also increase the desired energy Ē from 1 J
to 2 J. The evolution of the distance to the two eigenmanifolds
is reported in Fig. 11, which clearly shows the switch from
one manifold to the other. This highlights that, without further
modification, the controller can change dynamically from one
mode to another without divergence or failure.

F. Increasing Energy
Our last experiment focuses on the regulation of the energy,

while τM keeps regulating mode 3. Fig. 12 shows two energy
jumps of amplitude 0.75 J every 10 s. The controller τE drives
the system to the new energy levels in a few seconds. A finer
set of increments is shown in Fig. 13. The desired energy starts
at 1 J and increases every 2 s by 0.1 J up to the maximum
tested energy of 2.5 J.

G. Efficiency and Energy Consumption
Although this has not been an explicit focus of this pa-

per, one of the main goals of controlling eigenmanifolds

(a) Distance to eigenmode evolution 6.

(b) Distance to eigenmode evolution 7.

(c) Energy plot.

Fig. 11. These plots indicate the dynamic capabilities of the controller
switching from one mode (6) to another mode (7). Pane (a) and (b) show the
distance to the manifold respectively. It shows, that the proposed controller is
capable of changing modes robustly, while still reaching the desired energy
level (dashed black line) in (c) after a few seconds.

is to implement hyper-efficient oscillations. Indeed, modes
are defined such that they do not require any torques to be
sustained if there is no friction. We first calculate the energy
consumption of our system for the rigid and the simulated
elastic version. The energy consumption can be estimated
as Erigid =

∑n
i=1(τM(ti) + τE(ti) − K(x(ti) − x̄))∆x(ti)

and Esoft =
∑n

i=1(τM(ti) + τE(ti))∆x(ti). The energy
consumption for the experiments in Sec. IV-C are reported
in the first and second row of Table IV, as well as the ratio
of energies Esoft/Erigid in the third row. The reduction of energy
consumption due to elastic elements is between 56% and 94%.
Clearly, results should be taken with care and further in-depth
efficiency studies are needed to fully characterize the efficiency
of the eigenmanifold framework.

Additionally, we report the ratio of energies Esoft/Ett between
our controller and a state of the art PD+ trajectory tracking
controller to follow our eigenmodes from the simulation. Even
though the trajectory tracking controller has access to the
springs and the eigenmanifold, our controller only needs 2.5
to 11% of its energy to excite the modes.
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Fig. 12. This figure highlights the controller’s ability to freely change
the desired energy stepwise while converging to the desired energy
level after a few seconds for 2 jumps of 0.75J with a distance of
10s each.
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Fig. 13. This figure indicates the controller’s ability to change the
energy in a continuous way. Here, the energy increases every 2s by
0.1J up to a maximum of 2.5J

V. CONCLUSION

This paper showed that nonlinear modal theory could find
robust implementation on highly articulated robotic platforms.
A control architecture was proposed that excites nonlinear
modal oscillations by simultaneously stabilizing eigenmani-
folds and regulating an energy level. We design the novel
controllers to be applicable in real-world scenarios. We thor-
oughly tested them in terms of efficiency, effectiveness, and
robustness with multiple experiments performed with a KUKA
iiwa with simulated elasticity. Future work will be devoted
to extending these results to hybrid systems and applying
nonlinear modes excitation to legged robots that could use
their natural dynamics to move hyper-efficiently and robustly.
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