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ABSTRACT: Efficient planning of inspection and maintenance (I&M) actions in civil and maritime environ-
ments is of paramount importance to balance management costs against failure risk caused by deteriorating
mechanisms. Determining I&M policies for such cases constitutes a complex sequential decision-making op-
timization problem under uncertainty. Addressing this complexity, Partially Observable Markov Decision Pro-
cesses (POMDPs) provide a principled mathematical methodology for stochastic optimal control, in which the
optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution.
As shown in this paper, by integrating Dynamic Bayesian Networks (DBNs) with POMDPs, advanced algorith-
mic schemes of probabilistic inference and decision optimization under uncertainty can be uniquely combined
into an efficient planning platform. To demonstrate the capabilities of the proposed approach, POMDP and
heuristic-based I&M policies are compared, with emphasis on an offshore wind substructure subject to fa-
tigue deterioration. Results verify that POMDP solutions offer substantially reduced costs compared to their
counterparts, even in traditional problem settings.

1 INTRODUCTION

Civil and maritime infrastructures are exposed to de-
terioration mechanisms, such as fatigue or corrosion,
and are thus at risk of structural failure. Deteriora-
tion models are, nonetheless, intrinsically uncertain,
characterized by uncertainties customarily reaching
coefficients of variation in the order of 25-30% (DNV
2015). In-service inspection and maintenance plan-
ning, i.e., collecting information through inspections
and undertaking maintenance actions when needed,
becomes therefore of paramount importance to op-
timally manage such systems throughout their life-
time. To this end, inspection and maintenance (I&M)
planning aims to identify a strategy able to opti-
mally balance structural failure risk against inspection
and maintenance efforts and cost. Finding an opti-
mal I&M policy demands, however, in most practical
cases, the solution of a complex sequential decision-
making problem under uncertainty.

Originally targeted for management of oil and gas
platforms, risk-based inspection planning approaches
simplify the I&M decision problem by evaluating
only a predefined subset of heuristic rules out of
all possible policies, thus alleviating the computa-
tional complexity (Faber 2002). Modern risk-based
I&M planning methods evaluate the set of prescribed

heuristic rules in a simulation environment, conduct-
ing Bayesian inference via dynamic Bayesian net-
works (Luque & Straub 2019). Heuristic-based poli-
cies are however compromised by the limited number
of explored and evaluated policies out of an immense
policy space.

In contrast, partially observable Markov decision
processes (POMDPs) constitute a principled math-
ematical framework for sequential decision-making
under uncertainty, in which the policy is defined as
a function of a sufficient statistic, i.e., the dynami-
cally updated history of actions and observations. Re-
cent works on POMDPs for infrastructure manage-
ment can be found in (Papakonstantinou & Shinozuka
2014a, b, Memarzadeh et al. 2015). With the advent
of point-based solvers in this class of applications (Pa-
pakonstantinou et al. 2018), POMDP-based policies
can be efficiently traced for medium-to-large prob-
lems of deteriorating structures and structural compo-
nents (Papakonstantinou & Shinozuka 2014b, Morato
et al. 2022).

In this paper, we adopt the methodology proposed
in our earlier work (Morato et al. 2022), integrating
dynamic Bayesian networks (DBNs) into the underly-
ing structure of partially observable Markov decision
processes, and we apply it for optimally managing an
offshore wind structural detail subject to fatigue de-
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terioration. Formulation schemes are described for
encoding non-stationary stochastic deterioration pro-
cesses in models parametrized by the relevant random
variables or in terms of the deterioration rate. Both
parametric and deterioration rate POMDP models are
built based on the fatigue deterioration mechanism ex-
perienced by the offshore structural detail and defined
according to offshore wind industrial standards (DNV
2015, DNV 2016). POMDP and heuristic-based poli-
cies are then computed and thoroughly compared for
typical I&M and lifetime extension planning settings,
and results verify that POMDP solutions offer sub-
stantially reduced costs in all the explored settings.

2 JOINT DBN-POMDP FRAMEWORK

2.1 Stochastic structural deterioration modeling
and mitigation via DBNs and heuristic decision
rules

The evolution of the stochastic deterioration process
experienced by a structural component can be quan-
tified in terms of a group of influencing random vari-
ables. DBNs encode the relationship amongst the in-
volved random variables through conditional struc-
tures, enabling efficient inference, e.g., updating the
deterioration process based on inspection outcomes.
In most cases, the involved random variables are con-
tinuous and must be properly discretized in order to
guarantee exact inference (Straub 2009).

A parametric DBN structure encodes the probabil-
ity P of deterioration d conditional on a set of random
variables θ . In this case, probability of damage dt+1,
at time t + 1, evolves conditional on the damage at
the previous time, dt , set of random variables θ and
observations o0, ...,ot :

P(dt+1,θt+1|o0, ...,ot) =

∑
dt

∑
θt

P(dt+1,θt+1|dt ,θt)P(dt ,θt |o0, ...,ot) (1)

After collecting an observation ot+1 with likelihood
P(ot+1|dt+1), the deterioration process, conditional
on all observations up to time t + 1, can be updated
through Bayesian inference:

P(dt+1,θt+1|o0, ...,ot+1) ∝
P(ot+1|dt+1)P(dt+1,θt+1|o0, ...,ot) (2)

The deterioration process can be alternatively en-
coded in a deterioration rate DBN, tracing the dam-
age evolution d as a function of the deterioration rate
τ . In this case, damage dt at deterioration rate τt , con-
ditional on observations o0, ...,ot , is quantified in one
time step as:

P(dt+1,τt+1|o0, ...,ot) =

∑
dt

∑
τt

P(dt+1,τt+1|dt ,τt)P(dt ,τt |o0, ...,ot) (3)

Bayesian inference considering an observation ot+1,
with likelihood P(ot+1|dt+1), can then be performed
as:

P(dt+1,τt+1|o0, ...,ot+1) ∝
P(ot+1|dt+1)P(dt+1,τt+1|o0, ...,ot) (4)

In a structural reliability context, the probability of
a failure event PF,t , at time t, corresponds to the prob-
ability of being in a damage state P(dF,t). Addition-
ally, an annual risk performance measure can be com-
puted as the failure probability between two succes-
sive years, i.e., ∆PF,t = PF,t+1 −PF,t .

The risk of structural failure can be controlled
through an I&M policy regulated by a set of prede-
fined heuristic decision rules, e.g., equidistant inspec-
tions or planned maintenance interventions after an
indication event. DBNs models, either parametric,
deterioration rate based, or others, can be employed,
in a simulation environment, to identify the most opti-
mal heuristic from the complete set of evaluated deci-
sion rules. The total discounted reward R(h)

Ti
, resulting

from a set of heuristic decision rules h, can be evalu-
ated for each simulation as the sum of inspection Ci,
repair Cr, decommissioning Cd , and failure C f costs,
discounted by the factor γ:

R(h)
Ti

=
tN

∑
t=t0

γ t
[
Ci(t)+Cr(t)+Cd(t)+∆PF(t)C f

]
(5)

The total expected utility E[RT (h)] can then be
computed through a Monte Carlo simulation of nep
episodes (policy realizations):

E[RT (h)] =
∑nep

i=1
[
RTi(h)

]
nep

(6)
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Figure 1. Dynamic decision network of a POMDP built based
on a parametric DBN model (Morato et al. 2022).

2.2 Optimal I&M planning through partially ob-
servable MDPs

Dynamic Bayesian networks (DBNs) can be inte-
grated into the underlying structure of partially ob-
servable Markov decision processes for optimal in-
spection and maintenance (I&M) planning, as pro-
posed in (Morato et al. 2022). A POMDP is a 7-
tuple ⟨S,A,O,T,Z,R,γ⟩ controlled stochastic process
in which the decision maker (intelligent agent) inter-
acts in a stochastic environment. For a more com-
plete overview of POMDP theoretical foundations
and detailed formulations, the reader is directed to
(Papakonstantinou & Shinozuka 2014a, b).

The state space S of a POMDP based on a paramet-
ric or deterioration rate DBN model is defined as the
joint space of d × τ or d ×θ , respectively. Figures 1
and 2 represent the dynamic decision network corre-
sponding to POMDPs based on parametric and deteri-
oration rate DBN models. The condition state due to
the deterioration process is probabilistically tracked
by its belief state b(s) ≡ P(s) or probability distribu-
tion over states, and the POMDP dynamics consist,
therefore, of an agent taking an action at , at time step
t, transferring the state st ∈ S to state st+1 ∈ S, ac-
cording to the transition model T ≡ P(st+1|st). If a
maintenance action is not planned, the deterioration
process evolves naturally; in this case, the action do-
nothing aDN ∈ A is linked with a transition model TDN

0s ts 1ts +

0 t 1t +

0d td 1td +

t
o

1t
o

+

ta0a
1+ta

1+tRtR0R

Figure 2. Dynamic decision network of a POMDP built based
on a deterioration rate DBN model (Morato et al. 2022).

defined as P(dt+1,θ t+1|dt ,θ t) or P(dt+1,τt+1|dt ,τt),
and equivalent to the transition model formulated in
Equations 1 and 3. A perfect repair maintenance ac-
tion aPR ∈ A transfers, instead, the belief bt at time
step t to its initial belief state b0:

P(s′|s,aPR) =


b0(s0) b0(s1) · · · b0(s|S|)
b0(s0) b0(s1) · · · b0(s|S|)

...
... . . . ...

b0(s0) b0(s1) · · · b0(s|S|)

 (7)

The quality of an inspection technique can be quan-
tified through an observation model Z, defined as
the probability of collecting an observation o ∈ O at
state s ∈ S. If inspections provide binary indication
outcomes, i.e., either observing detection oD or no-
detection oND, the observation model ZI can be often
deduced as P(o|s) = PoD(s), from Probability of De-
tection curves, PoD, corresponding to the inspection
type. If no inspection is conducted, the observation
model ZNI assumes that observation o0 ∈ O is col-
lected independently of the state P(o0|st+1) = 1, thus
leaving the belief state unaffected.

The total discounted reward, or sum of discounted
rewards, is denoted in POMDP terminology as value
function VT . In a partially observable environment,
the estimated reward collected after taking an action
a at belief state b is the average of rewards associated
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to action a and states s ∈ S:

R(b,a) = ∑
s∈S

b(s)R(s,a) (8)

In an I&M framework, both maintenance and
inspection actions should be determined and can
be combined into maintenance-inspection decision
groups. For instance, two maintenance actions: do-
nothing (DN) and repair (PR), combined with two in-
spection decisions: no-inspection (NI) and visual in-
spection (VI), result in four action groups: DN-NI,
DN-VI, PR-NI and PR-VI. Costs are then assigned
to each of these combinations. Considering the do-
nothing & no-inspection action (DN-NI), the reward
RF(s,aDN−NI) corresponds simply to the risk of struc-
tural failure, assigning a failure cost C f to the fail-
ure states SF ⊆ S (Section 2.1). One can also specify
the failure risk only as a function of the initial state
s ∈ S, leading to a faster computation with a point-
based solver, and by defining R̄(s,aDN−NI) equal to
the failure cost C f if s ∈ SF , and, otherwise, equal to
0:

RF(s,aDN−NI) =

∑
s′∈SF

{
P(s′|s,aDN−NI)C f

}
− R̄(s,aDN−NI) (9)

If an action also features inspections aDN−I , then, an
inspection cost Ci is added to each state, along with
failure risk:

RO(s,aDN−I) = RF(s,aDN−NI)+Ci (10)

Similarly, a repair cost Cr is included, for all states
s ∈ S, if a repair and no-inspection action aPR−NI is
undertaken:

RR(s,aPR−NI) =Cr (11)

By extension, the cost associated with a decommis-
sioning and no-inspection action aDEC−NI is defined
by adding a cost Cd to all states s ∈ S:

RDEC(s,aDEC−NI) =Cd (12)

In the previous rewards definitions, costs are consid-
ered as negative rewards. One can also define positive
rewards if, for instance, the infrastructure remains op-
erative and thus yielding a positive income.

For most practical applications, the POMDPs state
space is high-dimensional and the problem can be
computationally intractable if solved by exact value
iteration or grid-based approaches. State-of-the-
art point-based POMDP solvers (Smith & Simmons
2006, Kurniawati et al. 2008) are, however, capa-
ble of scaling solutions to spaces of realistic dimen-
sions, as demonstrated in (Papakonstantinou et al.
2018). Point-based solvers restrict the computation of
Bellman backups to only a subset of reachable belief
points, thus significantly improving computational ef-
ficiency. The value function VT (b) is parameterized
by a set Γ of hyperplanes (α-vectors), each of them
associated with an action a; and the optimal policy π∗

corresponds to the α-vector that maximizes the value
function VT (b):

VT (b) = max
α∈Γ ∑

s∈S
α(s)b(s) (13)

State-of-the-art point-based solvers are developed
for solving infinite horizon POMDPs, yet, in many
cases, the decision maker deals with finite horizon
policies, e.g., 20 years lifetime. The state space can
then be augmented, following the approach in (Pa-
pakonstantinou & Shinozuka 2014a) to transform fi-
nite horizon POMDPs into infinite horizon ones.

3 DETERIORATION ENVIRONMENT

A monopile foundation, dominant in most installed
offshore wind turbines, is an assembly of rolled plates
welded transversely and forming a hollow steel pipe.
A transverse butt weld is therefore deemed to be a rep-
resentative structural detail in this case. The fatigue
deterioration of the joint is modeled, following DNV-
GL design standards (DNV 2016), by a cumulative
fatigue damage law. A limit state gSN(t) is then for-
mulated based on a cumulative damage Miner’s rule,
over time t:

gSN(t) = ∆− vt
[

qm1

C1,SN
γ1

{
1+

m1

h
;
(

S1

q

)h}
+

qm2

C2,SN
γ2

{
1+

m2

h
;
(

S1

q

)h}]
(14)

where C1,SN , C2,SN , m1, and m2 are material param-
eters corresponding to a ‘D’ category bi-linear SN
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Table 1. Random variables and deterministic parameters for
modeling the fatigue deterioration.

Parameter Distribution Mean Std
Miner’s cumulative damage model
C1,SN* Normal 12.564 0.2
C2,SN* Normal 16.006 0.2
q** (MPa) Trunc. Normal 10.209 2.55
q*** Trunc. normal 8.834 2.21
∆ Lognormal 1 0.3
h Deterministic 0.8 -
v (cycles/s) Deterministic 0.16 -
m1 Deterministic 3 -
m2 Deterministic 5 -
Fracture mechanics model
lnCFM** Normal -26.432 0.126
lnCFM*** Normal -26.501 0.131
d0 (mm) Exponential 0.11 0.11
Y Lognormal 1 0.1
dc (mm) Deterministic 20 -
m (mm) Deterministic 3 -
*Fully correlated.
**Inspection and maintenance planning application.
***Lifetime extension planning application.

curve with S1 stress range value at the knee; the ex-
pected stress range is parameterized by Weibull fac-
tors q and h; v represents the cycle rate; and ∆ corre-
sponds to the fatigue limit. Note that γ1 and γ2 stand
for lower and upper incomplete gamma functions, re-
spectively. Assuming the structure is designed to the
limit, the loading scale factor q is back calculated con-
sidering a fatigue design factor of one for the I&M
planning setting, and a fatigue design factor of two
for the lifetime extension planning scenario. Table 1
lists all relevant parameters.

Since inspections cannot reveal the accumulated fa-
tigue damage computed through Miner’s rule, frac-
ture mechanics models are normally utilized instead
for in-service inspection and maintenance planning,
as in this case the crack size belief state can be up-
dated based on collected crack observations. In this
sense, a probabilistic fracture mechanics model is cal-
ibrated with the objective of achieving the same struc-
tural reliability level computed previously by the cu-
mulative fatigue damage law (Eq. 14). The crack
growth is described here with a Paris’ law model,

Table 2. Description of the discretization scheme applied to
DBN-POMDP deterioration rate and parametric models.

Variable Interval boundaries
Deterioration rate model
Sd [0,d0 : (dc −d0)/(|Sd |−2) : dc,∞]

Sτ [0 : 1 : 20]
Sτ∗ [0 : 1 : 60]
Parametric model

Sd 0,exp
{

ln(10−2) :
ln(dc)− ln(10−2)

|Sd |−2
: ln(dc)

}
,∞

SK 0,exp
{

ln(10−4) :
ln(2)− ln(10−4)

|SK |−2
: ln(2)

}
,∞

*Lifetime extension planning setting.

originally introduced in (Ditlevsen & Madsen 1996):

dt+1 =

[
d

2−m
2

t +
2−m

2
CFM(Y π0.5Se)

mn)
] 2

2−m

(15)

where the crack depth is modeled by d, with crack
growth parameters CFM, and m, n cycles per time step,
geometric factor Y , and the same loading as for the
damage cumulative law, described by the expected
stress range Se = qΓ(1 + 1/h) through the parame-
ters q and h. Table 1 lists all relevant parameters
and the fatigue limit state is formulated as gFM(t) =
dc − d(t). Assuming a through-thickness failure, the
critical crack size dc corresponds to the plate thick-
ness.

We then translate the proposed probabilistic frac-
ture mechanics model into both a deterioration rate-
based and a parametric dynamic Bayesian network,
alleviating computational complexity in the latter
by combining the time-invariant parameters CFM,
Y and q into the chance node K ≡ C(Y π0.5Se)

mn.
The state transition models p(dt+1,τt+1|dt ,τt) and
p(dt+1,Kt+1|dt ,Kt) are constructed through sequen-
tial Monte Carlo simulations, relying on Equation 15,
and are discretized according to the scheme shown
in Table 2. The observation quality p(o|d) is mod-
eled depending on the inspection type and will be
explained on the respective case studies. An accu-
rate enough discretization is achieved by including 60
crack states |d|, and resulting in a root mean square
error of 2.4 · 10−3 when comparing the reliability in-
dex with a Monte Carlo simulation featuring two eddy
current inspections at years 8 and 16.
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Figure 3. Parametric DBN-POMDP dynamic decision network
designed for the numerical experiments.

The developed DBN structures serve as the back-
bone for the evaluation of all the heuristic decision
rules explored in the numerical investigations, and
can be directly integrated into the underlying struc-
ture of the POMDP models, as described in Section
2.1. The POMDP state space for the deterioration rate
model contains the joint distribution of d and τ , as il-
lustrated in Figure 2, summing up to a total of 1,260
states. For the finite horizon I&M planning setting
examined in Section 4.1, the state space is augmented
to 13,860 states, due to the fact that time needs to be
also included in the state vector.

The joint distribution of d and K forms the para-
metric POMDP model state space, as illustrated in
Figure 3, summing up in this case up to 4,000 states.
When translated into a finite horizon model applica-
ble to the I&M planning setting, the parametric model
results to 156,000 states.

4 NUMERICAL EXPERIMENTS

4.1 Inspection and maintenance planning

In this first example, we explore a typical risk-based
inspection planning setting with an assumed 20-year
finite horizon, in which the inspection quality is mod-
eled by probability of detection curves and with the
possibility of planning perfect repair maintenance ac-
tions.

In this scenario, the transition model assigned to
the action do-nothing aDN is modeled according to the

Table 3. Inspection quality.

Inspection technique X0 b
Eddy current (EC) 1.16 0.9
Ultrasonic testing (UT) 0.41 0.642
Visual inspection (VI) 83.03 1.079

Table 4. Definition of costs/rewards.

Failure -1000 (money units)
Eddy current inspection -1 (money units)
Ultrasonic inspection* -1.5 (money units)
Visual inspection* -0.5 (money units)
Perfect repair* -100 (money units)
Production** +5 (money units)
Replacement** -100 (money units)
Decommissioning** -20 (money units)
Discount factor 0.95 (-)
*Inspection and maintenance planning setting.
**Lifetime extension planning setting.

fatigue deterioration rate introduced in Section 3, and
the perfect repair transition model aPR transfers the
current belief state bt to its initial belief b0, as stated
in Equation 7.

While only one inspection type is available in most
traditional inspection and maintenance planning ap-
plications, three inspection techniques are possible
here, namely, eddy current, ultrasonic testing and vi-
sual inspection. Table 3 lists the parameters corre-
sponding to each inspection technique, following the
probability of detection (PoD) formulation proposed
by (DNV 2015):

PoD(a) = 1− 1
1+(a/X0)b (16)

Based on the proposed transition and observation
models, we construct a finite horizon deterioration
rate POMDP by combining the following action and
observation decisions: do-nothing & no-inspection
(DN-NI), do-nothing & eddy current inspection (DN-
EC), do-nothing & ultrasonic inspection (DN-UT),
do-nothing & visual inspection (DN-VI), and perfect-
repair & no-inspection (PR). The costs for this case
are listed in Table 4. Note that perfect-repair is not
paired with any inspection type since an observation
is generally expected to be suboptimal after the com-
ponent is fully repaired.
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Table 5. Comparison between POMDP and heuristic-based poli-
cies in I&M and lifetime extension settings.

Policy E[R] (95% C.I.) %SARSOP
I&M planning: 20 years finite horizon
POMDP-SARSOP -29.53
POMDP-FRTDP -29.53 0%
Heur. EQ-INS (EC) -39.62 (0.47) -34.2%
Heur. THR-INS (EC) -38.97 (0.35) -32.0%
Heur. THR-INS (UT) -48.63 (0.45) -64.7%
Heur. THR-INS (VI) -71.94 (0.18) -143.6%
Lifetime extension planning: Infinite horizon
POMDP-SARSOP* 41.20
POMDP-FRTDP* 41.04 <1%
POMDP-SARSOP** 41.11 <1%
POMDP-FRTDP** 40.51 <2%
Heur. EQ-INS/DEC 16.16 (0.37) -60.8%
Heur. EQ-INS/REP -2.15 (0.17) -105.2%
Heur. THR-INS/DEC 15.96 (0.34) -61.3%
Heur. THR-INS/REP 1.16 (0.60) -97.2%
*Deterioration rate POMDP (Fig. 2).
**Parametric POMDP (Fig. 3).

The finite horizon POMDP model is then computed
via SARSOP (Kurniawati et al. 2008) and FRTDP
(Smith & Simmons 2006) point-based solvers. Fur-
thermore, policies regulated by predefined heuristics
are also evaluated. Heuristics include planning of (i)
equidistant inspections (EQ-INS) or inspections upon
exceedance of an annual failure probability threshold
(THR-INS); and (ii) repairs automatically scheduled
upon crack detection. Results from both POMDP and
heuristic-based policies are reported in Table 5.

4.2 Lifetime extension planning

In this second example, we consider a lifetime ex-
tension planning setting, in which the decision maker
opts between doing-nothing, replacing, or decommis-
sioning the structure. Suppose an offshore wind tur-
bine on operation for 16 years without planned in-
spections or repairs up to that point. The initial belief
state for this problem thus corresponds to the state of
the structure, b16 = T16 b0, at year 16.

Both deterioration rate and parametric infinite hori-
zon POMDP models are implemented and solved
through point-based solvers, by combining the fol-
lowing actions and observations decisions: do-

nothing & no-inspection (DN-NI), do-nothing &
eddy current inspection (DN-I), replacement &
no-inspection (REP), and decommissioning & no-
inspection (DEC). The do-nothing action, both in-
cluding and excluding inspections, is modeled exactly
as in the I&M planning setting, and a replacement is
assumed as a perfect repair. The decommissioning
action transfers the current belief state bt to an ab-
sorbing state sdec, in which no further rewards can
be collected, i.e., the structure is no longer in oper-
ation (N-OP). In this infinite horizon setting, the tran-
sition model for the deterioration rate POMDP is still
specified considering 60 deterioration rates (Table 2),
whereas the crack transitions according to the last de-
terioration rate for those deterioration rates beyond
60. Table 4 lists all the costs/rewards considered for
this experiment. Note that a positive reward is now
collected every time the structure is operative.

Table 5 reports the results for both POMDP and
heuristic-based policies. Heuristic rules consist, in
this setting, in planning equidistant inspections (EQ-
INS) or inspecting after reaching an annual failure
probability threshold (THR-INS); and either a re-
placement (REP) or a decommissioning (DEC) action
is ordered after a crack detection occurs.

5 RESULTS AND DISCUSSION

POMDP-based policies outperform heuristic-based
policies in all the explored settings, resulting in a total
expected reward benefit ranging from 32% to 144%.
Table 5 reports the results corresponding to both I&M
planning and lifetime extension planning investiga-
tions. For each policy, either POMDP or heuristic-
based, Table 5 lists the expected total rewards E[R]
along with the 95% confidence intervals (95% C.I.),
and the relative difference in expected total rewards
between each policy and SARSOP (%SARSOP).

In terms of POMDP-based policies, the difference
between SARSOP and FRTDP point-based solvers is
less than 1% in all the experiments. While SARSOP
solver quickly reduces the lower bound within sec-
onds of computational time, the FRTDP solver is able
to reduce the upper bound faster, leading to conver-
gence within the allocated computational time for the
finite horizon I&M planning setting. Figure 4 shows
the evolution of the expected total reward for each
solver over its computational time.



The 13th International Conference on Structural
Safety and Reliability (ICOSSAR 2021),
June 2125, 2021, Shanghai, P.R. China

J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)

10 0 10 2

Computational time (seconds)

-100

-50

0

50

POMDP(FRTDP)-I&M
POMDP(FRTDP)-Lifet.
POMDP(SARSOP)-I&M
POMDP(SARSOP)-Lifet.

Figure 4. Evolution of expected total rewards over computa-
tional time for each POMDP point-based solver.

Policies based on inspections planned via a prede-
fined annual failure probability threshold (THR-INS)
and policies with planned inspections at equidistant
intervals (EQ-INS) tend to reach similar total rewards.
Moreover, decision rules featuring eddy current (EC)
inspections result in better policies, under the pro-
posed cost model, than those employing ultrasonic
testing (UT) and visual inspections (VI). Heuristic de-
cision rule evaluations also indicate that undertaking a
decommissioning action (INS/DEC) after observing a
crack results in higher profits than replacing the struc-
ture (INS/REP).

One can deduce that the optimality of heuristic-
based policies will thus be importantly influenced by
the ability of exploring the appropriate space of deci-
sion rules. Selecting optimal heuristics is case depen-
dent and can be achieved by experience or by prob-
ing a large set of decision rules. POMDP-based poli-
cies, on the other hand, offer a mapping from the
current belief state (dynamically encoding the entire
prior history of actions and observations) to the opti-
mal action, and the sequence of optimal actions might
be non-trivial in certain scenarios. Consider, for in-
stance, a POMDP policy realization in the lifetime ex-
tension application, dictating a decommissioning ac-
tion after three successive crack detection indications,
as illustrated in Figure 5.
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Figure 5. Realization of a POMDP policy in the lifetime exten-
sion planning application.

20 25 30 35 40

Time (years)

10 -2

10 -1

10 0

10 1

P
F

DN

REP

DEC

A
ct

io
n

ND
D

Figure 6. Realization of a heuristic policy in the lifetime exten-
sion planning application.

In contrast, the indication-based heuristic policy, for
the same lifetime extension setting, assigns a decom-
missioning action after receiving a crack detection in-
dication, as shown in Figure 6. Thus, the learned
POMDP policy autonomously acknowledges that, in
this particular application, the observation outcome
might not be very accurate and more information
should be collected before ordering a decommission-
ing action. If a detection is followed by a no-detection
indication, a do-nothing action is then preferred.
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Figure 7. Histogram of POMDP optimal actions assigned based
on 105 policy evaluations in the lifetime extension planning set-
ting.

As explained in Section 2.2, point-based POMDP
policies are parameterized by a set of hyper-planes
(α-vectors), each one of them associated to a corre-
sponding optimal action. A frequency histogram de-
rived from policy evaluations offers to the decision
maker a summary of the actions taken over the investi-
gated horizon. Figure 7 represents, for the lifetime ex-
tension application, the histogram of actions defined
by the POMDP policy, collected through 105 policy
realizations. Besides observing how POMDP adap-
tive policies provide optimal sequences of actions that
can be hardly parametrized by a set of ad-hoc decision
rules, Figure 7 also shows that the structure still re-
mains in operation at year 40 for more than 67% of the
evaluated policy realizations (N-OP stands for non-
operational). It would be thus interesting to compare
the behavior of POMDP and heuristic-based policies,
not only in terms of expected reward (Table 5), but
also examining the resulting expected life extension.

A further comparison is, therefore, displayed in
Figure 8, indicating the percentage of realizations, for
both POMDP and heuristic-based policies, for which
the structure still remains in operation, i.e., a decom-
missioning action has not been assigned. The exam-
ined heuristic policy corresponds to the case ‘THR-
INS/DEC’, performing inspections based on a prede-
fined annual failure probability threshold and assign-
ing a decommissioning action after a detection out-
come.
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Figure 8. Comparison of POMDP and heuristic-based policies
in terms of the policy realizations which indicate an active oper-
ation status of the structure over time.

Interestingly, the resulting heuristic policy resem-
bles the behavior of a periodic strategy, assigning
decommissioning actions every four to five years,
providing also some further insights on the small
observed differences between ‘THR-INS/DEC’ and
‘EQ-INS/DEC’ in Table 5. As seen in Figure 8, in
terms of lifetime extension, more than 67% of the
POMDP policy realizations characterize a structure
that is in operation at year 40, whereas less than 25%
of the cases based on the heuristic-based policy end
up with an structure still in operation at year 40.

6 CONCLUSIONS

This paper examines the efficiency of integrating Dy-
namic Bayesian Networks (DBNs) and Partially Ob-
servable Markov Decision Processes (POMDPs) in a
joint algorithmic context for optimal Inspection and
Maintenance (I&M) planning. Time-invariant pa-
rameters and finite horizon settings can be imple-
mented within this framework by simply augmenting
the POMDP state space, generating high-dimensional
sparse matrices, which can be efficiently solved by
state-of-the-art point-based POMDP solvers.

The application of the methodology to the case of
an offshore wind structural detail subject to a non-
stationary fatigue deterioration process and modeled
according to common offshore wind industrial stan-
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dards verifies the computational efficiency and prac-
tical relevance of the proposed approach. The results
show that POMDP-based policies outperform tradi-
tional heuristic-based policies in all tested settings.
While in the analyzed inspection and maintenance
planning setting, POMDP adaptive policies provide
optimal total cost and actions by combining three po-
tential inspection techniques and one maintenance ac-
tion, in the lifetime extension setting, POMDP poli-
cies not only yield benefits in terms of expected re-
ward, but also maintain the structure in operation for
a longer time span compared to the analyzed heuristic
strategies.

Further efforts are also currently under way in uti-
lizing the presented framework and approximating
optimal POMDP policies through deep reinforcement
learning approaches with or without stochastic con-
straints (Andriotis & Papakonstantinou 2019, Andri-
otis & Papakonstantinou 2021) for settings featuring
very high-dimensional state, action and observation
spaces.
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