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AN ALTERNATING FREQUENCY-TIME HARMONIC BALANCE
METHOD FOR FAST-SLOW DYNAMICAL SYSTEMS
Athanasios Tsetas, Apostolos Tsouvalas and Andrei V. Metrikine
Delft University of Technology, Delft, The Netherlands
e-mail: A.Tsetas@tudelft.nl

The Alternating Frequency-Time (AFT) Harmonic Balance method has been widely applied in the
analysis of non-linear mechanical systems under periodic excitation. Customarily, a periodic dis-
placement is considered as ansatz in a harmonic balance analysis. In the present work, a deviation
from the latter ansatz is realized and the periodicity is assumed in the velocity, leading to a linear
term in the displacement of the system. The latter approach aims to facilitate the analysis of a certain
class of systems, which are characterized by a fast periodic motion and a slow non-periodic motion.
The motivation of this study originates in the area of offshore engineering and more specifically in
the topic of monopile installation. During vibratory pile installation, the pile is forced into the soil
under the combined action of a periodic excitation at the pile top and the self-weight of the pile and
the vibratory device. As a result, the pile simultaneously penetrates into the soil as a rigid body (slow
motion) and vibrates in the driving frequency and its super-harmonics both as a rigid and a flexible
body (fast motion). In this study, the AFT harmonic balance with the ansatz of periodic velocity is im-
plemented in different problem cases. A set of non-linear mechanical systems are analysed, ranging
from a single-degree-of-freedom to a continuum, to showcase the potential application of the method
and to verify its accuracy.
Keywords: harmonic balance, nonlinear vibrations, Galerkin method, Coulomb friction

1. Introduction

For the analysis of systems subjected to periodic excitations, the Harmonic Balance (HB) method
comprises one of the most advantageous and widely used numerical techniques. In the vast range of
problems that have been addressed with the HB method, an increasing number involves cases with non-
linear forces that are not explicit expansions of displacement and/or velocity. The latter problems are
treated with the Alternating Frequency-Time (AFT) HB method, which was proposed by Cameron and
Griffin [1]. The AFT-HB method is based on the computation of the non-linear forces in the time do-
main and their numerical transform to the frequency domain via a Discrete Fourier Transform (DFT),
in an iterative scheme. Since its inception, a wide range of modifications and enhancements have been
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introduced in the AFT-HB method and applied to problems of structures with bolted connections [2],
interfaces of turbomachinery blades [3] and various other applications.

In the present paper, a new version of the AFT-HB method is formulated that addresses a specific
class of systems which combine fast (periodic) and slow (non-periodic) motions. The motivation lies in
the process of vibratory pile installation, during which the pile performs simultaneously periodic flexible
vibrations (fast motion) and a gradual non-periodic progression into the soil (slow motion). The present
approach differs from the customary implementation of the HB method in that the velocity of the system
is assumed periodic instead of the displacement. Two mechanical systems are analyzed by this method.
First, the AFT-HB method is formulated for an elastic-perfectly plastic oscillator. Subsequently, the
method is employed to solve the non-linear vibration problem of a rod on a frictional surface. Similar
models have been used to study the frictional behavior in mechanical joints [4, 5] and pile-soil analogues
[6, 7]. Numerical results are presented for both examples and benchmarked against numerical integration
to validate the accuracy of the proposed method.

2. A non-linear oscillator with fast-slow dynamics

2.1 Model description and governing equations

We consider a single-degree-of-freedom (SDOF) system (Fig. 1) governed by the following equation
of motion:

mÿ(t) + fd(y(t)) = ps + ph sin(Ωdt) (1)

where m is the mass of the oscillator, y(t) is the displacement of the oscillator, f(y(t)) is the non-
linear restoring force of the elastic-perfectly plastic element, ps is the static force and ph is the amplitude
of the harmonic force of frequency Ωd. Hereafter, the overdot denotes temporal differentiation, i.e.
˙(·) = ∂(·)/∂t. As regards to the elastic-perfectly plastic element, the non-linear restoring force is defined

as [8]:

fd(y(t)) = k(y(t)− ypl(t)), ẏpl(t) =

{
0, |fd(y(t))| < fd,u

ẏ(t), |fd(y(t))| = fd,u
(2)

where k is the linear spring stiffness, ypl(t) is the plastic displacement and fd,u is the yield force of the
elastic-perfectly plastic element.

Figure 1: A non-linear single-degree-of-freedom (SDOF) system with elastic-perfectly plastic restoring
force.
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2.2 AFT-HB method

For the considered problem an ansatz of periodic displacement cannot lead to the correct solution. In
this work, we apply the HB method assuming that the velocity is periodic and the following approximate
solution for the displacement is obtained:

y(t) = c0t+

Nh∑
n=1

(cn cos(nΩdt) + sn sin(nΩdt)) (3)

The latter ansatz leads to the following velocity and acceleration forms:

ẏ(t) = c0 +

Nh∑
n=1

(−nΩdcn sin(nΩdt) + nΩdsn cos(nΩdt)) (4)

ÿ(t) =

Nh∑
n=1

(
−n2Ω2

dcn cos(nΩdt)− n2Ω2
dsn sin(nΩdt)

)
(5)

We substitute the assumed solution in Eq. (1), which results to the residual Rd(t). Then according to
the harmonic balance method, we require that the residual is orthogonal to each harmonic function (up to
truncation order Nh) over one fundamental period Td:

Td∫
0

Rd(t)hn(t) d t = 0, n = 0, . . . , 2Nh (6)

where hn(t) denotes the n-th harmonic test function:

hn(t) =
1

2

[
(1 + (−1)n) cos

(n
2

Ωdt
)

+
(
1 + (−1)n+1

)
sin

(
n+ 1

2
Ωdt

)]
, n = 0, . . . , 2Nh (7)

It is evident that the operation of Eq. (6) cannot provide an analytical expression for the non-linear
force fd(y(t)) in the frequency domain. For that purpose, the Alternating Frequency-Time Harmonic Bal-
ance (AFT-HB) method is employed. For the evaluation of non-linear forcing terms in time domain and
the subsequent transform to the frequency domain the DFT is performed via the Fast Fourier Transform
(FFT) algorithm.

2.3 Numerical results

The numerical results obtained by the AFT-HB method are benchmarked against numerical integra-
tion. Specifically, Eq. (1) was solved via the explicit Runge-Kutta (RK45) method of accuracy O(∆t4)
[9]. The initial conditions were considered equal to zero for the analyses with the RK45 method. The
properties of the SDOF system are given in Table 1. The comparison between the results of the RK45 ap-
proach and the proposed AFT-HB method are shown in Fig. 2. As can be seen the displacement obtained
by the two approaches differs by a constant term, which is evidently the result of the transient phase
until the response becomes stationary. Naturally, such an effect is not addressed in HB analyses, since
the stationary periodic response is directly obtained. This hypothesis is verified by the velocity results in
Fig. 2, as both approaches converge to the same velocity after the passing of one (fundamental) vibration
period. It is noted that the great agreement between the results of the two methods in terms of velocity
indicates the accuracy of the proposed method as the high-frequency components are more pronounced
in this case.
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Table 1: Parameters of the SDOF example

m k fd,u ps ph Ωd

1 kg 900 N/m 5 N 0.4 N 4 N 20 rad/s

Figure 2: Comparison between the RK45 and the AFT-HB method in terms of the SDOF displacement
(left) and velocity (right).

3. Vibrations of a rod on a frictional surface

3.1 Model description and governing equations

A linear homogeneous elastic rod is considered, occupying the domain 0 ≤ x ≤ L, where L denotes
the length of the rod as shown in Fig. 3. The equation of motion of the rod reads:

ρAü(x, t) = EAu′′(x, t) + fc(u̇(x, t)) (8)

where ρ is the mass density of the rod, A is the area of the rod cross-section, E is the Young’s modulus of
the rod, fc(u̇(x, t)) is a distributed dry friction force and u(x, t) is the axial displacement of the rod, which
is a function of the spatial coordinate x and time t. Hereafter, the prime denotes spatial differentiation,
i.e. (·)′ = ∂(·)/∂x. The friction force fc(u̇(x, t)) obeys the regularized Coulomb friction law by Threlfall
[10]; the static and kinetic friction amplitudes are identical and equal to fc,u. Furthermore, the boundary
conditions read:

N(0, t) = −Ps − Ph sin(Ωct), N(L, t) = −ft(u(L, t))− ctu̇(L, t) (9)

where N is the axial force, Ps is the static force, Ph is the amplitude of the harmonic force of frequency
Ωc, ft(u(L, t)) is the non-linear restoring force of the elastic-perfectly plastic element and ct is the viscous
dashpot coefficient. The non-linear restoring force ft(u(L, t)) is defined as:

ft(u(L, t)) = kt(u(L, t)− upl(t)), u̇pl(t) =

{
0, |ft(u(L, t))| < ft,u

u̇(L, t), |ft(u(L, t))| = ft,u
(10)
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where kt is the linear spring stiffness, upl(t) is the plastic displacement and ft,u is the yield force of the
elastic-perfectly plastic element.

Figure 3: A rod on a frictional surface.

3.2 Galerkin/AFT-HB method

The Galerkin method is employed for the spatial discretization of the rod [11]. For that purpose, the
concentrated body force method (CBFM) is applied to render the two boundaries force-free and translate
the boundary forces into Eq. (8) via the Dirac delta function δ(·) [12]. Subsequently, the free vibration
modes of the free-free rod in vacuo are found and employed as trial and test functions. Therefore, the
solution of Eq. (8) is approximated by the series:

u(x, t) =
Nm∑
m=0

Um(x) qm(t) (11)

where Um(x) denotes the m-th free vibration mode, qm(t) is the m-th generalized coordinate and Nm is
the upper limit of the truncated summation. The residual is obtained by substituting Eq. (11) into Eq. (8)
and upon multiplication with the test functions and integration over the rod length, a set of weighted
residuals Rm(t) is derived. By setting the latter equal to zero a set of Nm non-linear coupled ordinary
differential equations (ODEs) is obtained.

The problem is now reduced into a set of temporal ODEs that describe the generalized coordinates.
The latter are solved by means of the AFT-HB method. For the system under consideration, rigid body
motion is admissible and in our solution approach this is addressed through the term U0(x) q0(t), which
corresponds to the rigid-body component of the rod response. In that system, the periodic velocity ansatz
needs to be used as solution of q0(t). Therefore, we need to employ two different assumed solution forms
for the generalized coordinates:

q0(t) = c0,0t+

Nh∑
n=1

(c0,n cos(nΩct) + s0,n sin(nΩct)) (12)
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qm(t) = cm,0 +

Nh∑
n=1

(cm,n cos(nΩct) + sm,n sin(nΩct)) , m = 1, . . . , Nm (13)

Similarly to the case of the SDOF system, we require that the residual Rm(t) of each generalized
coordinate is orthogonal to each harmonic test function hn(t) over one fundamental period Tc:

Tc∫
0

Rm(t)hn(t) d t = 0 (14)

Overall, the above operation leads to a system of Nm · (2Nh + 1) coefficients which can be found
via an optimization procedure that aims to satisfy Eq. (14) for n = 0, . . . , 2Nh and m = 0, . . . , Nm. It
is remarked that the number of harmonics employed in the solution can be different for each general-
ized coordinate and an adaptive harmonic selection scheme can potentially increase the computational
efficiency of the method.

3.3 Numerical results

Similarly to the SDOF example, the AFT-HB results are benchmarked against numerical integra-
tion. Specifically, a system of coupled non-linear temporal ODEs is solved via the RK45 method in this
example. In Table 2 the parameters of the rod case are provided.

Table 2: Parameters of the rod example

ρA EA L fc,u kt ct ft,u Ps Ph Ωc

320 kg/m 8·108 N 10 m 5·103 N/m 3·108 N/m 106 N·s/m 105 N 3·104 N 3·105 N rad/s

Figure 4: Comparison between the RK45 and the AFT-HB method in terms of the rod displacement (left)
and velocity (right) at x = 0.

The 28th International Congress on Sound and Vibration (ICSV28), 24-28 July 2022



For the comparison of the two numerical approaches, i.e. RK45 and AFT-HB, two positions along
the rod length are examined at x = 0 and x = L, respectively. In Fig. 4 the response at x = 0 is shown.
Similarly to Fig. 2, the rod displacement is characterized by a combination of a periodic motion and a
(presumably) linearly increasing non-periodic motion. The offset between the RK45 and the AFT-HB
results is due to the effect of the free vibrations triggered by the motion initiation, while examination
of the velocity indicates that the overall is response is captured to remarkable accuracy. Fig. 5 presents
similar results to Fig. 4, albeit the amplitudes of both displacement and velocity are reduced compared to
the left end of the rod. This observation is mainly attributed to the presence of the non-linear element at
x = L.

Figure 5: Comparison between the RK45 and the AFT-HB method in terms of the rod displacement (left)
and velocity (right) at x = L.

4. Conclusions

This paper presents an Alternating Frequency-Time Harmonic Balance method that is based on a
periodic velocity ansatz, such that specific cases of fast-slow dynamical systems can be addressed. In
that manner, both fast and slow motions are captured adequately with the proposed assumed solutions
and the use of a frequency-time method has been proved to be feasible. Numerical examples of a single-
degree-of-freedom and a continuous system are provided and the results by the Alternating Frequency-
Time Harmonic Balance method are validated against numerical integration. The present approach can
be extended into an iterative scheme such that arbitrary slow motions may be approximated in a piecewise
manner, given that a clear separation between fast and slow motion components exists.
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