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Abstract

Background: Readability metrics provide us with an objective and efficient way to

assess the quality of educational texts. We can use the readability measures for find-

ing assessment items that are difficult to read for a given grade level. Hard‐to‐read

math word problems can put some students at a disadvantage if they are behind in

their literacy learning. Despite their math abilities, these students can perform poorly

on difficult‐to‐read word problems because of their poor reading skills. Less readable

math tests can create equity issues for students who are relatively new to the lan-

guage of assessment. Less readable test items can also affect the assessment's con-

struct validity by partially measuring reading comprehension.

Objectives: This study shows how large language models help us improve the read-

ability of math assessment items.

Methods: We analysed 250 test items from grades 3 to 5 of EngageNY, an open‐

source curriculum. We used the GPT‐3 AI system to simplify the text of these math

word problems. We used text prompts and the few‐shot learning method for the sim-

plification task.

Results and Conclusions: On average, GPT‐3 AI produced output passages that

showed improvements in readability metrics, but the outputs had a large amount of

noise and were often unrelated to the input. We used thresholds over text similarity

metrics and changes in readability measures to filter out the noise. We found mean-

ingful simplifications that can be given to item authors as suggestions for

improvement.

Takeaways: GPT‐3 AI is capable of simplifying hard‐to‐read math word problems.

The model generates noisy simplifications using text prompts or few‐shot learning

methods. The noise can be filtered using text similarity and readability measures. The

meaningful simplifications AI produces are sound but not ready to be used as a direct

replacement for the original items. To improve test quality, simplifications can be sug-

gested to item authors at the time of digital question authoring.
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1 | INTRODUCTION

Readability is the ease with which a reader can understand a written

text. Many factors contribute to the readability of a text, including

personal interests, content, style, and text organization (Dale &

Chall, 1949). In the digital world, the concept of readability also

extends to how text is displayed on screens. Readability is essential

when it comes to mathematics assessments. If test developers pro-

duce math test items at inappropriate reading levels, the questions

can become biassed (Walkington et al., 2018). If the test takers find

the test item challenging to read, they will likely get it wrong. Read-

ability issues can also affect item quality metrics, such as difficulty and

discrimination. If a math test item is too difficult to read, it can end up

measuring reading comprehension in addition to the math skill. There-

fore, readability is one of the many factors that influence the validity

of an assessment.

Research on mathematics assessments has indicated that word

problems are notorious for their difficulty (Cummins et al., 1988).

Teachers often cite word problems as a significant weakness of

students (Loveless et al., 2008). A subset of word problems is story

problems in “real world” contexts referencing concrete people,

places, and objects. If these contexts are unknown to the test-

takers, they can get confused about what the question is asking.

Whilst researchers have found that story problems often make

mathematics easier (Koedinger & Nathan, 2004), this is only possi-

ble when the readability of the items is appropriate for the test

takers.

Researchers have analysed the reading difficulties of assessment

items and how they relate to the test outcomes. Lamb (2010) ana-

lysed State assessments from Texas to discover that reading levels of

the test items were overlapping across grades. Dempster and Reddy

(2007) examined the readability factors of TIMSS (Trends in Interna-

tional Mathematics and Science Study) science assessments adminis-

tered in English. They analysed three factors - sentence complexity,

unfamiliar words, and long words to investigate the readability issues

in the test. The researchers found that sentence complexity negatively

influenced learners' performance on TIMSS items, resulting in random

guessing and favouring an incorrect option. The negative effect was

more pronounced in learners with limited proficiency in English than

those who were more proficient in English. Walkington et al. (2018,

2019) showed that English Language Learners (ELL) find it more chal-

lenging to answer math word problems than non-ELL students.

Lamb (2010) showed a correlation between readability and math

achievement. They argued that readability issues in summative math

tests could put some students at a severe disadvantage. Lamb also

provided a way to correct the test scores based on the readability

analysis. Nandhini and Balasundaram (2012) designed a framework to

classify math word problems based on readability to help learners

with reading difficulties. They presented a naive-Bayes classification

model that predicted readability and showed that their model was

better at predicting the assigned grade level of the text. Predicting the

assigned grade level of the text may not be entirely useful since the

text can already be misaligned with the grade level in its original

classification. King and Burge (2015) did a readability analysis of PISA

2012 assessments and found that the PISA 2012 assessment was at

the appropriate reading level. Interestingly, they combined all of the

words in the math test and analysed them as a complete unit since

individual problems had less than 30 words. This is different from

other works where individual items were analysed separately, regard-

less of the number of words in them.

The demands of solving math word problems can be explained by

cognitive load theory. Cognitive load refers to the amount of mental

effort expended on a task (Sweller et al., 1998). Applied to the context

of word problems, Intrinsic cognitive load refers to the inherent diffi-

culty of understanding particular mathematical concepts in a word

problem. Extraneous cognitive load refers to how the material is pre-

sented, or the learning-irrelevant activities required of students

(Sweller et al., 1998, p. 259). Texts that are difficult to read may

increase extraneous cognitive load as students struggle to decode the

written language to form a situation model.

1.1 | Automated text simplification

We wanted to understand whether large language models help us

simplify difficult-to-read math word problems. Large language models

have demonstrated impressive capabilities in generating natural lan-

guage. These models are growing in size, with some having more

parameters than the number of neurons in the human brain. One of

the largest and most commonly known language models, GPT-3, has

175 billion parameters (compared to an average of 85 billion neurons

in the human brain). Typically, text data from the internet is used to

train large language models. Once the parameters are learned, the

model can be adapted to many different tasks. The adaptation capa-

bility also has left many wondering whether this demonstrates a gen-

eral intelligence system. But as many experts know, the language

models are far from reliable. Dale (2021) called GPT-3 an “unreliable
narrator” who has no obligation to tell the truth. This is quite right, as

the text that the model produces is generated based on randomized

procedures.

Large language models are usually designed as sequence to

sequence models. They take a text input sequence up to a certain

length, and the model tries to complete the input sequence. We can

leverage the general prompt completion capability of the GPT-3

engine to perform different functions, including text simplification.

Consider the example below in Table 1.

Whilst the output starts with some relevant sentences, it gets

derailed in another direction. We can either tune the model to make

the output better or only consider the relevant parts of the output.

We decided to use the GPT-3 model to produce easier to read ver-

sions of existing math word problems.

If we can generate simplifications of math word problems through

the AI engine, they can be used to improve existing assessment con-

tent and augment question authoring interfaces. Automated Text Sim-

plification is an active area of NLP research. A recent review paper on

Text Simplification (Janfada & Minaei-Bidgoli, 2020) noted three

2 PATEL ET AL.
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distinct types of simplifications that AI systems can do: lexical, syntac-

tic, and semantic. The lexical changes are related to changing words

and replacing them with simpler words. The syntactic changes rear-

range the components of the sentences. And the semantic changes

can change the meaning of the text. We can leverage this generalized

simplification capability of the text models to improve the readability

of the math word problems.

Text simplification systems have many similarities with the

language translation systems. In both of these systems, the main

task is to produce a translation of the input. The simplification sys-

tem can consider the simple to read output written using another

type of “simplified language”. Several open-source datasets are

available to measure the capabilities of the machine simplification

systems, including a Wikipedia dataset that aligns article text from

the regular Wikipedia to the Simple Wikipedia (Hwang et al., 2015).

The text simplification training datasets consist of input-output

pairs where inputs are difficult to read and outputs are easier to

read. GPT-3, on the other hand, can work without any training data

or with little training data. We took advantage of this capability of

the model and used it to simplify math word problems. Given that

the underlying simplification approach is similar to translation, we

consider the words simplification, translation, rephrasing, and

paraphrasing to mean the same thing: simplifying the text and

improving its readability. If we can simplify math word problems

and ensure that they are at the appropriate grade reading level, the

math assessments will provide us with more reliable measures of

student learning. To improve the readability of word problems, we

can measure the readability levels of the input and simplified texts

and see if there is a significant improvement.

1.2 | Readability measurement

There are many measures of readability. Prins and Ulijn (1998) define

readability as “the ability of the text to communicate the writer's

intention to the intended reader”. Rakow and Gee (1987) define read-

ability as “an estimate of the probability of comprehension by a partic-

ular group”. Several different classes of methods are available to

assess the readability of a text. François and Fairon (2012) summa-

rized the following classes of the readability measures:

1. Formula-based approaches – use text properties as part of a

regression formula.

2. Structuro-cognitive approaches – consider non-superficial features

of the text such as coherence, content density, the flow of the

ideas (Corlatescu et al., 2021), and so forth.

3. AI readability – prediction models that take text as input and pre-

dict a numeric readability score as output; these models use

machine learning or deep learning methods.

Additionally, there is a fourth class of instruments for assessing

text comprehensibility in the form of questionnaires (Friedrich &

Heise, 2019; Sadoski et al., 1993; Sadoski et al., 2000).

To date, formula-based readability measures are most widely

used in practical applications. One of the main reasons for their popu-

larity is their relative simplicity and availability of free software imple-

mentations. In their essential components, all traditional methods for

computing readability are similar. They tend to incorporate some com-

bination of easily measured units like sentence length, word length,

and word frequency (Benjamin, 2012). Several tools are available to

compute readability measures used in Structro-cognitive approaches.

Common Text Analysis Platform (CTAP) (Chen & Meurers, 2016),

Coh-Metrix (Graesser et al., 2004), TACCO (for measuring Cohesion)

(Crossley et al., 2016), and TAALES (for measuring Lexical Sophistica-

tion) (Kyle & Crossley, 2015) are some of the tools freely available

online. Many measures from structro-cognitive approaches have been

used in AI readability models as predictors.

When we try to improve the readability of math word problems,

we can measure the improvement by computing the difference

between the readability scores of the output and input. We can use

more than one metric to ensure that we are not getting false positives.

However, there is one challenge with using only readability measures.

If the resulting simplification is simple but unrelated to input, it is not

useful. To make sure that the simplifications of AI are related to the

input, we can use text similarity measures.

The rest of the paper is organized as follows: the Related Work

section outlines studies around the readability analysis of mathemat-

ics texts and manual and automated ways of improving the readability

of educational texts. The Study Design section describes how we lev-

eraged the text simplification capabilities of the GPT-3 engine. The

Data section describes how we sampled the math word problems

from the open-source EngageNY curriculum and how we used the

GPT-3 API (an Application Programming Interface to access GPT-3

capabilities via HTTP protocol) to simplify all of the sampled problems.

TABLE 1 Text simplification using GPT-3. The maximum output
length was 100 tokens

An example of text simplification by GPT-3 (italics = input, following

text = output)

My second grader asked me what this passage means:

"""
Jupiter is the fifth planet from the Sun and the largest in the Solar

System. It is a gas giant with a mass one-thousandth that of the Sun,

but two-and-a-half times that of all the other planets in the Solar

System combined. Jupiter is one of the brightest objects visible to the

naked eye in the night sky, and has been known to ancient civilizations

since before recorded history. It is named after the Roman god Jupiter.

[19] When viewed from Earth, Jupiter can be bright enough for its

reflected light to cast visible shadows,[20] and is on average the third-

brightest natural object in the night sky after the Moon and Venus.

"""
I rephrased it for him, in plain language a second grader can understand:

"""
Jupiter is the fifth planet from the Sun and the biggest planet in the

Solar System. It's a big ball of gas. It's very bright and it can be seen

from Earth at night.

Jupiter is named after the Roman god Jupiter.

I think this is a good example of why we should teach science to

children in plain language. I'm not sure how many of us learned

science by reading a textbook, but if we did, we probably did not

understand it.

PATEL ET AL. 3
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The Metrics section gives details of the Readability and Text Similarity

metrics that are used to find useful simplifications. The Method

section is brief and describes how we used Cohen's d to measure

improvements in readability metrics. The Results section describes

how GPT-3 performed in the simplification task. The Discussion

section gives some ideas on how the AI engine may be functioning

internally to make the simplifications and how it can be used in a real-

world scenario. The Future Work section describes the next set of

work that needs to be done to make our method more accurate so

that it can deliver real-world impact.

2 | AUTOMATED READABILITY
IMPROVEMENT OF MATH TEXTS

Researchers have identified many issues with mathematics text read-

ability. These issues go beyond syntax and cover vocabulary, dia-

grams, symbols, rhetorical questions, and information organization

(Noonan, 1990). Several studies have analysed the readability of math

texts.

If the test items have poor readability, we can revise them to

improve their reading difficulty. There are many different methods to

measure text readability, but some methods may be more valid than

others when revising instructional texts. Davidson and Kantor (1982)

found that making readability improvements based on readability formu-

las could do more harm than good. They discovered that “adaptations
were found to be most successful when the adaptor functioned as a con-

scientious writer rather than someone trying to make a text fit a level of

readability defined by a formula”. Britton and Gülgöz (1991) used a

structuro-cognitive model of text comprehension to manually improve

text readability. They compared the improved version of the text with

the original on undergraduates and found the improved version had

higher recall rates. This showed that authors could systematically

improve their text by using appropriate readability measures.

With recent advances in natural language processing methods,

researchers have attempted to automatically improve text readability.

One of the works on automated text simplification was done by Chan-

drasekar and Srinivas (1997), who split the input sentences into

shorter sentences to improve readability. This improvement approach

is more aligned with readability formulas because they heavily rely on

average sentence length for readability measurement. So shorter sen-

tences would produce higher readability scores. We previously

described the lexical, syntactic, and semantic simplifications in the

Text Simplification section. Recent survey papers on text simplifica-

tion have outlined fundamental approaches and studies in this area

(Al-Thanyyan & Azmi, 2021; Janfada & Minaei-Bidgoli, 2020). In the

context of the educational texts, De Belder and Moens (2010) pre-

sented lexical and syntactic approaches to simplify texts which will

help students who are struggling to read understand the text better.

Nandhini and Balasundaram (2013) proposed simplifying text by

extracting relevant and easy-to-read sentences from the original text.

Recently, Rebello et al. (2019) surveyed students from grades 2 to

4 and provided a statistical analysis about how syntactic simplification

of text comprehension improved the reading ability and performance

of the students.

Our work primarily focused on using the GPT-3 system to simplify

math word problems. As per our literature review in this field, no other

studies have used the GPT-3 AI to simplify educational texts. To under-

stand how a large language model can simplify math word problems, we

designed a study that used multiple ways to simplify input texts.

3 | STUDY DESIGN

We wanted to find out whether the GPT-3 AI can improve the read-

ability of the math word problems. We did several manual studies

within the GPT-3 engine to observe its behaviour. We saw that the AI

sometimes gave great simplifications, but it did not always give out-

puts that carried all of the key information from the input. This led us

to focus on finding meaningful simplifications that could be used in a

real-world context.

Although we do not have direct control over how the GPT-3 sim-

plifies the given text, we can use readability and text similarity mea-

sures that tell us whether the given simplification is meaningful or not.

A meaningful simplification would show improvements in readability

whilst still having at least semantic similarity with the input. It is possi-

ble that the syntax of the input might have to be changed consider-

ably to improve the readability. If the metrics suggest that the

simplification is not useful, we can sample another text from the

engine and continue to do so until we find a useful simplification.

We designed three types of prompts to simplify the math word

problems so that we can observe the difference in their behaviour

and understand which prompts led to more desirable results. These

prompts contained the math word problem and the instructions for

the AI engine to produce the simplification. Table 2 presented below

outlines these prompts.

We can find the first two prompts (Rephrase and Rephrase with

Title) on the OpenAI documentation (OpenAI, n.d.-a, n.d.-b). These

prompts are presented as summarization prompts rather than simplifi-

cation prompts. Text summarization is usually aimed at converting a

large amount of text into a much smaller amount by omitting the little

details. This is contrary to what we need to do when trying to make a

math word problem easy to read. We need to keep all minute details

intact whilst ensuring that the text is readable. The first two prompts

are “open-ended” and do not give any explicit instructions to the AI

engine regarding how the simplifications should be made. To provide

instructions to the GPT-3, we can use the few-shot learning prompts.

Few-shot learning refers to learning from very few examples.

GPT-3 became known because of its capability of few-shot learning.

This is indeed the holy grail of AI, to learn a task from a very few

examples. We wanted to understand how well few-shot learning

worked for the word problem simplification task. The third prompt

was designed by one of the researchers, where they created five

training examples for the AI. These examples were simplifications of

five randomly selected problems from the dataset. These training

examples are listed in Appendix A.

4 PATEL ET AL.
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We created further variations of all three prompts. Table 3 shows

variations of the prompts in Table 2. For Rephrase and Rephrase with

Title prompts, we had a choice to tell the AI which reading grade level

we were aiming for. The GPT-3 system is able to identify the grades

when mentioned in the input, and it translates the input text accord-

ingly. For example, you can “ask” the system to rephrase the same

passage to a second and an eighth-grader, and you will get outputs

with different reading levels. To leverage this “understanding” of

grade levels that GPT-3 has, we decided to construct prompts that

tried improving the reading level by one and two grade levels. The

input math word problems were collected from grades 3 to 5, and we

created multiple simplification prompts from them accordingly. For

example, if the math word problem was from the 3rd grade, the AI

tried to read it to second and first graders.

3.1 | Research questions and hypotheses

We wanted to validate whether the GPT-3 AI was able to perform the

meaningful simplification of math word problems. For the simplifica-

tion to happen, the readability of the text passage must improve. Not

only that, the simplified text passage should contain all important

information and context provided in the input passage – that is, the

simplification should be meaningful. We hypothesize that GPT-3 will

be able to do meaningful simplification of the word problems. We

divided our overall hypothesis into two hypotheses:

Hypothesis 1. The GPT-3 AI will improve the raw read-

ability scores of the math word problems.

Hypothesis 2. The GPT-3 AI will provide meaningful sim-

plifications of math word problems.

We also had additional research questions concerned with auto-

matically identifying meaningful simplifications:

RQ1. Can we identify meaningful simplifications using

numeric metrics?

RQ2. Are some numeric metrics particularly useful in

indicating meaningful simplifications?

The H1 was only concerned with finding whether some or all

prompts could improve readability as measured by our metrics. H2

was more focused on finding the meaningful simplifications that could

be used in an actual test. We collected math word problems data and

simplified them using GPT-3 to test our hypotheses.

4 | DATA

We collected input word problems from an open-source curriculum,

and we simplified these word problems using the GPT-3 API.

4.1 | Math word problems

We collected the math word problems from the EngageNY open-source

math curriculum. This curriculum is available for everyone under the Cre-

ative Commons licence. We focused on word problems from grades 3 to

TABLE 2 Examples of the three types of prompts we used in the
study. Prompts are input texts for the GPT-3 model. The outputs are
not shown

Prompt

Prompt text (italics = input word problem,

output is not presented)

Rephrase Serena had 30 candies and Mill had 15 candies.

How many pieces of candies did Serena and

Mill have in total?

I rephrase this for my daughter, in plain

language a second grader can understand:

Rephrase with Title My second grader asked me what this

passage means:

"""
Serena had 30 candies and Mill had 15 candies.

How many pieces of candies did Serena and

Mill have in total?

"""
I rephrased it for him, in plain language a

second grader can understand:

"""

Few Shot Learning Simplify the given text.

###

Text: Luis uses square inch tiles to build a

rectangle with a perimeter of 24 inches.

Does knowing this help him find the

number of rectangles he can build with an

area of 24 square inches? Why or why not?

Simplified: You want to count all the ways to

make 24 square inch rectangles. You first

make a 24 inch perimeter rectangle with 1

square inch tiles. Will this help?

###

Text: Fill in the missing whole numbers in the

boxes below the number line. Rename the

whole numbers as fractions in the boxes

above the number line.

Simplified: Write whole numbers in the boxes

below the number line. Write fractions

equal to whole numbers in the boxes

above the number line.

###

Text: Compare the perimeter of your

tessellation to a partner's. Whose

tessellation has a greater perimeter? How

do you know?

Simplified: Compare your pattern with

someone else's pattern. Which pattern has

a longer perimeter?

###

Text: Serena had 30 candies and Mill had 15

candies. How many pieces of candies did

Serena and Mill have in total?

Simplified:

PATEL ET AL. 5
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5, as the authors had prior experience working with students and data

from those grades. We downloaded all of the mathematics module PDFs

from the EngageNY website and created a process to extract the word

problems. The paper also refers to the word problems as passages or

excerpts because we assumed that all multi-line passages extracted from

assessment pages were either parts of the questions or the entire ques-

tion. Our step-by-step process is outlined in Table 4.

Since we were analysing an already published curriculum where

only the PDF files were available, we had to resort to a long scanning

and cleaning process that was not perfect. Ideally, we can avoid this

process if the passages to be examined are available as digital text.

We found that the OCR process did not work well with math symbols.

This led to several improperly detected word problems that were left

out in step 8. Systems like GPT-3 are not trained to understand com-

plex math symbols. Hence we did not improve the OCR detection rate

further. We limited our analysis to problems with words, integers, and

decimals.

4.2 | GPT-3 simplifications

Once the N = 250 passages to be analysed were collected, we created

a design matrix containing seven GPT-3 prompts for every input pas-

sage. Each of these prompts corresponded to one condition in

Table 3. Once we constructed the design matrix, we iterated over

each prompt and used the GPT-3 API to receive the simplifications.

Table 5 shows our GPT-3 API parameters:

We had seven different prompts for every input word problem

that attempted to simplify it. And for every prompt, we requested

three different simplifications for each prompt. Some simplifications

began with a stop sequence (as denoted in Table 5), and we discarded

them. We did not attempt to collect more non-null simplifications for

the input passage. This led to some input passages resulting in less

than three simplifications. Once we collected the outputs by calling

the API, they were saved for further analysis.

GPT-3 AI translated each of the N = 250 input word problems

into easier-to-read versions using all seven prompts. This led to a total

possible output of 5250 excerpts. We discarded the engine's blank

and failed responses, which led to M = 4992 output passages. The

approximate cost for this data collection was $35. The Table 6 shows

how many outputs each condition had:

TABLE 3 Conditions of the study, each condition was a prompt template that contained the problem to be rephrased and the instructions for
the AI on how to do it. The stop sequences are the character sequences that tell the GPT-3 AI to stop producing outputs

Condition code Prompt Variation Stop sequence

1 Rephrase
One line direction after input.

Improve readability by one grade level

2 Improve readability by two grade levels

3 To second grade level

4 Rephrase with Title

Two line directions, input sliced between directions.

Improve readability by one grade level “””

5 Improve readability by two grade levels “””

6 To second grade level “””

7 Few Shot Learning
A few examples for AI to see.

5 examples ###

TABLE 4 The step-by-step process for collecting math word
problems from EngageNY grades 3 to 5 math curriculum

Step Description Notes

1 Downloaded all module

PDFs for Math grades 3 to

5.

From www.engageny.org

2 Converted PDF file pages

into PNG files using

ImageMagik.

Image resolution was kept

1275 px � 1650 px.

3 Text was extracted from

PNG files using PyOCR.

OCR was not fully

accurate.

4 Only kept pages having

“Homework”, “Exit
Ticket”, “Problem Set”, or
“Assessment” in their

titles.

5 Extracted text passages by

joining lines without

spaces between them.

6 Removing garbage passages

that do not have any

educational content.

Left with a dataset of 1994

passages.

These are headers, footers,

standard or skill codes,

and so forth.

8 Selected properly formatted

passages using a set of

regex filters (rules and

filter creation

methodology described in

Appendix B).

Left with a dataset of 1384

clean passages.

This filter was �80%

accurate (training

accuracy) to detect

properly formatted

passages. The accuracy

was calculated by first

hand selecting 262

grade 5 passages and

then using regex to

predict the hand

selections.

9 Randomly sampled N = 250

passages from the

universe of 1384 clean

passages.

Only these passages are

used for analysis.

6 PATEL ET AL.

 13652729, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12776 by T

u D
elft, W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.engageny.org


Before analysing the data collected from GPT-3, we passed it

through preprocessing steps below:

1. Replaced all of the newline characters with spaces

2. Removed extra spaces from the beginning and end

3. Removed last incomplete sentences from all passages

4. Removed the blank responses

We decided to remove the last incomplete sentence because we

would expect the AI only to provide complete suggestions in a real-

world context. We did not have any grammatical correction pro-

gramme that we could use to correct the sentences, so we removed

the last sentence regardless of its content. We can attempt to “repair”
the sentence using grammar correction software to keep the maxi-

mum amount of AI-produced information.

5 | METRICS

In this section, we describe the Readability and Text Simplification

metrics used in our analysis. We need to use Readability metrics to

measure the improvement in readability and Text Simplification met-

rics to ensure that the simplification is meaningfully related to the

input.

5.1 | Readability metrics

Bertram and Newman (1981) discussed the weaknesses of classical

readability measures. Their first concern was that most readability for-

mulas deal only with sentence length and word difficulty—they tend

to ignore other factors like cohesion or the complexity of ideas. Saw-

yer (1991) summarized many similar viewpoints, describing the short-

comings of the readability formulas for revising instructional texts.

The highly simplistic nature of readability formulas may not capture all

of the complexities of educational texts. This concern was addressed

by the structure-cognitive measures of readability (François &

Fairon, 2012). These measures were understandable metrics designed

to understand the linguistic properties of the texts, such as Lexical

Diversity and Cohesion (or lexical linking). Bertram and Newman's

second concern is the lack of consideration for reader-specific factors

like reader interest or their purpose for reading. This concern is truly

TABLE 5 GPT-3 API parameters that we used

API parameter Description Value

Engine Type of the engine.

OpenAI has several

types of engines to

make inferences from

GPT-3. We used the

latest engine available

at the time of our

analysis.

davinci-instruct-

beta-v3

n Number of simplifications

or prompt completions

to attempt.

3

Temperature Variation in output, low

temperature will result

in similar outputs.

0.8

Prompt Input prompt that GPT-3

will try to complete.

These prompts were

created for each input

sentence.

Precomputed based

on the condition.

Max_tokens How many maximum

tokens GPT-3 can

output. According to

their documentation,

75 words roughly

corresponds to 100

words. We did not

want more words in

the output than the

input.

Number of words

in the

input � 1.3333

Stop The stop sequence,

GPT-3 will stop

producing further

tokens if the stop

sequence is generated.

As shown in

Table 3

Frequency_penalty Penalty parameter to

stop same words from

appearing again and

again in the output.

0.2

TABLE 6 Number of inputs and outputs for each condition

Inputs Condition # of simplifications
Number of outputs
(out of 750 total possible)

250 Rephrase One Grade Level Below 3 733

250 Rephrase Two Grade Levels Below 3 735

250 Rephrase for Second Grader 3 741

250 Rephrase With Title One Grade Level Below 3 738

250 Rephrase With Title Two Grade Levels Below 3 731

250 Rephrase With Title for Second Grader 3 737

250 Few Shot Learning 5 Examples 3 586

Note: Total unique inputs: N = 250; Total GPT-3 API calls = 250 � 7 � 3 = 5250; Total successful outputs = 4992; Total blank responses and API

failures = 258.
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worth addressing and may lead to improved student outcomes if

addressed.

In addition to these concerns, there are other limitations to read-

ability measures that prevent their use in practice to improve the

readability of assessment word problems. For instance, to generate

meaningful results, most readability measures require a minimum of

300 words, yet many word problems involve fewer than 300 words.

In our readability analysis of input problems, we found that Cohesion

metrics did not have any meaningful variance in them to compare the

readability scores of the passages. Further, many readability measures

use standard lists of familiar words. This approach to determining

familiarity does not consider the fact that some words in an assess-

ment may have been explained as part of the text, either in text or

through the use of a glossary. Additionally, readability analysis does

not consider the text's design explicitly. Texts used in assessments

may include drawings, graphs, tables, and so forth. However, it is likely

that these additional elements are referred to in the text. Given these

limitations, we need to pick the metrics and interpret the results

carefully.

Calculating the readability metrics requires using a tool or a

programme that implements the algorithms to calculate the mea-

sures. We used the Common Text Analysis Platform (or CTAP) tool

to compute various readability metrics that measured the linguistic

properties of the text. The goal for AI was to either increase or

decrease these measures based on whether the higher value meant

higher or lower readability. The CTAP tool provides a user interface

to upload a large text corpus and calculate several features for

those texts. The tool offers close to 1000 metrics. Another publicly

available tool, Coh-Metrix 3.0, provides several hundred metrics for

text readability.1 We attempted to find common metrics between

both frameworks, and used CTAP to derive the metrics. Coh-Metrix

does not provide a web interface to generate metrics for a large

corpus.

We chose sixteen metrics to analyse the readability of the

input and output passages (described in Table 7). These metrics

have been shown to be significant predictors of human-rated read-

ability scores, grade levels of the text, or the reading ability of the

learners. The first set of metrics we used was Descriptive, measur-

ing things such as the number of tokens and average sentence

length. These metrics have been used in many readability formulas.

For example, the Flesch Reading Ease formula (Flesch, 1948) has

average words per sentence and average syllables per word as pre-

dictors. Nelson et al. (2012) noted that all of the Descriptive mea-

sures that we used (# 1–5 in Table 7) were negatively correlated

with readability, that is, the metric would go down with an increase

in readability. Next, we used three Lexical Diversity metrics (# 6–9

in Table 7), one of which (# 7) was found to be stable for shorter

texts (Zenker & Kyle, 2021). All three metrics we used have been

assessed for their validity by Kyle et al. (2021), and researchers

found them to be negatively correlated with human judgements of

lexical diversity. Next, we used four Part of Speech features that

counted the number of nouns, verbs, adjectives, and adverbs (# 9–

12 in Table 7). These features were hypothesized to be negatively

correlated with reading grade level measures by Heilman et al.

(2008). Pitler and Nenkova (2008) found number of verbs per sen-

tence (which is directly proportional to the number of verbs) to be

significantly correlated with text readability ratings. The rest of the

four features (# 13–16 in Table 7) were related to Lexical Sophisti-

cation, which measures things like how easy it is to imagine the

words in the text and how easy it is to point to real-world objects

denoted by the given words. All of these features have been found

to correlate with the Lexical Proficiency of the learners (Kyle &

Crossley, 2015). Although we see that all of the metrics have been

found to be negatively correlated with readability judgements of

humans, experiments have shown that the characteristics of

readers can also affect the readability of the text. McNamara and

Kintsch (1996) found that expert readers learned more from

abstract texts that had some challenging elements, whilst novice

readers learned and remembered more from easy-to-read texts.

This means that the Lexical Sophistication measures that we are

using may have more application in the context of novice readers

rather than experts.

We defined readability improvement as follows:

Readability Improvement¼Readability Score OutputTextð Þ
�Readability Score InputTextð Þ

Based on the results of the prior studies, we expected all of our

readability metrics to decrease for the output texts.

5.2 | Text similarity metrics

We used two different metrics to compute the similarity of input

word problems and their simplifications. The first metric computed

the percentage of common words between the input and the output.

The second metric calculated cosine similarity between the text

embeddings of the input and output. The embeddings were produced

by GPT-3 API. Both of these metrics are described below.

5.2.1 | Percentage of common words

This metric is relatively simple and is defined as follows:

% CommonWords¼NumCommonWords Input, Outputð Þ
NumTotalWords Input, Outputð Þ �100

Both the common words and total words were counts of unique

words. If two different words had the same root word (e.g., river and

rivers), they were counted as different words. This metric can be con-

sidered valid for discovering useful math word problem simplifications

because we would expect the AI to retain the key information in the

input. It is possible that AI changes the words but keeps meaning the1https://cohmetrix.memphis.edu/cohmetrixhome/documentation_indices.html
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same. In those cases, the next metric which measures semantic simi-

larity may be more helpful.

5.2.2 | Cosine similarity of text Embeddings

Text embeddings are becoming increasingly common in NLP applica-

tions. The key idea behind text embeddings is the vectorization of text

onto a relatively small number of latent dimensions (compared to pos-

sible words in the lexicon). The word embeddings convert a word into

a vector. Different entries of this vector can represent different latent

concepts. We can combine word embeddings in many different ways.

You can take the mean of all of the word embeddings in a sentence,

and you can get a sentence embedding. Another way to get sentence

embedding is to supply embeddings of every word as an input into a

recurrent neural network. The word vectors are passed through a

neural network, and they are combined through the information prop-

agation mechanism of the model. In the end, we get one numeric vec-

tor for the input text – the text embedding vector. We can do the

same for a bigger block of text (i.e., small or big passages).

Text embedding vectors can help us model the latent dimensions

contained in the input text. If two pieces of text are the same, their

embedding vectors will be identical. Similarly, different sentences will

have different embedding vectors. We can use cosine similarity mea-

sures to calculate how close two sentences are. Nandhini and Bala-

sundaram (2012) used cosine similarity to filter out unimportant

details from the input sentence. This was a novel way to simplify the

text. In our study, we used cosine similarity to measure the closeness

of the input and output sentences. We expected that a reasonable

simplification would be where AI would change the arrangement of

the words without modifying the underlying meaning too much. If you

produce the same text as the simplification of the input, it would be

entirely similar to the input, but this is not what we want when we are

doing the simplification. We would expect some difference in the text

if there is a considerable improvement in the readability. We used

GPT-3's Embeddings API to generate the vector representations of

the world problems. Then, we measured the similarity between input

and output text as follows:

Embedding Similarity

¼Cosine SimilarityðEmbeddingðInput TextÞ; EmbeddingðOutput TextÞÞ

6 | STATISTICAL ANALYSIS

We measured the readability improvement in the text passages using

Cohen's d. For every input passage, multiple simplifications were gen-

erated. We calculated the standardized difference in the means for

every readability metric mentioned in the Metrics section. We first

calculated the readability metrics of the input passages. Then we cal-

culated the readability metrics of the output passages. There were

multiple outputs for the same input passage, and this led to repeated

metric values for the input passage. For example, if an input passage

had a Lexical Richness value of 15 units, it is possible that its transla-

tions had Lexical Richness values of 12, 15, or 18 units. In this case,

we considered input passages appearing three times in the sample

and each output passage occurring one time. This meant that the sam-

ple sizes for the input and output passages were the same, and input

passages had repeated metrics. We calculated Cohen's d using the

psych package in the R environment.

To find meaningful improvements in text passages, we relied on

text similarity metrics and improvement metrics calculated as differ-

ences of the output readability metric minus the input readability met-

ric. We applied threshold values on the calculated metrics (similarity

and readability improvement) to find meaningful improvements that

had face validity.

We used a simple threshold-based approach to find meaningful

simplifications. The difference in readability metrics (output minus

input) can be used to identify simplifications with desirable properties.

We applied multiple combinations of filtering conditions to find mean-

ingful simplifications. Each set of filters had the following conditions

in common:

• Input and output should end the same way (question mark or

full stop)

• % of common words > = 70

• Cosine similarity of >0.85 and <1.0

7 | RESULTS

Let us begin by looking at some interesting simplifications of word

problems that GPT-3 generated (Table 8). We discovered these by

applying threshold values to readability improvement and similarity

metrics. These examples are available in our open-source data (pro-

vided in Section 10).

We can see in the table that the algorithm can improve the input

in different ways. The first and third examples have simplified sen-

tences, whilst the second example breaks down one sentence in the

input into two sentences in the output. The fourth and fifth examples

have many verbs and adverts added in the simplification.

7.1 | Readability improvement

For each simplification, we generated several metrics that defined the

overall quality of the simplification. To understand the overall behav-

iour of the GPT-3 engine, we can look at the standardized difference

in the mean values of the readability metrics. The table below shows

Cohen's d for each of the metrics, indicating the difference in the

standardized mean of the readability metric between the input and

the output. We calculated the difference both across conditions and

separately for each condition.

There are several ways to interpret the effect size. Our table

contains both positive and negative effect sizes. Sawilowsky (2009)

suggested a new rule of thumb, suggesting that d(0.5) = medium,

10 PATEL ET AL.
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d(0.8) = large, d(1.2) = very large, and d(2.0) = huge. For metrics #

1–13, we had expected a negative effect. We can see in Table 9,

except for the Mean Sentence Length in Tokens, readability metrics

had a negative effect meaning that AI improved them in the

expected direction. Figure 1 shows a visualization of effect sizes

and their confidence intervals. For the last three metrics in the

table (# 14–16), we had expected a positive effect. Here we saw

that the Meaningfulness feature had a negative effect, whilst the

other two had a small positive effect.

Figure 2 below shows Improvement v/s Input for all of the met-

rics (all conditions for each metric are combined in the visualization).

In the visualization, we can see that if the input metric indicates more

complexity, the AI shows more improvements on average.

Table 9 shows that for most of the readability metrics, the aver-

age improvement in readability was in the expected direction except

for the two metrics: Mean Sentence Length in Tokens (#2) and Mean-

ingfulness (#14). The effect sizes of each metric are different, the larg-

est ones being the Number of Sentences and Number of Nouns.

Figure 2 shows that the Number of Sentences did not have variance

like other variables, so its effect size may not be stable. We can also

see that the two variables with an average improvement in unex-

pected directions have differences amongst conditions. The Few

Short Learning condition showed improvements completely consis-

tent with prior literature. Figure 2 also shows that the Lexical Sophis-

tication features had a different trend in the data, where values close

to the median input readability saw several outliers. These outliers

were present in all conditions. We also observed that if the readability

of the input was low, there was “more room for improvement”. For
metrics except for Lexical Sophistication, when the input value was

higher (indicating a difficult-to-read passage), then the improvement

was more. The results in Table 9 and Figure 2 clearly indicate that

GPT-3 AI was able to make improvements in the expected direction

across all metrics. The data confirm H1 and show that The GPT-3 AI

will improve the raw readability scores of the math word problems.

7.2 | Meaningful readability improvement

It is very easy to get meaningless improvements in GPT-3. Improve-

ment in readability metrics does not concretely tell us whether the

improvement was meaningful or not. For example, consider the fol-

lowing simplification that has reduced the number of sentences from

four to one:

• Input: Fiona draws a 24 square centimetre rectangle. Gregory

draws a 24 square inch rectangle. Whose rectangle is larger in

area? How do you know?

• Output: Fiona has drawn a rectangle with a total area of 24 square

centimetres.

We can clearly see that the reduction in sentence count cannot

tell us much about the quality of the output. The output here is clearly

not useful. We observed that, in general, one or two metrics were

insufficient to indicate a successful simplification that could be consid-

ered for rewriting. In fact, any amount of improvement in readability

cannot tell us whether the simplification is useful or not. We need to

know how similar the simplification is to the input. Similarity can tell

us whether parts of input were preserved in the output or not. When

rephrasing math problems, we can combine the readability and text

similarity metrics to find simplifications that are both more readable

and similar to the input.

TABLE 8 Selected examples of GPT-3 simplifications

# Input Simplified by GPT-3

1 Vivienne draws four

identical rectangles as

shown below to make

a new, larger rectangle.

The perimeter of one

of the small rectangles

is 18 cm, and the width

is 6 cm. What is the

perimeter of the new,

larger rectangle?

Vivienne draws four

identical rectangles to

make a new, larger

rectangle. Perimeter of

one small rectangle is

18 cm. Width of one

small rectangle is 6 cm.

What is the perimeter of

the new, larger

rectangle?

2 Draw a tape diagram to

represent the following

problem. Use numbers

to solve and write your

answer as a statement.

Check your answer.

Draw a tape diagram to

represent the problem.

Use numbers to solve

the problem. Write your

answer as a statement.

Check your answer.

3 It takes Greg 15 min to

mow the front lawn. It

takes him 17 more

minutes to mow the

back lawn than the

front lawn. What is the

total amount of time

Greg spends mowing

the lawns?

It takes Greg 15 min to

mow the front lawn. It

takes him 17 more

minutes to mow the

back lawn. What is the

total amount of time?

4 Use the information in

the chart below to plan

an environment for

your robot. Write the

width and length for

each rectangular item.

Use the blank rows if

you want to add extra

circular or rectangular

items to your robot's

environment.

This passage is a chart with

different shapes and

sizes listed. It is asking

you to plan an

environment for your

robot using the

information in the chart.

The width and length for

each rectangular item

can be used to create a

space for your robot.

5 An airplane is descending

into an airport. When

its altitude is 5 miles, it

is 275 miles from the

airport. When its

altitude is 4 miles, it is

200 miles from the

airport. At 3 miles, it is

125 miles from the

airport.

An airplane is flying closer

and closer to an airport.

When it is 5 miles away

from the airport, it is

275 miles away from the

airport. When it is

4 miles away from the

airport, it is 200 miles

away from the airport.
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After applying the initial set of thresholds described at the end of

Section 6, we applied a filtering condition on any one of the readabil-

ity metrics and randomly sampled three examples to see the kind of

simplifications that GPT-3 was capable of making. Our small samples

only gave us examples of what GPT-3 was capable of doing, and they

did not give us an indication of what fraction of the passages were

simplified meaningfully. In the table below, we show examples of sim-

plifications found by using threshold values on the readability metrics:

Here are the key observations in the table above. We have not

described examples that are not entirely meaningful.

• Number of Tokens: We can see that the last two examples found

using metric are meaningful. The outputs have less words in them

and they communicate the same information as the input.

• Mean Sentence Length: We can see that the first example has two

sentences in the input, whilst the output breaks the second sen-

tence of the input into two individual sentences. This results in a

lower sentence length. The last sentence of the second example is

simplified from “Illustrate and explain the calculation by using

equations, rectangular arrays, and/or area models”. to “Illustrate
and explain the calculation by drawing pictures”.

• Lexical Richness: MTLD: We do not find any of the simplifications

useful here.

• Lexical Richness: Type Token Ratio: We can see that in the first

example, the word “number” is repeated in the output whilst

words “number” and “product” are used to mean the same thing.

Repeating a word leads to lower TTR. We can see that for the sec-

ond example, the same information is being communicated in less

words in the output.

• Lexical Sophistication Feature: Age of Acquisition: The first and

second examples have simpler structures in the output.

From the table above, we can see that GPT-3 is capable of

providing meaningful simplifications of math word problems. The

data support the H2 and show that GPT-3 AI is capable of provid-

ing meaningful simplifications of math word problems. It is impor-

tant to note that the number of samples based on which we are

making our conclusion is small, but they clearly show that the AI

engine is capable of producing useful simplifications.

8 | DISCUSSION

Several examples from Table 10 can be given as suggestions to item

authors when they are authoring the original text of the question. The

filtering conditions yielded sets that were very small compared to the

F IGURE 1 Visualization of Cohen's d and their confidence intervals for each condition and readability measure
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total samples generated by the API (the filter set sizes ranged from

1% to 4%). The useful sample count in the filter sets was further lower

than this. Based on these numbers, we can say that the accuracy of

our method is quite low and not at a level where our method can be

used in a real-world context. Our results reveal a promising capability

that the AI engine has, but more work is needed to improve the rate

of producing meaningful results.

We used two types of numeric metrics to identify useful sim-

plifications - readability and text similarity. Of the two, the similar-

ity metrics were essential in identifying useful simplifications. They

acted as a noise filter and allowed us to find passages that had a

minimum level of similarity with the input. This is a desired out-

come when simplifying math word problems, where we would

expect most of the key information in the input to be retained in

the output. The median percentage of common words between

input and output was 45%, telling us that more than half of the

translations did not carry the majority of the original words. The

differences in usefulness between the readability metrics could be

due to random sampling, but it is clear that if we had not used the

similarity metrics, we would have easily gotten a large number of

noisy samples. The observation of the usefulness of the similarity

metrics partially answers RQ1 and tells us that we can use similar-

ity metrics to look for good simplifications. To calculate which

readability metric is most helpful in finding good simplifications,

we need to create a benchmark dataset of human simplifications

and analyse it with the given metrics to understand the extent to

which we can expect the given readability metric to change. Creat-

ing this benchmark dataset will allow us to go deeper into RQ2 and

understand which metrics can identify human simplifications. Our

data and analysis were not sufficient to answer RQ2 and identify

which metrics are most useful.

Our method did not have a high rate of producing meaningful

simplifications, but the results demonstrate the capability of the AI

engine to impact the quality of assessment questions positively. Given

the success rate of our method, we found the text similarity metrics

to be quite helpful in filtering out the noisy simplifications. We saw

that many simplifications were simply not useful and often had noth-

ing to do with the input. Similarity metrics quickly filtered out this

noise and allowed us to discover simplifications that had at least a

minimum amount of similarity with the input. It is possible to improve

readability of a text passage by altering its context and making it more

familiar to the learner. In some cases, without changing the syntax of

the text, we can simply replace nouns with alternatives and make the

text more context sensitive. In such cases, even though the text may

be called identical in some sense, the text similarity measures may not

capture it fully. Similarity measures based on word vectors or word

F IGURE 2 Changes observed in various readability metrics from input to output

14 PATEL ET AL.

 13652729, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12776 by T

u D
elft, W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 10 Simplifications found using metric thresholds

Readability metric and

filtering condition Input Simplification by GPT-3

Number of Tokens

Difference <= �5

# Passages: 140

Find whole-number quotients of whole numbers with

up to four-digit dividends and two-digit divisors

using strategies based on place value, the properties

of operations, and/or the relationship between

multiplication and division. Illustrate and explain the

calculation by using equations, rectangular arrays,

and/or area models.

Find whole-number quotients of whole numbers

using strategies based on place value, the

properties of operations, and/or the relationship

between multiplication and division. Illustrate and

explain the calculation by using equations,

rectangular arrays, and/or area models.

Ms. Leverenz is doing an art project with her class. She

has a 3 foot piece of ribbon. If she gives each

student an eighth of a foot of ribbon, will she have

enough for her class of 22 students?

Ms. Leverenz has a 3 foot piece of ribbon. If she

gives each student 1 inch of ribbon, will she have

enough for her class of 22 students?

Jon pours the contents of Container 1 and Container 3

above into an empty bucket. How much liquid is in

the bucket after he pours the liquid?

Jon pours the contents of Container 1 and Container

3 into an empty bucket. How much liquid is in the

bucket now?

Mean Sentence Length in

Tokens

Difference <= �2

# Passages: 46

On the number line above, use a blue coloured pencil

to divide each whole into eighths, and label each

fraction below the line. Refold your fraction strip

from Problem 1 to help you estimate.

On the number line above, use a blue coloured

pencil to divide each whole into eighths. Label

each fraction below the line. Refold your fraction

strip from Problem 1 to help you estimate.

Find whole-number quotients of whole numbers with

up to four-digit dividends and two-digit divisors

using strategies based on place value, the properties

of operations, and/or the relationship between

multiplication and division. Illustrate and explain the

calculation by using equations, rectangular arrays,

and/or area models.

Find whole-number quotients of whole numbers

with up to four-digit dividends and two-digit

divisors using strategies based on place value, the

properties of operations, and/or the relationship

between multiplication and division. Illustrate and

explain the calculation by drawing pictures.

Step 1: Draw and shade a tape diagram of the given

fraction. Step 2: Record the decomposition of the

fraction in three different ways using number

sentences.

Step 1: Draw and shade a tape diagram of the given

fraction. Step 2: Record the decomposition of the

fraction using number sentences.

Lexical Richness: MTLD

(excluding punctuation

and numbers)

Difference <= �5 units

Scale typically ranges

between 0 to 100

# Passages: 178

Samantha ran 3003 m in 7 days. If she ran the same

distance each day, how far did Samantha run in

3 days?

If Samantha ran the same distance each day, how far

would she have run in 3 days?

Step 1: Draw and shade a tape diagram of the given

fraction. Step 2: Record the decomposition of the

fraction in three different ways using number

sentences.

Step 1: Draw and shade a tape diagram of the given

fraction. Step 2: Record the decomposition of the

fraction using number sentences.

Mrs. Silverstein bought 3 mini cakes for a birthday

party. She cuts each cake into quarters and plans to

serve each guest 1 quarter of a cake. How many

guests can she serve with all her cakes? Drawa

picture to support your response.

Mrs. Silverstein bought 3 mini cakes for a birthday

party. She cuts each cake into quarters and plans

to serve each guest 1 quarter of a cake. How

many guests can she serve with all her cakes?

Draw a picture to support your response.

Lexical Richness: Type

Token Ratio (Root TTR)

Difference <= �0.25

# Passages: 144

Jack said that if you take a number and multiply it by a

fraction, the product will always be smaller than

what you started with. Is he correct? Why or why

not? Explain your answer, and give at least two

examples to support your thinking.

Jack said that if you multiply a number by a fraction,

the result will always be smaller than the original

number. Is he correct? Why or why not? Explain

your answer, and give at least two examples to

support your thinking.

Mrs. Silverstein bought 3 mini cakes for a birthday

party. She cuts each cake into quarters and plans to

serve each guest 1 quarter of a cake. How many

guests can she serve with all her cakes? Drawa

picture to support your response.

Mrs. Silverstein bought 3 mini cakes for a birthday

party. If she cuts each cake into quarters, how

many guests can she serve each quarter of a cake?

She can serve up to 9 guests with all her cakes.

The teacher has 12 green stickers and 15 purple

stickers. Three students are given an equal number

of each colour sticker. How many green and purple

stickers does each student get?

The teacher has green and purple stickers. Three

students are given an equal number of green and

purple stickers. How many green and purple

stickers does each student get?

(Continues)
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overlap might find two texts different even though their content has

little difference at its core.

We saw that, on average, the AI engine improved the readability

of the text passages over various metrics as predicted by previous

studies. GPT-3 AI has been trained on a large amount of publicly avail-

able text on the internet, and this means that it has been given a lot of

text describing the concept of readability. To understand what is the

source of the work the AI engine is able to do, we need to probe it

with inputs that ask how the AI defines the readability. We asked the

question “How do you improve the readability of a math word prob-

lem?” to the AI, and at zero temperature configuration when output is

mostly the same on each run, the responses suggested breaking down

bigger sentences into smaller ones, avoiding using jargon, and using

visual aids. It is interesting to note here that the Few Shot Learning

condition's average performance on readability metric improvement

was more aligned with the directions of improvements predicted by

prior studies. Although, looking at the confidence intervals of the

effect sizes (in Table 9), we found that the Few Shot Learning condi-

tion's lower bound intersects with all other intervals. The prompt-

based conditions did not work as predicted in two metrics (Mean Sen-

tence Length in Tokens and Meaningfulness). This may be related to

the bias that AI already has about what readability means and how it

may be improved. GPT-3 model was also able togenerate the Flesch

Reading Ease formula when we prompted it with a text that asked it

to write down the formula. It is likely that web content on the older

methods to measure readability is available in higher quantities than

the more recent methods and approaches. In this case, AI's learnings

may be biassed against the latest research. We believe that to

improve the accuracy of our approach, the AI must be trained using

several hundred training examples created by experts. Prior studies

around automated simplification of educational texts have focused on

making reading passages easier to read (De Belder & Moens, 2010;

Rebello et al., 2019). One study by Nandhini and Balasundaram (2013)

focused on improving the readability of math word problems. The task

of automatically simplifying math word problems differs from other

automated simplification tasks mainly with respect to the size of the

input text. Typically, the input is short, which makes it difficult to use

measures like cohesion to measure text readability. In our analysis, we

found that the MTLD measure (Measure of Textual Lexical Diversity),

which has been found to be stable for shorter texts (Zenker &

Kyle, 2021), did not help us in finding good simplifications. The

method that we have used in our study is markedly different from

others with regard to its usability. Any individual with technical knowl-

edge of APIs can leverage the capabilities of GPT-3 AI. If the accuracy

of our approach can be improved by using training examples instead

of prompts or by discovering better prompts, educational content

authoring tools can embed the text simplification model into their sys-

tem with a moderate amount of software development work. Figure 3

below shows how any text AI-based simplification system can be used

in a real-world scenario.

A very important thing to note here is that the text AI will only be

able to provide suggestions, and we expect errors to be present.

Unless the AI system demonstrates an extremely high degree of accu-

racy, the simplification suggestions cannot be automatically used in

place of the original question text. Text AI engines generate the out-

put text by using sampling methods. This means that unlikely words

can appear in the output, and hence the output must be reviewed

before it is used in a real-world context.

The key limitation of our study is the absence of a dataset that

has training examples of simplifications that AI can learn from. There

is no publicly available dataset that has examples of math world prob-

lem simplifications. There are several benchmark datasets for text

TABLE 10 (Continued)

Readability metric and

filtering condition Input Simplification by GPT-3

Lexical Sophistication

Feature: Age of

Acquisition (LW Token)

Difference <= �1

# Passages: 108

Use the place value chart and arrows to show how the

value of each digit changes. The first one has been

done for you.

Write the number 123. Draw arrows to show how

the value of each digit changes. The first one has

been done for you.

A garden box has a perimeter of 27 feet. If the length

is 9 feet, what is the area of the garden box?

A garden box is 9 feet long and has a perimeter of

27 feet. What is the area of the garden box?

Find whole-number quotients of whole numbers with

up to four-digit dividends and two-digit divisors

using strategies based on place value, the properties

of operations, and/or the relationship between

multiplication and division. Illustrate and explain the

calculation by using equations, rectangular arrays,

and/or area models.

Find whole-number quotients of whole numbers

with up to four-digit dividends and two-digit

divisors using strategies based on place value, the

properties of operations, and/or the relationship

between multiplication and division.

F IGURE 3 An example system showing how a text-AI model can
assist question authors with item simplification suggestions
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simplification that contain pairs of difficult and simplified sentences.

We were not able to use these datasets for our task due to validity

concerns. For example, the Wikipedia simplification dataset has single

sentence inputs and outputs, which is unlike a typical math word

problem. If we validate our method with the Wikipedia dataset, the

results may not generalize to datasets of math word problems. Our

study also did not describe the extent to which we can expect the

readability metrics to improve. This was mainly due to the absence of

a benchmark dataset that contains educational content. If a dataset of

several hundred math word problems and their simplifications is cre-

ated by experts, it can be analysed to understand the extent to which

various readability metrics can improve when we try to improve read-

ability ourselves. These data points can be used as a threshold to iden-

tify highly relevant simplifications from the many that AI engines can

generate.

9 | CONCLUSION

In conclusion, we found GPT-3 AI capable of producing meaningful

simplifications of math word problems. On average, the readability

metrics saw improvement in expected directions from inputs to out-

puts. Our methods did not yield simplifications with high accuracy.

We used text similarity and readability measures to filter the noisy

outputs and identify useful outputs. The text similarity metrics were

particularly helpful in filtering out the noisy text. The useful simplifi-

cation we found could be shown to test creators as suggestions and

ideas for improvement at the time of question authoring. Our

approach is straightforward to implement in real-world scenarios

where question authoring happens in digital interfaces. To realize

the potential of text AI in improving assessment quality, we need to

create a publicly available dataset of word problem simplifications.

The benchmark dataset can train the AI and make it more accurate.

We believe that creating this dataset is the key next step to making

more progress in the direction of automated math world problem

simplification.

10 | OPEN-SOURCE DATA

To enable others to discover more interesting examples from the full

set, we are open-sourcing the data from our analysis. Our data con-

tains all input and output passages and all of the mentioned readabil-

ity and text similarity metrics. Link to data: https://doi.org/10.5281/

zenodo.6809166

11 | FUTURE WORK

The extension of our work will require the creation of a dataset that

has several hundred examples of how word problems can be simpli-

fied. This data can fine-tune the GPT-3 AI. We explored the Few Shot

capability of the model in this analysis, but GPT-3 now also provides a

fine-tuning API that can create a custom model for a specific task.

GPT-3 now provides text editing capabilities, where the engine

edits the provided text as per the instructions written in the prompt.

This capability can be used to contextualize educational texts and

make sure that the vocabulary used in the text is relevant to the stu-

dents. This can enable us to potentially adapt open-source curricula to

local contexts. Walkington et al. (2014) and Bernacki and Walkington

(2018) showed that incorporating students' out-of-school interests in

educational texts can affect their math learning. We can potentially

use automated text editing to generate content with motivating ele-

ments for the students.
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APPENDIX A

Human simplifications of 10 randomly selected problems. Total of

P = 11 simplifications (#6 was simplified twice).

APPENDIX B

Regular expression rules used to remove unformatted passages from

the EngageNY data sample.

# Word problem from EngageNY math curriculum Human simplified word problem

1 Luis uses square inch tiles to build a rectangle with a

perimeter of 24 inches. Does knowing this help him

find the number of rectangles he can build with an

area of 24 square inches? Why or why not?

You want to count all the ways to make 24 square

inch rectangles. You first make a 24 inch perimeter

rectangle with 1 square inch tiles. Will this help?

2 Fill in the missing whole numbers in the boxes below

the number line. Rename the whole numbers as

fractions in the boxes above the number line.

Write whole numbers in the boxes below the

number line. Write fractions equal to whole

numbers in the boxes above the number line.

3 Compare the perimeter of your tessellation to a

partner's. Whose tessellation has a greater

perimeter? How do you know?

Compare your pattern with someone else's pattern.

Which pattern has a longer perimeter?

4 Place the two fractions on the number line. Circle the

fraction with the distance closest to 0. Then

compare using >, <, or =. The first problem is done

for you.

Place the two fractions on the number line. Circle

the fraction closest to 0. Then compare the

fractions using >, <, or =. The first problem is done

for you.

5 Three rectangular prisms have a combined volume of

518 cubic feet. Prism A has one-third the volume of

Prism B, and Prisms B and C have equal volume.

What is the volume of each prism?

Total volume of three prisms is 518 cubic feet. Prism

A has one-third the volume of Prism B. Prisms B

and C have equal volume. What is the volume of

each prism?

RegEx (used in stringr R package) Description

\{j\} Curly braces and pipes

\j Pipes

[0-9]+\s+[0-9]+\s+[0-9]+ Three numbers with spaces between them

[[:punct:]] [[:punct:]] Two punctuations with a space between them

[[:punct:]]{2} Two consecutive punctuations

[[:punct:]]{3} Three consecutive punctuations

[a-z]; [a-z] Semicolon with spaces and characters around it

\. \. Two full stops

[a-zA-Z] = [a-zA-Z] Equal to sign surrounded by characters

; Semicolon surrounded by spaces

NOT([\.?!]$) Excerpt has to end with a full stop, question mark, or an exclamation sign, if not, it is removed

[1-5]\.[0-9A-Z]+\.[0-9]+ Common Core Standard codes

[0-9][a-zA-Z][0-9] Number-character-number

[0-9][A-Za-z] Number followed by a character without a space

[A-Za-z][0-9] Character followed by a number without a space

[^0-9A-Za-z] Anything non alpha-numeric with spaces around it

=[0-9A-Za-z] No character after the equal to sign
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