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ORIGINAL ARTICLE

Nonadditive best-worst method: Incorporating criteria interaction using
the Choquet integral

Yingying Lianga , Yanbing Jua, Yan Tub and Jafar Rezaeic

aSchool of Management and Economics, Beijing Institute of Technology, Beijing, PR China; bSchool of Safety Science and
Emergency Management, Wuhan University of Technology, Wuhan, PR China; cFaculty of Technology, Policy and Management,
Delft University of Technology, Delft, the Netherlands

ABSTRACT
The best-worst method (BWM) is a multicriteria decision-making (MCDM) method to derive
the relative importance (weight) of a set of criteria used to evaluate a set of alternatives.
Several models (e.g., nonlinear, linear, Bayesian, and multiplicative) have been developed to
find the weights based on the provided pairwise comparisons, conducted among the crite-
ria, by the decision-maker(s)/expert(s). The existing BWM models, however, do not handle
interactions that might exist between the criteria encountered in a decision problem. In this
study, a nonadditive BWM is developed that considers possible interactions between the cri-
teria. To this end, we use the Choquet integral, one of the most widely accepted techniques,
to incorporate criteria interactions. A nonlinear optimization model is introduced to minimize
the maximum deviation of the obtained weights from the provided pairwise comparisons,
considering the information about the interactions between the criteria. We then introduce
a linear variant of the nonadditive BWM and discuss its property compared to the nonlinear
model. The applicability of the proposed approach is demonstrated through a real-world
case study of a battery-powered electric vehicle (BEV) selection problem.
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1. Introduction

In a multicriteria decision-making (MCDM) prob-
lem, the relative importance (weight) of criteria
plays an important role in evaluating, selecting, sort-
ing, and ranking alternatives. In recent decades, sev-
eral methods have been developed to infer criteria
weights using the preferences of a decision-maker/
expert, such as the analytic hierarchy process (AHP)
(Saaty, 1977), the analytic network process (ANP)
(Saaty, 1990), the simple multiattribute rating tech-
nique (SMART) (Edwards, 1977), the Swing method
(von Winterfeldt & Edwards, 1986), and Tradeoff
(Keeney & Raiffa, 1976). The focus of this study is
the best-worst method (BWM), which was proposed
by Rezaei (2015). It is a pairwise comparison-based
method that requires a decision-maker/expert to
conduct pairwise comparisons between the criteria
considering two reference points (best: the most
important criterion, and worst: the least important
criterion). This structure has several advantages
including higher data efficiency, higher consistency,
mitigation of anchoring bias (Rezaei, 2020, 2022),
and equalising bias (Rezaei et al., 2022).

Since its introduction, several extended versions
of the method have been introduced in the literature
(Brunelli & Rezaei, 2019; Kheybari et al., 2021;
Rezaei, 2016; Safarzadeh et al., 2018). In the original

BWM (Rezaei, 2015), the criteria weights are
obtained by means of a nonlinear optimization
model, which might result in multiple optimal solu-
tions. Rezaei (2016) introduced a linear BWM
model, which maintains the main idea of the ori-
ginal BWM and reduces the computational com-
plexity. With the aid of the same idea, a
multiplicative model of BWM was presented
(Brunelli & Rezaei, 2019). To handle multicriteria
group decision-making problem, a Bayesian BWM
was introduced, and further, a credal ranking
method was adopted to yield the ranking of criteria
weights described by probability distributions
(Mohammadi & Rezaei, 2020). In addition,
Safarzadeh et al. (2018) presented a group BWM
using two optimization models, which considered
the weights of experts, discourse power, and back-
ward feedback for criteria weights.

The BWM has been integrated with several other
MCDM methods including Technique for Order
Preference by Similarity to an Ideal Solution
(TOPSIS) (Askarifar et al., 2018), VlseKriterijuska
Optimizacija I Komoromisno Resenje (VIKOR)
(Gupta, 2018), and TODIM (an acronym in
Portuguese of interactive and multipleattribute deci-
sion making) method (Nie et al., 2022). The original
BWM and its extensions have been used widely,
such as for supplier selection (Lajimi et al., 2021),
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hybrid vehicle engine selection (Hafezalkotob et al.,
2020), project management (Liu et al., 2021), tech-
nology acceptance and return management in
apparel e-commerce (Kalpoe, 2020), and initial
water rights allocation (Xu et al., 2021). For more
applications, refer to Mi et al. (2019).

The original BWM and all its extensions impli-
citly assume no interdependence between criteria.
Nevertheless, in some practical decision-making
problems, preferential independence among criteria
may be debatable, i.e., criteria are often interdepend-
ent, redundant, or complementary (Grabisch, 1996;
Keeney & Raiffa, 1976), which cannot be effectively
managed by existing BWM models. For example, a
customer would like to purchase a car and she/he
needs to consider multiple criteria including price,
maximum power, and oil consumption. In this case,
these three criteria are often related, price and max-
imum power positively interact, and price and oil
consumption negatively interact. This implies that
the combined weight of price and maximum power
might be greater than the sum of weights of these
two criteria considered individually and that the
combined weight of price and oil consumption
might be smaller than the sum of weights when
considered separately. Criteria interactions, i.e., non-
additive relations, affect criteria relative importance.
Namely, the relative importance of a criterion is a
function of the capacity of criterion alone as well as
the capacity of all its interactions with the
other criteria.

To handle the phenomenon of criteria inter-
action, many nonadditive integral-based methodolo-
gies have emerged, such as the Choquet integral
(Choquet, 1953) and the Sugeno integral (Sugeno,
1974). The Choquet integral is regarded as an effect-
ive and widespread approach to manage criteria
interactions and has been integrated with other
MCDM methods such as the robust ordinal regres-
sion (Arcidiacono et al., 2020) and stochastic multi-
objective acceptability analysis (SMAA) (Zhao et al.,
2022). It is often modelled by fuzzy measures con-
sidering weights of criteria alone and their subsets.
To make BWM handle the criteria interactions, this
study introduces a novel BWM-based method, called
the nonadditive BWM that incorporates criteria
interactions described by Shapely value (Shapley,
1953) employing a 2-additive fuzzy measure
(Grabisch, 1997). To determine criteria relative
importance, a nonlinear optimization model is for-
mulated based on input pairwise comparisons and
relationships among criteria interactions. To rank
the alternatives, the Choquet integral (Choquet,
1953) is adopted to evaluate their performances.
Hence, the contributions of this study are summar-
ised as follows:

1. A novel criterion weight elicitation method, i.e.,
nonadditive BWM, is developed to handle crite-
ria interaction. Based on the optimal criteria
weights and the criteria interaction degrees,
alternatives are ranked using Choquet integral.
The developed model is nonlinear and could
result in multiple optimal solutions.

2. To acquire a unique optimal solution, i.e., crite-
ria weights and criteria interaction degrees, a
linear model of nonadditive BWM is developed.

3. Both nonlinear and linear nonadditive BWM
are applied to a real-world problem to illustrate
the feasibility and effectiveness of the models.
The results are also compared to the ones
obtained by existing BWM models.

The remainder of this paper is organised as fol-
lows. Section 2 briefly introduces the basics of the
original BWM. Section 3 provides an overview of
the basic knowledge of the Choquet integral and its
advantages. Section 4 presents a nonadditive BWM
to obtain the optimal criteria relative importance,
alongside the Choquet integral to consider interac-
tions among the criteria. A linear model of nonaddi-
tive BWM is proposed in Section 5. Section 6
demonstrates a real-world application for a new-
energy vehicle selection problem and provides the
comparative analysis to illustrate the effectiveness of
our proposal. Finally, Section 7 presents research
conclusions and points out some future directions.

2. Best-worst method

The BWM is a simple and practical approach with a
strong theoretical background for solving MCDM
problems. One of the main advantages of BWM is
the use of two criteria references (the most import-
ant: best, and the least important: worst) to make
two pairwise comparison vectors. These two vectors
are used as input for an optimization model, which
can effectively reduce the number of pairwise com-
parisons. In what follows, we introduce the main
steps of the original BWM (Rezaei, 2015).

Step 1. A criteria set C ¼ cj, j ¼ 1, 2, :::, nf g is pro-
vided by the decision-maker/expert.

Step 2. The best (e.g., the most important) criterion,
cB, and the worst (e.g., the least important) criter-
ion, cW , are identified from the set C by the deci-
sion-maker/expert.

Step 3. The decision-maker/expert conducts pairwise
comparisons to compare the best criterion to other
criteria using a number from 1 to 9, where 1 means
“equally important” and 9 means “extremely
more important”. Namely, a Best-to-Others vector
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BO ¼ ðaB1, aB2, :::, aBnÞ needs to be provided by the
decision-maker/expert.

Step 4. Similarly, the decision-maker/expert gives
the pairwise comparisons for other criteria to the
worst criterion using a number from 1 to 9,
denoted as an Others-to-Worst vec-

tor OW ¼ ða1W , a2W , :::, anWÞT :
Step 5. Based on the collected pairwise comparison
vectors, a model is established to minimize the

maximum absolute differences wB
wj
� aBj

��� ��� and

wj

wW
� ajW

��� ��� for j ¼ 1, 2, :::, n, where the criteria

weights need to satisfy sum-to-one and nonnega-
tivity constraints as follows:

min max
j

wB

wj
� aBj

����
����, wj

wW
� ajW

����
����

( )

s:t:
Pn

j¼1 wj ¼ 1;
wj � 0, j ¼ 1, 2, :::, n:

�
8>>><
>>>:

(1)

Model (1) can be transformed into the following
equivalent model:

min n

s:t:

wB

wj
� aBj

����
���� � n, j ¼ 1, 2, :::, n;

wj

wW
� ajW

����
���� � n, j ¼ 1, 2, :::, n;Pn

j¼1 wj ¼ 1;
wj � 0, j ¼ 1, 2, :::, n:

8>>>>>><
>>>>>>:

8>>>>>>>><
>>>>>>>>:

(2)

Solving model (2) results in the optimal n ¼ n�:
The model generates a unique solution for fully
consistent pairwise comparison systems or problems
with fewer than four criteria regardless of the con-
sistency of the pairwise comparisons.

To check the consistency of the provided pairwise
comparisons, two types of consistency ratios are
developed: the input-based consistency ratio and the
output-based consistency ratio. The former provides
immediate feedback for the consistency of the given
pairwise comparisons and the latter measures the
veracity of the obtained optimal weights and the
input pairwise comparisons.

The input-based consistency ratio CRI (Liang
et al., 2020) is defined by

CRI ¼ max
j

CRI
j , (3)

where CRI
j shows the consistency level under criter-

ion cj using

CRI
j ¼

aBj � ajW � aBW
�� ��
ðaBWÞ2 � aBW

, aBW > 1;

0, aBW ¼ 1:

8><
>: (4)

The output-based consistency ratio CRO (Rezaei,
2015) is defined as

CRO ¼ n�

CI
, (5)

where the fixed values of CI for different values of
aBW are shown in Table 1.

The smaller CRI and CRO are, the higher the
consistency is. For checking the acceptability of the
consistency of the pairwise comparison system, we
can use the thresholds for input-based consistency
ratio or output-based consistency ratio, respectively,
from Tables 3 and 4 of Liang et al. (2020).

3. Basic definitions and advantages of the
Choquet integral

In this part, we first introduce some basic know-
ledge concerning the Choquet integral and then dis-
cuss the advantages of the Choquet integral when
criteria interactions exist in MCDM problems.

3.1. Basic definitions of the Choquet integral

Consider an MCDM problem where we have q
alternatives ap, p ¼ 1, 2, :::, q, n criteria cj, j ¼
1, 2, :::, n, and the score of the alternative ap under
the criterion cj is gjðapÞ: The decision-maker
employs the personalised value function to convert
the evaluation score gjðapÞ into the normalized value
vðgjðapÞÞ: The weights of the criteria are wj, j ¼
1, 2, :::, n, where wj � 0 and

Pn
j¼1 wj ¼ 1: The goal

is to select an alternative that has the best overall
performance. Usually, an additive value function is
adopted to make a choice, where VðapÞ describes
the overall value of ap as follows:

V
�
apÞ ¼

Xn

j¼1
wjvðgjðapÞÞ: (6)

The additive value function performs well when
the criteria are mutually preferentially independent.
However, in some practical problems, criteria inter-
actions might exist, implying that an assumption of
additivity is not always true (Keeney & Raiffa, 1976;
Wakker, 1989). To cope with criteria interaction,
the Choquet integral is introduced.

Definition 1. (Choquet, 1953) For a criteria set C ¼
cj, j ¼ 1, 2, :::, nf g, a capacity is defined as a set

function l : 2C ! ½0, 1� on the power set 2C, where
the following properties should be satisfied for the
set of all subsets of C :

Table 1. Consistency index (CI) in original BWM
(Rezaei, 2015).
aBW 1 2 3 4 5 6 7 8 9

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23
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i. (Boundary) lð;Þ ¼ 0 and lðCÞ ¼ 1;
ii. (Monotonicity) S � T � C, l Sð Þ � l Tð Þ:

For convenience, the M€obius representation is often
employed as an equivalent transformation (Grabisch
et al., 2000). The M€obius representation of the capacity
l on 2C is the function m : 2C ! R, for all T �
C, l Tð Þ ¼ P

S2T mðSÞ and the M€obius representation

can be obtained by m Tð Þ ¼ P
S2T ð�1Þ Tj j�jSj

l Sð Þ, for all T � C:

Definition 2. (Choquet, 1953) The Choquet inte-
gral-based performance of the alternative ap, p ¼
1, 2, :::, q is defined as follows:

Cl

�
apÞ ¼

Xn

j¼1
vðg jð ÞðapÞÞ � vðg j�1ð ÞðapÞÞ
� �

l cjð Þ, :::, cnð Þ� �� �h i
(7)

¼
X
T2C

m Tð Þmin
cj2T

vðgjðapÞÞ,

where g jð ÞðapÞ is the score of the alternative ap under

the criterion cj, vðg jð ÞðapÞÞ is the normalized value

of g jð ÞðapÞ, the subscript ð	Þ represents the criteria

order such that vðg 0ð ÞðapÞÞ � vðg 1ð ÞðapÞÞ � 	 	 	
� vðgðnÞðapÞ) and vðg 0ð ÞðapÞÞ ¼ 0:

In general, when using the Choquet integral,
2C � 2 parameters l Tð Þ, T � C need to be deter-
mined, except T ¼ ; ðl ;ð Þ ¼ 0Þ and T ¼
C ðl Cð Þ ¼ 1Þ: As specifying of all parameters is
cognitively difficult, the k-additive capacity is
defined (Grabisch, 1997). If m Tð Þ ¼ 0 for all T �
C, such that Tj j > k and 9T � C, Tj j ¼ k,
m Tð Þ 6¼ 0, then the capacity is k-additive. Indeed,
the 2-additive capacity is enough to describe the cri-
teria interaction. The 2-additive capacity, l can be
described by the M€obius representation (Rota,
1964):

lj ¼ mj, cj 2 C; (8)

lij ¼ mi þmj þmij, ci, cj 2 C and i 6¼ j; (9)

lðTÞ ¼
X
ci2T

mi þ
X

ci, cj2T
mij

¼
X

ci, cj2T
lij � Tj j � 2ð Þ

X
ci2T

mi,T � C and jTj > 2;

(10)

where lð cjf gÞ is simplified as lj, lð ci, cjf gÞ is sim-

plified as lij, mð cjf gÞ is denoted as mj and

mð ci, cjf gÞ is written as mij for convenience.

Thus, the Choquet integral-based performance of
alternative ap based on the 2-additive capacity can

be given by

Cl

�
apÞ ¼

X
cj2C

mjv
�
g jð Þ

�
apÞÞ

þ
X
ci, cj2C

mij min vðg ið ÞðapÞÞ, vðg jð ÞðapÞÞ
� �

: (11)

The properties of a capacity can be equivalently
described by the M€obius representation:

i. (Boundary) mð;Þ ¼ 0 and
P

cj2CmjþP
ci, cj2Cmij ¼ 1;

ii. (Monotonicity) mj þ
P

ci2Tmij � 0, 8j ¼ 1, 2,

:::, n and T � C cjf g,T 6¼ ;; where mj �
0, j ¼ 1, 2, :::, n:

3.2. Advantages of the Choquet integral

To illustrate the relative importance of criteria inter-
action, we provide a practical example to reveal the
limitations of inappropriately assuming independ-
ence among criteria.

Example 1. Consider a car selection problem where
a customer would like to make a choice from four
qualified cars a1, a2, a3, and a4, based on three
criteria, c1 : price (in ten hundred dollars), c2 :
engine performance (weak, great, or perfect), and
c3 : oil consumption (litre per 100 km). The value
of each alternative under each criterion is supposed
according to its performance as shown in Table 2.
Assuming that this customer adopts the additive

value function
P3

j¼1 wjvðgjðapÞÞ to give the prior-

ities, where gjðapÞ represents the score of ap under
the criterion cj, with its normalized value of
vðgjðapÞÞ, wj 2 ½0, 1� is the weight of criterion cj
and

P3
j¼1 wj ¼ 1:

Suppose that based on the preferences of the
decision-maker and considering the interactions
between the criteria we found w1 ¼ 0:692,w2 ¼
0:231, w3 ¼ 0:077, l1 ¼ 0:757, l2 ¼ 0:295, l3 ¼
0:021, l12 ¼ 0:868, l13 ¼ 0:834, l23 ¼ 0:372, and
l123 ¼ 1 (for more details see Example 2). Using the
additive value function in Equation (6) and the
Choquet integral in Equation (7), the performances
of the four considered cars are given in Table 2. We
observe that a2 is superior to a1 when using the
additive value function, but a1 is superior to a2
when using the Choquet integral. Indeed, for two
cheaper cars, a1 and a2, a1 is preferred to a2
because a1 has lower oil consumption. Hence, the
result might be counter-intuitive when the decision-
maker adopts the additive value function.
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The additive value function is based on the assump-
tion that criteria are mutually preferentially independent.
This assumption means that linear compensation rela-
tionships exist among the criteria. In other words, if
alternative ap is worse than af under the criterion ci,
then, it can be proportionally offset by af being superior
to ap under another criterion cj: Obviously, it is difficult
to distinguish these two alternatives, and it even causes
contradictions in some situations. In Example 1, c1 and
c2 are redundant, c1 and c3 are synergistic, and c2 and
c3 are synergistic. The combined weights of c1 and c2
together should be less than the sum of their weights
alone, and the combined weights of c1 and c3 and that
of c2 and c3 should be greater than the sum of their
corresponding weights alone. Therefore, it is necessary to
analyse the criteria interaction to determine the relative
importance of the criteria and further evaluate the per-
formance of alternatives in MCDM problems.

4. Nonadditive BWM

In this section, to derive the relative importance of the
criteria considering their potential interdependence, a
new version of BWM is developed. The steps are
as follows:

Step 1. A criteria set, C ¼ cj, j ¼ 1, 2, :::, nf g, is pro-
vided by the decision-maker/expert.

Step 2. The most important/preferred criterion, best,
cB, and the least important/preferred criterion,
worst, cW , are selected and pairwise comparisons
are conducted using scores from 1 to 9 by the
decision-maker/expert. The preferences for the best
criterion over other criteria are denoted in a Best-
to-Others vector, BO ¼ ðaB1, aB2, :::, aBnÞ: Similarly,
the preferences for other criteria over the worst
criterion are denoted in an Others-to-Worst vec-

tor, OW ¼ ða1W , a2W , :::, anWÞT :
Step 3. The criteria interactions are provided by the
decision-maker/expert. In this study, the 2-additive
fuzzy measure is adopted to portray criteria interac-
tions, which not only retains the nonadditive charac-
teristics but also has low computational complexity.

In practice, the decision-maker provides the qualita-
tive assessments for the relationships among the cri-
teria, such as positive, negative, no interaction, or
unknown, which can be given using the criteria
interaction matrix, D ¼ ðtijÞn�n as follows:

c1 c2 	 	 	 cn

D ¼
c1
c2
..
.

cn

= t12 	 	 	 t1n
t21
..
.

= 	 	 	
..
. . .

.
t2n
..
.

tn1 tn2 	 	 	 =

2
6664

3
7775, (12)

where tij 2 þ, � ,D, ưf g, i 6¼ j, i, j ¼ 1, 2, :::, n is
employed to give the redundant and synergistic rela-
tionships among criteria, “þ” means two criteria
interact positively, “�” means negative interaction
between the two criteria, D means no interaction and
ư means the decision-maker is unknown to the inter-
action relationship. tij ¼ tji, i 6¼ j, i, j ¼ 1, 2, :::, n,
i.e., T is constructed as a symmetric matrix.
Without loss of generality, in this step, we use

the 2-additive fuzzy measure to model criteria inter-
actions. For each pair of criteria ci, cj 2 C, i 6¼
j, i, j ¼ 1, 2, :::, n, the degree of criteria interaction
Iij, i 6¼ j, i, j ¼ 1, 2, :::, n is positive, negative, null
(zero) or belonging to ½�1, 1�: Therefore, the degree
of criteria interaction Iij satisfies

Iij > 0, if tij ¼ þ;
Iij < 0, if tij ¼ �;
Iij ¼ 0, if tij ¼ D;
Iij 2 ½�1, 1�, if tij ¼ ư:

8>><
>>: (13)

Owing that Iij ¼ Iji, i 6¼ j, i, j ¼ 1, 2, :::, n, we only
consider Iij, i < j; i, j ¼ 1, 2, :::, n:

The criteria interaction Iij is equivalent to the
M€obius representation mij :

Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, n: (14)

Then the relative importance of the criterion cj, i.e.,
Ij, can be formulated by means of the Shapely value
(Shapley, 1953) for the 2-additive fuzzy measure as fol-
lows:

Ij ¼ mj þ
X

ci2C cjf g
mij

2
, j ¼ 1, 2, :::, n: (15)

Step 5. The relative importance of the criteria is
obtained such that the maximum absolute differ-
ence between the provided pairwise comparisons

and their associated weight ratios IB
Ij
� aBj

��� ��� and

Table 2. The features of considered cars.
Cars c1 c2 c3 vðg1 akð ÞÞ vðg2 akð ÞÞ vðg3 akð ÞÞ Additive value function Choquet integral

a1 20 Great 5 0.9 0.5 0.75 0.796 0.822
a2 20 Perfect 7 0.9 0.75 0.50 0.835 0.803
a3 50 Great 5 0.5 0.5 0.75 0.519 0.505
a4 50 Perfect 7 0.5 0.75 0.50 0.558 0.574

Table 3. BO and OW pairwise comparison vectors.
BO c1 c2 c3
Best criterion: c1 1 3 9
OW Worst criterion: c3
c1 9
c2 3
c3 1
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Ij
IW

� ajW
��� ��� for all j are minimized as follows:

minmax
j

IB
Ij
� aBj

����
����, Ij

IW
� ajW

����
����

( )

s:t:

mð;Þ ¼ 0;
X
cj2C

mj þ
X

ci, cj2C
mij ¼ 1;

mj þ
X
ci2T

mij � 0, i, j ¼ 1, 2, :::, n andT � Cn cjf g,T 6¼ ;;
Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, n;

Ij ¼ mj þ
X

cj2Cn cif g

mij

2
, i 6¼ j, i, j ¼ 1, 2, :::, n;

Iij> 0, if tij ¼ þ, i< j, i, j ¼ 1, 2, :::, n;
Iij< 0, if tij ¼ �, i< j, i, j ¼ 1, 2, :::, n;
Iij ¼ 0, if tij ¼ D, i< j, i, j ¼ 1, 2, :::, n;
Iij 2 �1, 1½ �, if tij ¼ u', i< j, i, j ¼ 1, 2, :::, n:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(16)

Model (16) can be equivalently transferred into
model (17):

minn

s:t:

mð;Þ ¼ 0;
X
cj2C

mj þ
X

ci, cj2C
mij ¼ 1;

mj þ
X
ci2T

mij � 0, i, j ¼ 1, 2, :::, n andT � C cjf g,T 6¼ ;;
Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, n;

Ij ¼ mj þ
X

ci2C cjf g

mij

2
, i 6¼ j, i, j ¼ 1, 2, :::, n;

IB
Ij
�aBj

����
���� � n, j ¼ 1, 2, :::, n;

Ij
IW

�ajW

����
���� � n, j ¼ 1, 2, :::, n;

Iij > 0, if tij ¼ þ, i< j, i, j ¼ 1, 2, :::, n;
Iij < 0, if tij ¼ �, i< j, i, j ¼ 1, 2, :::, n;
Iij ¼ 0, if tij ¼ D, i< j, i, j ¼ 1, 2, :::, n;
Iij 2 �1, 1½ �, if tij ¼ u', i< j, i, j ¼ 1, 2, :::, n:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(17)

Similar to Rezaei (2016), we could show that model
(17) (excluding the last four constraints of criteria inter-
actions) has always a solution. For instance, Ij ¼ mj ¼
1
n , Iij ¼ mij ¼ 0, i, j ¼ 1, 2, :::, n, i 6¼ j, and n ¼
aBW � 1 is a feasible solution. Considering the last four
constraints of model (17) (the criteria interaction con-
straints), it is possible that the model leads to infeasibil-
ity. In that case, one can employ the method suggested
by Mousseau et al. (2003) to determine the minimal set
of preference information which can be the basis for
modification for the decision-maker to remove the
incompatibility among the criteria interaction con-
straints. The CI values (see Table 1) are the maximum
values of the n (Rezaei, 2015), which demonstrates that
the objective function of model (17) is bounded.
According to Weierstrass’ Theorem (Borwein & Lewis,
2005), model (17) must exist at least one opti-
mal solution.

Model (17), in case of compatibility among the crite-
ria interaction constraints, like the original BWM, may
result in a unique optimal solution or multiple optimal
solutions. If model (17) has a unique optimal solution,

the decision-maker obtains the optimal criteria relative
importance and criteria interaction degrees. Otherwise,
the decision-maker can select an arbitrary solution
from the set of optimal solutions provided that the
sum of the selected weights is 1.

Owing that the input pairwise comparisons may
not satisfy the consistency requirement, we need to
check the acceptability of the consistency ratio.
Nonadditive BWM uses input-based consistency
ratio to judge whether input information meets the
thresholds that are provided by Liang et al. (2020).
We could also check the output consistency ratio
using Equation (5) with the thresholds reported in
Liang et al. (2020).

In what follows, we provide Example 2 as an
illustration.

Example 2. Considering Example 1, the decision-
maker provides pairwise comparisons shown in
Table 3. The criteria interaction matrix D ¼ ðtijÞ3�3

is given by virtue of Equation (12) as follows:

c1 c2 c3

D ¼
c1
c2
c3

=
�
þ

�
=
þ

þ
þ
=

2
4

3
5:

Based on the given matrix D, we have the criteria
interaction relationships as follows:


 Price (c1) and engine performance (c2) have
negative interaction (t12 ¼ �);


 Price (c1) and oil consumption per 100 km (c3)
have positive interaction (t13 ¼ þ);


 Engine performance (c2) and oil consumption
per 100 km (c3) have positive interaction
(t23 ¼ þ).

The proposed optimization model in Equation
(17) is employed to derive the criteria relative
importance and the car rankings. According to the
two pairwise comparison vectors in Table 3 pro-
vided by the decision-maker, we establish the fol-
lowing optimization model:

minn

s:t:

m1 þm2 þm3 þm12 þm13 þm23 ¼ 1;
m1 þm12 þm13 � 0;
m2 þm12 þm23 � 0;
m3 þm13 þm23 � 0;
I1 ¼ m1 þ 0:5m12 þ 0:5m13;
I2 ¼ m2 þ 0:5m12 þ 0:5m23;
I3 ¼ m3 þ 0:5m13 þ 0:5m23;
I1
I2
� 3

����
���� � n;

I1
I3
� 9

����
���� � n;

I2
I3
� 3

����
���� � n;

I12 < 0; I13 < 0; I23 > 0;
I12 ¼ m12; I13 ¼ m13; I23 ¼ m23:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(18)
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Solving this model, we have n� ¼ 0, I1¼
0:692, I2¼ 0:231, I3¼ 0:077,m1¼ 0:757,m2¼ 0:295,
m3¼ 0:021, m12¼�0:185,m13¼ 0:056, m23¼ 0:055:
Based on the relationships between the fuzzy measure
and the M€obius representation, the fuzzy measure is
obtained by virtue of Equations (8)–(10) as l1 ¼
0:755, l2 ¼ 0:295, l3 ¼ 0:021, l12 ¼ 0:868, l13 ¼
0:834, l23 ¼ 0:372, l123 ¼ 1: Hence, the perform-
ance of four cars is calculated using the Choquet inte-
gral shown in Table 2. This decision result is in line
with the preferences of the decision-maker, a1 is
superior to a2 and a4 is superior to a3, which verifies
the effectiveness of our method.

In an MCDM problem, supposing that there are
an alternative set, A ¼ ap, p ¼ 1, 2, :::, qf g, and crite-
ria set, C ¼ cj, j ¼ 1, 2, :::, nf g, the performance of
the alternative ap under the criterion cj is denoted
as gjðapÞ: Considering that different criteria have
various measurement scales, we need to normalize
the original performance. There are various
approaches to do this, such as using value functions
(Keeney & Raiffa, 1976, Rezaei, 2018), or normaliza-
tion formulas, such as the following commonly used
one:

v gj apð Þð Þ ¼
gjðapÞ�lj
hj � lj

, if cj is a benefit criterion;

hj�gjðapÞ
hj � lj

, if cj is a cost criterion;

8>>><
>>>:

(19)

where vðgjðapÞÞ is the normalized value of gjðapÞ:
hj and lj, respectively, show the predefined max-
imum and minimum scores under the criterion cj
across the whole set of alternatives given by the
decision-maker to ensure vðgjðapÞÞ 2 ½0, 1�:

The Choquet integral of ap can be obtained by
Equation (11). The ranking of alternatives can be
given by comparing ClðapÞ, p ¼ 1, 2, :::, q and the
larger ClðapÞ means the more preferred alternative
ap: Notably, if there exists a unique solution for cri-
teria weights and criteria interaction degrees, then
the final ranking of alternatives can be obtained in
virtue of this solution. If there exist multiple solu-
tions, then we can derive the priority of alternatives
using Monte Carlo Approach (Mohammadi &
Rezaei, 2021) or SMAA in the optimal space
(Lahdelma et al., 1998).

5. A Linear model of nonadditive BWM

As discussed in Section 4, the proposed nonadditive
BWM may result in a unique optimal solution or
multiple optimal solutions. In this section, we present
a model which results in a unique solution. The

model minimizes the maximum absolute differences
IB � aBjIj
�� �� and Ij � ajWIW

�� �� for all j as follows:
minmax

j
IB � aBjIj
�� ��, Ij � ajWIW

�� ��n o

s:t:

mð;Þ ¼ 0;
X
cj2C

mj þ
X

ci, cj2C
mij ¼ 1;

mj þ
X
ci2T

mij � 0, i, j ¼ 1, 2, :::, n andT � Cn cjf g,T 6¼ ;;
Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, n;

Ij ¼ mj þ
X

cj2Cn cif g

mij

2
, i 6¼ j, i, j ¼ 1, 2, :::, n;

Iij > 0, if tij ¼ þ, i< j, i, j ¼ 1, 2, :::, n;
Iij < 0, if tij ¼ �, i< j, i, j ¼ 1, 2, :::, n;
Iij ¼ 0, if tij ¼ D, i< j, i, j ¼ 1, 2, :::, n;
Iij 2 �1, 1½ �, if tij ¼ u', i< j, i, j ¼ 1, 2, :::, n:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(20)

Model (20) can be equivalently transferred into a
linear model (21):

minn

s:t:

mð;Þ ¼ 0;
X
cj2C

mj þ
X

ci, cj2C
mij ¼ 1;

mj þ
X
ci2T

mij � 0, i, j ¼ 1, 2, :::, n andT � C cjf g,T 6¼ ;;
Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, n;

Ij ¼ mj þ
X

ci2C cjf g

mij

2
, i 6¼ j, i, j ¼ 1, 2, :::, n;

IB�aBjIj � n, j ¼ 1, 2, :::, n; IB�aBjIj � �n, j ¼ 1, 2, :::, n;
Ij�ajWIW � n, j ¼ 1, 2, :::, n; Ij�ajWIW � �n, j ¼ 1, 2, :::, n;
Iij > 0, if tij ¼ þ, i< j, i, j ¼ 1, 2, :::, n;
Iij < 0, if tij ¼ �, i< j, i, j ¼ 1, 2, :::, n;
Iij ¼ 0, if tij ¼ D, i< j, i, j ¼ 1, 2, :::, n;
Iij 2 �1, 1½ �, if tij ¼ u', i< j, i, j ¼ 1, 2, :::, n:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(21)

It is easy to demonstrate that the coefficient matrix
and its augmented matrix of model Equation (21) are
both full rank. Hence, the proposed linear nonadditive
BWM has a unique optimal solution. Solving the model
using a standard optimization package, we obtain the
optimal criteria weights and the criteria interaction
degrees. If the decision-maker wants to rank alternatives,
then the performance of alternatives can be evaluated
using Equation (11) on the basis of the calculated result.

6. A real-world application

In this section, the empirical application of the nonaddi-
tive BWM is given using the purchase of new energy
vehicles. We first provide the research background and
then illustrate the considered criteria and data gathering.
Following the steps in the proposed methodology, the
main computational results are provided. Furthermore,
comparative analysis is implemented to verify the practi-
cality and feasibility of the proposed approach.

6.1. Criteria determination and data collection

Currently, to reduce oil consumption and carbon diox-
ide emissions, the trend for worldwide vehicle
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technology development is towards saving energy and
protecting the environment. For this purpose, many
countries are developing energy-saving and new-energy
vehicles that mainly include two types: battery-powered
electric vehicles (BEVs) and plug-in hybrid electric
vehicles (PHEVs). According to the research of global
electric vehicle (EV) market, Canalys estimates that 6.5
million electric vehicles (EVs) were sold in 2021 all
over the world (see https://www.canalys.com/news-
room/global-electric-vehicle-market-2021 for more
detail). Meanwhile, over 3.2 million EVs were sold in
Mainland China in 2021, which accounts for 50 percent
of global EVs sales, 2 million more than in 2020. From
data reported by Intelligent Electric Vehicle
Professional Committee of China Electronics Chamber
of Commerce (see http://www.cecc.org.cn/car for more
detail), in 2021, 2.36 million BEVs were sold, which

occupies 11.37% of new energy vehicles sales.
Therefore, there is a trend towards selecting a BEV for
an ordinary resident. To actively respond to country’s
call and satisfy the life demands, a customer (decision-
maker) plans to purchase a BEV considering a budget
of 150–300 thousand RMB. Because the number of
passengers who will use the selected car is greater than
4 and less than 7, this customer wants to select a BEV
from these five types: compact car (CC), small car
(SC), compact sports utility vehicle (CSUV), small
sports utility vehicle (SSUV), and medium sports utility
vehicle (MSUV). According to the consumer satisfac-
tion report about China’s new energy vehicles in 2020
and customers’ purchase intention studies, eight criteria
are measured over three dimensions as shown in Table
4. The customer would like to consider the full list of
criteria for the assessment. From each manufacturer,

Table 5. Set of new-energy vehicles and their values for the considered criteria.
Number Name Type Manufacturer c1 c2 c3 c4 c5 c6 c7 c8
a1 Ciimo X-NV 2020 (Dian che) SSUV DONGFENG HONDA 17.98 14.09 9 120 401 140 53.6 12
a2 Encino 2020 Top (Yue xiang) SSUV BEIJING- HYUNDAI 19.88 13.8 10.5 150 500 170 64.2 10
a3 E-HS3 2019 CSUV FAW-HONGQI 22.58 16 12 114 407 160 52.5 10
a4 Audi-Q2L e-tron 2019 (Zhi xiang) SSUV FAW-AUDI 23.73 13.9 17 100 265 150 39.7 10
a5 Chevrolet-Changxun 2020(Xing yu) CC SHANGHAI GM 17.99 13.1 8 110 410 150 52.5 10
a6 Xpeng G3 2020 520i (Zu xiang) CSUV XPENG 19.98 14.1 5.5 145 520 170 66.5 10
a7 Volkswagen 2020 (Chi Pro) CSUV FAW-VOLKSWAGEN 16.88 13.6 5 100 270 150 40 12
a8 Aion V2020 80 max CSUV GAC NE 23.96 14.8 9.5 135 600 175 80 15
a9 GE3 2020 530 (Zun xiang) SSUV GAC NE 18.08 13.6 8 132 410 165 48.39 10
a10 Buick-Velite 6 2020 (Zhi xiang) Plus CC SHANGHAI GM 18.98 13.1 8 110 410 150 52.5 10
a11 Leapmoter S01 2019 380 Pro SC LEAPMOTOR 13.99 11.9 6 125 305 135 35.6 12
a12 Aiways U5 2019 Pro MSUV AIWAYS 24.79 13.8 10.5 140 503 160 65 15
a13 E-Golf 2018 CC VOLKSWAGEN IMPORT 24.08 13.6 5 100 255 150 35.8 12
a14 Bora 2020 (Shang) Pro CC FAW-VOLKSWAGEN 14.68 13.6 5 100 270 150 40 12
a15 Toyota C-HR EV2020 (Zun gui tian chuang) SSUV GAC TOYOTA 24.98 13.1 6.5 150 400 160 54.3 10
a16 Territory EV2019 (Xing ling) CSUV JMC 22.3 14.9 6.8 120 360 150 49.14 10
a17 Leopaard CS9 2019 (Feng shang) SSUV LEOPAARD 20.58 14.56 8 90 360 130 50.38 10
a18 Honda VE-1 2020 (Hao hua) SSUV GAC HONDA 17.98 14 9 120 401 140 53.6 10
a19 Auchan X7 EV2020 (Ling hang) 405 CSUV CHANGAN 17.99 14.9 9 150 405 160 59.9 12
a20 Peuguot e2008 2020 3 D (Zhen shang) SSUV DONGFENG MOTOR 18.8 14.5 8 120 360 150 45.24 10
a21 Venucia T60EV 2020 AI (Qi jian) SSUV DONGFENG MOTOR 18.18 14.7 6.8 120 442 125 60.7 12
a22 Neta 2020 520 U CSUV HOZON MOTOR 19.98 14.6 10 150 500 155 68 12

Table 4. Identified dimensions, criteria, and explanation.
Dimensions Criteria Explanation

Economic performance Price/thousand RMB (c1) Manufacturer’s suggested retail price (MSRP) is a price
standard set by automobile manufacturers to avoid
price competition among dealers and reduce
service level

100 km power consumption/kwh (c2) The amount of electric energy consumed by electric
vehicles driving 100 kms

Automobile
performance

Slow charging time/h (c3) The charging interface of the AC charging pile, the
wand that converts AC into DC through the charger
inside the car, and then the completed charging after
battery input

Maximum power of the
electric motor/kw (c4)

The maximum power at which it can operate normally
for a long time under rated voltage

Pure electric range of MIIT/km (c5) The longest driving range of BEV or PHEV under battery
energy and comprehensive working conditions

Max speed/km/h (c6) The speed a car can reach on a good level road surface
is the speed at which the driving resistance and
driving force are balanced on a flat road with
no wind

Battery capacity/kwh (c7) The amount of electricity released by the battery under
certain conditions (discharge rate, temperature,
termination voltage, etc.)

Service availability Warranty kilometres/10
thousand km (c8)

Vehicle warranty means that all kinds of parts are
replaced free of charge when it is confirmed that
they are not damaged by human beings but by
quality problems
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the values for 22 considered BEVs (data from https://
www.maiche.com) are collected: economic data, auto-
mobile performance data, and service availability data,
which are specified in Table 5.

To better analyze the performance of these new-
energy cars, a customer uses a professional consultation
about the relationships among criteria in this field. The
criteria interaction matrix is shown as follows:

D ¼

c1 c2 c3 c4 c5 c6 c7 c8

c1
c2
c3
c4
c5
c6
c7
c8

=

þ
u0

�
�
�
�
D

þ
=

D

þ
þ
D

D

D

u0

D

=

D

D

D

�
D

�
þ
D

=

�
�
D

D
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þ
D

�
=

D
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D
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D

D
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D

=

D

D
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D

�
D

�
D

=

D

D

D

D

D

D

D

D

=

2
666666666666664

3
777777777777775

:

6.2. Criteria relative importance

Based on the gathered information given in Section
6.1, the decision-maker adopts the nonadditive
BWM and its linear model to make a selection.
First, the reference levels under each criterion are
given in Table 6, without loss of generality, v lj

� � ¼
0 and v hj

� � ¼ 1: Then, the original data are trans-

formed into normalized values using Equation (19).
Following the steps of the nonadditive BWM, the

decision-maker first determines the best criterion c1
and the worst criterion c8 based on personal preferen-
ces. Then, pairwise comparisons are provided based
on these two reference criteria shown in Table 7. For
the given input pairwise comparisons, the input-based
consistency ratio is computed as 0.0694 using
Equations (3) and (4), which is less than its associated
threshold of 0.3620 (see Table 3 in Liang et al. (2020)
for the combination of 8 criteria and 9 scale). Hence,
the consistency of input pairwise comparisons satisfies
the requirement. Based on Equation (17), we establish
the following optimization model:

minn

s:t:

mð;Þ ¼ 0;
X
cj2C

mj þ
X

ci, cj2C
mij ¼ 1;

mj þ
X
ci2T

mij � 0, i, j ¼ 1, 2, :::, 8 andT � Cn cjf g,T 6¼ ;;

Iij ¼ mij, i 6¼ j, i, j ¼ 1, 2, :::, 8; Ij ¼ mj þ
X

cj2Cn cif g

mij

2
, i, j ¼ 1, 2, :::, 8;

I1
I2
� 3

����
���� � n;

I1
I3
� 4

����
���� � n;

I1
I4
� 7

����
���� � n;

I1
I5
� 3

����
���� � n;

I1
I6
� 6

����
���� � n;

I1
I7
� 3

����
���� � n;

I1
I8
� 9

����
���� � n;

I2
I8
� 3

����
���� � n;

I3
I8
� 3

����
���� � n;

I4
I8
� 2

����
���� � n;

I5
I8
� 2

����
���� � n;

I6
I8
� 2

����
���� � n;

I7
I8
� 3

����
���� � n;

I12> 0; I13 2 �1, 1½ �; I14 < 0; I15 < 0; I16 < 0; I17 < 0; I18 ¼ 0;
I23 ¼ 0; I24 > 0; I25 > 0; I26 ¼ 0; I27 ¼ 0; I28 ¼ 0; I34 ¼ 0;
I35 ¼ 0; I36 ¼ 0; I37 < 0; I38 ¼ 0; I45 < 0; I46 < 0; I47 ¼ 0;
I48 ¼ 0; I56 ¼ 0; I57 < 0; I58 ¼ 0; I67 ¼ 0; I68 ¼ 0; I78 ¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Solving this model, we obtain the optimal value
n� ¼ 0:5714, and further the output-based

consistency ratio is 0.1093, which is less than its
associated threshold of 0.4587 (see Table 4 in Liang
et al. (2020)). Hence, the pairwise comparisons are
sufficiently consistent. Owing that the optimal solu-
tions are not unique, we choose a Pareto optimality,
namely I1 ¼ 0:3766, I2 ¼ 0:123, I3 ¼ 0:1087, I4 ¼
0:0586, I5 ¼ 0:1054, I6 ¼ 0:0637, I7 ¼ 0:123, I8 ¼
0:041, I12¼ 0:0518, I13 ¼�0:2118, I14 ¼�0:0607,
I15 ¼�0:0781, I16 ¼�0:0464, I17 ¼�0:0809, I18 ¼
0, I23 ¼ 0, I24 ¼ 0:0853, I25 ¼ 0:0685, I26 ¼ 0, I27 ¼
0, I28 ¼ 0, I34 ¼ 0, I35 ¼ 0, I36 ¼ 0, I37 ¼�0:0027,
I38 ¼ 0, I45 ¼�0:0482, I46 ¼�0:0339, I47 ¼ 0, I48 ¼
0, I56 ¼ 0, I57 ¼�0:0591, I58 ¼ 0, I67 ¼ 0, I68 ¼ 0,
I78 ¼ 0, m1 ¼ 0:5897, m2 ¼ 0:0203, m3 ¼ 0:2158,
m4 ¼ 0:0873, m5 ¼ 0:1639, m6 ¼ 0:1039, m7 ¼ 0:1943,
m8 ¼ 0:0410: Based on the feasible space, we employ
SMAA to derive the ranking of alternatives using
1000 random optimal solutions, and the result is
shown in Figure 1. The ranking of alternatives is
a11 � a14 � a7 � a13 � a5 � a17 � a10 � a21 � a20 � a9
� a18 � a1 � a16 � a4 � a19 � a15 � a6 � a2 � a22 � a3
� a12 � a8: Consequently, the final new-energy pur-
chase is a11 Leapmoter S01 2019 380 Pro.

Using the linear nonadditive BWM, we obtain
the optimal solution as I1 ¼ 0:3645, I2 ¼
0:1308, I3 ¼ 0:0981, I4 ¼ 0:0561, I5 ¼ 0:1122, I6 ¼
0:0654, I7 ¼ 0:1308, I8 ¼ 0:0421, I12 ¼ 0:0435, I13 ¼
0:1340, I14¼�0:0787, I15¼�0:1257, I16¼ �0:0563,
I17 ¼ �0:0521, I18 ¼ 0, I23 ¼ 0, I24 ¼ 0:1109, I25 ¼
0:0709, I26 ¼ 0, I27 ¼ 0, I28 ¼ 0, I34 ¼ 0, I35 ¼ 0,
I36 ¼ 0, I37 ¼�0:1009, I38 ¼ 0, I45 ¼�0:0516, I46 ¼
�0:0253, I47¼0, I48¼0, I56¼0, I57¼�0:0315, I58¼
0, I67 ¼ 0, I68 ¼ 0, I78 ¼ 0, m1 ¼ 0:4322,m2 ¼ 0:0182,
m3¼0:0816,m4¼0:0784, m5¼0:1811, m6¼0:1062,
m7¼0:2231,m8¼0:0421: The ranking of alterna-
tives using this linear model is a11�a14�a7�a5�
a13�a18�a10�a9�a17�a1�a21�a20�a4�a19�
a16�a6�a2�a22�a15�a3�a12�a8: From the
computational results of nonadditive BWM and its
linear model, we can find that the difference of cri-
teria weights is no more than 0.0267 and the rank-
ing difference of alternatives is no more than 3.
Based on both nonlinear and linear models, the
optimal alternative is a11:

Table 6. Reference levels for considered criteria.
Reference level c1 c2 c3 c4 c5 c6 c7 c8
lj 10 10 4 80 240 120 25 8
hj 30 17 18 160 635 190 85 17

Table 7. Pairwise comparison vectors of best-to-others and
others-to-worst.
Pairwise comparisons c1 c2 c3 c4 c5 c6 c7 c8
Best criterion c1 1 2 4 7 3 6 3 9
Worst criterion c8 9 3 3 2 2 2 3 1
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6.3. Comparative analysis

To verify the effectiveness of nonlinear and linear
nonadditive BWM, we compare them with the two
existing variants of BWM: nonlinear BWM (Rezaei,
2015), and linear BWM (Rezaei, 2016), to obtain the
weights of criteria and further employ additive value
function to prioritise alternatives. In nonlinear
BWM (Rezaei, 2015), without loss of generality, the
centers of the optimal weight intervals of criteria are
regarded as the final representative weights of crite-
ria. Solving the same problem in subsection 5.2 with
these four methods, we find that the criteria weights
obtained by different methods have little difference.
Specifically, the maximum difference is 0.0267 for
criterion c2 and the differences for criteria
c1, c3, c5, c6, c8 are less than 0.02.

Furthermore, to observe the ranking variation of
alternatives obtained by various methods, the com-
parative results are provided in Figure 2. We find

that the best and worst alternatives are identical in
these methods, i.e., a11 and a8: There are some
identical rankings for a7, a8, a12, a14 and little rank-
ing differences for other alternatives. We can find
that a20 have the maximum ranking difference, i.e.,
a20 ranks 12th in linear nonadditive BWM and lin-
ear BWM, 5th in existing additive BWM-based
methods. This is because the alternative a20 has
poor performance in terms of criteria c1 and c2,
and these two criteria have larger weights and c1 has
negative interactions with c3, c4, c5, c6, c7: Besides, a13
has big ranking difference, i.e., a13 ranks 4th in non-
additive BWM and 9th using nonlinear BWM. The
reason why the proposed method leads to higher
ranking is that a13 has good performances under the
criteria c3, c4, c5, and c7, which brings about big
contribution in negative interaction for c3 and c7,
c4 and c5, c5 and c7: Additionally, the ranking dif-
ferences of other alternatives are no more than 3.
The comparative result manifests that the

Figure 1. Ranking of alternatives in the optimal solution space.

Figure 2. Comparison of ranking of alternatives using different methods.
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nonadditive BWM and the linear nonadditive BWM
are effective to derive the criteria weights and fur-
ther derives the ranking of alternatives using the
Choquet integral.

7. Conclusions and future research

In this paper, we present a nonadditive BWM incor-
porating criteria interaction. The nonadditive BWM
is developed using a nonlinear programming model,
which yields the optimal criteria relative importance
and degrees of criteria interaction. To rank the
alternatives, the Choquet integral is adopted to
aggregate the performance of alternatives and the
result of nonadditive BWM. To obtain the unique
optimal solution, we provide a linear model of non-
additive BWM. Eventually, the proposed nonaddi-
tive BWM and its linear model are applied to a
new-energy vehicle selection problem to illustrate its
effectiveness and practicality. Comparative analysis
is conducted to illustrate the advantages of the pro-
posed nonadditive BWM and linear nonaddi-
tive BWM.

The nonadditive BWM is a significant extension
of the original BWM, where criteria interactions are
considered. While the extended BWM in our study
could be used for selection and ranking problems,
developing an extension for sorting problems could
be considered as an interesting direction for
future research.
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