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A B S T R A C T

Viscoelasticity and roughness are among the possible causes of the adhesive hysteresis displayed
by soft contacts. Viscoelasticity causes an increased effective work of adhesion due to stiffening
of the contact, while roughness is responsible for elastic instabilities. Herein, we explore
the interplay between viscoelasticity and roughness by simulating in two dimensions the
retraction of a rigid cylinder, with wavy surface profile, from a viscoelastic half-space. The
wave amplitude and length are varied to induce instabilities in the load–to–area response,
while the retraction velocity is increased to promote viscoelasticity. Results show that, in the
regime where viscoelasticity is confined to the edges of the wavy contact, the contributions
of viscoelasticity and waviness to adhesive hysteresis are nearly independent and additive. At
low retraction rates, the instabilities in the load-area curve typical of rough elastic contacts are
suppressed by viscoelasticity: the contact stiffens to promote a stable decrease of the contact
area with load. This occurs with a minimal change in work of adhesion. However, when the
instantaneous limit is met at high retraction rates, mechanical instabilities appear.

. Introduction

Soft material adhesive contact occurs in a large variety of engineering applications that include automotives (Tiwari et al.,
021); aerospace (Chizhik et al., 2020); nano-engineering (Neupane et al., 2021); robotics (Coulson et al., 2022); bio-medics (Jeong
t al., 2015); and, bio-engineering (Mazzotta et al., 2020). A critical aspect of soft contacts is that they display adhesive hysteresis,
.e., contact deformation is mechanically reversible, yet energetically irreversible. Adhesive hysteresis is commonly observed as a
arger intimate contact area during normal retraction, than during indentation. Predicting and controlling adhesive hysteresis is
aramount in the design, and for the operation of the aforementioned engineering applications. However the origins as well as the
hysical mechanisms behind adhesive hysteresis in rough adhesive contacts are at present ill understood (Johnson, 2000; Lin and
ui, 2002; Lorenz et al., 2013; Popov, 2021; Papangelo and Ciavarella, 2021b). The sources of adhesive hysteresis in soft contacts are
umerous and intertwined, and include viscoelasticity (Lorenz et al., 2013; Tiwari et al., 2017), elastic instabilities (Guduru, 2007;
hu et al., 2021), chemical irreversibility related to the formation and destruction of bonds at the contacting surfaces (Chen et al.,
991; Chaudhury et al., 1996), and surface roughness (Carbone et al., 2015; Dalvi et al., 2019). Herein, we will neglect chemistry
nd focus on mechanics only. More specifically, we aim to elucidate the effect of roughness on adhesive viscoelastic hysteresis, as
t is still unclear (Kesari et al., 2010; Baek et al., 2017; Greenwood, 2017; Dorogin et al., 2017; Deng and Kesari, 2019).
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Adhesion causes energetically irreversible mechanical behaviour even when contact is smooth and elastic: the load–displacement
urve obtained during indentation differs from the one obtained upon retraction (Ciavarella et al., 2017, 2019; Wang et al., 2021),
s the jump–in and –out of contact occur at different loads. This implies that energy is dissipated during the indentation–retraction
ycle. When the contact is rough, the elastic response and hysteresis change (Ciavarella et al., 2017). Guduru (2007) showed that
n wavy, elastic contacts the equilibrium load–area curve is characterized by oscillations that lead to unstable elastic jumps. These
umps occur at larger loads during indentation than during retraction. As a result, adhesion increases upon separation of the surfaces,
nd the pull-off load is larger than in smooth contact (Guduru, 2007), i.e. one finds additional roughness–induced dissipation. The
heory proposed by Guduru is limited to contact with a simply connected contact area, and is validated experimentally by Guduru and
ull (2007) and numerically by Carbone et al. (2015). Kesari and Lew (2011) extended Guduru’s theory (Guduru, 2007) to include
eneral contact roughness, and predicted hysteresis in agreement with the experimental results by Kesari et al. (2010). Evidence that
mall–scale roughness enhances the pull–off load is provided as well in Fuller and Tabor (1975), Briggs and Briscoe (1977), Fuller
nd Roberts (1981), and justified by Persson and Tosatti (2001) who attributed it to the increase in surface area and therefore
ntimate contact area between realistic rough surfaces. The theories on elastic rough contacts often show some disagreement
ith experimental observations. This is generally attributed to the presence of viscoelastic effects in experiments (Greenwood and

ohnson, 1981; Chaudhury et al., 1996; Vaenkatesan et al., 2006; Lorenz et al., 2013; Tiwari et al., 2017; Violano and Afferrante,
019; Violano et al., 2022). A characteristic that distinguishes hysteresis due to viscous loss from hysteresis due to surface roughness
s that the former is rate–dependent (Waters and Guduru, 2010).

Viscous dissipation plays a significant role even when the indentation and retraction rates are small compared to the material
haracteristic frequencies, as experimentally verified by Chaudhury et al. (1996), Lorenz et al. (2013), Tiwari et al. (2017),
nd Violano and Afferrante (2019), and later inferred theoretically by Papangelo and Ciavarella (2021b). The time–dependent
ehaviour for slow retraction is due to a high stress rate near the edges of intimate contact, which are therefore often treated
s opening cracks (Gent and Petrich, 1969; Gent, 1971; Gent and Schultz, 1972). Recent numerical analyses (Van Dokkum
t al., 2021; Afferrante and Violano, 2022; Müser and Persson, 2022) have confirmed that the predictions of the models by
reenwood (Greenwood, 2004) and Persson and Brener (Persson and Brener, 2005), based on crack propagation analyses, are
ccurate. It is customary to treat the increased adhesion caused by viscosity as an effective work of adhesion that increases with
rack–tip velocity. The crack–tip analyses (Gent and Petrich, 1969; Gent, 1971; Gent and Schultz, 1972; Greenwood, 2004; Persson
nd Brener, 2005) are correct provided that retraction rates are lower than or close to the materials characteristic frequencies (Van
okkum et al., 2021; Afferrante and Violano, 2022).

Very recently, much attention was dedicated to the study of the pull-off load in smooth, adhesive viscoelastic contacts (Violano
nd Afferrante, 2022a; Das and Chasiotis, 2021; Ciavarella, 2021b; Jiang et al., 2021), as pull-off is a measure of dissipation. When
hort-ranged adhesion is considered, the Gent and Schultz assumption (Gent and Petrich, 1969; Gent, 1971; Gent and Schultz,
972) holds, i.e. viscous dissipation is confined to the edges of contact (Afferrante and Violano, 2022). However, viscoelastic
tiffening tends to promote long-ranged adhesive behaviour as shown by Ciavarella (2021b), Van Dokkum et al. (2021), Müser and
ersson (2022), and Violano and Afferrante (2022a). This readily rationalizes by considering that the Maugis parameter, which
s typically used to assess whether an adhesive elastic contact is long– or short–ranged, depends on the elastic modulus. In a
iscoelastic contact, the Maugis parameter is thus not a constant but a variable that decreases while the modulus departs from the
elaxed limit (Van Dokkum et al., 2021). When the instantaneous limit is approached adhesion stops being short-ranged and departs
rom JKR–theory (Johnson et al., 1971). Müser and Persson (2022) show that when smooth cylinders are retracted at high rates
issipation is not limited to the contact edges, and with a decrease in radius and an increase in instantaneous moduli, the jump–out
f contact transitions from crack–propagation to ‘‘quasi–uniform’’ bond breaking. Afferrante and Violano (2022), and Violano and
fferrante (2022a) find through a finite element analysis that marked viscous dissipation in the bulk of the material occurs when
nloading from an ‘‘unrelaxed’’ state or when adhesion is long-ranged. According to their results (Afferrante and Violano, 2022;
iolano and Afferrante, 2022a,b), the upper bound of the pull-off load depends on the Maugis parameter (Ciavarella, 2021b).

Despite the assumption by Gent and Petrich (1969), Gent (1971), and Gent and Schultz (1972) can break down for high retraction
ates, it is at the basis of various studies on non–smooth viscoelastic adhesive contacts, that include wavy (Ciavarella and Papangelo,
021), patterned (Papangelo and Ciavarella, 2021a) and multi–asperity (Violano et al., 2021b,c) roughness. The results indicate that,
n the presence of viscoelasticity (Violano et al., 2021b,c) at low retraction rates, roughness increases the pull–off load (negligibly
ccording to some authors (Violano et al., 2021b,c), significantly according to others (Papangelo and Ciavarella, 2021a; Ciavarella
nd Papangelo, 2021)). Whether this happens at high retraction rates as well, is more controversial (Ciavarella and Papangelo, 2021;
apangelo and Ciavarella, 2021a). Similarly, it is still unknown how surface roughness affects the dependence of the pull–off load
n the maximum applied load (Violano et al., 2021c).

Herein, we aim at contributing to a better understanding of the interplay between roughness, viscoelasticity and adhesion
y means of a simple two–dimensional numerical model, which has the strength that the rate-dependent dissipation is an
mergent behaviour. As such, no assumption is made on whether adhesion is short or long–ranged. The model builds on the work
y Van Dokkum and Nicola (2019), and Van Dokkum et al. (2021), who study the indentation and retraction of a smooth, rigid
ylinder from a viscoelastic half-plane by means of Green’s function molecular dynamics (Prodanov et al., 2014). To simplify the
roblem, roughness is modelled as a single wave superimposed on the profile of a rigid cylinder retracting from the viscoelastic
alf–plane. By changing retraction speed from different initial loads, we track the contact area and compute the pull–off load for
arious wave amplitudes and lengths. Also, by contrasting elastic and viscoelastic simulations we verify an interesting speculation
ecently made by Papangelo and Ciavarella (2021a) and Ciavarella and Papangelo (2021), namely that viscoelasticity ‘‘effectively
2

ampens’’ (Ciavarella and Papangelo, 2021) the roughness–induced elastic instabilities.
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Fig. 1. A rigid indenter with radius 𝑅 in contact with a viscoelastic substrate for an applied load 𝑤. Adhesion is controlled by the interaction length 𝛿max. The
image is stretched in the 𝑧–direction for clarity.

2. Problem definition

The problem considered in this work is the retraction of a rigid, wavy, infinitely long, cylindrical indenter from a viscoelastic
half–plane, as represented schematically in Fig. 1. First, we indent the substrate elastically, with the relaxed effective modulus 𝐸∗

0 ,
up to a maximum load 𝑤max. This is equivalent to indenting a viscoelastic substrate and prescribing an infinite waiting time, so the
substrate fully relaxes after indentation, but computationally tractable. Subsequently, the indenter is retracted by reducing the load
at a constant rate �̇�, where the overdot ∙̇ indicates the derivative of ∙ with respect to the dimensional time 𝑡.

The cylindrical indenter, which is assumed to be much stiffer than the substrate, has a profile

ℎ(𝑥, 𝑡) = ℎ0(𝑡) +
𝑥2

2𝑅
− 𝐴 cos

(

2𝜋𝑥
𝜁

)

, (1)

where the first term characterizes a rigid body translation, the second the profile of a Hertzian cylinder with radius 𝑅 and the third
a sinusoidal waviness, superimposed on the cylindrical profile, with amplitude 𝐴 and wavelength 𝜁 . As shown in Fig. 1, the phase
of the wave is chosen such that a minimum resides at the centre of the contact (i.e., at the position 𝑥 = 0). A phase shift changes
the contact mechanical response (Waters et al., 2009), however, herein we do not explore the effects of such changes.

The substrate is assumed to be initially flat and semi–infinite. The material is taken to be incompressible (with a Poisson’s
ratio 𝜈 = 1∕2) and viscoelastic in shear. As in all contact mechanics problems, the effective modulus is given by 𝐸∗ = 2𝜇∕(1 − 𝜈2),
where 𝜇 is the shear modulus. For simplicity, the viscoelastic behaviour is modelled by means of the Zener model
(Marques and Creus, 2012). Hence, the creep function of the equivalent elastic modulus is

𝐸∗ (𝑡) = 𝐸∗
0 +

(

𝐸∗
∞ − 𝐸∗

0
)

𝑒−
𝑡
𝜏 , (2)

here 𝐸∗
0 is the relaxed effective modulus, that characterizes the response when the deformation rate �̇� ∼ 0; 𝐸∗

∞ the instantaneous
effective modulus, that characterizes the response in the limit �̇� → ∞; and, 𝜏 the relaxation time. It should be noted that the literature
is not consistent with their definition and in some other works, e.g. Greenwood and Johnson (1981), 𝐸∞ denotes the relaxed modulus
and 𝐸0 the instantaneous one. Moreover, the terms adiabatic and glassy are used to indicate the relaxed and instantaneous states,
particularly in the materials sciences literature.

The Dugdale–Maugis model (Dugdale, 1960; Maugis, 1992) is used to describe the adhesive interaction between the indenter
and the (visco)elastic substrate. This model (Dugdale, 1960; Maugis, 1992) specifies an adhesive traction 𝜎a whenever the gap
between the two bodies, 𝑔 (𝑥, 𝑡), is positive but smaller than or equal to the interaction length 𝛿max. This leads to a work of
adhesion 𝛥𝛾0 = 𝜎a𝛿max. For elastic cases, it has been shown that the choice of the adhesion model has marginal effects on the results,
e.g. Müser (2014). Viscoelastic materials are potentially more sensitive to this choice. Here, we select the simplest adhesion model,
and leave for future investigation the effect that specific adhesion models might have on the results. Interpenetration is prevented
through a hard-wall constraint. In summary, the following conditions describe the interfacial interaction:

𝑔 (𝑥, 𝑡) = 0, 𝑝 (𝑥, 𝑡) < 𝜎a, intimate contact;
0 <𝑔 (𝑥, 𝑡) ≤ 𝛿max, 𝑝 (𝑥, 𝑡) = 𝜎a, adhesive zone;

𝑔 (𝑥, 𝑡) > 𝛿max, 𝑝 (𝑥, 𝑡) = 0, out of contact,
(3a)

with the gap

𝑔(𝑥, 𝑡) = ℎ (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) , (3b)

where 𝑢 (𝑥, 𝑡) indicates the displacements of the (visco)elastic substrate. The normal pressure at the interface is indicated by 𝑝 (𝑥, 𝑡).
By convention, pressure is defined positive when compressive. The contact area 𝑎c is defined as the area in intimate contact where
the gap 𝑔(𝑥, 𝑡) = 0.

The problem is studied by controlling the load rate �̇� (𝑡) = 𝜕
𝜕𝑡 ∫ 𝑝 (𝑥, 𝑡) d𝑥 at the contact and the rigid body movement (ℎ0(𝑡)) is
3

n output.
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Herein, we focus mostly on short-ranged adhesion, for which the JKR theory applies (Johnson and Greenwood, 2008). This is a
ommon choice, considering that experimental evidence shows that the JKR theory applies to many rubbery materials (Chaudhury
t al., 1996; Baney and Hui, 1997; Waters and Guduru, 2010; Lorenz et al., 2013; Tiwari et al., 2017). Moreover, this choice ensures
hat our results compare with the analytical work by Guduru (2007). Short-ranged adhesion is achieved by selecting large values for
he relaxed Maugis parameter, 𝜆0 = 𝛥𝛾0

(

𝑅∕𝐸∗
0
2𝛥𝛾0

)1∕3
∕𝛿max, as we show in the following. Also, herein, we limit our attention to

mall length–scale roughness to ensure that the small–slope approximation holds. Finally, we restrict the analysis to a slow retraction
ate with the aim of concentrating viscous dissipation near the edges of contact. This regime is studied intensively in recent times
oth experimentally by Waters and Guduru (2010), Lorenz et al. (2013), Tiwari et al. (2017), Ciavarella and Papangelo (2021)
nd analytically by Ciavarella (2021a,b). We emphasize, however, that the model is applicable to long–ranged adhesion and high
etraction rates as well.

. Numerical method

The numerical model adopted is the one presented by Van Dokkum and Nicola (2019), which employs the Green’s Function
olecular Dynamics (GFMD) technique and discrete Fourier transform to achieve an efficient algorithm. The GFMD technique

s a boundary–element method that permits one to reduce the dimensionality of the problem such that only the profile of the
ubstrate is explicitly discretized and modelled. At each temporal increment of the retraction of the cylinder, the equilibrium normal
isplacement of the profile is found by means of the following relation in Fourier space:

�̃� (𝑞, 𝑡) + 𝜏 ̇̃𝑝 (𝑞, 𝑡) = −8|𝑞|
(

𝐸∗
0 �̃� (𝑞, 𝑡) + 𝜏𝐸∗

∞
̇̃𝑢 (𝑞, 𝑡)

)

, (4)

oupled to the imposed boundary conditions. Here, the overscript tilde ∙̃ indicates the Fourier transform of ∙, with the wavenumber 𝑞.
he procedure to derive Eq. (4) is presented in Van Dokkum and Nicola (2019) and involves solving first the elastic problem and then
sing the correspondence principle to translate the results to the viscoelastic case. Finally, the resulting equation is particularized
o the Zener model described by the equivalent elastic modulus given in Eq. (2). The reader is referred to Van Dokkum and Nicola
2019) for further details. The only modification made with respect to the model presented in Van Dokkum and Nicola (2019) is
hat adhesion is here implemented using a first–order approximation in the gap, in a manner similar to that presented by Medina
nd Dini (2014).

As shown in Van Dokkum and Nicola (2019), Eq. (4) is integrated in the time domain semi–analytically within each constant,
imensional time–step 𝛥𝑡. We thus avoid storing the whole history of normal pressures and displacement, which is necessary for
direct numerical integration. Each dimensionless time–step 𝛥𝑡, the position (Störmer–)Verlet algorithm (Störmer, 1912) is used

o compute, through damped dynamics, the new normal displacement of the equispaced nodes 𝑛𝑥 that discretize the profiles. The
eriodic width 10𝑅 ≤ . The pseudo–code of the algorithm is given in Appendix A. The convergence analysis is performed for both
he spatial and temporal discretizations, 𝑛𝑥 and 𝛥𝑡, respectively, and the results are provided in Appendix B.

We note that the relation between normal pressure 𝑝 and displacement 𝑢, given in Eq. (4), becomes degenerate at the
entre–of–mass mode, 𝑞 = 0. This well–known issue in two-dimensional contact mechanics makes the centre–of–mass displacement,
�̃� (𝑞 = 0), undefined (see Johnson, 1985). Hence, the approach between the two surfaces cannot be trivially defined and is not used
n the following.

. Wavy elastic contacts

We first consider the retraction of a wavy, adhesive, infinitely long cylinder from an elastic half–plane, which serves as a means
f comparison for the retraction from a viscoelastic substrate. Herein, we include as reference also the analytical solution to the
ame problem as presented by Guduru (2007). He provides a relation between the contact area 𝑎c and the load 𝑤 for short–ranged

adhesion. This relation, expressed in terms of the dimensionless variables presented in Appendix C, reads

�̄� = 𝜋
4
�̄�2c −

√

2𝜋�̄�c + 𝜋𝛼�̄�cJ1

(

2𝜋�̄�c
𝛽

)

, (5a)

with the normalized amplitude and wavelength,

𝛼 = 𝜋𝐴𝐸∗

𝜁

(

𝑅
(𝐸∗)2 𝛥𝛾

)1∕3
; and, 𝛽 = 𝜁

(

𝐸∗

𝑅2𝛥𝛾

)1∕3
, (5b)

respectively, where J1 is the first Bessel function of order one. The first two terms on the right-hand side of Eq. (5a) correspond with
he two-dimensional JKR solution (see e.g. Chaudhury et al., 1996; Johnson and Greenwood, 2008) and the third one incorporates
he effect of waviness. The normalized amplitude 𝛼 and normalized wavelength 𝛽 are measures of the amplitude and frequency

of the load–area oscillations. Note that, while 𝛽 is also the normalized wavelength of the waviness, its dimensionless amplitude
is 𝛼∕ (𝜋𝛽). Guduru’s original solution expresses this third term through an infinite sum, that we evaluate. Also, herein, we use different
dimensionless parameters than those presented in Guduru (2007), to include the length scale of the adhesive interaction 𝛿max.
The term 𝜋𝐴𝐸∗∕𝜁 in the normalized amplitude 𝛼 corresponds to the pressure amplitude that results from flattening a wave with
amplitude 𝐴 and wavelength 𝜁 (Johnson et al., 1985), and is multiplied with a cubed–root term that considers adhesion. The
load–area curves defined by Eq. (5) are shown in Fig. 2 with dotted lines for the normalized amplitudes 𝛼 = 0, 0.37, 1.46
nd 5.87 in Fig. 2(a), and normalized wavelengths 𝛽 = 0, 0.47, 1.87 and ∞ in Fig. 2(b); the maximum normalized load is
4
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Fig. 2. Load-Area curves for (a) the normalized amplitudes 𝛼 = 0, 0.37, 1.46 and 5.87, and (b) the normalized wavelengths 𝛽 = 0, 0.47, 1.87 and ∞. The
maximum normalized load �̄�max = 20. The dotted lines indicate Guduru’s solution (5), the dashed and solid lines the numerical results for indentation ( ̇̄𝑤 < 0)
and retraction (0 < ̇̄𝑤), respectively, and the arrows indicate unstable jumps.

�̄�max = 𝑤max∕
(

𝑅𝐸∗
0𝛥𝛾

2
0
)1∕3 = 20. In Fig. 2(a), both indentation (dashed lines) and retraction paths (solid lines) are shown; in

Fig. 2(b), only the retraction paths are presented. In the limiting case of 𝛼 ∼ 0, the ball is smooth and the JKR-solution, indicated
by the dotted red line in Fig. 2, is recovered.

In Fig. 2(a), the analytical curves are contrasted to the numerical results, indicated by solid and dashed lines and obtained using
the method in Section 3. For low values of normalized amplitude 𝛼 = 0.37 (blue lines), the load-area response oscillates only slightly
around the JKR–solution. As the normalized amplitude 𝛼 increases to 1.46 (green dotted, solid and dashed lines), negative load–area
slopes appear on the analytical curves (green and orange dotted lines). Guduru’s solution (5) gives all static equilibrium positions.
However, the trajectories with negative slope are unstable and hence inaccessible to the numerical solution and can neither be
reached by a real system. Once a given local minimum in load is reached during retraction, an unstable jump occurs, as indicated
by arrows that connect two stable static equilibria. During indentation, these jumps occur when the load reaches a local maximum.
In this way, waviness leads to additional hysteresis, provided that the normalized amplitude 𝛼 is large enough. Eventually, when
he normalized amplitude 𝛼 = 5.87 (orange lines), the numerical solution deviates completely from Guduru’s analytical solution.
his is because Guduru’s analysis assumes that the contact area is simply connected. At large normalized amplitudes, however, this
ssumption is violated as the contact only occurs at the minima of the waviness. Hence, Guduru’s solution is no longer applicable.

In Fig. 2(b), the load–area curves during retraction are presented for the normalized wavelengths 𝛽 = 0.47 and 1.87. As expected,
he role of the normalized parameter 𝛽 is to change the wavelength of the load–area oscillations and thus to change the frequency
f the unstable jumps. These become sparser with increased normalized wavelength 𝛽. In particular, instabilities disappear when
∼ 0 because the contact is smooth. Also, in the limit 𝛽 → ∞, the elastic jumps are so numerous and short that a response that

esembles a smooth contact is recovered.
Guduru’s solution is valid in the case of short–ranged adhesion. When considering smooth cylinders, the relaxed Maugis

arameter 𝜆0 is used to distinguish between short– and long–ranged adhesion (Maugis, 1992). It is accepted that short–ranged
dhesion is retrieved semi–analytically when the relaxed Maugis parameter 3 < 𝜆0 (Johnson and Greenwood, 2008). As suggested
y Zhu et al. (2021) this might not be the case in the presence of waviness. To assess what is the minimum relaxed Maugis
arameter 𝜆0 that we must use in our simulations to approach short–ranged adhesion, we perform simulations with relaxed Maugis
arameters 𝜆0 = 3.5, 7 and 14, for the normalized amplitudes 𝛼 = 1.46 and 2.93.

Fig. 3(a) shows the load-area curves for normalized amplitude 𝛼 = 1.46 with relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14.
he numerical results overlap each other and Guduru’s solution, and therefore, adhesion is short–ranged for all relaxed Maugis
arameters 3.5 ≤ 𝜆0. When the normalized amplitude 𝛼 = 2.93, however, as shown in Fig. 3(b) for relaxed Maugis parameter
0 = 3.5, the load–area curve deviates. Hence why we conclude that, with increased magnitude of normalized amplitude 𝛼, one
ust consider relaxed Maugis parameters 7 ≤ 𝜆0 to recover short–ranged adhesive, contact mechanics.

To show why a larger Maugis parameter is needed to achieve short–ranged adhesion, Fig. 3(c) gives the pressure profiles that
orrespond to the relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14, for normalized amplitude 𝛼 = 2.93 and normalized wavelength
𝛽 = 1.87, at the dimensionless load �̄� = −1.8. Only half the contact area is shown because of line symmetry about 𝑥 = 0. The
oscillations on the normalized pressure profiles (recall that �̄� = 𝑝∕𝜎a), whose magnitudes depend on the amplitude of the waviness,
increase with decreased relaxed Maugis parameter 𝜆0. As a result, when the relaxed Maugis parameter 𝜆0 = 3.5, the normal pressures
reach the adhesive traction 𝜎a not only at the edge of the contact but also at the bottom of one of the pressure waves (around �̄� = 3).
This is on the verge of separating the surfaces and clearly distorts the pressure profile. Hence, the assumptions that adhesion is
short-ranged and that the contact area is simply connected do no longer hold. For this to occur, the following condition should be
met: for a given relaxed Maugis parameter 𝜆0, the normalized amplitude 𝛼 must be so large, that the normal pressure oscillations due
to waviness are comparable in magnitude with the adhesive traction 𝜎a. Owing to the interplay between waviness and adhesion,
a larger relaxed Maugis parameter is required, than for smooth contact, to approach the JKR–solution. For the relatively small
amplitudes used in this work (𝛼 ≤ 2.93), we find that the relaxed Maugis parameter 𝜆 = 7 suffices.
5
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Fig. 3. Load-Area curves during retraction with the normalized wavelength 𝛽 = 1.87, relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14, for the normalized parameters
(a) 𝛼 = 1.46 and (b) 2.93. The dotted lines indicate Guduru’s solution (5), the solid lines the numerical solutions, and the arrows unstable jumps. (c) Pressure
profiles for normalized amplitude 𝛼 = 2.93 and the load �̄� = −1.8 as indicated by a light grey dashed line in (b).

5. Wavy viscoelastic contacts

Let us now study the retraction of a wavy, adhesive, infinitely long cylinder from a viscoelastic half–plane. We start by
addressing a specific case, with parameters that ensure the contact is simply connected during retraction, namely: normalized am-
plitude 𝛼 = 1.46; normalized wavelength 𝛽 = 1.87; maximum dimensionless load �̄�max = 20; retraction rate ̇̄𝑤 = �̇�𝜏∕

(

𝑅𝐸∗
0𝛥𝛾

2
0
)1∕3 =

1.3⋅10−3; and, modulus ratio 𝑓r ≡ 𝐸∗
∞∕𝐸∗

0 = 10. The load-area curve during retraction is presented in Fig. 4(a) together with the elastic
solution as reference (blue solid line), with the relaxed effective modulus 𝐸∗

0 (i.e., �̇� ∼ 0); the blue curve indicates an elastic solution,
with the relaxed effective modulus 𝐸∗

0 , while the red line indicates the viscoelastic solution with retraction rate ̇̄𝑤× 104 = 13. Since
the contact area is always simply connected, the elastic solution (blue solid line) follows closely Guduru’s analytical solution (5), that
is marked with a dark grey dotted line. The viscoelastic curves fall below the dark grey dotted reference, i.e., a larger contact area
is found for the same load, which indicates that adhesion is stronger. In the following, we refer to Guduru’s solution (5), with the
relaxed effective modulus 𝐸∗

0 as the relaxed limit, because the viscoelastic contact tends to this reference when viscous dissipation
becomes negligible.

The increased adhesion provided for by viscous dissipation is traditionally described by an effective work of adhesion
𝛥𝛾0 ≤ 𝛥𝛾eff ≤ 𝑓r𝛥𝛾0 (see e.g. Ciavarella and Papangelo, 2021). A straightforward analysis (see e.g. Greenwood and Johnson, 1981)
shows that the maximum effective work of adhesion reached due to viscous dissipation is 𝛥𝛾∞ = 𝑓r𝛥𝛾0, that corresponds to an
elastic material with the instantaneous effective modulus 𝐸∗

∞ (Van Dokkum et al., 2021). Guduru’s solution for the elastic contact
with the instantaneous effective modulus 𝐸∗

∞, in the second term on the RHS of Eq. (5a), is indicated by a light grey dotted line
in Fig. 4(a), and marks the lower limit to the viscoelastic load–area curves. In the following, we will refer to this solution as the
instantaneous limit, given that the viscoelastic contact tends towards it at high retraction rates.

It is important to highlight that the variation in work of adhesion caused by viscoelasticity is a cause of hysteresis during inden-
tation and retraction. While upon retraction adhesion is enhanced, upon indentation adhesion is reduced. Therefore, the load–area
curves during retraction reside below the relaxed limit, for indentation they reside above it. Greenwood and Johnson (1981)
obtained the limit for the minimum work of adhesion, 𝛥𝛾0∕𝑓r , reached upon indentation at high indentation rates. The upper limit to
the actual indentation curve is reported in Fig. 4(a) by a magenta dotted line that falls above the relaxed limit (dark grey dotted line).
The actual indentation simulation for wavy, viscoelastic cylinders is not presented here, because the decrease in adhesion upon
indentation is such that the contact area is no longer simply connected. Evidently, however, the fact that the waviness induces
a disconnected contact area upon indentation and a simply connected contact area upon retraction is an additional source of
mechanical hysteresis.

As described in Section 4, the elastic solution is characterized by an unstable jump around �̄�c = 5 as marked by a yellow circle,
where Guduru’s analytical solution has a minimum. This jump, however, does not occur in the adhesive, viscoelastic curve. This is in
6

line with what was observed by e.g. Ciavarella and Papangelo (2021) and is rationalized as follows: in an elastic material, the only
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Fig. 4. (a) Load-Area curves during retraction with normalized amplitude 𝛼 = 1.46, normalized wavelength 𝛽 = 1.87, relaxed Maugis parameter 𝜆0 = 7, maximum
ormalized load �̄�max = 20, retraction rates ̇̄𝑤 ∼ 0 and 1.3 ⋅ 10−3, and modulus ratio 𝑓r = 10. The dark grey dotted line indicates Guduru’s analytical solution (5)

with the relaxed effective modulus 𝐸∗
0 , the light grey dotted line with the instantaneous effective modulus 𝐸∗

∞ and the magenta dotted line indicates the
nstantaneous limit during indentation, with effective modulus 𝐸∗

0∕𝑓r . The unstable jumps are indicated with coloured arrows. (b) Pressure, (c) pressure rate,
nd (d) separation profiles for the loads �̄� = 5.6, 3.9, 3.7, 3.2, 0.8 and −1.6 as indicated by differently coloured, dot-shaped markers in (a).

quilibrium positions are given by the relaxed limit (dark grey line in Fig. 4(a)). For a viscoelastic material, however, an infinite
umber of such solutions exist as the effective work of adhesion, 𝛥𝛾eff , is allowed to vary freely between 𝛥𝛾0 and 𝛥𝛾∞. Therefore,
he whole load–area region between the relaxed and instantaneous limits (dark and light grey dotted lines in Fig. 4(a)) provides
or stable, quasi-static equilibrium positions. As a result, an unstable jump only occurs when the viscoelastic solution meets the
nstantaneous limit. Above the instantaneous curve and below the elastic curve, this jump is substituted by a line of rapid load–area
eduction where significant viscous dissipation occurs. A similar irreversibility is observed upon crack opening in ductile solids
Landis et al., 2000; Gao and Bower, 2004). The location where the jump starts is indicated by a black circle on the light grey
otted line around the contact area 𝑎c = 3 in Fig. 4(a).

To better understand what happens upon the retraction of the wavy, adhesive cylinder, the pressure profiles are presented in
ig. 4(b) at the loads �̄� = 5.6, 3.9, 3.7, 3.2, 0.8 and −1.6, which correspond to the coloured dot–shaped markers in Fig. 4(a). All the
ressure profiles look qualitatively similar, with smooth oscillations that match the waviness of the indenter, and a large attractive
ormal pressure spike at the edge of the contact. It should be noted that, while the normal pressures induced by the waviness is
airly high, its pressure profile is smooth. When the contact area recedes upon retraction, high pressure rates ̇̄𝑝 are confined to the
dges of the contact, as shown in Fig. 4(c), and consistent with the common assumption in the literature, that the viscous dissipation
s concentrated at the edges of intimate contact. Of course, this holds true only when the retraction rate does not exceed a given
priori unknown threshold such that adhesion is still short-ranged.

It is interesting to observe in Fig. 4(b) that the size of the adhesive region at the edges of the contact is different at different loads.
he load �̄� = 3.7, as indicated by the purple curves in Figs. 4(b)–4(d), has the widest adhesive region of all loads we investigate.
his is because the purple profile in Fig. 4(b) corresponds to a point, indicated with a purple dot-shaped marker on the load-area
urve in Fig. 4(a), with the smallest slope d�̄�∕d�̄�c: a minute reduction in the applied load leads to a large drop in the contact area.
herefore, the velocity of the contact area reduction is the highest at that point, which leads to an increase in normal pressure rate
hat stiffens the substrate locally, thus holding the surfaces closer together and increasing adhesion. In the relaxed limit, an unstable
ump occurs; in the viscoelastic case, instead, the acceleration in contact area reduction induces an increase in the effective work
f adhesion 𝛥𝛾eff , that allows for a quasi-static stable contact to be attained and the mechanical instability is avoided.

The deformed profile of the substrate and the indenter are presented in Fig. 4(d). Here, we fix the position of the cylinder
nd let the substrate separate from it, for a clear visualization. Again, the deformed profiles presented coincide with the coloured,
ot-shaped markers in Fig. 4(a) corresponding to the loads �̄� = 5.6, 3.9, 3.7, 3.2, 0.8 and −1.6. Unsurprisingly, the point at which
he contact area reduces fastest coincides with the contact edge at a local maximum in the waviness. In Fig. 4(d), it is notable that
he angle formed between the profile of the indenter and the substrate changes. Close to the peak in the waviness, this angle is
7

ighly acute, since the substrate stiffens as the edge of contact accelerates, and the gap reduces. A final observation in this regard
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Fig. 5. Load–Area curves during retraction with normalized amplitude 𝛼 = 1.46, normalized wavelength 𝛽 = 1.87, relaxed Maugis parameter 𝜆0 = 7, maximum
load �̄�max = 20, and modulus ratio 𝑓r = 10, for retraction rates ̇̄𝑤× 104 = 0.3, 0.6, 1.2, 3, 6, 13 and 30. The dotted, dark and light grey lines indicate the relaxed
nd instantaneous limit, respectively, the solid lines the numerical solutions, and the coloured arrows the unstable jumps.

s that a JKR–type of adhesion is characterized by an obtuse contact angle, due to short–ranged adhesion (see e.g. the profiles at
he loads �̄� = 5.6 and −1.6 in Fig. 4(d)). Hence, it is apparent from the results presented in Fig. 4(d) that with viscous dissipation
nd waviness the contact departs from the JKR–limit. This effect can be incorporated in the Maugis parameter by introduction of
n effective Maugis parameter 𝜆eff = 𝛥𝛾eff (𝑅∕𝐸∗

0
2𝛥𝛾eff )1∕3∕𝛿max ≤ 𝜆0 (Van Dokkum et al., 2021), that decreases when the effective

ork of adhesion increases due to viscous dissipation.
In the remainder of this section, we study how the adhesive contact response is affected by the retraction rate ̇̄𝑤; the range

of adhesion, characterized by the relaxed Maugis parameter 𝜆0; the waviness, characterized by the normalized amplitude 𝛼
and wavelength 𝛽; and, the initial indentation, characterized by the maximum load �̄�max. As in Fig. 4(a), so in the following,

e compare the results with the relaxed and instantaneous limits to facilitate their interpretation.

.1. Retraction rate

The effect of the retraction rate ̇̄𝑤×104 = 0.3, 0.6, 1.2, 3, 6, 13 and 30 on the load-area curve is presented in Fig. 5. As expected,
ne observes a monotonic trend; the load-area curve approaches the relaxed limit at small retraction rates and the instantaneous limit
t high retraction rates. Towards the relaxed limit, the viscoelastic response closely follows Guduru’s analytical solution (5) with
he relaxed effective modulus 𝐸∗

0 . As explained before, however, the unstable jumps are no longer present and, instead, a rapid yet
table decrease in contact area is observed for retraction rates ̇̄𝑤 × 10−4 ≤ 3.

At high rates 6 ≤ ̇̄𝑤 × 10−4, unstable jumps do reoccur. More precisely, these jumps reappear when the load-area curve meets
he instantaneous limit as indicated with the black dotted line in Fig. 5. A stable quasi–static equilibrium at loads below the
nstantaneous limit implies an effective work of adhesion 𝛥𝛾∞ < 𝛥𝛾eff. The instantaneous work of adhesion 𝛥𝛾∞ is the upper limit

that can be reached due to the material stiffening caused by viscous dissipation. As discussed in the previous Section 4, no stable
contact configurations thus exist for loads below that (instantaneous) limit.

5.2. Range of adhesion

While a smooth elastic contact can be considered to have short–ranged adhesion for a Maugis parameter 3 < 𝜆0 (Johnson and
reenwood, 2008), we have shown in Section 4 that, if a wavy elastic contact has a significant value of amplitude 𝛼, a larger
alue of relaxed Maugis parameter 𝜆0 is needed. Hence, it is interesting to study how the contact response changes with increasing
augis parameter also in the case of viscoelastic wavy contacts. An additional reason why it is important to consider a range of
augis parameters that depart from the limit, is that in the limit 𝜆0 → ∞, the normal pressure at the edge of the contact reaches an

infinite value. Hence, the instantaneous limit is reached with any finite retraction rate, which is contrary to common experimental
observations (Greenwood, 2004).

Fig. 6(a) presents the load-area curves for the relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14. Recall that increasing the Maugis
parameter corresponds to increasing the work of adhesion 𝛥𝛾0, reducing the interaction range 𝛿max, or making the system larger
and/or stiffer. The Maugis parameter has a similar effect as the retraction rate, i.e., when increased the instantaneous limit is
approached as the viscous dissipation at the edges of the contact increases. This similarity arises because viscous dissipation depends
on the rate of change in normal traction at the edges of contact. Indeed, an increase in Maugis parameter leads to a sharper and
more negative pressure peak at the edge of the contact and hence increases the pressure rate’s magnitude there.

Fig. 6(b) presents solutions for normalized amplitude 𝛼 = 2.93. The simulations with relaxed Maugis parameters 𝜆0 = 7 and 14
follow the expected behaviour of short–ranged adhesion. However, the simulation with relaxed Maugis parameter 𝜆0 = 3.5 does
not, as the unstable jumps do not occur when the curve meets the instantaneous limit. It should be noted that aforementioned
deviation is stronger for viscoelastic substrates than elastic ones, as viscous dissipation reduces the effective Maugis parame-
ter (Van Dokkum et al., 2021). Hence, both waviness and viscoelasticity contribute towards making adhesive, contact mechanics
depart from short–ranged adhesion, and a larger relaxed Maugis parameter 3.5 ≤ 𝜆0 is necessary to ensure that short–ranged,
adhesive behaviour is recovered. Herein, relaxed Maugis parameter 7 ≤ 𝜆0 suffice. We though emphasize that this lower limit
depends on the chosen normalized waviness parameters 𝛼 and 𝛽, as well as retraction rate ̇̄𝑤. Also, note that the Maugis parameter
8

we used is the classic one, designed for smooth cylindrical contact and thus includes only the Hertzian radius as geometric parameter.
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Fig. 6. Load–Area curves during retraction with normalized wavelength 𝛽 = 1.87, maximum load �̄�max = 20, retraction rate ̇̄𝑤 × 104 = 6, modulus ratio 𝑓r = 10
and relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14, for the normalized amplitudes (a) 𝛼 = 1.46 and (b) 2.93. The dotted, dark and light grey lines indicate the
relaxed and instantaneous limit, respectively, the solid lines the numerical solutions, and the coloured arrows the unstable jumps.

Fig. 7. Load–Area curves for retraction with relaxed Maugis parameter 𝜆0 = 7, maximum load �̄�max = 20, retraction rate ̇̄𝑤×104 = 13 and modulus ratio 𝑓r = 10,
for (a) normalized amplitudes 𝛼 = 0.37, 1.46 and 5.87, and (b) normalized wavelengths 𝛽 = 0.47 and 1.87. The dotted, dark and light grey lines indicate the
relaxed and instantaneous limit, respectively, with normalized amplitude 𝛼 = 1.46 and normalized wavelength 𝛽 = 1.87, and the coloured arrows indicate unstable
jumps.

5.3. Waviness

The effect of the normalized amplitude 𝛼 and normalized wavelength 𝛽 on the viscoelastic contact response is presented in
Fig. 7. For that, we use 𝛼 = 0.37, 1.46, 5.87 and 𝛽 = 0.47 and 1.87. The effect of normalized parameters 𝛼 and 𝛽 is analogous to that
observed for elastic indentation (see Section 4): the normalized amplitude 𝛼 controls the amplitude of the load–area oscillations;
and, the normalized wavelength 𝛽 the wavelength of these load–area oscillations.

As shown in Section 5.1, the quasi–static solution falls between the relaxed and instantaneous limits (such limits are only included
in the figures for one case with visualization purpose). This holds for normalized waviness parameters 𝛼 = 1.46 and 𝛽 = 1.87 in Fig. 7
as well. For normalized amplitudes 𝛼 = 0.37 and 1.46 in Fig. 7(a), and for normalized wavelengths 𝛽 = 0.47 and 1.87 in Fig. 7(b),
the contact area is simply connected during retraction, therefore the two limits are represented by Guduru’s curves (5) with the
relaxed and instantaneous modulus, 𝐸∗

0 and 𝐸∗
∞, respectively. For normalized parameters 𝛼 = 5.87 and 𝛽 = 1.87 in Fig. 7(a), the

contact area is not always simply connected, therefore Guduru’s solution is not applicable and the limiting behaviours are only
found numerically (not shown here).

An important observation on the unstable jumps is that their occurrence enhances with increasing normalized parameter(s) 𝛼
and/or 𝛽. This is because they both have the effect of increasing the amplitude of the oscillations in the load–area curve, and
therefore the possibility that one of their minima meets the instantaneous limit. Indeed, it is clear from Fig. 7(b) that, while a
pronounced unstable jump occurs for normalized parameters 𝛼 = 1.46 and 𝛽 = 1.87, very few mechanical instabilities are present
with normalized parameters 𝛼 = 1.46 and 𝛽 = 0.47.

5.4. Initial indentation

In order to asses the effect of the initial indentation, i.e., the indentation depth from which retraction starts, we plot in Fig. 8,
the load–area curves with normalized amplitudes 𝛼 = 1.46 and 5.87 for the maximum loads �̄�max = 20, 40 and 80. For normalized
amplitude 𝛼 = 1.46 in Fig. 8(a), the load-area curves follow predominantly the same retraction path. Only at the onset of retraction
a transition period is observed, that occurs while the contact departs from the relaxed limit ( ̇̄𝑤 ∼ 0) as retraction initiates, towards a
pseudo ‘‘steady–state’’, i.e. the contact mechanical response becomes independent of the initial state. Note that the starting point of
9
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Fig. 8. Load–Area curves during retraction starting from maximum loads �̄�max = 20, 40 and 80. The dimensionless wavelength is 𝛽 = 1.87, the relaxed Maugis
parameter 𝜆0 = 7, the retraction rate ̇̄𝑤 × 10−4 = 13 and the modulus ratio 𝑓r = 10, for the normalized amplitudes (a) 𝛼 = 1.46 and (b) 5.87. The dotted, dark
and light grey lines indicate the relaxed and instantaneous limit, respectively, the solid and dashed lines the numerical solutions, and the coloured arrows the
unstable jumps.

the viscoelastic curves coincides with the relaxed limit, as the initial indentation is done assuming that the substrate is elastic and
is characterized by the relaxed effective elastic modulus 𝐸∗

0 . The aforementioned behaviour is also observed for smooth cylinders
in Van Dokkum et al. (2021).

For normalized amplitude 𝛼 = 5.6 in Fig. 8(b), the increase in maximum load �̄�max from 40 to 80 leads to a change in the
load-area curves during retraction. This difference is due to the change in connectedness of the contact area. For the maximum
loads �̄�max = 20 and 40, the contact area is disconnected, while it is simply connected for the maximum load �̄�max = 80. Therefore,
the retraction paths differ drastically, as seen in Fig. 8(b), where Guduru’s elastic solution (5) is valid, as the contact area becomes
simply connected. It is noteworthy that the elastic solution ( ̇̄𝑤 ∼ 0), as indicated by dashed coloured lines in Fig. 8, shows the
same trend though, which confirms that the effect of initial indentation is mostly caused by roughness and negligibly affected by
viscoelasticity.

5.5. Viscoelastic parameter

As discussed in Sections 5.1 and 5.2, both an increase in the retraction rate and in the relaxed Maugis parameter lead to a
similar effect: the contact response approaches the instantaneous limit. This is in line with what is observed for smooth Hertzian,
viscoelastic contact, for instance in Van Dokkum et al. (2021), Müser and Persson (2022), Violano and Afferrante (2022a). In our
previous work (Van Dokkum et al., 2021), we propose a new dimensionless parameter that includes both retraction rate and Maugis
parameter, and allows to predict the viscoelastic effect, i.e., to establish how far the adhesive contact is from the relaxed or the
instantaneous limits. In the context of the retraction of a given smooth Hertzian, that dimensionless parameter is

𝜒ve ≡
�̇�𝜏

𝐸∗
0 𝛿max

𝜆0 =
�̇�𝜏𝜎2a
𝐸∗
0𝛥𝛾

2
0

(

𝑅𝛥𝛾20
𝐸∗
0
2

)1∕3

= ̇̄𝑤𝜆20, (6)

where the retraction velocity (𝑣𝑧 in Van Dokkum et al., 2021), is here replaced with �̇�∕𝐸∗
0 to directly link the viscoelastic parameter

𝜒ve to the applied retraction rate. For a smooth adhesive contact, characterized by short–ranged adhesion, an increase in viscoelastic
parameter 𝜒ve directly correlates with an increase in the viscoelastic dissipation.

The viscoelastic parameter, though introduced for smooth contacts, was applied in Van Dokkum et al. (2021) to experimental
works on rough contacts in the literature, and was found to correlate with the amount of viscoelastic losses. Therefore, we herein
hypothesize that the effect of waviness can be decoupled from that of viscoelasticity. If this is the case, the viscoelastic parameter
should still directly correlate to the amount of viscous dissipation and thus correspond to a unique retraction curve for a given
normalized amplitude of the waviness. To test whether this is indeed the case, we perform simulations with constant viscoelastic
parameter 𝜒ve, while varying the relaxed Maugis parameter and loading rate, for contacts with various normalized amplitude.

In Fig. 9, the load–area curves are presented for normalized parameters 𝛼 = 1.46 and 2.93, and 𝛽 = 1.87, relaxed Maugis
parameters 𝜆0 = 3.5, 7 and 14, and retraction rates ̇̄𝑤 × 103 = 0.16, 0.67 and 2.70, and 0.32, 1.34 and 5.40, which correspond
to constant viscoelastic parameters 𝜒ve = 0.033 and 0.066, respectively; the solutions for normalized amplitude 𝛼 = 1.46 is indicated
by solid coloured lines, 2.93 with dashed coloured lines, and 5.87 with dashed–dotted coloured lines. For the smallest normalized
amplitude, 𝛼 = 1.46, the load-area curves for a given viscoelastic parameter 𝜒ve indeed overlap. There is a very small deviation
only for the curves with the smallest Maugis parameter. This is evidence that the effect of waviness is uncoupled from that of
viscoelasticity, when adhesion is short–ranged (e.g. small amplitude and large relaxed Maugis parameter).

As reported in Section 4, waviness induces a transition from short- to long-range adhesion. Therefore, for the intermediate
amplitude, 𝛼 = 2.93, the curves with largest relaxed Maugis parameters overlap, while the curves for the smallest relaxed Maugis
parameter deviate markedly among each other, while the unstable jumps occur at different loads.

For the cases with largest amplitude, 𝛼 = 5.87, characterized by a non–connected contact area and no instabilities, the curves are
10

close to each other but non–overlapping, while the curves with smallest relaxed Maugis parameter are characterized by the largest
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Fig. 9. Load–Area curves during retraction with normalized amplitudes 𝛼 = 1.46, 2.93 and 5.87, normalized wavelength 𝛽 = 1.87, maximum load �̄�max = 20,
odulus ratio 𝑓r = 10 and relaxed Maugis parameters 𝜆0 = 3.5, 7 and 14, for retraction rates (a) ̇̄𝑤 × 103 = 0.16, 0.67 and 2.70, and (b) 0.32, 1.34 and 5.40,

hat result in constant dimensionless parameters (a) 𝜒ve = 0.033 and (b) 0.066, respectively.

iscous losses. Also in this case, we believe that the difference between the three curves is due to a departure from short–ranged
dhesion that is already present for the intermediate relaxed Maugis parameter, given that the amplitude is larger. This is confirmed
y the facts that the difference increases as the relaxed Maugis parameter 𝜆0 reduces and that the difference between the three curves
or the largest dimensionless amplitude is larger when the viscoelastic parameter 𝜒ve increases. We conclude that the viscoelastic
arameter 𝜒ve retains its predictive power in the presence of waviness, as long as adhesion remains short–ranged. This proves that,
n the limit of short-ranged adhesion, the effect of waviness and viscoelasticity are independent. The viscoelastic parameter helps
s identify the limits of this independence: as waviness becomes larger, while the remaining parameters are constant, adhesion
ecomes more long-ranged and hence affects the location and magnitude of viscous dissipation. Of course, the waviness at which
his occurs depends on the relaxed Maugis parameter 𝜆0.

.6. Pull–off

Finally, we look at the pull–off load, that is the maximum tensile load reachable upon retraction, just before the indenter snaps
ut of contact. For a smooth cylindrical indenter separating from an elastic substrate, JKR theory (Johnson and Greenwood, 2008)
ndicates that this load is

�̄�JKR
PO = −(3∕4)(4𝜋𝐸∗

0𝑅𝛥𝛾
2
0 )

1∕3, (7)

hat is negative (tension) when adhesion allows for the indenter to pull on the substrate. A common way to assess how much
iscoelasticity and waviness enhance hysteresis is to look at how the pull–off load increases (Ciavarella and Papangelo, 2021). This
s best shown by scaling the numerically obtained pull-off load �̄�PO with the theoretical pull–off load �̄�JKR

PO .
In Fig. 10, we show the pull-off load �̄�PO as a function of the retraction rate ̇̄𝑤, for normalized amplitudes 𝛼 = 0, 0.37, 1.46

nd 2.93, and normalized wavelengths 𝛽 = 0.47, 0.93 and 1.87; the pull–off loads are indicated with plus–shaped coloured markers.
he relaxed limit is given in Fig. 10(a) with plus–shaped coloured markers as a reference and indicated by ‘‘El’’ as well. By
xtrapolating the solid lines, which connect the data point to help visualizing the trends, one sees that this relaxed limit is only
pproached at very low retraction rates.

We consider first a smooth indenter (blue curve, with normalized amplitude 𝛼 = 0 in Fig. 10(a)) and reproduce the JKR
esults: a value of one is obtained in the relaxed limit. In the instantaneous limit, definition (7) holds, provided that the work
f adhesion is replaced by the instantaneous work of adhesion 𝛥𝛾∞. Since the modulus ratio 𝛥𝛾∞∕𝛥𝛾0 = 𝑓r = 10, the pull-off
oad in the instantaneous limit approaches �̄�PO,∞∕�̄�JKR

PO ∼ 𝑓 2∕3
r ≈ 4.6. Indeed, the load–rate curve shows that the pull–off load

symptotically tends to the expected value. Consistent with the literature, we find that the pull–off load vs. retraction rate curve is
traight at intermediate rates (Ciavarella and Papangelo, 2021), showing that the effective work of adhesion is a power function of
he retraction rate.

Turning now to the effect of waviness, we see that the ratio �̄�PO∕�̄�JKR
PO increases even in the relaxed limit, consistent with

he elastic results provided by Guduru (2007), who shows that small roughness enhances adhesion. An increase in normalized
avelength 𝛼 increases the amplitude of the load-area oscillations and hence allows larger pull–off loads to be reached. An increase

n normalized parameter 𝛽 has a more moderate effect, although an increase in the pull–off load with the roughness wavelength
s still observed in Fig. 10(b). The reason is seen in Fig. 2(b): while the amplitude of the load-area oscillations created by the
aviness is the same, the oscillations’ minima occur at lower loads. We must give, however, a cautionary notice in that this trend
nly holds for small values of normalized amplitude 𝛼 and mi–ranged values of normalized wavelength 𝛽. As discussed in Section 4,
he effect of waviness vanishes at both large and small values of normalized wavelength 𝛽 because a smooth indenter is recovered.
imilarly, the pull–off load’s increase due to waviness will also disappear at high values of normalized amplitude 𝛼, due to the loss
f connectedness in the contact area (Zhu et al., 2021).

When viscoelasticity is considered, a further increase in the pull–off load is observed. For all values of normalized amplitude 𝛼
nd normalized wavelength 𝛽, the load–rate curves simply shift to higher loads. This indicates that the effect of viscoelasticity is
11



Journal of the Mechanics and Physics of Solids 170 (2023) 105079F. Pérez-Ràfols et al.

o
i

p
p
𝑤
𝑤
e
l

s
e
v

6

r

s
c
a
a
r
e
l
c
a
a
u
d
a
a

Fig. 10. (a) The scaled pull-off load �̄�PO∕�̄�PO,JKR, (b) the scaled, shifted pull-off load
(

�̄�PO − �̄�El
PO
)

∕�̄�JKR
PO and (c) the scaled error

(

�̄�PO − �̄�Add
PO

)

∕�̄�PO as functions
f the retraction rate ̇̄𝑤 for normalized parameters {𝛼, 𝛽} = { 0,-}, {0.37,1.87}, {1.46,1.87}, {1.16,0.93}, {1.46,0.47} and {2.93,1.87}. The relaxed limit ( ̇̄𝑤 ∼ 0)
n (a) is indicated by plus-shaped coloured markers as well.

redominantly independent of waviness, as shown in Section 5.5, and that both dissipative contributions add to reach the observed
ull–off load. To prove this point, we plot in Fig. 10(b) the scaled, shifted pull–off load, i.e., the pull–off load in the relaxed limit
̄ El

PO is subtracted from the observed pull–off load �̄�PO. The difference between the observed pull–off load and the additive estimate
̄Add

PO (𝛼, 𝛽) ≡ �̄�PO (𝛼 = 0) + �̄�El
PO (𝛼, 𝛽) is given in Fig. 10(c). For the various values of the normalized amplitude 𝛼, the additive

stimation is very close to the numerically computed one and the difference is always smaller than 10%. This error is found to be
arger for the range of normalized wavelength 𝛽 we selected, but it still remain fairly low, below 13%.

This shows that, as previously hypothesized, the effects of waviness and viscoelasticity are nearly independent and additive, in
hort–ranged adhesive contact, at least for the range of parameters studied in this paper. This entails that one should be able to
stimate the viscoelastic losses of a rough adhesive surface by knowing the elastic response of the adhesive rough surface and the
iscoelastic response of the corresponding smooth contact.

. Discussion

The results presented in this work show that both waviness and viscoelasticity increase the effective work of adhesion during
etraction and hence adhesive hysteresis. The two contributions are found to be near independent, as discussed in the following.

Upon retraction of the indenter, the viscoelastic load–area curves for smooth contacts follow a path parallel to the JKR
olution, characterized by an increased effective work of adhesion (Van Dokkum et al., 2021; Violano et al., 2021a). The load–area
urves for wavy contact are also shifted to lower loads with respect to the reference solution by Guduru (2007) (see Section 5
nd Ciavarella and Papangelo, 2021). In this case, however, the distance between the viscoelastic and elastic curves is not constant
s in elastic rough contacts, because the effective work of adhesion oscillates with the retraction velocity. Both elastic and viscoelastic
ough contacts are characterized by adhesive hysteresis, but their origins differ. In an elastic, wavy contact, it is the dissipation of
nergy in the unstable jumps that causes adhesive hysteresis (Guduru and Bull, 2007), as the elastic jumps upon retraction occur at
ower load than upon indentation. With viscoelasticity, instead, the unstable jumps are replaced by fast quasi-static reduction of the
ontact area, in which energy is lost due to viscous dissipation. The jump is avoided and the curve instead shifts to lower loads with
n increase in the effective work of adhesion. This behaviour is in line with the speculation by Papangelo and Ciavarella (2021a),
nd Ciavarella and Papangelo (2021) that viscoelasticity ‘‘effectively dampens’’ the elastic instabilities. Of course, energy dissipation
pon retraction is larger when viscoelasticity is present, as it occurs throughout the whole retraction process (the load–area curve
eparts towards lower loads) and not only during localized instabilities. Indeed, the load–area response for viscoelastic substrates
lternate between periods of rapid area reduction, which correspond to the ‘‘damped’’ instabilities; and, periods in which the contact
rea reduces slower, but still more rapidly than elastically.
12
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In our results, we see that unstable jumps are not all damped in viscoelastic contacts, they occur under certain conditions: when
he retraction rate (see Sections 5 and 5.1), the surface waviness (see Section 5.3) or the range of adhesion (see Section 5.2) are
arge. Under one or several of these conditions the quasi-static solution meets the curve that represents the instantaneous limit.
ince the effective work of adhesion is bounded, the instability cannot be dampened. These jumps are not observed in Papangelo
nd Ciavarella (2021a), and Ciavarella and Papangelo (2021) since their theory does not include the instantaneous limit.

Our results demonstrate that, in general, two mechanisms of interfacial toughening are present: viscous and roughness–induced
issipation. The latter can be either in the form of a mechanical instability at high retraction rates or in the form of a fast quasi–static
eduction of the contact area, at lower retraction rates when the instability is dampened. Whether the contact area reduction is very
ast or occurs through an unstable elastic jump, the result in terms of energy loss is similar. This similarity between the unstable
echanical jump and the damped instability is likely the reason why we find that viscoelasticity and roughness independently

ontribute to adhesive hysteresis. It is however debatable under which circumstances the instantaneous limit is met in practice.
ertainly, as we saw that the stiffening of the material leads to a departure from short–ranged adhesion, the theories that are based
n short–ranged adhesion are not always appropriate in that limit.

It is also noteworthy that the modulus ratio 𝑓r = 10 we use is small compared to that of most rubbery materials. For instance,
r ⪅ 1000 in Lorenz et al. (2013). We selected modulus ratio 𝑓r = 10 to make the simulations numerically tractable. Larger values

of 10 ≪ 𝑓r would shift the instantaneous limit to more negative loads, and meeting that limit with a short wave amplitude would
require a much larger retraction rate or relaxed Maugis parameter. It is also true, that an increase in roughness amplitude, which is
reasonable in a real roughness, increases the amplitude of the load–area oscillations. This makes it more likely for the viscoelastic
load–area curve to meet the instantaneous limit. It remains up to future investigations to study the combination of realistic roughness
and modulus ratios.

Kesari and collaborators (Kesari et al., 2010; Deng and Kesari, 2019) find that hysteresis depends on the maximum load reached
before retraction. In our results, the only dependence is attributable to a change in connectedness in the contact area. In our
results, instead of a continuous variation with load, we find a sharp transition: at low maximum indentation �̄�max, a given path
is followed, owing to the non-connectedness of the contact; above a certain load, the contact abruptly becomes simply connected
and a completely different path is followed. A more continuous dependence of the retraction path with the maximum indentation
load is seen in Kesari et al. (2010), and Deng and Kesari (2019). An important difference between the work by Kesari et al. (2010)
and ours is that he considers multi–asperity rough contacts, while ours considers a single wavelength roughness. This is why in our
simulations the change in connectivity is abrupt and depends on a single length scale, while in realistic rough contacts several length
scales induce small changes in the connectedness of the contact area (Carbone et al., 2015). It is thus reasonable to expect that in
a simulation that considers realistic roughness, the dependence on maximum load is continuous, and therefore more in agreement
with experimental observations (Kesari et al., 2010; Deng and Kesari, 2019). It is anyhow noteworthy that in our simulations the
dependence on initial contact is unaltered by viscoelasticity.

A comment is made in regard to when adhesion is short–ranged. As shown in Fig. 6, a value of the relaxed Maugis parameter
𝜆0 much larger than three is necessary to ensure that adhesion of a wavy viscoelastic contact can be considered short-ranged. The
combined effect of viscoelasticity and waviness is responsible for this (see Sections 5.2 and 5.3). Viscoelasticity is known to toughen
the contact and thus decrease the effective Maugis parameter (Van Dokkum et al., 2021; Ciavarella and Papangelo, 2021) and
waviness is found to have a similar effect by increasing the work of adhesion. While we find that the relaxed Maugis parameter
7 ≤ 𝜆0 suffices for the contact to display short–ranged adhesion, higher relaxed Maugis parameters are expected to be necessary
when the waviness is more prominent or viscoelasticity effects are stronger. For instance, for a viscoelastic material with modulus
ratio 𝑓r = 1000, 𝜆0 ≈ 1000 is needed to retain short–ranged adhesion in the instantaneous limit (Ciavarella, 2021b), while 𝜆0 ≈ 100
was required for 𝑓r = 100. This is probably not an issue in macroscopic soft contacts, where the Maugis parameter 𝜆0 is very large
(Baney and Hui (1997) estimate 𝜆0 = 2.2 ⋅ 104). However, the magnitude of the effective Maugis parameter becomes important in

irco– and nano–mechanics (Neupane et al., 2021; Jiang et al., 2021; Das and Chasiotis, 2021), where the relaxed Maugis parameter
ecreases with the length scale. While even at those length-scales, adhesion is still short–ranged, a combination of surface roughness
nd viscoelasticity can make adhesive contact mechanics depart from short– towards long–ranged adhesion.

We make a final point regarding the relative influence of waviness and viscoelasticity. In our results, both contributions have a
imilar influence on hysteresis, while Ciavarella and Papangelo (2021) observe that viscoelasticity dominates over roughness. The
pparent discrepancy is just caused by our choice of a small viscoelastic modulus. We have shown that the contribution to the
ull–off load of waviness and viscoelasticity is additive, and therefore it is to be expected that for larger values of the modulus
atio 𝐸∗

∞∕𝐸∗
0 also in our simulations viscoelasticity would dominate.

. Conclusions

In this work, we consider the two most cited sources of hysteresis in soft adhesive contacts: viscoelasticity, and surface roughness.
he former is considered using the Zener model, and the latter is simplified to a single wave, superimposed on the profile of a
igid, cylindrical indenter. By studying the load–area curves during retraction of the indenter, we corroborate that viscoelasticity
‘effectively dampens’’ the mechanical instabilities caused by waviness, as long as the instantaneous limit is not reached. When the
nstantaneous limit is met, which typically happens before jump–out of contact, mechanical instabilities reappear. The occurrence
f these instabilities is enhanced by increased amplitude and a decreased range of adhesive interaction, and a simply connected
nitial contact area. Even when the mechanical instability is dampened by viscoelasticity, the effect is still a fast reduction of the
13

ontact area at near constant load, thus similar to that of an instability. The viscoelastic, wavy contact load–area response is thus
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characterized by a ‘‘slow’’ viscoelastic peeling interspersed with fast decreases in contact area at near constant loads. Therefore the
effects of waviness and viscoelasticity on adhesive hysteresis are approximately uncoupled, in the regime where the viscoelastic
effects are confined to the edges of the contacts. This is confirmed by the fact that our viscoelastic parameter, which uniquely
characterizes the amount of viscous losses in an adhesive smooth contact, is single valued also when waviness is present.

Both waviness and viscoelasticity contribute to stiffening of the adhesive contact, and thus to a departure from short–ranged
owards long–ranged adhesion. This is relevant because many theoretical and numerical predictions of adhesive contact behaviour
ely heavily on the short-ranged adhesion assumption. More importantly, the contribution of waviness and viscoelasticity to adhesive
ysteresis is found to be near additive: the pull–off load at a given retraction rate is approximately given by the sum of the pull-off
oad due to viscoelasticity in a smooth contact and that of a wavy, elastic contact. In this study, both waviness and viscoelasticity
ontribute significantly to hysteresis. This is because we considered a ratio between instantaneous and relaxed moduli of magnitude
f ten; for larger values of this ratio and the same waviness, the effect of viscoelasticity would dominate.

The dependence of the pull–off load on the initial load is found to be uncorrelated to viscoelasticity. Presumably, the effect of
nitial indentation observed experimentally is to be attributed to changes in connectedness of the contact area at different loads,
ut this must be further investigated with studies that include realistic roughness.

Our results are limited by the simplicity of the descriptions of viscoelasticity, adhesive interaction and surface roughness.
dditional work is required to establish whether our conclusions extend to realistic rough contacts.
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Appendix A. Viscoelastic GFMD pseudo-code

1. Setup rigid indenter with initial surface topography ℎ(𝑥)𝑡𝑛=0;
2. Determine a damping coefficient such that all modes are critically and/or under-damped, and calculate the dimensionless

equilibrium time 𝑡∗equil for a given dimensionless time-step 𝛥𝑡∗;
3. Loop over iteration 𝑛 with time–step 𝛥𝑡 till the period 𝑡final is reached. Give the location of the rigid indenter as 𝑧(𝑥)indenter

𝑡𝑛+𝛥𝑡
=

ℎ(𝑥−𝛿𝑥𝑡𝑛+𝛥𝑡)𝑡𝑛=0+𝛿𝑧𝑡𝑛+𝛥𝑡, where 𝛿𝑧𝑡𝑛+𝛥𝑡 and 𝛿𝑥𝑡𝑛+𝛥𝑡 are the normal and tangential displacement of the rigid indenter at time 𝑡𝑛 + 𝛥𝑡,
respectively.

(a) Loop over 𝛥𝑡∗ till the equilibrium time 𝑡∗equil is reached:
– Discrete fast Fourier transform (DFFT) surface displacement 𝑢(𝑥)new

𝑡𝑛+𝛥𝑡
using the FFTW3 library (Frigo and Johnson, 2005);

– Calculate viscoelastic restoring load, 𝐹 (𝑞)visco-elas
𝑡𝑛+𝛥𝑡

← Func.{�̃�(𝑞)new𝑡𝑛+𝛥𝑡
, �̃�(𝑞)𝑡𝑛 , 𝐹 (𝑞)𝑡𝑛 , 𝛥𝑡};

– Add external load and interfacial load, 𝐹 (𝑞)total
𝑡𝑛+𝛥𝑡

← 𝐹 (𝑞)visco-elas
𝑡𝑛+𝛥𝑡

+ 𝐹 (𝑞)ext
𝑡𝑛+𝛥𝑡

+ 𝐹 (𝑞)if𝑡𝑛+𝛥𝑡;

– Add damping loads, 𝐹 (𝑞)total
𝑡𝑛+𝛥𝑡

← −𝑐cr(𝑞)
(

�̃�(𝑞)now𝑡𝑛+𝛥𝑡
− �̃�old(𝑞)𝑡𝑛+𝛥𝑡

)

∕𝛥𝑡∗, with the critical damping coefficient 𝑐cr ;

– Use the (Störmer)-Verlet algorithm (Störmer, 1912) to solve the equation of motion,
�̃�(𝑞)new𝑡𝑛+𝛥𝑡

= 2�̃�(𝑞)now𝑡𝑛+𝛥𝑡
− �̃�(𝑞)old𝑡𝑛+𝛥𝑡

+ 𝐹 (𝑞)d𝑡𝑛+𝛥𝑡 (𝛥𝑡
∗)2;

– Assign �̃�(𝑞)old𝑡𝑛+𝛥𝑡
← �̃�(𝑞)now𝑡𝑛+𝛥𝑡

& �̃�(𝑞)now𝑡𝑛+𝛥𝑡
← �̃�(𝑞)new𝑡𝑛+𝛥𝑡

;
– Reverse DFFT displacement 𝑢(𝑥)new

𝑡𝑛+𝛥𝑡
into real space, and scale displacement 𝑢(𝑥)new

𝑡𝑛+𝛥𝑡
with 1∕;

– Implement the hard-wall boundary condition, 𝑢(𝑥)new
𝑡𝑛+𝛥𝑡

← min{𝑢(𝑥)new
𝑡𝑛+𝛥𝑡

, 𝑧(𝑥)indenter
𝑡𝑛+𝛥𝑡

};
– Calculate interfacial load with a first order discretization of the gap 𝐹 (𝑥)if𝑡𝑛+𝛥𝑡 ← Func.{𝑢(𝑥)new

𝑡𝑛+𝛥𝑡
, 𝑧(𝑥)indenter

𝑡𝑛+𝛥𝑡
} and DFFT

to 𝐹 (𝑞)if𝑡𝑛+𝛥𝑡.
(b) DFFT displacement 𝑢(𝑥)new

𝑡𝑛+𝛥𝑡
;

new ̃ ̃ total
14

(c) Assign �̃�(𝑞)𝑡𝑛 ← �̃�(𝑞)𝑡𝑛+𝛥𝑡 & 𝐹 (𝑞)𝑡𝑛 ← 𝐹 (𝑞)𝑡𝑛+𝛥𝑡.
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Fig. B.11. Load–Area curves during retraction with normalized wavelength 𝛽 = 1.87, maximum load �̄�max = 20, retraction rate ̇̄𝑤×103 = 3, modulus ratio 𝑓r = 10
and the relaxed Maugis parameters and normalized amplitudes, (a) 𝜆0 = 7 and 𝛼 = 0.37, and (b) 𝜆0 = 14 and 𝛼 = 1.46, respectively. The spatial discretizations
and the constant, dimensional time–steps {𝑛𝑥 , 𝛥𝑡max∕𝛥𝑡} = {215 , 50}, {215 , 100} and {216 , 50}.

Appendix B. Spatial and temporal convergence

Throughout this work, we use the spatial discretization 𝑛𝑥 = 215 and the constant, dimensional time-step 𝛥𝑡 = 𝛥𝑡max∕50,
here 𝛥𝑡max = 𝜏(𝐸∗

∞ − 𝐸∗
0 )∕𝐸

∗
∞ is the maximum time-step for which a Verlet algorithm is expected to converge (Van Dokkum and

icola, 2019). In Fig. B.11(a), we show that these values indeed suffice. The numerical, reference solution is characterized by spatial
𝑥 = 215 and temporal discretization 𝛥𝑡max∕𝛥𝑡 = 50. We increase the spatial 𝑛𝑥 = 216 and temporal discretization 𝛥𝑡max∕𝛥𝑡 = 100

independently and in accordance with the legends in Fig. B.11.
In Fig. B.11(a), we use the normalized parameters 𝛼 = 0.37 and 𝛽 = 1.87, that lead to the highest roughness gradient, and hence

is the most demanding in terms of spatial discretization; we also use a retraction rate ̇̄𝑤× 103 = 3, that is the highest retraction rate
in this work, and hence the most demanding in terms of temporal discretization. Higher values of relaxed Maugis parameter for a
given work of adhesion require finer spatial discretization, since the adhesive traction increases and the adhesive region narrows.
So we present convergence with the solution for the relaxed Maugis parameter 𝜆0 = 14, and normalized parameters 𝛼 = 1.46 and
𝛽 = 1.87 in Fig. B.11(b). The results indicate that the choices of spatial and temporal discretization suffice for the range of input
parameters we consider in this work.

Appendix C. Normalization

The equations governing the contact problem are given by Eqs. (1)–(4). We define the following dimensionless variables

�̄� = 𝑥
𝑥r

, �̄� =
𝑝
𝑝r
, 𝑡 = 𝑡

𝑡r
, �̄� = 𝑢

ℎr
, �̄� =

𝑔
ℎr

, �̄� = 𝑤
𝑤r

, �̄�c =
𝑎c
𝑥r

and 𝑞 = 𝑞𝑥r , (C.1)

ith the scaling parameters defined as

𝑥r =

(

𝑅2𝛥𝛾0
𝐸∗
0

)1∕3

, 𝑝r =
𝛥𝛾0
𝛥max

, 𝑡r = 𝜏, ℎr =
𝑥2r
𝑅

and 𝑤r =
(

𝑅𝐸∗
0𝛥𝛾

2
0
)1∕3 . (C.2)

The governing equations of load–controlled retraction are:

̃̄𝑝
(

𝑞, 𝑡
)

+ ̇̄̃𝑝
(

𝑞, 𝑡
)

= −8|𝑞| 1
𝜆0

(

̃̄𝑢
(

𝑞, 𝑡
)

+ 𝑓r
̇̄̃𝑢
(

𝑞, 𝑡
)

)

; (C.3a)

�̄�
(

�̄�, 𝑡
)

= �̄�2

2
+ 𝛼

𝜋𝛽
cos

(

2𝜋�̄�
𝛽

)

− ℎ̄0
(

𝑡
)

− �̄�
(

�̄�, 𝑡
)

; (C.3b)

with

�̄�
(

�̄�, 𝑡
)

= 0, �̄�(�̄�, 𝑡) < 1;

0 < �̄�
(

�̄�, 𝑡
)

≤ 1
𝜆0

, �̄�(�̄�, 𝑡) = 1;

�̄�
(

�̄�, 𝑡
)

> 1
𝜆0

, �̄�(�̄�, 𝑡) = 0;

nd

�̄�
(

𝑡
)

= �̄�max − ̇̄𝑤𝑡 = 𝜆0 ∫

̄∕2

−̄∕2
�̄�
(

�̄�, 𝑡
)

d�̄�, (C.3c)

here ̄ = ∕𝑥r is the scaled periodic width. Hence, together with indentation, that is specified by the maximum load ratio
̄ = 𝑤 ∕𝑤 , the retraction rate ̇̄𝑤 = �̇�𝜏∕𝑤 , the surface roughness parameters 𝛼 and 𝛽, the relaxed Maugis parameter 𝜆
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control the contact mechanics. In Eq. (C.3), one also finds the scaled indentation ℎ̄0 = ℎ0∕𝑥r , that indicates the rigid body movement
nd is directly controlled by load.
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