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A B S T R A C T

Computational Fluid Dynamics (CFD) is a powerful tool which can help with the geometry optimization
of continuous milli-scale reactors, which often are highly complex devices. Attempting to perform this
optimization by manually modifying and testing geometry configurations can however be tedious and
computationally inefficient. Addressing this problem, we present a framework in which the CFD software
COMSOL Multiphysics is coupled with the multi-objective Bayesian Optimization algorithm TSEMO (Thompson
sampling efficient multiobjective optimization), implemented in MATLAB. The mixing element geometry of a
Miprowa Lab millireactor is parameterized, and the framework automatically executes CFD simulations to
minimize areas of stagnating flow and maximize the mixing performance. The framework is able to find
Pareto-optimal reactor variations, and can easily be adapted for other devices and objectives.
1. Introduction

Polymerization processes in the (specialty) chemical industry in-
creasingly rely on continuous flow processing (Gürsel et al., 2012;
Brodhagen et al., 2012; Jähnisch et al., 2004; Illg et al., 2010; Calabrese
and Pissavini, 2011; Roberge et al., 2005). Continuous polymerization
reactors are promising, because their large surface to volume ratio
allows for faster heat removal and better temperature control than
batch reactors (Sengen et al., 2017; Roberge et al., 2014). Furthermore,
this ratio can be kept constant during scaleup, reducing the need for
pilot stages making it easier to go from lab- to production scale (Biessey
and Grünewald, 2015). However, continuous polymerization reactors,
especially milli-scale reactors with internal mixing elements, can be
highly complex devices, which can be difficult to characterize exper-
imentally, as many of their properties are not readily available via
measurements. Additionally, their small size renders them especially
prone to fouling (Hartman, 2012; Schoenitz et al., 2015).

Computational fluid dynamics (CFD) can be a useful tool to over-
come these challenges and understand fouling, and is increasingly being
used to study milli- and microscale devices (Mitsos et al., 2004, 2007;
An et al., 2012; Woldemariam et al., 2016; Schönfeld and Hardt, 2004;
Shi et al., 2012; Buchelli et al., 2005; Amini et al., 2013; Brahim et al.,
2003; Rahimi et al., 2009; Gobert et al., 2017; Rodríguez-Guerra et al.,
2016): Firstly, it enables the evaluation of flow process properties at
arbitrary points inside the computational domain, thus offering a look

∗ Corresponding author at: RWTH Aachen University, Aachener Verfahrenstechnik – Process Systems Engineering (AVT.SVT), 52074 Aachen, Germany.
E-mail address: amitsos@alum.mit.edu (A. Mitsos).

into the reactor. Secondly, it provides a way to evaluate the effect of
modifications to the reactor design or process parameters.

In previous work, we employed CFD successfully to find geometry
modifications which reduced the fouling potential in the Miprowa
Lab millireactor (Begall et al., 2018). However, we only considered
manual specification of modifications which requires a lot of user input
and we did not allow for configurations strongly deviating from the
original design. We thus herein propose to overcome these challenges
by coupling the CFD solver with a suitable optimization algorithm.

Optimization algorithms can generally be divided into gradient-
based and gradient-free methods (Morita et al., 2022). Gradient-based
methods require the evaluation of the derivatives of the objective and
constraint function(s) with respect to the design parameters. In prin-
ciple, these can be calculated via sensitivities or adjoints, propagated
through the CDF calculations, see e.g. Towara and Naumann (2013),
Hannemann-Tamas et al. (2012). In many cases, such as when dealing
with proprietary software where the source code is not available, the
derivatives are however inaccessible. It is indeed possible to approxi-
mate the derivatives of such black-box functions via finite differences,
but this is expensive computationally, as each function evaluation
corresponds to the solution of a CFD simulation. On the other hand,
gradient-free methods often require a very large number of iterations,
again resulting in high computational cost. Bayesian Optimization is a
gradient-free method suitable for expensive black-box evaluations (via
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small number of required function evaluations) (Morita et al., 2022;
Brochu et al., 2010).

Combining Bayesian optimization with CFD for geometry design
and shape optimization is becoming increasingly popular, see e.g.
Coppedè et al. (2019), Zuhal et al., Morita et al. (2022), but still
a relatively new approach. In the area of chemical reactor design,
optimizations have been reported e.g., for stirred tank reactors (Park
et al., 2018), fluidized bed reactors (Cho et al., 2023), and liquid-
phase jet reactors (Park et al., 2021), but overall, few studies have
been reported thus far. In particular, to our knowledge, no studies
describing continuous flow reactors with internal mixing elements have
been investigated in previous works. Due to their particularly complex
geometries, these types of reactors represent especially interesting and
challenging applications.

We present a framework in which the CFD software COMSOL Mul-
tiphysics (Anon, 2015b,c) is coupled with the Bayesian Optimization
algorithm TSEMO (Thompson sampling efficient multiobjective opti-
mization) (Anon, 2018a; Bradford et al., 2018), implemented in MAT-
LAB. The mixing element geometry of a Miprowa millireactor (Begall
et al., 2018; Anon, 2018b; Pfenning and Kleiber, 2015) is parameter-
ized, and the framework automatically runs and evaluates CFD studies
to minimize areas of stagnating flow and maximize the mixing perfor-
mance. The framework is able to find Pareto-optimal reactor variations,
and can easily be adapted for other devices and objectives. Our work
shows that Bayesian optimization and CFD can be applied successfully
to complex devices like continuous flow milliscale mixers and reactors.
Further, by quantifying the improvements that can be achieved, and the
tradeoffs that have to be made, it enables a more meaningful discussion
about the merits and limits of geometry optimization in this context.

2. Methods

In this section, we discuss the models and methods used, starting
with a description of the millireactor, explaining the objective func-
tions used for the optimization, and describing the CFD setup, the
optimization method and their coupling.

2.1. Millireactor model

The Miprowa Lab millireactor was developed by Ehrfeld Mikrotech-
nik (Anon, 2023). It was designed for single- or multiphase liquid–
liquid or liquid–gas applications, can be operated at a wide range of
temperatures and pressures, and has an effective fluid volume of about
20mL. The reactor contains eight identical process channels, which
are arranged in series, and can be heated or cooled by an enveloping
thermal fluid. The individual channels are rectangular, with an inte-
rior cross-section of 12mm by 1.5mm and a length of 300mm. They
contain three layers of mixing elements, forming a three-dimensional
herringbone pattern. The general form of a reactor channel is shown in
Fig. 1. The rectangular form (as opposed to round) is chosen by Ehrfeld
Mikrotechnik for two reasons: 𝑖 the surface area of the channels is
larger, enhancing heat transfer; 𝑖𝑖 the structure of the mixing elements
is simpler, making their manufacture comparatively simple. This allows
for the use and even adaptation of different elements, depending on the
specific reactor application.

We shortened the channel to 𝐿 = 50mm to speed up the computa-
tion time. This should not qualitatively impact the results because of
the periodicity of the design and the fact that the impact of the inlet
section on the velocity field is small, leading to well-developed flow
even shortly after the inlet (cf. left side of Fig. 2). The shape of the
channel is determined by the angle of the mixing element fins 𝛼, the
thickness of the fins 𝑑 and their distance 𝑠 (cf. Fig. 1). We consider
these parameters as the optimization variables.

The optimizations use three reference configurations as a starting
point, all sharing a fin thickness of 𝑑 = 1mm and a fin distance of
𝑠 = 2mm, with angles of 𝛼 = 30°, 𝛼 = 45° and 𝛼 = 60°, respectively. To
2

Fig. 1. The geometry and parameters of the reactor. Shown is the effective interior
volume, i.e. the volume taken up by the fluid; the gaps are the space taken up by the
mixing elements.

ensure that the configurations proposed by the optimization algorithm
still bear a meaningful resemblance to the original geometries, and still
consist of a single, well-connected domain, we impose the following
bounds on the parameters: The angle 𝛼 is allowed to vary between 15°
and 75°, and 𝑑 and 𝑠 both can take a minimum value of 0.5mm and a
maximum value of 2.5mm.

2.2. Objective functions

We optimize the reference geometry of the Miprowa millireactor
with respect to two competing objectives: The areas in which stagnating
flow occurs, and the mixing variance, which are to be minimized.
We explain these optimization objectives and the rational behind our
choice in some detail in the following sections.

2.2.1. Minimize stagnating flow
Areas with stagnating flow can be prone to fouling (Kukulka and

Devgun, 2007), and should thus be minimized as far as possible. Since
there is no clearly established definition of when a flow is said to be
stagnant, in the present work we regard a velocity magnitude |𝒗| of
5% of the inlet velocity 𝑣in as the cutoff point, and all points in the
domain with this value or less are designated stagnant. This is expressed
in the weight function 𝑊 (𝒗) (see Eq. (1)). We then integrate over the
computational domain, and divide by the volume of the domain 𝑉 , to
get a dimensionless number for the magnitude of stagnating areas. This
magnitude is denoted 𝑆 for ‘‘stagnant’’ (2).

𝑊 (𝒗) ∶=

{

0 , |𝒗|𝑣in
> 0.05

1 , |𝒗|𝑣in
≤ 0.05

(1)

𝑆(𝒗) ∶= 1
𝑉 ∫𝑉

𝑊 (𝒗) d𝑉 (2)

2.2.2. Minimize mixing variance
The reactor specifically aims for mixing in the cross-section to

achieve near uniform concentration. Thus, variation of mixing should
be minimized. We evaluate mixing by measuring the concentration 𝑐i
of a passive tracer substance which is added at the reactor inlet (cf.
Fig. 2). The mean concentration and variance of concentration are
computed according to Eqs. (3) and (4). As objective function, we use
the coefficient of variation 𝐶𝑉 , which is the ratio of the square root of
the variance to the mean 5. In the ideal case of a perfect mixture, 𝐶𝑉
would be equal to zero.

Mean concentration: (𝑐i) ∶=
1
𝑉 ∫𝑉

𝑐i d𝑉 (3)

Variance of concentration: (𝑐i) ∶=
1
𝑉 ∫𝑉

(

𝑐i − (𝑐i)
)2 d𝑉 (4)

Coefficient of variance: 𝐶𝑉 (𝑐i) ∶=

√

(𝑐i)
(𝑐i)

(5)
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Fig. 2. The flow field and concentration distribution for one of the reference geometries. (𝛼 = 45°, 𝑑 = 1mm, 𝑠 = 2mm).
Fig. 3. Objective function values of 𝑆 and 𝐶𝑉 . The blue crosses and green points denote the initial data set, the red circles the configurations chosen by the TSEMO algorithm.
2.3. CFD setup

To keep the solution time of each individual CFD computation low,
we introduce a number of simplifying assumptions. We assume the
fluid passing through the reactor to be pure water at room temperature
(20 °C). We consider a laminar, incompressible, isothermal steady-state
flow. We model the mixing via a passive tracer, with the diffusion coef-
ficient set to 1 × 10−9 m2∕s, corresponding to water-in-water diffusion.
As the fluid properties remain constant at all times, we assume that the
mixing does not have any effect on the fluid flow, but is affected by it.

In principle, Bayesian optimization can be used in tandem with
any CFD solver. We use the commercial finite-element based software
package COMSOL Multiphysics, version 5.1 (Anon, 2015b) to run the
CFD simulations. We choose COMSOL because it is well suited for
problems containing multiple phenomena, it has been already used
in previous work (Begall et al., 2018), and it provides interfaces for
coupling with external software (cf. Section 2.5).

We utilize Physics interfaces for laminar flow and transport of
diluted species. We first compute the steady state flow field and in a
transient second step the propagation of the tracer concentration. The
simulation meshes consist of about 3 × 105 elements. For selected cases,
we checked also the grid convergence. One simulation takes about 6.5 h
on average using the default solver settings recommended by COMSOL.
3

2.4. Bayesian optimization

Recall that Bayesian optimization is a technique for locating (near)
global optimal solutions of a black-box objective function, meaning
no information other than the function value, such as derivatives, are
needed. The objective is treated as an arbitrary function captured by
a stochastic model, which is updated iteratively as more data become
available. Bayesian optimization is a data-efficient method suitable for
dealing with expensive to evaluate functions, because it can efficiently
draw probabilistic conclusions from analyzing a minimal amount of
data (Brochu et al., 2010). In this work, we use the Thompson sampling
efficient multiobjective optimization (TSEMO) (Bradford et al., 2018)
algorithm, which can handle multiple, conflicting objective functions.
TSEMO uses Gaussian processes to build surrogate models of the ob-
jective functions. Then, TSEMO uses the cheap surrogate models to
identify the most promising evaluation point for the next (expensive)
function evaluation, a CFD simulation in our case. The CFD simulation
is performed, evaluated, and the result used to update the surrogate
models to find the new best evaluation point in an iterative fashion.
Further, all simulations are added to the solution data set. While inter-
mediate results are often discarded in other optimization methods, here
they are incorporated to find, and may be part of, the Pareto frontier.
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Fig. 4. Parallel coordinates plot for 𝛼, 𝑑, 𝑠 (cf. Fig. 1) and the objectives 𝑆 and 𝐶𝑉 . Every line in the plot corresponds to one simulated configuration, with color corresponding
to the mixing bar angle 𝛼.
Table 1
Geometric parameters and objective function values of the three reference cases and selected optimization results.

Configuration 𝛼 in [◦] 𝑑 in [mm] 𝑠 in [mm] 𝑆 in [1] 𝐶𝑉 in [1]

Ref30◦ = 𝑆ref 30 1 2 0.0208 1.2609
Reference Ref45◦ = 𝐶𝑉ref 45 1 2 0.0355 1.1815

Ref60◦ 60 1 2 0.0451 1.2025

𝑆min 71.16 2.5 0.74 0.0155 1.2918
TSEMO (𝑆∕𝐶𝑉 )tradeoff 69.64 2.17 1.57 0.0167 1.0692

𝐶𝑉min 70.51 1.45 1.23 0.0509 1.0091
Table 2
Relative improvement/decrease of the objectives 𝑆 and 𝐶𝑉 of the Bayesian optimization results with respect to the reference configurations
𝑆ref and 𝐶𝑉ref (rounded).
… compared to … 𝛥𝑆rel 𝛥𝐶𝑉rel to … 𝛥𝑆rel 𝛥𝐶𝑉rel

𝑆min 𝑆ref −26% +3% 𝐶𝑉ref −57% +9%
(𝑆∕𝐶𝑉 )tradeoff 𝑆ref −20% −15% 𝐶𝑉ref −53% −10%
𝐶𝑉min 𝑆ref +145% −20% 𝐶𝑉ref +43% −15%
o

The identification of the most promising CFD simulations is done by
a multi-objective genetic algorithm that optimizes random samples
which are drawn from the Gaussian processes. Notably, this internal
optimization problem could also be solved to global optimality using
deterministic global methods (Schweidtmann et al., 2021). Overall,
TSEMO cannot provide guarantees of global solution but often deter-
mines a good approximation of the true Pareto front with significantly
less iterations than genetic algorithms (Anon, 2018a; Bradford et al.,
2018).

2.5. Coupling of CFD and optimization

To prepare the optimization cycle, the first step is the setup of
the CFD case file template. The COMSOL Multiphysics graphical user
interface is used to create the starting geometry, define the physics in-
terfaces for fluid flow and species transport, and select the appropriate
meshing and solver settings. The case file is then saved as a MATLAB
(.m) file that contains all the information necessary to run the CFD
simulation for the starting geometry. After this initial setup, COMSOL
is only accessed via MATLAB through the LiveLink interface. The
objective functions are implemented in MATLAB, and a set of initial ge-
ometry configurations is created consisting of reference configurations
and configurations obtained via augmenting latin hypercube sampling
(aLHS). For each configuration, a COMSOL case file is created starting
4

a

from the template by modifying the respective geometry parameters.
Next, the COMSOL simulations are run and the results evaluated via
LiveLink (Anon, 2015a). These results form the initial data set used
for the actual optimization. A Bayesian acquisition step is performed,
using a stochastic model to determine new geometric parameters for
the next CFD simulation. The results of this simulation in terms of the
corresponding objective function values are added to the data set, and
the cycle continues until a termination criterion is met. In this case, the
optimization algorithm is stopped if a maximum number of iterations
is reached.

3. Results and discussion

The aim of the Bayesian optimization algorithm was to efficiently
find geometry configurations minimizing the objective functions 𝑆 and
𝐶𝑉 . Starting from a data set containing the three reference configura-
tions and seven additional configurations obtained via Latin hypercube
sampling, the algorithm successively selected 70 further configurations
to evaluate, for a total of 80 simulations. The simulations were run in
series, the combined runtime was 22 days (wall time). The number of
iterations (and thus also runtime) is orders of magnitude less than what
a brute-force approach would require. For example, a reasonable grip
would be 60 points for angle 𝛼 (increments of 1°) and 20 points for each
f the fin thickness 𝑑 and distance 𝑠 (increments of 0.1mm) resulting in
total of 24,000 simulations.
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Fig. 5. Configuration with the least stagnant areas. The geometric parameters are 𝛼 = 71.16°, 𝑑 = 2.5mm and 𝑠 = 0.74mm.
Fig. 6. Configuration with the best mixing. The geometric parameters are 𝛼 = 70.51°, 𝑑 = 1.45mm and 𝑠 = 1.23mm.
Fig. 7. A tradeoff between the two objectives. The geometric parameters are 𝛼 = 69.64°, 𝑑 = 2.17mm and 𝑠 = 1.57mm.
The objective function values of the configurations are plotted in
Fig. 3. The blue crosses and green points denote the initial data set,
the red circles the configurations chosen by the TSEMO algorithm.
Most of the proposed geometries improve at least one of the objective
function values significantly compared to the reference designs, with
many improving both. Fig. 4 shows a parallel coordinates plot of the
values of the geometric parameters with their corresponding objective
function values. Each line in the plot represents one configuration,
with the geometric parameter values plotted on the first three axes,
and the objective values plotted on the middle-right and far-right axes.
Thin lines mean the configurations are dominated, i.e. at least one
other configuration improves both objective function values, and thick
lines mean the configurations are dominating, i.e. Pareto-optimal. It is
apparent that the mixing bar angle 𝛼 seems to have the largest effect
on the objective functions, with all dominating configurations featuring
angles greater than 65°, whereas no clear preference can be assigned
regarding the mixing element thickness 𝑑 or distance 𝑠.
5

In the following, we examine three configurations more closely, and
compare them to the reference configurations. These are the configu-
rations yielding the least stagnant areas, i.e. the lowest value of the
objective function 𝑆, the one with the best mixing, i.e. the lowest value
of 𝐶𝑉 , and a Pareto-optimal tradeoff. For comparison, we take the
reference configurations with the best values of 𝑆 and 𝐶𝑉 , respectively.
They will be denoted 𝑆ref and 𝐶𝑉ref henceforth. Table 1 gives the geo-
metric parameters of the configurations and the corresponding absolute
values of the objective functions 𝑆 and 𝐶𝑉 , and Table 2 gives the
relative improvements of the selected optimization results compared
to 𝑆ref and 𝐶𝑉ref .

3.1. Least stagnating flow areas

We show in Fig. 5 the configuration leading to a minimal value of 𝑆.
Compared to 𝑆ref , the stagnating flow areas are reduced by 26%,

while the mixing variance is increased by 3%. The reduction of stag-
nating areas can be attributed to two factors. For one, the corners at
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the top and bottom of the reactor channel are well-aligned. Badly-
aligned corner regions (cf. Fig. 6) can form ‘‘dead zones’’, which have
a heightened fouling potential. The second reason lies in the fact that
the thickness of the mixing element fins 𝑑 is at the maximum allowed
value and the space between the fins 𝑠 is rather small, leading to a
reduction in the effective reactor volume and an increase of the average
flow velocity.

3.2. Least mixing variance

Fig. 6 shows the configuration yielding a minimum value of 𝐶𝑉 .
Compared to 𝐶𝑉ref , the mixing variance is reduced by 15%, while
the stagnating areas are increased by 43%. Interestingly, while this
configuration minimizes the mixing variance over the whole domain,
the corner regions at the bottom of the channel are actually not that
well mixed, indicating that it might be beneficial to give more weight
to the top and bottom regions of the channel. Similarly, one might,
e.g., neglect the first half of the channel to reduce the influence of the
inlet section.

3.3. Pareto-optimal trade-off

The optimization algorithm was able to find eight configurations,
including the two just discussed, which dominate all other tested
configurations, and are assumed to be close to or on the true Pareto
front. Due to the competing nature of the selected objective functions,
no single configuration can claim to give the overall best result. Instead,
a trade-off has to be selected by the user, depending on the specific
requirements of the intended use-case.

Here, we select the configuration in the bottom-left corner of Fig. 3,
as its 𝑆 value is still the second best found by the algorithm, and
the corresponding 𝐶𝑉 value is drastically reduced compared to the 𝑆-
optimal case. Fig. 7 shows the results for this configuration. We observe
that it reduces the stagnating flow areas by 19.7% compared to 𝑆ref ,
while still decreasing the mixing variance by 15.2%. Compared to 𝐶𝑉ref ,
the stagnating flow areas are reduced by 53%, and the mixing variance
by 10%. The configuration retains the aligned corners of the 𝑆-optimal
case, but has a larger effective interior volume more in line with the
𝐶𝑉 -optimal and reference configurations.

4. Conclusions

Continuous millireactors play an increasingly important role in
the chemical industry. They are highly complex devices and their
geometric optimization important. Numerical optimization can help to
improve their designs, in additional to manual adjustments. We use the
multi-objective Bayesian optimization algorithm TSEMO to generate
improved geometry configurations for the Miprowa Lab millireactor.
Two objective functions were optimized for, namely minimizing the
stagnating flow areas and the mixing variance in the reactor. The
proposed configurations yielded improvements compared to the best
reference cases of up to 26% and 15 percent, respectively. These results
show that Bayesian optimization can be utilized successfully for geom-
etry optimization of chemical reactors. The TSEMO algorithm used in
this work is highly adaptable and can work with an arbitrary number
of objective functions and parameters. It follows that, as long as the
geometry can be suitably parameterized, the demonstrated method can
be adapted to different devices and objective functions as required.
While the results prove that the method is working as intended, they
could be further improved by taking into account additional objectives
or adapting the ones used. For example, the effect of the suggested
modifications on the pressure loss was not of interest here, but could be
incorporated as an additional objective function. Similarly, the mixing
variance was calculated over the whole reactor domain, potentially
giving too much weight to the inlet area. Further work could attempt
to explore the effects of, e.g., only evaluating the mixing quality in the
6

second half of the reactor channel.
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